1
|
Tian F, Xu S, Gan M, Chen B, Luan Q, Cai L. Bionic cell wall models: Utilizing TEMPO-oxidized cellulose nanofibers for fucoxanthin delivery systems. Carbohydr Polym 2025; 348:122850. [PMID: 39567111 DOI: 10.1016/j.carbpol.2024.122850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024]
Abstract
Fucoxanthin (FX) has various excellent biological properties but suffers from poor bioavailability. In this work, we build a bionic cell wall model using TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy)-oxidized cellulose. The bionic cell wall enhances the environmental stability of the liposomes and serves as a pH-responsive mechanism. The coating processes protect the structure of liposomes and fucoxanthin under the acidic conditions of the stomach. The bionic cell wall disperses and releases the fucoxanthin in simulated intestinal fluid (SIF). Overall, the protective and release capabilities highlight the potential of cellulose in a bionic cell wall model and provide diversity for the structural design of carriers for delivering functional bioactive components.
Collapse
Affiliation(s)
- Fang Tian
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China.
| | - Shuyi Xu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China.
| | - Miaoyu Gan
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China
| | - Baihui Chen
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China
| | - Qian Luan
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China; School of Chemical and Biological Engineering, NingboTech University, Ningbo 315100, China.
| | - Luyun Cai
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China; School of Chemical and Biological Engineering, NingboTech University, Ningbo 315100, China.
| |
Collapse
|
2
|
Gan M, Cao A, Cai L, Xiang X, Li J, Luan Q. Preparation of cellulose-based nanoparticles via electrostatic self-assembly for the pH-responsive delivery of astaxanthin. Food Chem 2025; 463:141324. [PMID: 39321653 DOI: 10.1016/j.foodchem.2024.141324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
Oral administration of astaxanthin (AST), a potent antioxidant, is limited owing to its low solubility, physicochemical stability, and bioavailability. This study developed pH-responsive nanocarriers by the electrostatic self-assembly of 2,2,6,6-tetramethylpiperidine-1-oxyradical (TEMPO)-oxidized cellulose nanofibers (TCNFs) and chitosan (CS) to enhance the intestinal delivery of AST. The TCNF/CS@AST nanoparticles were optimized through single-factor experiments and Box-Behnken design, subsequently overcoming the hydrophobicity of AST and demonstrating improved stability against environmental stressors and controlled release in the intestinal environment. Transmission electron microscopy confirmed the near-spherical shape of these nanoparticles, with an average hydrodynamic diameter of 64 nm. TCNF/CS@AST enhanced the antioxidant effectiveness of AST after digestion and in lipopolysaccharide-stimulated RAW 264.7 cells while demonstrating good cellular compatibility. These nanoparticles present a promising strategy for the oral delivery of hydrophobic bioactive compounds orally, with potential applications in precision nutrition.
Collapse
Affiliation(s)
- Miaoyu Gan
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
| | - Ailing Cao
- Silk Inspection Center, Hangzhou Customs, Hangzhou 310063, China
| | - Luyun Cai
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Polytechnic Institute, Zhejiang University, Hangzhou 310015, China; College of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| | - Xia Xiang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jian Li
- Ningbo Luming Biotechnology Co., Ltd, Ningbo 315100, China
| | - Qian Luan
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Polytechnic Institute, Zhejiang University, Hangzhou 310015, China; College of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| |
Collapse
|
3
|
Liu A, Wu H, Dong Z, Fan Q, Huang J, Jin Z, Xiao N, Liu H, Li Z, Ming L. Recent trends in nanocellulose: Metabolism-related, gastrointestinal effects, and applications in probiotic delivery. Carbohydr Polym 2024; 343:122442. [PMID: 39174123 DOI: 10.1016/j.carbpol.2024.122442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 08/24/2024]
Abstract
Nanocellulose, a versatile and sustainable nanomaterial derived from cellulose fibers, has attracted considerable attention in various fields due to its unique properties. Similar to dietary fibers, nanocellulose is difficult to digest in the human gastrointestinal tract. The indigestible nanocellulose is fermented by gut microbiota, producing metabolites and potentially exhibiting prebiotic activity in intestinal diseases. Additionally, nanocellulose can serve as a matrix material for probiotic protection and show promising prospects for probiotic delivery. In this review, we summarize the classification of nanocellulose, including cellulose nanocrystals (CNC), cellulose nanofibers (CNF), and bacterial nanocellulose (BNC), highlighting their distinct characteristics and applications. We discuss the metabolism-related characteristics of nanocellulose from oral ingestion to colon fermentation and introduce the prebiotic activity of nanocellulose in intestinal diseases. Furthermore, we provide an overview of commonly used nanocellulose-based encapsulation techniques, such as emulsification, extrusion, freeze drying, and spray drying, as well as the delivery systems employing nanocellulose matrix materials, including microcapsules, emulsions, and hydrogels. Finally, we discuss the challenges associated with nanocellulose metabolism, prebiotic functionality, encapsulation techniques, and delivery systems using nanocellulose matrix material for probiotics. This review will provide new insight into the application of nanocellulose in the treatment of intestinal diseases and probiotic delivery.
Collapse
Affiliation(s)
- Ao Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hailian Wu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Zishu Dong
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Qimeng Fan
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Jia Huang
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Zhengji Jin
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Nan Xiao
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hongning Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| | - Zhe Li
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| | - Liangshan Ming
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| |
Collapse
|
4
|
Chen B, Li W, Jiang X, Huang Z, Lin L, Lin X, He Z, Lin X. Entrapment of multi-scale structure of alginate beads stabilized with cellulose nanofibrils for potential intestinal delivery of lactic acid bacteria. Int J Biol Macromol 2024; 281:136363. [PMID: 39374729 DOI: 10.1016/j.ijbiomac.2024.136363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Soybean cellulose nanofibrils (SCNFs) were formed by autoclave-enzymatic hydrolysis combined with ball milling. SCNFs were blended with sodium alginate (SA) to encapsulate lactic acid bacteria (LAB) through inotropic gelation. The effect of SCNFs on the multiscale structure of SA beads, leading to changes in the survival and release of LAB during simulated digestion, was investigated. Microscopy and rheological testing indicated that SCNF10-30 was well-dispersed in the SA paste in the form of interlaced nanofibrils, and could reduce the deformation of the paste under stress by 47.31 %. Multiscale structural analysis indicated SCNF10-30 not only increased the immobilized water of SA beads by 15.59 % by coordinating calcium, but also regulated the in situ-assembly of SA beads, including an increase in the scale of dimers from 6.73 nm to 8.32 nm and improved arrangement, thus forming a dense gel network. LAB viability of SA-SCNF10-30 in simulated digestion was increased by 1.3 log CFU/g compared to SA beads. Cellulose nanofibrils improved gastrointestinal survival and controlled release of LAB better than fiber rods. This study provides a strategy to regulate the multiscale structure of SA beads through nanofibrils to enable stabilization and sustainable release of LAB in gastrointestinal fluids.
Collapse
Affiliation(s)
- Bingyan Chen
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Weixin Li
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Xinyan Jiang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China
| | - Zhiji Huang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Lijuan Lin
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Xiaojie Lin
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Zhigang He
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China.
| | - Xiaozi Lin
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China.
| |
Collapse
|
5
|
Sharma T, Bawa S, Kumar S, Manik G, Negi YS. Bioactive enhancement of PVA films through CNC reinforcement and Ficus auriculata fruit extract: A novel synthesis for sustainable applications. Int J Biol Macromol 2024; 275:133338. [PMID: 38908623 DOI: 10.1016/j.ijbiomac.2024.133338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Cellulose nanocrystals (CNCs) have received immense interest lately as a potential nanomaterial because of their excellent mechanical and biological properties. This investigation aims to formulate a composite coating made of polyvinyl alcohol (PVA), CNCs, and a methanolic extract from the dried leaves and fruit of the fig tree (Ficus auriculata) (FAE). A sequential procedure to get CNCs included alkaline and acid hydrolysis, sonication, and suitable methods for purification. Analytical techniques like X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) were used to study the CNC-loaded films. Thermogravimetric analysis (TGA) of composites revealed superior thermal stability of the CNC-reinforced films versus control, evident from higher degradation temperatures, indicating desirable environmental resistance of proposed coatings for wood surfaces. The termite control was made more effective through synergistic use of a combination of CNCs, PVA, and FAE with proven insecticidal properties. The composite material was examined for its anti-termite resistance and termite mortality rate, and demonstrated that when used together, CNCs, PVA, and FAE were collectively and synergistically more effective at keeping termites away. The findings of this study demonstrate that the evolved composite could be used to develop anti-termite products that are environmentally benign and respond well. Synthesized composites also demonstrated significant antibacterial activity. Among all films, a combination of 0.7 % extract in PVA displayed excellent results with 26 and 28 mm diameter for growth inhibition zone for Gram-positive bacteria whereas 26 mm for both negative bacterial strains. The findings suggest a potential use of this composite as a sustainable, environmentally resistant, and eco-friendly alternative for termite/bacterial control in various building materials and wood preservation applications.
Collapse
Affiliation(s)
- Tulika Sharma
- Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee, Saharanpur Campus, Saharanpur 247001, India
| | - Shubham Bawa
- Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee, Saharanpur Campus, Saharanpur 247001, India
| | - Sachin Kumar
- Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee, Saharanpur Campus, Saharanpur 247001, India
| | - Gaurav Manik
- Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee, Saharanpur Campus, Saharanpur 247001, India.
| | - Yuvraj Singh Negi
- Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee, Saharanpur Campus, Saharanpur 247001, India
| |
Collapse
|
6
|
Xue N, Liu P, Zhao W, Zhou Z, Zhang L, Huang R, Liu R, Fathi A, Duan JA, Chen J, Wang Y. A Horn Peptide-Thermoresponsive Hydrogel for Angiogenesis and Bone Regeneration. Adv Healthc Mater 2024; 13:e2304400. [PMID: 38551206 DOI: 10.1002/adhm.202304400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/27/2024] [Indexed: 04/09/2024]
Abstract
The management of critical-sized bone defects presents a formidable clinical challenge, especially given the increasing incidence of bone diseases in the aging population. Consequently, there is an increased demand for minimally invasive bone repair materials that can effectively address this challenge, particularly in outpatient settings. In this study, the goal is to develop an injectable and biodegradable biomaterial that adheres to and fills bone-defect sites to support bone regeneration. The osteogenic and angiogenic activities of animal horn peptides are investigated by incorporating them into biologically active moieties, in combination with a novel thermosensitive hydrogel. The resulting thermosensitive hydrogel exhibited essential biological functionalities, allowing precise modulation of its physical and chemical properties. Notably, the hydrogel incorporating the horn peptide rapidly filled the bone defect site, promoting both angiogenesis and bone induction. Consequently, this approach significantly accelerates new bone regeneration. In summary, the findings of this study present a promising, minimally invasive solution for addressing critical-sized bone defects.
Collapse
Affiliation(s)
- Nannan Xue
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
- International Cooperative Joint Laboratory of Animal-Derived Chinese Medicine and Functional Peptides, Nanjing, 210023, P. R. China
| | - Pei Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
- International Cooperative Joint Laboratory of Animal-Derived Chinese Medicine and Functional Peptides, Nanjing, 210023, P. R. China
| | - Wenjian Zhao
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Ziyi Zhou
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Lixiang Zhang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Rizhong Huang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Rui Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
- International Cooperative Joint Laboratory of Animal-Derived Chinese Medicine and Functional Peptides, Nanjing, 210023, P. R. China
| | - Ali Fathi
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Tetratherix Technology Pty Ltd, Sydney, NSW, 2000, Australia
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
- International Cooperative Joint Laboratory of Animal-Derived Chinese Medicine and Functional Peptides, Nanjing, 210023, P. R. China
| | - Jun Chen
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Yiwei Wang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
- International Cooperative Joint Laboratory of Animal-Derived Chinese Medicine and Functional Peptides, Nanjing, 210023, P. R. China
| |
Collapse
|
7
|
Heidarrezaei M, Mauriello G, Shokravi H, Lau WJ, Ismail AF. Delivery of Probiotic-Loaded Microcapsules in the Gastrointestinal Tract: A Review. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10311-6. [PMID: 38907825 DOI: 10.1007/s12602-024-10311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 06/24/2024]
Abstract
Probiotics are live microorganisms that inhabit the gastrointestinal tract and confer health benefits to consumers. However, a sufficient number of viable probiotic cells must be delivered to the specific site of interest in the gastrointestinal tract to exert these benefits. Enhanced viability and tolerance to sublethal gastrointestinal stress can be achieved using appropriate coating materials and food matrices for orally consumed probiotics. The release mechanism and interaction of probiotic microcapsules with the gastrointestinal tract have been minimally explored in the literature to date. To the authors' knowledge, no review has been published to discuss the nature of release and the challenges in the targeted delivery of probiotics. This review addresses gastrointestinal-related complications in the formulation of targeted delivery and controlled release of probiotic strains. It investigates the impacts of environmental stresses during the transition stage and delivery to the target region in the gastrointestinal tract. The influence of factors such as pH levels, enzymatic degradation, and redox conditions on the release mechanisms of probiotics is presented. Finally, the available methods to evaluate the efficiency of a probiotic delivery system, including in vitro and in vivo, are reviewed and assessed. The paper concludes with a discussion highlighting the emerging technologies in the field and emphasising key areas in need of future study.
Collapse
Affiliation(s)
- Mahshid Heidarrezaei
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| | - Gianluigi Mauriello
- Department of Agricultural Science, University of Naples Federico II, 80049, Naples, Italy
| | - Hoofar Shokravi
- Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Woei Jye Lau
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Ahmad Fauzi Ismail
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| |
Collapse
|
8
|
Bani Saeid A, De Rubis G, Williams KA, Yeung S, Chellappan DK, Singh SK, Gupta G, Hansbro PM, Shahbazi MA, Gulati M, Kaur IP, Santos HA, Paudel KR, Dua K. Revolutionizing lung health: Exploring the latest breakthroughs and future prospects of synbiotic nanostructures in lung diseases. Chem Biol Interact 2024; 395:111009. [PMID: 38641145 DOI: 10.1016/j.cbi.2024.111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
The escalating prevalence of lung diseases underscores the need for innovative therapies. Dysbiosis in human body microbiome has emerged as a significant factor in these diseases, indicating a potential role for synbiotics in restoring microbial equilibrium. However, effective delivery of synbiotics to the target site remains challenging. Here, we aim to explore suitable nanoparticles for encapsulating synbiotics tailored for applications in lung diseases. Nanoencapsulation has emerged as a prominent strategy to address the delivery challenges of synbiotics in this context. Through a comprehensive review, we assess the potential of nanoparticles in facilitating synbiotic delivery and their structural adaptability for this purpose. Our review reveals that nanoparticles such as nanocellulose, starch, and chitosan exhibit high potential for synbiotic encapsulation. These offer flexibility in structure design and synthesis, making them promising candidates for addressing delivery challenges in lung diseases. Furthermore, our analysis highlights that synbiotics, when compared to probiotics alone, demonstrate superior anti-inflammatory, antioxidant, antibacterial and anticancer activities. This review underscores the promising role of nanoparticle-encapsulated synbiotics as a targeted and effective therapeutic approach for lung diseases, contributing valuable insights into the potential of nanomedicine in revolutionizing treatment strategies for respiratory conditions, ultimately paving the way for future advancements in this field.
Collapse
Affiliation(s)
- Ayeh Bani Saeid
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kylie A Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, 144411, India
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV, 9713, Groningen, the Netherlands
| | - Monica Gulati
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Punjab University Chandigarh, India
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV, 9713, Groningen, the Netherlands; Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
9
|
Zhong Y, Huang W, Zheng Y, Chen T, Liu C. Alginate-coated pomelo pith cellulose matrix for probiotic encapsulation and controlled release. Int J Biol Macromol 2024; 262:130143. [PMID: 38367775 DOI: 10.1016/j.ijbiomac.2024.130143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
A novel carrier comprised of ethanol- and alkali-modified cellulosic pomelo pith matrix coated with alginate was developed to improve viability while enabling gastrointestinal release of probiotics. Scanning electron microscopy imaging revealed the agricultural byproduct had a honeycomb-structured cellulose framework, enabling high loading capacity of the probiotic Lactobacillus plantarum up to 9 log CFU/g. Ethanol treatment opened up pores with an average diameter of 97 μm, while alkali treatment increased swelling and porosity, with an average pore size of 51 μm. The survival rate through the stomach was increased from 89.76 % to 91.08 % and 91.24 % after ethanol and alkali modification, respectively. The control group displayed minimal release in the first 4 h followed by a burst release. Both ethanol modification and alkali modification resulted in constant linear release over time. The release time was prolonged when decreasing the width of the pomelo peel rolls from 10 mm to 5 mm while keeping the volume of the peel constant. After 8 weeks of refrigerated storage, the cellulose-encapsulated probiotics retained viability above 7 log CFU/g. This study demonstrates the potential of the structurally intact, sustainably-sourced cellulosic pomelo pith for probiotic encapsulation and controlled delivery.
Collapse
Affiliation(s)
- Yejun Zhong
- State Key Laboratory of Food Science and Resources, School of Food Science, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China; School of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Wenrong Huang
- State Key Laboratory of Food Science and Resources, School of Food Science, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China
| | - Yawen Zheng
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Tingting Chen
- State Key Laboratory of Food Science and Resources, School of Food Science, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, School of Food Science, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, China
| |
Collapse
|
10
|
Mohamadzadeh M, Fazeli A, Shojaosadati SA. Polysaccharides and proteins-based bionanocomposites for microencapsulation of probiotics to improve stability and viability in the gastrointestinal tract: A review. Int J Biol Macromol 2024; 259:129287. [PMID: 38211924 DOI: 10.1016/j.ijbiomac.2024.129287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Probiotics have recently received significant attention due to their various benefits, such as the modulation of gut flora, reduction of blood sugar and insulin resistance, prevention and treatment of digestive disorders, and strengthening of the immune system. One of the major issues concerning probiotics is the maintenance of their viability in the presence of digestive conditions and extended shelf life during storage. To address this concern, numerous techniques have been explored to achieve success. Among these methods, the microencapsulation of probiotics has been proposed as the most effective way to overcome this challenge. The combination of nanomaterials with biopolymer coating is considered a novel approach to improve its viability and effective delivery. The use of polysaccharides and proteins-based bionanocomposites for microencapsulation of probiotics has emerged as an efficient and promising approach for maintaining cell viability and targeted delivery. This review article aims to investigate the use of different bionanocomposites in microencapsulation of probiotics and their effect on cell survival in long-term storage and harsh conditions in the gastrointestinal tract.
Collapse
Affiliation(s)
| | - Ahmad Fazeli
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
11
|
Rathod P, Yadav RP. Gut microbiome as therapeutic target for diabesity management: opportunity for nanonutraceuticals and associated challenges. Drug Deliv Transl Res 2024; 14:17-29. [PMID: 37552394 DOI: 10.1007/s13346-023-01404-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2023] [Indexed: 08/09/2023]
Abstract
Diabesity is showing rising prevalence. Current treatment modalities include pharmacological and non-pharmacological approaches, yet associated with various drawbacks. Recently, gut microbial dysbiosis is documented as a crucial factor in the pathogenesis of diabesity. Targeting gut microbiome using modulators shows promising therapeutic strategy for diabesity management. In this line, nanonutraceuticals represent new class of gut microbial modulators. The present article explores the potential of nanonutraceuticals including nanoprobiotics, nanoprebiotics, and plant-derived nanovesicles that are fabricated on the ecofriendly food based scaffold with gut microbial modulatory potential for diabesity management. A number of compelling evidences from different studies support Bifidobacterium, Enterococcus, and Bacteroides genera and Lactobacillus plantarum and Akkermansia muciniphila species significant in diabesity management. The probable mechanisms reported for gut microbial dysbiosis-induced diabesity are mentioned. The review findings suggest gut microbiome as significant therapeutic target for diabesity management. Moreover, ecofriendly nanonutraceuticals developed using natural products including food-grade materials are efficient modulators of gut microbiome and indicate next-generation diabesity therapeutics. Clinical studies are imperative as further exploration may provide new dimensions to the future research.
Collapse
Affiliation(s)
- Priyanka Rathod
- MGMIHS OMICS Research Center, MGM Central Research Laboratory, MGM Medical College and Hospital, Navi Mumbai, Maharashtra, India
- Department of Medical Biotechnology, MGM School of Biomedical Sciences, MGM Institute of Health Sciences, Kamothe-410209, Navi Mumbai, Maharashtra, India
| | - Raman P Yadav
- MGMIHS OMICS Research Center, MGM Central Research Laboratory, MGM Medical College and Hospital, Navi Mumbai, Maharashtra, India.
- Department of Medical Biotechnology, MGM School of Biomedical Sciences, MGM Institute of Health Sciences, Kamothe-410209, Navi Mumbai, Maharashtra, India.
| |
Collapse
|
12
|
Lin Q, Si Y, Zhou F, Hao W, Zhang P, Jiang P, Cha R. Advances in polysaccharides for probiotic delivery: Properties, methods, and applications. Carbohydr Polym 2024; 323:121414. [PMID: 37940247 DOI: 10.1016/j.carbpol.2023.121414] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 11/10/2023]
Abstract
Probiotics are essential to improve the health of the host, whereas maintaining the viability of probiotics in harsh environments remains a challenge. Polysaccharides have non-toxicity, excellent biocompatibility, and outstanding biodegradability, which can protect probiotics by forming a physical barrier and show a promising prospect for probiotic delivery. In this review, we summarize polysaccharides commonly used for probiotic microencapsulation and introduce the microencapsulation technologies, including extrusion, emulsion, spray drying, freeze drying, and electrohydrodynamics. We discuss strategies for better protection of probiotics and introduce the applications of polysaccharides-encapsulated probiotics in functional food, oral formulation, and animal feed. Finally, we propose the challenges of polysaccharides-based delivery systems in industrial production and application. This review will help provide insight into the advances and challenges of polysaccharides in probiotic delivery.
Collapse
Affiliation(s)
- Qianqian Lin
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China; Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China.
| | - Yanxue Si
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Wenshuai Hao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Pai Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Peng Jiang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China; College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China.
| |
Collapse
|
13
|
Ding X, Li D, Xu Y, Wang Y, Liang S, Xie L, Yu W, Zhan X, Fu A. Carboxymethyl konjac glucomannan-chitosan complex nanogels stabilized emulsions incorporated into alginate as microcapsule matrix for intestinal-targeted delivery of probiotics: In vivo and in vitro studies. Int J Biol Macromol 2023; 253:126931. [PMID: 37722632 DOI: 10.1016/j.ijbiomac.2023.126931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
In this study, we developed a novel delivery system using carboxymethyl konjac glucomannan-chitosan (CMKGM-CS) nanogels stabilized single and double emulsion incorporated into alginate hydrogel as microcapsule matrix for intestinal-targeted delivery of probiotics. Through in vitro experiments, it was demonstrated that alginate hydrogel provided favorable biocompatible growth conditions for the proliferation of Lactobacillus reuteri (LR). The alginate hydrogel containing single (ASE) or double emulsions (ACG) enhanced the resistance of LR to various adverse environments. Simulated gastrointestinal digestion experiments revealed that the survivability of LR in free, CON, ASE and ACG group decreased by 6.45 log CFU/g, 4.21 log CFU/g, 1.26 log CFU/g and 0.65 log CFU/g, respectively. In vivo studies conducted in mice showed that ACG maintained its integrity during passage through the stomach and released the probiotics in the targeted intestinal area, whereas the pure alginate hydrogels (CON) were prematurely released in the gastrointestinal tract. Moreover, the viable counts of ACG in different intestinal segments (jejunum, ileum, cecum, and colon) were increased by 1.11, 1.42, 1.68, and 1.89 log CFU/g, respectively, after 72 h of oral administration compared to the CON group. This research contributed valuable insights into the development of an effective microbial delivery system with potential applications in the biopharmaceutical and food industries.
Collapse
Affiliation(s)
- Xiaoqing Ding
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Danlei Li
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yibin Xu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Wang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuang Liang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingyu Xie
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiqiang Yu
- Animal Husbandry and Veterinary Services Center of Haiyan, Jiaxing 314300, China.
| | - Xiuan Zhan
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Aikun Fu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Ullah S, Ali HG, Hashmi M, Haider MK, Ishaq T, Tamada Y, Park S, Kim IS. Electrospun composite nanofibers of deoxyribonucleic acid and polylactic acid for skincare applications. J Biomed Mater Res A 2023; 111:1798-1807. [PMID: 37539635 DOI: 10.1002/jbm.a.37592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/15/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023]
Abstract
The development of useful biomaterials has resulted in significant advances in various fields of science and technology. The demand for new biomaterial designs and manufacturing techniques continues to grow, with the goal of building a sustainable society. In this study, two types of DNA-cationic surfactant complexes were synthesized using commercially available deoxyribonucleic acid from herring sperm DNA (hsDNA, <50 bp) and deoxyribonucleic acid from salmon testes DNA (stDNA, ~2000 bp). The DNA-surfactant complexes were blended with a polylactic acid (PLA) biopolymer and electrospun to obtain nanofibers, and then copper nanoparticles were synthesized on nanofibrous webs. Scanning electron microscopic images showed that all nanofibers possessed uniform morphology. Interestingly, different diameters were observed depending on the base pairs in the DNA complex. Transmission electron microscopy showed uniform growth of copper nanoparticles on the nanofibers. Fourier-transform infrared spectroscopy spectra confirmed the uniform blending of both types of DNA complexes in PLA. Both stDNA- and hsDNA-derived nanofibers showed greater biocompatibility than native PLA nanofibers. Furthermore, they exerted significant antibacterial activity in the presence of copper nanoparticles. This study demonstrates that DNA is a potentially useful material to generate electrospun nanofibrous webs for use in biomedical sciences and technologies.
Collapse
Affiliation(s)
- Sana Ullah
- Graduate School of Medicine Science and Technology, Division of Smart Materials, Shinshu University Ueda Campus, Nagano, Japan
- Department of Inorganic Chemistry I, and Helmholtz Institute of Ulm (HIU), Ulm University, Ulm, Germany
- Nano Fusion Technology Research Group, Interdisciplinary Cluster for Cutting Edge Technologies, Institute of Fiber Engineering (IFES), Shinshu University Ueda Campus, Nagano, Japan
| | - Hina Ghulam Ali
- Department of Inorganic Chemistry I, and Helmholtz Institute of Ulm (HIU), Ulm University, Ulm, Germany
| | - Motahira Hashmi
- Graduate School of Medicine Science and Technology, Division of Smart Materials, Shinshu University Ueda Campus, Nagano, Japan
- Nano Fusion Technology Research Group, Interdisciplinary Cluster for Cutting Edge Technologies, Institute of Fiber Engineering (IFES), Shinshu University Ueda Campus, Nagano, Japan
| | - Md Kaiser Haider
- Graduate School of Medicine Science and Technology, Division of Smart Materials, Shinshu University Ueda Campus, Nagano, Japan
- Nano Fusion Technology Research Group, Interdisciplinary Cluster for Cutting Edge Technologies, Institute of Fiber Engineering (IFES), Shinshu University Ueda Campus, Nagano, Japan
| | - Tehmeena Ishaq
- Department of chemistry, The University of Lahore, Sargodha campus, Sargodha, Pakistan
| | - Yasushi Tamada
- Department of Biomedical Engineering, Faculty of Textile Science and Technology, Shinshu University Ueda Campus, Nagano, Japan
| | - Soyoung Park
- Department of Genome Informatics, Immunology Frontier Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ick Soo Kim
- Nano Fusion Technology Research Group, Interdisciplinary Cluster for Cutting Edge Technologies, Institute of Fiber Engineering (IFES), Shinshu University Ueda Campus, Nagano, Japan
| |
Collapse
|
15
|
Fan Q, Zeng X, Wu Z, Guo Y, Du Q, Tu M, Pan D. Nanocoating of lactic acid bacteria: properties, protection mechanisms, and future trends. Crit Rev Food Sci Nutr 2023; 64:10148-10163. [PMID: 37318213 DOI: 10.1080/10408398.2023.2220803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lactic acid bacteria (LAB) is a type of probiotic that may benefit intestinal health. Recent advances in nanoencapsulation provide an effective strategy to protect them from harsh conditions via surface functionalization coating techniques. Herein, the categories and features of applicable encapsulation methods are compared to highlight the significant role of nanoencapsulation. Commonly used food-grade biopolymers (polysaccharides and protein) and nanomaterials (nanocellulose and starch nanoparticles) are summarized along with their characteristics and advances to demonstrate enhanced combination effects in LAB co-encapsulation. Nanocoating for LAB provides an integrity dense or smooth layer attributed to the cross-linking and assembly of the protectant. The synergism of multiple chemical forces allows for the formation of subtle coatings, including electrostatic attractions, hydrophobic interactions, π-π, and metallic bonds. Multilayer shells have stable physical transition properties that could increase the space between the probiotic cells and the outer environment, thus delaying the microcapsules burst time in the gut. Probiotic delivery stability can be promoted by enhancing the thickness of the encapsulated layer and nanoparticle binding. Maintenance of benefits and minimization of nanotoxicity are desirable, and green synthesized nanoparticles are emerging. Future trends include optimized formulation, especially using biocompatible materials, protein or plant-based materials, and material modification.
Collapse
Affiliation(s)
- Qing Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Yuxing Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| |
Collapse
|
16
|
Kumar A, Watbled B, Baussanne I, Hediger S, Demeunynck M, De Paëpe G. Optimizing chemistry at the surface of prodrug-loaded cellulose nanofibrils with MAS-DNP. Commun Chem 2023; 6:58. [PMID: 36977767 PMCID: PMC10049993 DOI: 10.1038/s42004-023-00852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
Studying the surface chemistry of functionalized cellulose nanofibrils at atomic scale is an ongoing challenge, mainly because FT-IR, NMR, XPS and RAMAN spectroscopy are limited in sensitivity or resolution. Herein, we show that dynamic nuclear polarization (DNP) enhanced 13C and 15N solid-state NMR is a uniquely suited technique to optimize the drug loading on nanocellulose using aqueous heterogenous chemistry. We compare the efficiency of two conventional coupling agents (DMTMM vs EDC/NHS) to bind a complex prodrug of ciprofloxacin designed for controlled drug release. Besides quantifying the drug grafting, we also evidence the challenge to control the concurrent prodrug adsorption and to optimize washing procedures. We notably highlight the presence of an unexpected prodrug cleavage mechanism triggered by carboxylates at the surface of the cellulose nanofibrils.
Collapse
Affiliation(s)
- Akshay Kumar
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM, Grenoble, France
| | | | | | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM, Grenoble, France
| | | | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM, Grenoble, France.
| |
Collapse
|
17
|
Dangi P, Chaudhary N, Chaudhary V, Virdi AS, Kajla P, Khanna P, Jha SK, Jha NK, Alkhanani MF, Singh V, Haque S. Nanotechnology impacting probiotics and prebiotics: a paradigm shift in nutraceuticals technology. Int J Food Microbiol 2023; 388:110083. [PMID: 36708610 DOI: 10.1016/j.ijfoodmicro.2022.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 12/25/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
This is proven for a long that the incorporation of probiotics and prebiotics in diet exhibits beneficial effects on intestinal and intrinsic health. Nevertheless, this may encounter loss of vitality all along the absorption in the gastrointestinal tract, leading to meager intestinal delivery of probiotic active ingredients. In recent times, nanotechnology has been passionately used to escalate the bioavailability of active ingredients. Versatile forms of nanoparticles (NPs) are devised to be used with probiotics/prebiotics/synbiotics or their different combinations. The NPs currently in trend are constituted of distinctive organic compounds like carbohydrates, proteins, fats, or inorganics such as oxides of silver and titanium or magnesium etc. This review critically explicates the emerging relationship of nanotechnology with probiotics and prebiotics for different applications in neutraceuticals. Here in this review, formulations of nanoprobiotics and nanoprebiotics are discussed in detail, which behave as an effective drug delivery system. In addition, these formulations exhibit anti-cancerous, anti-microbial, anti-oxidant and photo-protective properties. Limited availability of scientific research on nanotechnology concerning probiotics and prebiotics implies dynamic research studies on the bioavailability of loaded active ingredients and the effective drug delivery system by including the safety issues of food and the environment.
Collapse
Affiliation(s)
- Priya Dangi
- Department of Food & Nutrition and Food Technology, University of Delhi, Institute of Home Economics, New Delhi, India
| | - Nisha Chaudhary
- Department of Food Science and Technology, College of Agriculture, Nagaur, Agriculture University, Jodhpur, Rajasthan, India
| | - Vandana Chaudhary
- Department of Dairy Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Amardeep Singh Virdi
- Department of Food Science and Technology, Amity University, Mohali, Punjab, India
| | - Priyanka Kajla
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | | | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Mustfa F Alkhanani
- Biology Department, College of Sciences, University of Hafr Al Batin, P. O. Box 1803, Hafr Al Batin 31991, Saudi Arabia
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Sitapur Road, Lucknow 226021, Uttar Pradesh, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
18
|
Zhang X, Li X, Zhao Y, Zheng Q, Wu Q, Yu Y. Nanocarrier system: An emerging strategy for bioactive peptide delivery. Front Nutr 2022; 9:1050647. [PMID: 36545472 PMCID: PMC9760884 DOI: 10.3389/fnut.2022.1050647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Compared with small-molecule synthetic drugs, bioactive peptides have desirable advantages in efficiency, selectivity, safety, tolerance, and side effects, which are accepted by attracting extensive attention from researchers in food, medicine, and other fields. However, unacceptable barriers, including mucus barrier, digestive enzyme barrier, and epithelial barrier, cause the weakening or the loss of bioavailability and biostability of bioactive peptides. The nanocarrier system for bioactive peptide delivery needs to be further probed. We provide a comprehensive update on the application of versatile delivery systems for embedding bioactive peptides, including liposomes, polymer nanoparticles, polysaccharides, hydrogels, and self-emulsifying delivery systems, and further clarify their structural characterization, advantages, and disadvantages as delivery systems. It aims to provide a reference for the maximum utilization of bioactive peptides. It is expected to be an effective strategy for improving the bioavailability and biostability of bioactive peptides.
Collapse
|
19
|
Carboxymethyl chitosan/N-acetylneuraminic acid/oxidised hydroxyethyl cellulose hydrogel as a vehicle for Pediococcus pentosaceus RQ-1 with isomaltose-oligosaccharide: Enhanced in vitro tolerance and storage stability of probiotic. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
20
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for drug delivery and wound management: a review. Expert Opin Drug Deliv 2022; 19:1664-1695. [PMID: 36440488 DOI: 10.1080/17425247.2022.2152791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Polysaccharide-based hydrogels (PBHs) offer several advantages over their synthetic counterparts. Their natural origin contributes to their nontoxicity, high biocompatibility, and in vivo biodegradability. Their properties can be tuned finely to obtain hydrogels with desired mechanical, structural, and chemical properties. AREAS COVERED Such versatile characteristics have potentiated the use of PBHs for the delivery of drugs, vaccines, protein and peptide therapeutics, genes, cells, probiotics, bacteriophages, and other therapeutic agents. Recent advances in hydrogel-based formulations such as nanogels, microgels, microneedles, hydrogel beads, nanocarrier-loaded hydrogels, and complexation hydrogels have enabled the precise delivery of a wide range of therapeutics. This review aims to give a holistic overview of hydrogels in the delivery of a variety of therapeutics through different routes. EXPERT OPINION PBHs have been used to enable the oral delivery of vaccines and other biologicals, thereby allowing self-administration of life-saving vaccines during public health emergencies. There is a lack of commercialized wound dressings for the treatment of chronic wounds. PBH-based wound dressings, especially those based on chitosan and loaded with actives and growth factors, have the potential to help in the long-term treatment of such wounds. Recent developments in the 3D printing of hydrogels can enable the quick and large-scale production of drug-loaded hydrogels.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai School of Pharmacy and Technology Management, Mumbai, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Vinita Kale
- Department of Pharmaceutics, Guru Nanak College of Pharmacy, Nagpur, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| |
Collapse
|
21
|
Spray drying co-encapsulation of lactic acid bacteria and lipids: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Ding X, Xu Y, Wang Y, Xie L, Liang S, Li D, Wang Y, Wang J, Zhan X. Carboxymethyl konjac glucomannan-chitosan complex nanogels stabilized double emulsions incorporated into alginate hydrogel beads for the encapsulation, protection and delivery of probiotics. Carbohydr Polym 2022; 289:119438. [DOI: 10.1016/j.carbpol.2022.119438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 01/13/2023]
|
23
|
Surendran G, Sherje AP. Cellulose nanofibers and composites: An insight on basics and biomedical applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Engineering of Vaginal Lactobacilli to Express Fluorescent Proteins Enables the Analysis of Their Mixture in Nanofibers. Int J Mol Sci 2021; 22:ijms222413631. [PMID: 34948426 PMCID: PMC8708671 DOI: 10.3390/ijms222413631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/18/2022] Open
Abstract
Lactobacilli are a promising natural tool against vaginal dysbiosis and infections. However, new local delivery systems and additional knowledge about their distribution and mechanism of action would contribute to the development of effective medicine. This will be facilitated by the introduction of the techniques for effective, inexpensive, and real-time tracking of these probiotics following their release. Here, we engineered three model vaginal lactobacilli (Lactobacillus crispatus ATCC 33820, Lactobacillus gasseri ATCC 33323, and Lactobacillus jensenii ATCC 25258) and a control Lactobacillus plantarum ATCC 8014 to express fluorescent proteins with different spectral properties, including infrared fluorescent protein (IRFP), green fluorescent protein (GFP), red fluorescent protein (mCherry), and blue fluorescent protein (mTagBFP2). The expression of these fluorescent proteins differed between the Lactobacillus species and enabled quantification and discrimination between lactobacilli, with the longer wavelength fluorescent proteins showing superior resolving power. Each Lactobacillus strain was labeled with an individual fluorescent protein and incorporated into poly (ethylene oxide) nanofibers using electrospinning, as confirmed by fluorescence and scanning electron microscopy. The lactobacilli retained their fluorescence in nanofibers, as well as after nanofiber dissolution. To summarize, vaginal lactobacilli were incorporated into electrospun nanofibers to provide a potential solid vaginal delivery system, and the fluorescent proteins were introduced to distinguish between them and allow their tracking in the future probiotic-delivery studies.
Collapse
|
25
|
Deng Z, Li J, Song R, Zhou B, Li B, Liang H. Carboxymethylpachymaran/alginate gel entrapping of natural pollen capsules for the encapsulation, protection and delivery of probiotics with enhanced viability. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Co-stabilization and properties regulation of Pickering emulsions by cellulose nanocrystals and nanofibrils from lemon seeds. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106884] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Langlois L, Akhtar N, Tam KC, Dixon B, Reid G. Fishing for the right probiotic: Host-microbe interactions at the interface of effective aquaculture strategies. FEMS Microbiol Rev 2021; 45:6284803. [PMID: 34037775 DOI: 10.1093/femsre/fuab030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Effective aquaculture management strategies are paramount to global food security. Growing demands stimulate the intensification of production and create the need for practices that are both economically viable and environmentally sustainable. Importantly, pathogenic microbes continue to be detrimental to fish growth and survival. In terms of host health, the intestinal mucosa and its associated consortium of microbes have a critical role in modulating fitness and present an attractive opportunity to promote health at this interface. In light of this, the administration of probiotic microorganisms is being considered as a means to restore and sustain health in fish. Current evidence suggests that certain probiotic strains might be able to augment immunity, enhance growth rate, and protect against infection in salmonids, the most economically important family of farmed finfish. This review affirms the relevance of host-microbe interactions in salmonids in light of emerging evidence, with an emphasis on intestinal health. In addition, the current understanding of the mode of action of probiotics in salmonid fish is discussed, along with delivery systems that can effectively carry the living microbes.
Collapse
Affiliation(s)
- Luana Langlois
- Canadian Centre for Human Microbiome and Probiotics Research, Lawson Health Research Institute, 268 Grosvenor St, N6A 4V2, London, Ontario, Canada.,Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond St, N6A 5C1, London, Ontario, Canada
| | - Nadeem Akhtar
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, N2L 3G1, Waterloo, Ontario, Canada.,Department of Biology, University of Waterloo, 200 University Avenue W, N2L 3G1, Waterloo, Ontario, Canada
| | - Kam C Tam
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, N2L 3G1, Waterloo, Ontario, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Avenue W, N2L 3G1, Waterloo, Ontario, Canada
| | - Gregor Reid
- Canadian Centre for Human Microbiome and Probiotics Research, Lawson Health Research Institute, 268 Grosvenor St, N6A 4V2, London, Ontario, Canada.,Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond St, N6A 5C1, London, Ontario, Canada.,Department of Surgery, The University of Western Ontario, St. Joseph's Health Care London, 268 Grosvenor St, N6A 4V2, London, Ontario, Canada
| |
Collapse
|
28
|
Razavi S, Janfaza S, Tasnim N, Gibson DL, Hoorfar M. Nanomaterial-based encapsulation for controlled gastrointestinal delivery of viable probiotic bacteria. NANOSCALE ADVANCES 2021; 3:2699-2709. [PMID: 36134186 PMCID: PMC9419840 DOI: 10.1039/d0na00952k] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/25/2021] [Indexed: 05/02/2023]
Abstract
Probiotics are microorganisms that have beneficial health effects when administered in adequate dosages. The oral administration of probiotic bacteria is widely considered beneficial for both intestinal as well as systemic health but its clinical efficacy is conflicted in the literature. This may at least in part be due to the loss of viability during gastrointestinal passage resulting in poor intestinal delivery. Microencapsulation technology has been proposed as a successful strategy to address this problem by maintaining the viability of probiotics, thereby improving their efficacy following oral administration. More recently, nanomaterials have demonstrated significant promise as encapsulation materials to improve probiotic encapsulation. The integration of nanotechnology with microencapsulation techniques can improve the controlled delivery of viable probiotic bacteria to the gut. The current review aims at summarizing the types of nanomaterials used for the microencapsulation of probiotics and showing how they can achieve the delivery and controlled release of probiotics at the site of action.
Collapse
Affiliation(s)
| | - Sajjad Janfaza
- School of Engineering, University of British Columbia Kelowna BC Canada
| | - Nishat Tasnim
- School of Engineering, University of British Columbia Kelowna BC Canada
| | - Deanna L Gibson
- Department of Biology, Faculty of Science, University of British Columbia Kelowna Canada
- Department of Medicine, Faculty of Medicine, University of British Columbia Vancouver Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia Kelowna BC Canada
| |
Collapse
|
29
|
Mettu S, Hathi Z, Athukoralalage S, Priya A, Lam TN, Ong KL, Choudhury NR, Dutta NK, Curvello R, Garnier G, Lin CSK. Perspective on Constructing Cellulose-Hydrogel-Based Gut-Like Bioreactors for Growth and Delivery of Multiple-Strain Probiotic Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4946-4959. [PMID: 33890783 PMCID: PMC8154558 DOI: 10.1021/acs.jafc.1c00468] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 05/16/2023]
Abstract
The current perspective presents an outlook on developing gut-like bioreactors with immobilized probiotic bacteria using cellulose hydrogels. The innovative concept of using hydrogels to simulate the human gut environment by generating and maintaining pH and oxygen gradients in the gut-like bioreactors is discussed. Fundamentally, this approach presents novel methods of production as well as delivery of multiple strains of probiotics using bioreactors. The relevant existing synthesis methods of cellulose hydrogels are discussed for producing porous hydrogels. Harvesting methods of multiple strains are discussed in the context of encapsulation of probiotic bacteria immobilized on cellulose hydrogels. Furthermore, we also discuss recent advances in using cellulose hydrogels for encapsulation of probiotic bacteria. This perspective also highlights the mechanism of probiotic protection by cellulose hydrogels. Such novel gut-like hydrogel bioreactors will have the potential to simulate the human gut ecosystem in the laboratory and stimulate new research on gut microbiota.
Collapse
Affiliation(s)
- Srinivas Mettu
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
- Chemical
and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Zubeen Hathi
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| | - Sandya Athukoralalage
- Chemical
and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Anshu Priya
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| | - Tsz Nok Lam
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| | - Khai Lun Ong
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| | - Namita Roy Choudhury
- Chemical
and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Naba Kumar Dutta
- Chemical
and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Rodrigo Curvello
- Bioresource
Processing Institute of Australia (BioPRIA), Department of Chemical
Engineering, Monash University, Clayton Victoria 3800, Australia
| | - Gil Garnier
- Bioresource
Processing Institute of Australia (BioPRIA), Department of Chemical
Engineering, Monash University, Clayton Victoria 3800, Australia
| | - Carol Sze Ki Lin
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| |
Collapse
|
30
|
Zhang ZH, Li MF, Peng F, Zhong SR, Huang Z, Zong MH, Lou WY. Oxidized high-amylose starch macrogel as a novel delivery vehicle for probiotic and bioactive substances. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106578] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
S S, S R. Cyclic peptide production from lactic acid bacteria (LAB) and their diverse applications. Crit Rev Food Sci Nutr 2020; 62:2909-2927. [PMID: 33356473 DOI: 10.1080/10408398.2020.1860900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, cyclic peptides gave gained increasing attention owing to their pH tolerance, heat stability and resistance to enzymatic actions. The increasing outbreaks of antibiotic resistant pathogens and food spoilage have prompted researchers to search for new approaches to combat them. The increasing number of reports on novel cyclic peptides from lactic acid bacteria (LAB) is considered as a breakthrough due to their potential applications. Although an extensive investigation is required to understand the mechanism of action and range of applications, LAB cyclic peptides can be considered as potential substitutes for commercially available antibiotics and bio preservatives. This review summarizes the current updates of LAB cyclic peptides with emphasis on their structure, mode of action and applications. Recent trends in cyclic peptide applications are also discussed.
Collapse
Affiliation(s)
- Silpa S
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankalathur, Tamilnadu, India
| | - Rupachandra S
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankalathur, Tamilnadu, India
| |
Collapse
|
32
|
Ma T, Hu X, Lu S, Liao X, Song Y, Hu X. Nanocellulose: a promising green treasure from food wastes to available food materials. Crit Rev Food Sci Nutr 2020; 62:989-1002. [DOI: 10.1080/10408398.2020.1832440] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tao Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| | - Xinna Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| | - Shuyu Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| | - Yi Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| |
Collapse
|
33
|
Yan G, Chen B, Zeng X, Sun Y, Tang X, Lin L. Recent advances on sustainable cellulosic materials for pharmaceutical carrier applications. Carbohydr Polym 2020; 244:116492. [DOI: 10.1016/j.carbpol.2020.116492] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/15/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
|
34
|
Preparation and characterization of whey protein isolate/polydextrose-based nanocomposite film incorporated with cellulose nanofiber and L. plantarum: A new probiotic active packaging system. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108978] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Stojanov S, Berlec A. Electrospun Nanofibers as Carriers of Microorganisms, Stem Cells, Proteins, and Nucleic Acids in Therapeutic and Other Applications. Front Bioeng Biotechnol 2020; 8:130. [PMID: 32158751 PMCID: PMC7052008 DOI: 10.3389/fbioe.2020.00130] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/10/2020] [Indexed: 11/13/2022] Open
Abstract
Electrospinning is a technique that uses polymer solutions and strong electric fields to produce nano-sized fibers that have wide-ranging applications. We present here an overview of the use of electrospinning to incorporate biological products into nanofibers, including microorganisms, cells, proteins, and nucleic acids. Although the conditions used during electrospinning limit the already problematic viability/stability of such biological products, their effective incorporation into nanofibers has been shown to be feasible. Synthetic polymers have been more frequently applied to make nanofibers than natural polymers. Polymer blends are commonly used to achieve favorable physical properties of nanofibers. The majority of nanofibers that contain biological product have been designed for therapeutic applications. The incorporation of these biological products into nanofibers can promote their stability or viability, and also allow their delivery to a desired tissue or organ. Other applications include plant protection in agriculture, fermentation in the food industry, biocatalytic environmental remediation, and biosensing. Live cells that have been incorporated into nanofibers include bacteria and fungi. Nanofibers have served as scaffolds for stem cells seeded on a surface, to enable their delivery and application in tissue regeneration and wound healing. Viruses incorporated into nanofibers have been used in gene delivery, as well as in therapies against bacterial infections and cancers. Proteins (hormones, growth factors, and enzymes) and nucleic acids (DNA and RNA) have been incorporated into nanofibers, mainly to treat diseases and enhance their stability. To summarize, incorporation of biological products into nanofibers has numerous advantages, such as providing protection and facilitating controlled delivery from a solid form with a large surface area. Future studies should address the challenge of transferring nanofibers with biological products into practical and industrial use.
Collapse
Affiliation(s)
- Spase Stojanov
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
36
|
Yan L, Liu B, Liu C, Qu H, Zhang Z, Luo J, Zheng L. Preparation of cellulose with controlled molecular weight via ultrasonic treatment improves cholesterol‐binding capacity. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ling Yan
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Bing Liu
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Changhong Liu
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Hao Qu
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Zhengzhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University Hefei China
| | - Jianping Luo
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Lei Zheng
- School of Food and Biological Engineering Hefei University of Technology Hefei China
- Research Laboratory of Agricultural Environment and Food Safety Anhui Modern Agricultural Industry Technology System & Key Laboratory for Agricultural Products Processing of Anhui Province Hefei China
| |
Collapse
|
37
|
Li X, Cheung PCK. Application of naturalβ-glucans as biocompatible functional nanomaterials. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Bian H, Wei J, Zhou Y, Liu J, Shao Z, Wang B, Li Z. Preparation and Characterization of Cellulose/RDX Composite Aerogel Spheres. PROPELLANTS EXPLOSIVES PYROTECHNICS 2019. [DOI: 10.1002/prep.201900108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hongli Bian
- School of Materials Science&EngineeringBeijing Institute of Technology Beijing 100000 P.R. China
| | - Jie Wei
- School of Materials Science&EngineeringBeijing Institute of Technology Beijing 100000 P.R. China
| | - Yi Zhou
- School of Materials Science&EngineeringBeijing Institute of Technology Beijing 100000 P.R. China
| | - Jianxin Liu
- School of Materials Science&EngineeringBeijing Institute of Technology Beijing 100000 P.R. China
| | - Ziqiang Shao
- School of Materials Science&EngineeringBeijing Institute of Technology Beijing 100000 P.R. China
| | - Bo Wang
- School of Materials Science&EngineeringBeijing Institute of Technology Beijing 100000 P.R. China
| | - Zhihua Li
- Gansu Yinguang Chemical Industry Ltd. Gansu 730900 China
| |
Collapse
|
39
|
Huang S, Wu L, Li T, Xu D, Lin X, Wu C. Facile preparation of biomass lignin-based hydroxyethyl cellulose super-absorbent hydrogel for dye pollutant removal. Int J Biol Macromol 2019; 137:939-947. [PMID: 31279881 DOI: 10.1016/j.ijbiomac.2019.06.234] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/18/2019] [Accepted: 06/28/2019] [Indexed: 11/25/2022]
Abstract
The severe preparation process, poor swelling properties and mechanical properties of traditional cellulose and polyvinyl alcohol (PVA) composite hydrogels heavily limited their practical applications. To solve these issues, we use long-chain hydroxyethyl celluloses (HECs) as framework backbones, short-chain PVAs as branched chains, lignin molecules as extended crosslinkers and epichlorohydrin molecules as crosslinkers to prepare the lignin-based hydroxyethyl cellulose-PVA (LCP) super-absorbent hydrogels in the alkaline aqueous solution under mild reaction conditions, demonstrating high swelling ratio of up to 1220 g/g. The LCP hydrogels could take up large amounts of positively charged dyes rhodamine 6G, crystal violet and methylene blue with uptakes of 153, 184 and 196 mg/g, respectively. The LCP super-absorbent hydrogels also present excellent water retention, biodegradability and excellent swelling properties, which are very promising for applications in the fields of commercial diapers, soil water retention and seed cultivation in agriculture, and dye pollutant removal.
Collapse
Affiliation(s)
- Siqi Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Linjun Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Tianzhang Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Danyuan Xu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuliang Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Chuande Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
40
|
Sheikhi A, Hayashi J, Eichenbaum J, Gutin M, Kuntjoro N, Khorsandi D, Khademhosseini A. Recent advances in nanoengineering cellulose for cargo delivery. J Control Release 2019; 294:53-76. [PMID: 30500355 PMCID: PMC6385607 DOI: 10.1016/j.jconrel.2018.11.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/16/2018] [Accepted: 11/25/2018] [Indexed: 12/26/2022]
Abstract
The recent decade has witnessed a growing demand to substitute synthetic materials with naturally-derived platforms for minimizing their undesirable footprints in biomedicine, environment, and ecosystems. Among the natural materials, cellulose, the most abundant biopolymer in the world with key properties, such as biocompatibility, biorenewability, and sustainability has drawn significant attention. The hierarchical structure of cellulose fibers, one of the main constituents of plant cell walls, has been nanoengineered and broken down to nanoscale building blocks, providing an infrastructure for nanomedicine. Microorganisms, such as certain types of bacteria, are another source of nanocelluloses known as bacterial nanocellulose (BNC), which benefit from high purity and crystallinity. Chemical and mechanical treatments of cellulose fibrils made up of alternating crystalline and amorphous regions have yielded cellulose nanocrystals (CNC), hairy CNC (HCNC), and cellulose nanofibrils (CNF) with dimensions spanning from a few nanometers up to several microns. Cellulose nanocrystals and nanofibrils may readily bind drugs, proteins, and nanoparticles through physical interactions or be chemically modified to covalently accommodate cargos. Engineering surface properties, such as chemical functionality, charge, area, crystallinity, and hydrophilicity, plays a pivotal role in controlling the cargo loading/releasing capacity and rate, stability, toxicity, immunogenicity, and biodegradation of nanocellulose-based delivery platforms. This review provides insights into the recent advances in nanoengineering cellulose crystals and fibrils to develop vehicles, encompassing colloidal nanoparticles, hydrogels, aerogels, films, coatings, capsules, and membranes, for the delivery of a broad range of bioactive cargos, such as chemotherapeutic drugs, anti-inflammatory agents, antibacterial compounds, and probiotics. SYNOPSIS: Engineering certain types of microorganisms as well as the hierarchical structure of cellulose fibers, one of the main building blocks of plant cell walls, has yielded unique families of cellulose-based nanomaterials, which have leveraged the effective delivery of bioactive molecules.
Collapse
Affiliation(s)
- Amir Sheikhi
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Joel Hayashi
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - James Eichenbaum
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Mark Gutin
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Nicole Kuntjoro
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Danial Khorsandi
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Ali Khademhosseini
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA; Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA; Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, 5531 Boelter Hall, Los Angeles, CA 90095, USA; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
41
|
Amalraj A, Gopi S, Thomas S, Haponiuk JT. Cellulose Nanomaterials in Biomedical, Food, and Nutraceutical Applications: A Review. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/masy.201800115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Augustine Amalraj
- R&D Centre; Aurea Biolabs (P) Ltd; Kolenchery Cochin-682 311 Kerala India
| | - Sreeraj Gopi
- R&D Centre; Aurea Biolabs (P) Ltd; Kolenchery Cochin-682 311 Kerala India
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology; School of Chemical Sciences; Mahatma Gandhi University; Priyadarshini Hills, P. O., Kottayam-686 560 Kerala India
| | | |
Collapse
|