1
|
Yin B, Yang M, Wang B, Zhang Y, Li N, Li Q, Li Y, Xian CJ, Li T, Zhai Y. Total flavonoids isolated from Eucommia ulmoides can alleviate bone loss and regulate intestinal microbiota in ovariectomized rats. Front Pharmacol 2025; 16:1513863. [PMID: 39989899 PMCID: PMC11842935 DOI: 10.3389/fphar.2025.1513863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/16/2025] [Indexed: 02/25/2025] Open
Abstract
Ethnopharmacological relevance Eucommia ulmoides, recognized as a traditional Chinese medicinal herb, can tonify liver and kidney and strengthen bones and muscles. Modern pharmacological research has proved that E. ulmoides could prohibit the occurrence of osteoporosis and arthritis. Aim To investigate the effect and action mechanism of total flavonoids isolated from the leaves of E. ulmoides (TFEL) on bone loss in ovariectomized (OVX) rats, and to study its effect on intestinal flora. Materials and methods The 3-month-old female rats were randomly divided into six groups: sham operation group, OVX model group, estradiol group, TFEL low (TFEL-L) (50), mid (-M) (100) and high (-H) (200 mg/kg/d) dose groups. After 13 weeks of treatment, the rats were sacrificed to measure bone turnover markers, related tissue biochemical indices, microstructure parameters, and osteoclastogenesis promotor RANKL and inhibitor OPG expression levels. Additionally, fecal samples were obtained for high-throughput sequencing to analyze the intestinal flora. Results Oral administration of TFEL for 13 weeks increased the serum level of bone formation marker PINP and decreased the level of bone resorption marker NTX-I. The femoral microstructure parameters of the TFEL-M and TFEL-H groups were significantly improved compared with the OVX group, which were also confirmed by H&E histological staining. High-throughput sequencing indicated that TFEL may regulate the composition of intestinal flora and intestinal microecology. Conclusion TFEL can prevent osteoporosis in OVX rats and has no toxic side effects. Meanwhile, TFEL can increase the diversity and improve the composition of intestinal flora in OVX rats.
Collapse
Affiliation(s)
- Baocang Yin
- The First Affiliated Hospital of Henan University, Henan University School of Stomatology, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, Henan, China
| | - Mingzhen Yang
- The First Affiliated Hospital of Henan University, Henan University School of Stomatology, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, Henan, China
| | - Bowen Wang
- The First Affiliated Hospital of Henan University, Henan University School of Stomatology, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, Henan, China
| | - Yun Zhang
- The First Affiliated Hospital of Henan University, Henan University School of Stomatology, Kaifeng, China
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Ningli Li
- The First Affiliated Hospital of Henan University, Henan University School of Stomatology, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, Henan, China
| | - Qin Li
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Yingying Li
- Osteoporosis Department, Luoyang Orthopedic-Traumatological Hospital, Luoyang, Henan, China
| | - Cory J. Xian
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Tiejun Li
- The First Affiliated Hospital of Henan University, Henan University School of Stomatology, Kaifeng, China
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuankun Zhai
- The First Affiliated Hospital of Henan University, Henan University School of Stomatology, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, Henan, China
| |
Collapse
|
2
|
Cai H, Wang M, Zhu H, Song P, Pei K, Duan Y, Bao Y, Cao G. Phytochemical component profiling and anti-renal fibrosis effects of crude and salt-stir fried Eucommiae Cortex extracts on renal fibrosis rats caused by high-purine diet. Food Chem 2025; 464:141784. [PMID: 39476582 DOI: 10.1016/j.foodchem.2024.141784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
A prolonged diet laden with purine-rich foods represents a significant contributor to renal fibrosis (RF). Eucommia ulmoides Oliver, a plant homologous to food and medicinal materials, has long been employed to recover kidney function. This investigation presents a strategy integrating chemistry, biochemistry, and metabolomics to evaluate bioactive components and efficiency mechanism of crude and salt-stir fried Eucommiae Cortex (EC) extracts against RF. Firstly, 155 chemical components were identified in the EC extracts and the contents of 19 and 27 compounds decreased and increased respectively after salt-stir frying. Secondly, various biochemical indicators displayed that salt-stir fried EC (SEC) extracts had the optimal anti-RF effects in adenine-induced RF model rats, which were associated with the attenuation of TGF-β signaling pathway. Finally, untargeted metabolomics analysis demonstrated that after treatments with EC and SEC extracts, 30 and 32 efficacy biomarkers were significantly restored in the RF + EC and RF + SEC groups respectively, involving five metabolic pathways.
Collapse
Affiliation(s)
- Hao Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Mengqing Wang
- School of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huaian 223001, PR China
| | - Hui Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Peixiang Song
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ke Pei
- School of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Yu Duan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yini Bao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| |
Collapse
|
3
|
Ma Y, Yang H, Wang X, Huang Y, Li Y, Pan G. Bile acids as signaling molecules in inflammatory bowel disease: Implications for treatment strategies. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118968. [PMID: 39427739 DOI: 10.1016/j.jep.2024.118968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/21/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory bowel disease (IBD) is a globally increasing disease. Despite continuous efforts, the clinical application of treatment drugs has not achieved satisfactory success and faces limitations such as adverse drug reactions. Numerous investigations have found that the pathogenesis of IBD is connected with disturbances in bile acid circulation and metabolism. Traditional Chinese medicine targeting bile acids (BAs) has shown significant therapeutic effects and advantages in treating inflammatory bowel disease. AIM OF THIS REVIEW IThis article reviews the role of bile acids and their receptors in IBD, as well as research progress on IBD therapeutic drugs based on bile acids. It explores bile acid metabolism and its interaction with the intestinal microbiota, summarizes clinical drugs for treating IBD including single herbal medicine, traditional herbal prescriptions, and analyzes the mechanisms of action in treating IBD. MATERIALS AND METHODS IThe electronic databases such as PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI) have been utilized to retrieve relevant literature up to January 2024, using keywords "bile acid", "bile acid receptor", "inflammatory bowel disease", "intestinal microbiota" and "targeted drugs". RESULTS IImbalance in bile acid levels can lead to intestinal inflammation, while IBD can disrupt the balance of microbes, result in alterations in the bile acid pool's composition and amount. This change can damage of intestinal mucosa healing ability. Bile acids are vital for keeping the gut barrier function intact, regulating gene expression, managing metabolic equilibrium, and influencing the properties and roles of the gut's microbial community. Consequently, focusing on bile acids could offer a potential treatment strategy for IBD. CONCLUSION IIBD can induce intestinal homeostasis imbalance and changes in BA pool, leading to fluctuations in levels of relevant metabolic enzymes, transporters, and nuclear receptors. Therefore, by regulating the balance of BA and key signaling molecules of bile acids, we can treat IBD. Traditional Chinese medicine has great potential and promising prospects in treating IBD. We should focus on the characteristics and advantages of Chinese medicine, promote the development and clinical application of innovative Chinese medicine, and ultimately make Chinese medicine targeting bile acids the mainstream treatment for IBD.
Collapse
Affiliation(s)
- Yueyue Ma
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Haoze Yang
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Xiaoming Wang
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, PR China
| | - Yuhong Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China.
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, PR China.
| |
Collapse
|
4
|
Liu J, Qiu S, Xue T, Yuan Y. Physiology and transcriptome of Eucommia ulmoides seeds at different germination stages. PLANT SIGNALING & BEHAVIOR 2024; 19:2329487. [PMID: 38493506 PMCID: PMC10950268 DOI: 10.1080/15592324.2024.2329487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/03/2024] [Indexed: 03/19/2024]
Abstract
E. ulmoides (Eucommia ulmoides) has significant industrial and medicinal value and high market demand. E. ulmoides grows seedlings through sowing. According to previous studies, plant hormones have been shown to regulate seed germination. To understand the relationship between hormones and E. ulmoides seed germination, we focused on examining the changes in various indicators during the germination stage of E. ulmoides seeds. We measured the levels of physiological and hormone indicators in E. ulmoides seeds at different germination stages and found that the levels of abscisic acid (ABA), gibberellin (GA), and indole acetic acid (IAA) significantly varied as the seeds germinated. Furthermore, we confirmed that ABA, GA, and IAA are essential hormones in the germination of E. ulmoides seeds using Gene Ontology and Kyoto Encyclopedia of Genes and Genomics enrichment analyses of the transcriptome. The discovery of hormone-related synthesis pathways in the control group of Eucommia seeds at different germination stages further confirmed this conclusion. This study provides a basis for further research into the regulatory mechanisms of E. ulmoides seeds at different germination stages and the relationship between other seed germination and plant hormones.
Collapse
Affiliation(s)
- Jia Liu
- Department of Civil and Architecture and Engineering, Chuzhou University, Chuzhou, Anhui, China
- Anhui Low Carbon Highway Engineering Research Center, Chuzhou University, Anhui, China
| | - Sumei Qiu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Tingting Xue
- Department of Civil and Architecture and Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Yingdan Yuan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Li R, Tan B, Jiang Q, Chen F, Liu K, Liao P. Eucommia ulmoides flavonoids alleviate intestinal oxidative stress damage in weaned piglets by regulating the Nrf2/Keap1 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117373. [PMID: 39571260 DOI: 10.1016/j.ecoenv.2024.117373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 12/09/2024]
Abstract
This study examined how Eucommia ulmoides flavonoids (EUF) protect against intestinal oxidative stress induced by deoxynivalenol (DON) in weaned piglets. Forty weaned piglets were randomly assigned to four dietary groups for a period of 14 days. The piglets were fed a control diet (Control) or the Control diet supplemented with 100 mg EUF/kg (EUF group), 4 mg DON/kg diet (DON group) or both (EUF+DON group) in a 2×2 factorial design. DON-challenged piglets on the EUF-supplemented diet showed significant improvements in growth performance. They also had notably lower serum levels of alkaline phosphatase (ALP), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) compared to those not receiving supplementation (P<0.05). In the EUF group, the relative weights of the liver, spleen, and kidneys were significantly lower than those in the control group (P<0.05). However, there were no significant differences in the relative heart weights among the four groups (P>0.05). Piglets challenged with DON and fed a diet supplemented with EUF showed significantly lower levels of interleukin-8 (IL-8) and interferon-γ (IFN-γ) mRNA and protein expression in serum and intestinal tissues compared to those in the DON group (P < 0.05). The EUF+DON group significantly increased the serum levels of glutathione peroxidase (GSH-Px), reactive oxygen species (ROS), and total antioxidative capability enzymes compared to the DON group (P<0.05). The EUF and DON group had significantly higher villus height, crypt depth, and villus height to crypt depth ratio in the small intestine compared to the supplemented DON-challenged piglets (P<0.05). Moreover, compared to the DON group, EUF can significantly enhance the expression of nuclear factor erythroid 2-related factor 2(Nfr2)/Kelch-like ECH-associating protein 1(Keap1) and antioxidant genes (i.e., HO-1, GCLC, GCLM), as well as their proteins in the DON-induced small intestines of piglets (P<0.05). In conclusion, EUF helps protect piglets from intestinal oxidative stress caused by DON by influencing the Nrf2/Keap1 signaling pathway, thereby supporting their intestinal health.
Collapse
Affiliation(s)
- Rui Li
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qian Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Fengming Chen
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan 410219, China
| | - Kai Liu
- Department of Infectious Diseases and Public Health, City University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Peng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| |
Collapse
|
6
|
Wang S, Wang X, Gao Y, Fu Y, Han Z, Xu P, Tang J. Protocatechuic acid attenuates intestinal inflammation through TLR4/p38 and NF-κB pathways in heat-stressed broilers. Poult Sci 2024; 103:104424. [PMID: 39427417 PMCID: PMC11536018 DOI: 10.1016/j.psj.2024.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/15/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024] Open
Abstract
Protocatechuic acid (PCA), a major active component found in Eucommia ulmoides Oliver, is involved in regulating oxidative stress and inflammation. Heat stress poses a significant threat to the poultry industry. In this study, we investigated the protective effect of PCA on intestinal homeostasis under heat stress. Our results indicated that PCA improved the growth performance of broilers during heat stress. Furthermore, PCA mitigated jejunal damage and attenuated the upregulation of inflammatory mediators, including TNF-α, IL-6, and IL-1β, triggered by heat stress. Concurrently, it restored the activity of superoxide dismutase (SOD) and total antioxidant capacity (T-AOC). Furthermore, PCA maintained the jejunum function by increasing the levels of ZO-1, Claudin-1, and Occludin. Mechanistically, PCA inhibited the activation of TLR4/p38 MAPK and NF-κB pathways, thereby regulating the imbalance in oxidative stress and inflammatory responses caused by heat stress.
Collapse
Affiliation(s)
- Shuaiyong Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China
| | - Xin Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China
| | - Yu Gao
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, China
| | - Yuchen Fu
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China
| | - Zhaoqing Han
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China
| | - Ping Xu
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China
| | - Jianli Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
7
|
Pan Y, Ming K, Guo D, Liu X, Deng C, Chi Q, Liu X, Wang C, Xu K. Non-targeted metabolomics and explainable artificial intelligence: Effects of processing and color on coniferyl aldehyde levels in Eucommiae cortex. Food Chem 2024; 460:140564. [PMID: 39089015 DOI: 10.1016/j.foodchem.2024.140564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/03/2024]
Abstract
Eucommia ulmoides, a plant native to China, is valued for its medicinal properties and has applications in food, health products, and traditional Chinese medicine. Processed Eucommiae Cortex (EC) has historically been a highly valued medicine. Ancient doctors had ample experience processing EC, especially with ginger juice, as documented in traditional Chinese medical texts. The combination of EC and ginger juice helps release and transform the active ingredients, strengthening the medicine's effectiveness and improving its taste and shelf life. However, the lack of quality control standards for Ginger-Eucommiae Cortex (G-EC), processed from EC and ginger, presents challenges for its industrial and clinical use. This study optimized G-EC processing using the CRITIC and Box-Behnken methods. Metabolomics showed 517 chemical changes between raw and processed G-EC, particularly an increase in coniferyl aldehyde (CFA). Explainable artificial intelligence techniques revealed the feasibility of using color to CFA content, providing insights into quality indicators.
Collapse
Affiliation(s)
- Yijing Pan
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Kehong Ming
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Dongmei Guo
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Xinyue Liu
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Chenxi Deng
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Qingjia Chi
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Department of Mechanics and Engineering Structure, Wuhan University of Technology, China.
| | - Xianqiong Liu
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China.
| | - Chunli Wang
- Hubei Shizhen Laboratory, Wuhan 430065, China; School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Kang Xu
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
8
|
Lin K, Xiong L, Zhang W, Chen X, Zhu J, Li X, Zhang J. Exploring the pharmacological mechanism of fermented Eucommia ulmoides leaf extract in the treatment of cisplatin-induced kidney injury in mice: Integrated traditional pharmacology, metabolomics and network pharmacology. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1248:124358. [PMID: 39527890 DOI: 10.1016/j.jchromb.2024.124358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Cisplatin (CP) is a widely utilized anticancer drug, which also produces significant side effects, notably acute kidney injury (AKI). Fermented Eucommia ulmoides leaf (FEUL), a medicinal and edible Chinese herbal remedy, is known for its renoprotective properties. However, the effect and underlying mechanism of FEUL extract in AKI therapy have remained largely unexplored. This research aimed to elucidate the protective roles of FEUL extract in an AKI mouse model through biochemical assays, histopathological examinations, and investigating the underlying mechanisms based on metabolomics and network pharmacology. The findings demonstrated that pretreatment with orally administered FEUL extract significantly reduced blood urea nitrogen (BUN), and serum creatinine (SCr) levels, and ameliorated CP-induced kidney histopathological injuries. Moreover, FEUL extract attenuated CP-induced endoplasmic reticulum (ER) stress by reducing the protein expressions of PERK, IRE 1α, GRP78, ATF6, ATF4, and CHOP. The metabolomics results indicated that a total of 31 metabolites, involved in taurine and hypotaurine metabolism, lysine degradation, and steroid hormone biosynthesis, were altered after FEUL extract administration. Furthermore, metabolomics integrated with network pharmacology revealed that 8 targets, 4 metabolites, and 3 key pathways including steroid hormone biosynthesis, purine metabolism, and tryptophan metabolism were the main mechanisms of FEUL extract in treating CP-induced AKI. These findings suggested that FEUL extract could offer valuable insights for potential CP-induced AKI treatment strategies.
Collapse
Affiliation(s)
- Kexin Lin
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Lijuan Xiong
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Wen Zhang
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xuan Chen
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Jieqi Zhu
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xiaofei Li
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China.
| | - Jianyong Zhang
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
9
|
Li Y, Wang Y, Liu Q, Lv S, Wang Y, Zhang H, Zhao Q, Shang L. Kaempferol promotes osteogenic differentiation in bone marrow mesenchymal stem cells by inhibiting CAV-1. J Orthop Surg Res 2024; 19:678. [PMID: 39434162 PMCID: PMC11495062 DOI: 10.1186/s13018-024-05174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024] Open
Abstract
OBJECTIVE Our study focused on the effects and molecular mechanisms of kaempferol, a major active component of Eucommia ulmoides Oliver (EUO), on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). METHODS Target molecules for EUO, osteoarthritis, and osteogenic differentiation were identified through network pharmacology analysis. BMSCs were isolated and treated with various concentrations of kaempferol. Optimal concentration was determined through MTT assays. Osteogenic differentiation was assessed using alkaline phosphatase (ALP) and Alizarin Red S staining, while osteogenic markers (Collagen I, RUNX2, and OPN) and CAV-1 expression were analyzed using RT-qPCR and Western blot. The effects of combined treatment with kaempferol and an overexpression vector for CAV-1 (oe-CAV-1) on osteogenic differentiation were also observed. RESULTS Network pharmacology analysis identified kaempferol as the primary active component influencing CAV-1 targeted in subsequent experiments. It was found that 10 µM kaempferol was optimal for treating BMSCs. Post-treatment, significant increases in ALP activity and calcium deposition were observed, along with elevated expression of osteogenic markers, and decreased CAV-1. Overexpression of CAV-1 significantly reversed the promotive effects of kaempferol on BMSC osteogenic differentiation, effectively inhibiting the process. CONCLUSION Collectively, kaempferol promotes osteogenic differentiation in BMSCs by inhibiting CAV-1 expression.
Collapse
Affiliation(s)
- Yingxue Li
- 7th Ward, Department of Rheumatology and Immunology, Xi'an No.5 Hospital, Xi'an, 710082, Shaanxi, P.R. China
| | - Ying Wang
- 5th Ward, Department of Rheumatology and Immunology, Xi'an No.5 Hospital, Xi'an, 710082, Shaanxi, P.R. China
| | - Qian Liu
- 5th Ward, Department of Rheumatology and Immunology, Xi'an No.5 Hospital, Xi'an, 710082, Shaanxi, P.R. China
| | - Shuiying Lv
- 7th Ward, Department of Rheumatology and Immunology, Xi'an No.5 Hospital, Xi'an, 710082, Shaanxi, P.R. China
| | - Yali Wang
- Department of Traditional Chinese Medicine, Xi'an International Medical Center Hospital, No. 777, Xitai Road, High-tech Zone, Xi'an, 710117, Shaanxi, P.R. China
| | - Huanhuan Zhang
- Chinese Medicine Pharmacy, Xi'an International Medical Center Hospital, Xi'an, 710117, Shaanxi, P.R. China
| | - Qiuhong Zhao
- Department of Pharmacy, Xi'an International Medical Center Hospital, Xi'an, 710117, Shaanxi, P.R. China
| | - Lei Shang
- Department of Traditional Chinese Medicine, Xi'an International Medical Center Hospital, No. 777, Xitai Road, High-tech Zone, Xi'an, 710117, Shaanxi, P.R. China.
| |
Collapse
|
10
|
Shao Q, Ran Q, Li X, Dong C, Zhang Y, Han Y. Differential responses of the phyllosphere abundant and rare microbes of Eucommia ulmoides to phytohormones. Microbiol Res 2024; 286:127798. [PMID: 38964073 DOI: 10.1016/j.micres.2024.127798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
Phyllosphere microbiota play a crucial role in plant productivity and adaptation, and the abundant and rare microbial taxa often possess distinct characteristics and ecological functions. However, it is unclear whether the different subcommunities of phyllosphere microbiota respond variably to the factors that influence their formation, which limits the understanding of community assembly. The effects of two phytohormones, namely, indole-3-acetic acid (IAA) and N6-(delta 2-isopentenyl)-adenine (IP), on the phyllosphere microbial subcommunities of Eucommia ulmoides were investigated using potted experiments. The results demonstrated that the phytohormones induced significant variations in the composition, diversity, and function of the abundant microbial subcommunity in the phyllosphere of E. ulmoides, however, their effects on the rare subcommunity were negligible, and their effects on the moderate subcommunity were between those of the abundant and rare taxa. The phytohormones also induced significant alterations in the phenotypic and physiological properties of E. ulmoides, which indirectly affected the phyllosphere microbial community. Leaf thickness and average leaf area were the main phenotypic variables that affected the composition of the phyllosphere microbial community. The total alkaloid content and activity of superoxide dismutase (SOD) were the main physiological variables that affected the composition of the phyllosphere microbial community. The phenotypic and physiological indices of E. ulmoides explained the variations in the phyllosphere microbial subcommunities in descending order: abundant > moderate > rare taxa. These variables explained a significant proportion of the variations in the abundant taxa, and an insignificant proportion of the variations in the rare taxa. This study improves our understanding of the assembly of the phyllosphere microbiota, which provides important theoretical knowledge for future sustainable agriculture and forestry management based on the precise regulation of phyllosphere microbiota.
Collapse
Affiliation(s)
- Qiuyu Shao
- Institute of Fungus Resources, Department of Ecology/Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qingsong Ran
- Institute of Fungus Resources, Department of Ecology/Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xu Li
- Institute of Fungus Resources, Department of Ecology/Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Chunbo Dong
- Institute of Fungus Resources, Department of Ecology/Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yanwei Zhang
- Key Laboratory of Development and Utilization of Biological Resources in Colleges and Universities of Guizhou Province, Guizhou Education University, Guiyang, Guizhou 550018, China
| | - Yanfeng Han
- Institute of Fungus Resources, Department of Ecology/Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
11
|
Liu T, Li Y, Hu N. Aucubin Alleviates Chronic Obstructive Pulmonary Disease by Activating Nrf2/HO-1 Signaling Pathway. Cell Biochem Biophys 2024; 82:2439-2454. [PMID: 38967902 DOI: 10.1007/s12013-024-01354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory disease with high death rates. Aucubin is an iridoid glycoside extracted from Eucommia ulmoides with antioxidative and anti-inflammatory properties in human diseases. This study aimed to investigate its specific function in mouse and cell models of COPD. METHODS The COPD mouse model was established by exposing mice to a long-term cigarette smoke (CS). The number of inflammatory cells and the contents of inflammatory factors tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and IL-8 in bronchoalveolar lavage fluid (BALF) of CS-exposed mice were measured. The levels of superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and myeloperoxidase (MPO) in the lung tissues were estimated. Masson staining and hematoxylin-eosin (H&E) staining were utilized to evaluate pulmonary fibrosis and emphysema in CS-treated mice. Cell apoptosis in the lung tissues was estimated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Western blot was applied to quantify protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and apoptotic markers. COPD cell model was established by exposing mouse lung epithelial cells (MLE12) with cigarette smoke extract to further verify the properties of aucubin in vitro. RESULTS Aucubin reduced the number of inflammatory cells and decreased the contents of TNF-α, IL-6, and IL-8 in BALF of CS-treated mice. The oxidative stress, lung emphysema, fibrosis, and lung cell apoptosis induced by CS exposure were ameliorated by aucubin administration. Aucubin activated the Nrf2/HO-1 signaling pathway in vitro and in vivo. Pretreatment with ML385, a specific Nrf2 inhibitor, antagonized the protective effects of aucubin on inflammation, oxidative stress, fibrosis, and cell apoptosis in COPD. CONCLUSION Aucubin alleviates inflammation, oxidative stress, apoptosis, and pulmonary fibrosis in COPD mice and CSE-treated MLE12 cells by activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Ting Liu
- Department of International Medical Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Yang Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Nan Hu
- Department of Rheumatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
12
|
Zhang X, Qin H, Kan Z, Liu D, Wang B, Fan S, Jiang P. Growth and non-structural carbohydrates response patterns of Eucommia ulmoides under salt and drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1436152. [PMID: 39091320 PMCID: PMC11291362 DOI: 10.3389/fpls.2024.1436152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
Introduction Salinity and droughts are severe abiotic stress factors that limit plant growth and development. However, the differences and similarities of non-structural carbohydrates (NSCs) responses patterns of trees under the two stress conditions remain unclear. Methods We determined and compared the growth, physiology, and NSCs response patterns and tested the relationships between growth and NSCs concentrations (or pool size) of Eucommia ulmoides seedlings planted in field under drought and salt stress with different intensities and durations. Results and discussion We found that drought and salt stress can inhibit the growth of E. ulmoides, and E. ulmoides tended to enhance its stress resistance by increasing proline concentration and leaf thickness or density but decreasing investment in belowground biomass in short-term stress. During short-term drought and salt stress, the aboveground organs showed different NSCs response characteristics, while belowground organs showed similar change characteristics: the starch (ST) and NSCs concentrations in the coarse roots decreased, while the ST and soluble sugar (SS) concentrations in the fine roots increased to enhance stress resistance and maintain water absorption function. As salt and drought stress prolonged, the belowground organs represented different NSCs response patterns: the concentrations of ST and SS in fine roots decreased as salt stress prolonged; while ST in fine roots could still be converted into SS to maintain water absorption as drought prolonged, resulting in an increase of SS and a decrease of ST. Significant positive relationships were found between growth and the SS and total NSCs concentrations in leaves and branches, however, no significant correlations were found between growth and below-ground organs. Moreover, relationships between growth and NSCs pool size across organs could be contrast. Conclusion Our results provide important insights into the mechanisms of carbon balance and carbon starvation and the relationship between tree growth and carbon storage under stress, which were of great significance in guiding for the management of artificial forest ecosystem under the context of global change.
Collapse
Affiliation(s)
- Xuejie Zhang
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, China
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying, China
| | - Hao Qin
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Zhenchao Kan
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Dan Liu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Ji’nan, China
| | - Bingxin Wang
- Dalin Eucommia planting company of Gaomi County, Weifang, China
| | - Shoujin Fan
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, China
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying, China
| | - Peipei Jiang
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, China
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying, China
| |
Collapse
|
13
|
Qin J, Chen K, Wang X, He S, Chen J, Zhu Q, He Z, Lv P, Chen K. Investigating the Pharmacological Mechanisms of Total Flavonoids from Eucommia ulmoides Oliver Leaves for Ischemic Stroke Protection. Int J Mol Sci 2024; 25:6271. [PMID: 38892459 PMCID: PMC11172844 DOI: 10.3390/ijms25116271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The aim of this study was to explore how the total flavonoids from Eucommia ulmoides leaves (EULs) regulate ischemia-induced nerve damage, as well as the protective effects mediated by oxidative stress. The cell survival rate was significantly improved compared to the ischemic group (p < 0.05) after treatment with the total flavonoids of EULs. The levels of reactive oxygen species (ROS), lactate dehydrogenase (LDH), and malondialdehyde (MDA) decreased, while catalase (CAT) and glutathione (GSH) increased, indicating that the total flavonoids of EULs can significantly alleviate neurological damage caused by ischemic stroke by inhibiting oxidative stress (p < 0.01). The mRNA expression level of VEGF increased (p < 0.01), which was consistent with the protein expression results. Meanwhile, the protein expression of ERK and CCND1 increased (p < 0.01), suggesting that the total flavonoids of EULs could protect PC12 cells from ischemic injury via VEGF-related pathways. MCAO rat models indicated that the total flavonoids of EULs could reduce brain ischemia-reperfusion injury. In conclusion, this study demonstrates the potential mechanisms of the total flavonoids of EULs in treating ischemic stroke and their potential therapeutic effects in reducing ischemic injury, which provides useful information for ischemic stroke drug discovery.
Collapse
Affiliation(s)
- Jing Qin
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (J.Q.); (K.C.); (X.W.); (S.H.); (J.C.); (Q.Z.); (K.C.)
| | - Kewei Chen
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (J.Q.); (K.C.); (X.W.); (S.H.); (J.C.); (Q.Z.); (K.C.)
| | - Xiaomin Wang
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (J.Q.); (K.C.); (X.W.); (S.H.); (J.C.); (Q.Z.); (K.C.)
| | - Sirong He
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (J.Q.); (K.C.); (X.W.); (S.H.); (J.C.); (Q.Z.); (K.C.)
| | - Jiaqi Chen
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (J.Q.); (K.C.); (X.W.); (S.H.); (J.C.); (Q.Z.); (K.C.)
| | - Qianlin Zhu
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (J.Q.); (K.C.); (X.W.); (S.H.); (J.C.); (Q.Z.); (K.C.)
| | - Zhizhou He
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Pengcheng Lv
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (J.Q.); (K.C.); (X.W.); (S.H.); (J.C.); (Q.Z.); (K.C.)
| | - Kun Chen
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (J.Q.); (K.C.); (X.W.); (S.H.); (J.C.); (Q.Z.); (K.C.)
| |
Collapse
|
14
|
Lu M, Zhao ZT, Xin Y, Chen G, Yang F. Dietary supplementation of water extract of Eucommia ulmoides bark improved caecal microbiota and parameters of health in white-feathered broilers. J Anim Physiol Anim Nutr (Berl) 2024; 108:816-838. [PMID: 38324000 DOI: 10.1111/jpn.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 02/08/2024]
Abstract
Eucommia ulmoides has been used as a food and medicine homologue for a long time in China. We hypothesize that Eucommia ulmoides achieves its health-promoting effects via altering gut microbiota. Here, we investigated the effects of water extract of Eucommia ulmoides bark on caecal microbiota and growth performance, antioxidant activity, and immunity in white-feathered broilers treated for 42 days. A total of 108 one-day-old Cobb white-feathered broilers were randomly assigned to three treatment groups: control diet, 0.75% Eucommia ulmoides diet (EU Ⅰ) and 1.5% Eucommia ulmoides diet (EU Ⅱ). The results showed that EU Ⅱ treatment improved average body weight (ABW), thigh muscle quality and total length of intestines, and decreased the serum total triglycerides and total cholesterol (TC) (p < 0.05). Eucommia ulmoides supplementation increased serum superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total antioxidant activities and content of immunoglobulins, and reduced levels of malondialdehyde and tumour necrosis factor-α (TNF-α) (p < 0.05). Moreover, the supplementation increased the diversity of caecal microbiota and reduced the pathogenic genera Escherichia Shigella and Helicobacter. The genera Ochrobactrum, Odoribater, Klebsiella, Enterobacter, Georgenia and Bifidobacterium were positively associated with the ABW, total intestinal length, serum levels of GSH-Px, SOD and immunoglobulins (p < 0.001) and negatively associated with the TC and TNF-α (p < 0.01), suggesting an association of the changes of gut microbiota and improvement of broiler health. Meanwhile, Eucommia ulmoides supplementation enriched the Kyoto Encyclopedia of Genes and Genomes pathway of exocrine secretion from the pancreas, circadian entrainment and inhibited lipopolysaccharide biosynthesis. In conclusion, Eucommia ulmoides water extract can be used as a feed additive to improve poultry industry production.
Collapse
Affiliation(s)
- Min Lu
- Food Quality and Safety, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhong-Tao Zhao
- Food Quality and Safety, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Ye Xin
- Food Quality and Safety, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Guoxun Chen
- Food Nutrition and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fang Yang
- Food Quality and Safety, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
15
|
Zhang Y, Yang M, Li N, Li Q, Li Y, Zhai Y. Total Flavonoids Isolated from the Leaves of Eucommia ulmoides Augment Peak Bone Mass in Female Rats and Show no Side Effects in Other Organs. Curr Pharm Des 2024; 30:2410-2423. [PMID: 38963117 DOI: 10.2174/0113816128298755240613100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Eucommia ulmoides is a unique monophyletic and tertiary relict in China and is listed as a national second-class precious protected tree species. Eucommia ulmoides, recognized as a traditional Chinese medicine, can tonify the liver and kidneys and strengthen bones and muscles. Modern pharmacological research has proved that Eucommia ulmoides has multiple osteoprotective effects, including prohibiting the occurrence of osteoporosis and arthritis and enhancing the healing of bone fractures and bone defects. AIM To check its osteotropic effects, which may provide ideas for its potential use for the development of novel drugs to treat osteoporosis, this study evaluated the effect of total flavonoids from Eucommia ulmoides leaves (TFEL) on the acquisition of Peak Bone Mass (PBM) in young female rats. MATERIALS AND METHODS TFEL was isolated, and its purity was confirmed by using a UV spectrophotometer. TFEL with a purity of 85.09% was administered to 6-week-old female rats by oral gavage at a low (50), mid (100), or high (200 mg/kg/d) dose, and the control group was administrated only with the same volume of water. After 13 weeks of treatment, the rats were sacrificed, and serum, different organs, and limb bones (femurs and tibias) were harvested, and the bone turnover markers, organ index, Bone Mineral Density (BMD), biomechanical property, and microstructure parameters were assayed. Furthermore, molecular targets were screened, and network pharmacology analyses were conducted to reveal the potential mechanisms of action of TFEL. RESULTS Oral administration of TFEL for 13 weeks decreased the serum level of bone resorption marker TRACP-5b. As revealed by micro-computer tomography analysis, it elevated BMD even at a low dose (50 mg/kg/d) and improved the microstructural parameters, which were also confirmed by H&E histological staining. However, TFEL showed no effects on body weights, organ index, and micromorphology in the uterus. In our network pharmacology study, an intersection analysis screened out 64 shared targets, with quercetin, kaempferol, naringenin, and apigenin regulating the greatest number of targets associated with osteoporosis. Flavonoids in Eucommia ulmoides inhibited the occurrence of osteoporosis potentially through targeting signaling pathways for calcium, VEGF, IL-17, and NF-κB. Furthermore, AKT1, EGFR, PTGS2, VEGFA, and CALM were found to be potentially important target genes for the osteoprotective effects of flavonoids in Eucommia ulmoides. CONCLUSION The above results suggested that TFEL can be used to elevate the peak bone mass in adolescence in female individuals, which may prevent the occurrence of postmenopausal osteoporosis, and the good safety of TFEL also suggests that it can be used as a food additive for daily life to improve the bone health.
Collapse
Affiliation(s)
- Yun Zhang
- School of Stomatology, Henan University, Henan Kaifeng, 475000, China
- School of Pharmacy, Henan University, Henan Kaifeng, 475000, China
| | - Mingzhen Yang
- School of Stomatology, Henan University, Henan Kaifeng, 475000, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Henan Kaifeng, 475000, China
| | - Ningli Li
- School of Stomatology, Henan University, Henan Kaifeng, 475000, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Henan Kaifeng, 475000, China
| | - Qin Li
- School of Pharmacy, Henan University, Henan Kaifeng, 475000, China
| | - Yingying Li
- Department of Orthopaedics, Luoyang Orthopedic-Traumatological Hospital, Henan Luoyang, 471000, China
| | - Yuankun Zhai
- School of Stomatology, Henan University, Henan Kaifeng, 475000, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Henan Kaifeng, 475000, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Henan Kaifeng, 475000, China
| |
Collapse
|
16
|
Wang Q, Hu F, Yao Z, Zhao X, Chu G, Ye J. Comprehensive genomic characterisation of the NAC transcription factor family and its response to drought stress in Eucommia ulmoides. PeerJ 2023; 11:e16298. [PMID: 37901460 PMCID: PMC10601904 DOI: 10.7717/peerj.16298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/23/2023] [Indexed: 10/31/2023] Open
Abstract
The NAC transcription factor family enhances plant adaptation to environmental challenges by participating in signalling pathways triggered by abiotic stressors and hormonal cues. We identified 69 NAC genes in the Eucommia ulmoides genome and renamed them according to their chromosomal distribution. These EuNAC proteins were clustered into 13 sub-families and distributed on 16 chromosomes and 2 scaffolds. The gene structures suggested that the number of exons varied from two to eight among these EuNACs, with a multitude of them containing three exons. Duplicated events resulted in a large gene family; 12 and four pairs of EuNACs were the result of segmental and tandem duplicates, respectively. The drought-stress response pattern of 12 putative EuNACs was observed under drought treatment, revealing that these EuNACs could play crucial roles in mitigating the effects of drought stress responses and serve as promising candidate genes for genetic engineering aimed at enhancing the drought stress tolerance of E. ulmoides. This study provides insight into the evolution, diversity, and characterisation of NAC genes in E. ulmoides and will be helpful for future characterisation of putative EuNACs associated with water deficit.
Collapse
Affiliation(s)
- Qi Wang
- Laboratory of Forestry Department, Agricultural College, Shihezi University, Shihezi, China
| | - FengCheng Hu
- Lveyang County Forest Tree Seedling Workstation, Forestry Bureau of Lveyang County, Lveyang, China
| | - ZhaoQun Yao
- Laboratory of Plant Protection Department, Agricultural College, Shihezi University, Shihezi, China
| | - XinFeng Zhao
- Lveyang County Forest Tree Seedling Workstation, Forestry Bureau of Lveyang County, Lveyang, China
| | - GuangMing Chu
- Laboratory of Forestry Department, Agricultural College, Shihezi University, Shihezi, China
| | - Jing Ye
- Laboratory of Forestry Department, Agricultural College, Shihezi University, Shihezi, China
| |
Collapse
|
17
|
Huang H, Han MH, Gu Q, Wang JD, Zhao H, Zhai BW, Nie SM, Liu ZG, Fu YJ. Identification of pancreatic lipase inhibitors from Eucommia ulmoides tea by affinity-ultrafiltration combined UPLC-Orbitrap MS and in vitro validation. Food Chem 2023; 426:136630. [PMID: 37352710 DOI: 10.1016/j.foodchem.2023.136630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/10/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
Pancreatic lipase inhibitors can reduce blood lipids by inactivating the catalytic activity of human pancreatic lipase, a key enzyme involved in triglyceride hydrolysis, which helps control some dyslipidemic diseases. The ability of Eucommia ulmoides tea to improve fat-related diseases is closely related to the natural inhibitory components of pancreatic lipase contained in the tea. In this study, fifteen pancreatic lipase inhibitors were screened and identified from Eucommia ulmoides tea by affinity-ultrafiltration combined UPLC-Q-Exactive Orbitrap/MS. Four representative components of geniposidic acid, quercetin-3-O-sambuboside, isochlorogenic acid A, and quercetin with high binding degrees were further verified by nanoscale differential scanning fluorimetry (nanoDSF) and enzyme inhibitory assays. The results of flow cytometry showed that they could significantly reduce the activity of pancreatic lipase in AR42J cells induced by palmitic acid in a concentration-dependent manner. Our findings suggest that Eucommia ulmoides tea may be a promising resource for pancreatic lipase inhibitors of natural origin.
Collapse
Affiliation(s)
- Han Huang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Ming-Hao Han
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Qi Gu
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| | - Jian-Dong Wang
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| | - Heng Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Bo-Wen Zhai
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Si-Ming Nie
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Zhi-Guo Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Yu-Jie Fu
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
18
|
Ma Z, Zhang K, Guo W, Yu W, Wang J, Li J. Green synthesis of silver nanoparticles using Eucommia ulmoides leaf extract for inhibiting stem end bacteria in cut tree peony flowers. FRONTIERS IN PLANT SCIENCE 2023; 14:1176359. [PMID: 37324696 PMCID: PMC10266105 DOI: 10.3389/fpls.2023.1176359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 06/17/2023]
Abstract
Tree peony ( Paeonia suffruticosa Andr.) is a popular cut flower among ornamental plants. However, its short vase life severely hinders the production and application of cut tree peony flowers. To extend the postharvest longevity and improve the horticultural value, silver nanoparticles (Ag-NPs) was applied for reducing bacterial proliferation and xylem blockage in cut tree peony flowers in vitro and in vivo. Ag-NPs was synthesized with the leaf extract of Eucommia ulmoides and characterized. The Ag-NPs aqueous solution showed inhibitory activity against bacterial populations isolated from stem ends of cut tree peony 'Luoyang Hong' in vitro. The minimum inhibitory concentration (MIC) was 10 mg L-1. Compared with the control, pretreatments with Ag-NPs aqueous solution at 5 and 10 mg L-1 for 24 h increased flower diameter, relative fresh weight (RFW), and water balance of tree peony 'Luoyang Hong' flowers. Additionally, malondialdehyde (MDA) and H2O2 content in pretreated petals were lower than the control during the vase life. The activities of superoxide dismutase (SOD) and catalase (CAT) in pretreated petals were lower than that of the control at the early vase stage and higher at the late vase life. Furthermore, pretreatments with Ag-NPs aqueous solution at 10 mg L-1 for 24 h could reduce bacterial proliferation in the xylem vessels on the stem ends by confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM). Overall, pretreatments with green synthesized Ag-NPs aqueous solution effectively reduced bacteria-induced xylem blockage of cut tree peony, resulting in improved water uptake, extended vase life, and enhanced postharvest quality. Therefore, this technique can be used as a promising postharvest technology in the cut flower industry.
Collapse
Affiliation(s)
- Zhanqiang Ma
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Kaiyue Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Wei Guo
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Weiwei Yu
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Junzhe Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Juan Li
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, China
| |
Collapse
|
19
|
Yang Y, Gong X, Zhao D, Qin L. Identification of a Coprinellus strain and its application in Eucommia ulmoides gum extraction by fermenting leaves. Biotechnol Lett 2023:10.1007/s10529-023-03396-6. [PMID: 37243777 DOI: 10.1007/s10529-023-03396-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 05/29/2023]
Abstract
White rot fungi is a kind of filamentous fungi which can degrade lignin, hemicellulose and cellulose effectively. In this study, a wild white rot fungi collected from Pingba Town, Bijie City of China was identified as Coprinellus disseminatus (fruiting body) based on morphological and molecular identification. The mycelium of C. disseminatus cultured in the medium supplemented xylan as carbon showed the higher xylanase (XLE) and cellulase (CLE) activity. Further, the activities of tissue degradation-related enzymes including XLE, CLE, acetyl xylanesterase (AXE) and α-L-arabinofuran glycosidase (α-L-AF) were determined after fermenting Eucommia ulmoides leaves by inoculating C. disseminatus mycelium. The results showed that the activities of XLE, CLE, AXE and α-L-AF of mycelium cultured in xylan-contained medium reached the maximum at 5 d after inoculation, which were 777.606 ± 4.248 U mL-1, 9.594 ± 0.008 U mL-1, 4.567 ± 0.026 U mL-1 and 3.497 ± 0.10 U mL-1 respectively. Also, the activities of AXE and α-L-AF both reached the maximum in C. disseminatus mycelium cultured in glucose-contained medium. By comparing the yield of E. ulmoides gum under different fermentation treatments, the extraction yield of E. ulmoides gum were 2.156 ± 0.031% and 2.142 ± 0.044% at 7 d and 14 d after fermentation with mycelium supplemented xylan as carbon source, which were significantly higher than other groups. This study provides a theoretical reference for the preparation of E. ulmoides gum by large-scale fermentation of E. ulmoides leaves with C. disseminatus.
Collapse
Affiliation(s)
- Yu Yang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Xian Gong
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Dan Zhao
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Lijun Qin
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
20
|
Shen J, Liu YP, Wang Q, Chen H, Hu Y, Guo X, Liu X, Li Y. Integrated network pharmacology, transcriptomics and metabolomics analysis to reveal the mechanism of salt Eucommia cortex in the treatment of chronic kidney disease mineral bone disorders via the PPARG/AMPK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116590. [PMID: 37207881 DOI: 10.1016/j.jep.2023.116590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/05/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The skeletal complications associated with chronic kidney diseases from stages 3-5 in individuals are called Chronic Kidney Disease-Mineral Bone Disorder (CKD-MBD), which increases the incidence of cardiovascular diseases drastically and affects the quality of life of patients seriously. Eucommia cortex has the effect of tonifying kidneys and strengthening bones, and salt Eucommia cortex is one of the most commonly used traditional Chinese medicines in the clinical treatment of CKD-MBD instead of Eucommia cortex. However, its mechanism still remains unexplored. AIM OF THE STUDY The aim of this study was to investigate the effects and mechanisms of salt Eucommia cortex on CKD-MBD by integrating network pharmacology, transcriptomics, and metabolomics. MATERIALS AND METHODS The CKD-MBD mice induced by 5/6 nephrectomy and low calcium/high phosphorus diet were treated with salt Eucommia cortex. The renal functions and bone injuries were evaluated by serum biochemical detection, histopathological analyses, and femur Micro-CT examinations. Differentially expressed genes (DEGs) between the control group and model group, model group and high-dose Eucommia cortex group, model group and high-dose salt Eucommia cortex group were analyzed by transcriptomic analysis. The differentially expressed metabolites (DEMs) between the control group and model group, model group and high-dose Eucommia cortex group, model group and high-dose salt Eucommia cortex group were analyzed by metabolomics analysis.The common targets and pathways were obtained by integrating transcriptomics, metabolomics and network pharmacology, which were identified and verified by in vivo experiments. RESULTS The negative impacts on the renal functions and bone injuries were alleviated with salt Eucommia cortex treatment effectively. Compared with CKD-MBD model mice, the levels of serum BUN, Ca and urine Upr were significantly decreased in the salt Eucommia cortex group. And the Integrated network pharmacology, transcriptomics and metabolomics analysis revealed that Peroxisome Proliferative Activated Receptor, Gamma (PPARG) was the only common target, mainly involved by AMPK signaling pathways. The activation of PPARG in the kidney tissue was significantly decreased in CKD-MBD mice but increased in the salt Eucommia cortex treatment. The AMPK signaling pathway were verified that AMPK expression levels were decreased in CKD-MBD mice but increased in the salt Eucommia cortex treatment. CONCLUSIONS Our study presented that salt Eucommia cortex alleviated the negative impact of CKD-MBD on the renal injury and bone injury of mice induced by 5/6 nephrectomy with the low calcium/high phosphorus diet effectively, which is highly likely achieved through the PPARG/AMPK signaling pathway.
Collapse
Affiliation(s)
- Jie Shen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chendu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China
| | - You-Ping Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chendu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Qin Wang
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China
| | - Hongping Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chendu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yuan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chendu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiaohong Guo
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China
| | - Xia Liu
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China
| | - Yanhui Li
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China
| |
Collapse
|
21
|
Guo M, Zhang M, Gao S, Wang L, Zhang J, Huang Z, Dong Y. Quantitative Detection of Natural Rubber Content in Eucommia ulmoides by Portable Pyrolysis-Membrane Inlet Mass Spectrometry. Molecules 2023; 28:molecules28083330. [PMID: 37110564 PMCID: PMC10142753 DOI: 10.3390/molecules28083330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Eucommia ulmoides gum (EUG) is a natural polymer predominantly consisting of trans-1,4-polyisoprene. Due to its excellent crystallization efficiency and rubber-plastic duality, EUG finds applications in various fields, including medical equipment, national defense, and civil industry. Here, we devised a portable pyrolysis-membrane inlet mass spectrometry (PY-MIMS) approach to rapidly, accurately, and quantitatively identify rubber content in Eucommia ulmoides (EU). EUG is first introduced into the pyrolyzer and pyrolyzed into tiny molecules, which are then dissolved and diffusively transported via the polydimethylsiloxane (PDMS) membrane before entering the quadrupole mass spectrometer for quantitative analysis. The results indicate that the limit of detection (LOD) for EUG is 1.36 μg/mg, and the recovery rate ranges from 95.04% to 104.96%. Compared to the result of pyrolysis-gas chromatography (PY-GC), the average relative error is 1.153%, and the detection time was reduced to less than 5 min, demonstrating that the procedure was reliable, accurate, and efficient. The method has the potential to be employed to precisely identify the rubber content of natural rubber-producing plants such as Eucommia ulmoides, Taraxacum kok-saghyz (TKS), Guayule, and Thorn lettuce.
Collapse
Affiliation(s)
- Minmin Guo
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Rubber Plant Research Center, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingjian Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Rubber Plant Research Center, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shunkai Gao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Rubber Plant Research Center, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lu Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Rubber Plant Research Center, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jichuan Zhang
- Rubber Plant Research Center, Beijing University of Chemical Technology, Beijing 100029, China
- College of Materials and Engineering, Beijing University of Chemical and Technology, Beijing 100029, China
| | - Zejian Huang
- Center for Advanced Measurement Science, National Institute of Metrology, Technology Innovation Center of Mass Spectrum for State Market Regulation, Beijing 100029, China
| | - Yiyang Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Rubber Plant Research Center, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
22
|
Comparative analysis of infrared and electrochemical fingerprints of different medicinal parts of Eucommia ulmoides Oliver. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
23
|
Du Q, Wu Z, Liu P, Qing J, He F, Du L, Sun Z, Zhu L, Zheng H, Sun Z, Yang L, Wang L, Du H. The chromosome-level genome of Eucommia ulmoides provides insights into sex differentiation and α-linolenic acid biosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1118363. [PMID: 37063180 PMCID: PMC10102601 DOI: 10.3389/fpls.2023.1118363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Eucommia ulmoides Oliver is a typical dioecious plant endemic to China that has great medicinal and economic value. Here, we report a high-quality chromosome-level female genome of E. ulmoides obtained by PacBio and Hi-C technologies. The size of the female genome assembly was 1.01 Gb with 17 pseudochromosomes and 31,665 protein coding genes. In addition, Hi-C technology was used to reassemble the male genome released in 2018. The reassembled male genome was 1.24 Gb with the superscaffold N50 (48.30 Mb), which was increased 25.69 times, and the number of predicted genes increased by 11,266. Genome evolution analysis indicated that E. ulmoides has undergone two whole-genome duplication events before the divergence of female and male, including core eudicot γ whole-genome triplication event (γ-WGT) and a recent whole genome duplication (WGD) at approximately 27.3 million years ago (Mya). Based on transcriptome analysis, EuAP3 and EuAG may be the key genes involved in regulating the sex differentiation of E. ulmoides. Pathway analysis showed that the high expression of ω-3 fatty acid desaturase coding gene EU0103017 was an important reason for the high α-linolenic acid content in E. ulmoides. The genome of female and male E. ulmoides presented here is a valuable resource for the molecular biological study of sex differentiation of E. ulmoides and also will provide assistance for the breeding of superior varieties.
Collapse
Affiliation(s)
- Qingxin Du
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Chinese Academy of Forestry, Zhengzhou, China
- Engineering Research Center of Eucommia ulmoides, State Forestry and Grassland Administration, Zhengzhou, China
| | - Zixian Wu
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Panfeng Liu
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Chinese Academy of Forestry, Zhengzhou, China
- Engineering Research Center of Eucommia ulmoides, State Forestry and Grassland Administration, Zhengzhou, China
| | - Jun Qing
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Chinese Academy of Forestry, Zhengzhou, China
- Engineering Research Center of Eucommia ulmoides, State Forestry and Grassland Administration, Zhengzhou, China
| | - Feng He
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Chinese Academy of Forestry, Zhengzhou, China
- Engineering Research Center of Eucommia ulmoides, State Forestry and Grassland Administration, Zhengzhou, China
| | - Lanying Du
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Chinese Academy of Forestry, Zhengzhou, China
- Engineering Research Center of Eucommia ulmoides, State Forestry and Grassland Administration, Zhengzhou, China
| | - Zhiqiang Sun
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Chinese Academy of Forestry, Zhengzhou, China
- Engineering Research Center of Eucommia ulmoides, State Forestry and Grassland Administration, Zhengzhou, China
| | - Lili Zhu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongchu Zheng
- Product Department, Henan Jinduzhong Agricultural Science and Technology Co., Ltd., Yanling, China
| | - Zongyi Sun
- Operation Department, Grandomics Biosciences Co., Ltd., Wuhan, China
| | - Long Yang
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Lu Wang
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Chinese Academy of Forestry, Zhengzhou, China
- Engineering Research Center of Eucommia ulmoides, State Forestry and Grassland Administration, Zhengzhou, China
| | - Hongyan Du
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Chinese Academy of Forestry, Zhengzhou, China
- Engineering Research Center of Eucommia ulmoides, State Forestry and Grassland Administration, Zhengzhou, China
| |
Collapse
|
24
|
Cui E, Tang P, Zhu X, Lv M, Wang S, Xue Y, Li C, Zhao S. Network Pharmacology Combined with an Experimental Validation Study to Reveal the Effect and Mechanism of Eucommia ulmoides Leaf Polysaccharide against Immunomodulation. Foods 2023; 12:foods12051062. [PMID: 36900578 PMCID: PMC10001223 DOI: 10.3390/foods12051062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
In the present study, the immuno-enhancing effect of Eucommia ulmoides leaf polysaccharide (ELP) was investigated in immunosuppressed mice induced by cyclophosphamide (CTX). To evaluate the immune enhancement mechanism of ELP, the immunoregulation effect of ELP was evaluated in vitro and in vivo. ELP is primarily composed of arabinose (26.61%), galacturonic acid (25.1%), galactose (19.35%), rhamnose (16.13%), and a small amount of glucose (12.9%). At 1000~5000 μg·mL-1, ELP could significantly enhance the proliferation and the phagocytosis of macrophages in vitro. Additionally, ELP could protect immune organs, reduce pathological damage, and reverse the decrease in the hematological indices. Moreover, ELP significantly increased the phagocytic index, enhanced the ear swelling response, augmented the production of inflammatory cytokines, and markedly up-regulated the expression of IL-1β, IL-6, and TNF-α mRNA levels. Furthermore, ELP improved phosphorylated p38, ERK1/2, and JNK levels, suggesting that MAPKs might be involved in immunomodulatory effects. The results provide a theoretical foundation for exploring the immune modulation function of ELP as a functional food.
Collapse
|
25
|
You J, Li H, Wang Q, Xu F, Lin S, Wang X, Huang S, Sheng Y, Zhu B, Zhang Q, Meng X, Qin L. Establishment of Male and Female Eucommia Fingerprints by UPLC Combined with OPLS-DA Model and Its Application. Chem Biodivers 2023; 20:e202201054. [PMID: 36790137 DOI: 10.1002/cbdv.202201054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/16/2023]
Abstract
Eucommia ulmoides Oliver is a dioecious plant, which plays an important role in traditional Chinese medicine. However, there has not yet been any research on male and female E. ulmoides. The UPLC fingerprints and OPLS-DA approach were able to quickly and easily identify and quantify E. ulmoides and differentiate between the male and female fingerprints. In this study, we optimized the UPLC conditions and analyzed them to investigate fingerprints of twenty-four extracts of Eucommiae Cortex (EC) and twenty-four extracts of Eucommiae Folium (EF) under optimal conditions. It was demonstrated that thirteen and twelve substances were possible chemical markers for EC and EF male and female discrimination and that the level of these markers - chlorogenic acid and protocatechuic acid - was many times higher in male than in female. This approach offered a reference for quality control and precise treatment of male and female E. ulmoides in the clinic.
Collapse
Affiliation(s)
- Jinling You
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, P. R. China
| | - Huaqiang Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, P. R. China
| | - Qi Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, P. R. China
| | - Fanjun Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, P. R. China
| | - Shangwei Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, P. R. China
| | - Xinrui Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, P. R. China
| | - Shen Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, P. R. China
| | - Yunjie Sheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, P. R. China
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, P. R. China
| | - Qiaoyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, P. R. China
| | - Xiongyu Meng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, P. R. China
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, P. R. China
| |
Collapse
|
26
|
Tang P, Tang Y, Liu Y, He B, Shen X, Zhang ZJ, Qin DL, Tian J. Quercetin-3-O-α-L-arabinopyranosyl-(1→2)-β-D-glucopyranoside Isolated from Eucommia ulmoides Leaf Relieves Insulin Resistance in HepG2 Cells via the IRS-1/PI3K/Akt/GSK-3β Pathway. Biol Pharm Bull 2023; 46:219-229. [PMID: 36517007 DOI: 10.1248/bpb.b22-00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For nearly 2000 years, Eucommia ulmoides Oliver (EUO) has been utilized in traditional Chinese medicine (TCM) throughout China. Flavonoids present in bark and leaves of EUO are responsible for their antioxidant, anti-inflammatory, antitumor, anti-osteoporosis, hypoglycemic, hypolipidemic, antibacterial, and antiviral properties, but the main bioactive compound has not been established yet. In this study, we isolated and identified quercetin glycoside (QAG) from EUO leaves (EUOL) and preliminarily explored its molecular mechanism in improving insulin resistance (IR). The results showed that QAG increased uptake of glucose as well as glycogen production in the palmitic acid (PA)-induced HepG2 cells in a dose-dependent way. Further, we observed that QAG increases glucose transporters 2 and 4 (GLUT2 and GLUT4) expression and suppresses the phosphorylation of insulin receptor substrate (IRS)-1 at serine612, thus promoting the expression of phosphatidylinositol-3-kinase (PI3K) at tyrosine458 and tyrosine199, as well as protein kinase B (Akt) and glycogen synthase kinase (GSK)-3β at serine473 and serine9, respectively. The influence posed by QAG on the improvement of uptake of glucose was significantly inhibited by LY294002, a PI3K inhibitor. In addition, the molecular docking result showed that QAG could bind to insulin receptors. In summary, our data established that QAG improved IR as demonstrated by the increased uptake of glucose and glycogen production through a signaling pathway called IRS-1/PI3K/Akt/GSK-3β.
Collapse
Affiliation(s)
- Peng Tang
- Clinical Medical College & Affiliated Hospital of Chengdu University.,School of Pharmacy, Southwest Medical University
| | - Yong Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology.,Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University
| | - Yan Liu
- Drug Discovery Research Center of Southwest Medical University
| | - Bing He
- School of Pharmacy, Southwest Medical University
| | - Xin Shen
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University.,Department of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | | | - Da-Lian Qin
- School of Pharmacy, Southwest Medical University.,Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University
| | - Ji Tian
- School of Pharmacy, Southwest Medical University
| |
Collapse
|
27
|
Life cycle assessment and techno-economic analysis of joint extraction of Eucommia powder, gum, water-soluble polysaccharide and alkali-extractable polysaccharide from Eucommia leaves. Process Biochem 2023. [DOI: 10.1016/j.procbio.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
CHEN BW, PAN HF, ZHAO W, HE JL, ZHAO F, PANG XL, ZHANG Q. Effects of pre-processing on the active compounds before drying Eucommia ulmoides leaves. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.95722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Bo Wen CHEN
- Northwest A&F University, China; Key Laboratory of Economical Plant Resource Utilization, China
| | - Hong Fang PAN
- Northwest A&F University, China; Key Laboratory of Economical Plant Resource Utilization, China
| | - Wei ZHAO
- Northwest A&F University, China; Key Laboratory of Economical Plant Resource Utilization, China
| | | | | | | | - Qiang ZHANG
- Northwest A&F University, China; Key Laboratory of Economical Plant Resource Utilization, China
| |
Collapse
|
29
|
Wang P, Xu J, Sun Q, Ge Q, Qiu M, Zou K, Ying J, Yuan W, Chen J, Zeng Q, Cui Q, Jin H, Zhang C, Li F. Chondroprotective Mechanism of Eucommia ulmoides Oliv.- Glycyrrhiza uralensis Fisch. Couplet Medicines in Knee Osteoarthritis via Experimental Study and Network Pharmacology Analysis. Drug Des Devel Ther 2023; 17:633-646. [PMID: 36875721 PMCID: PMC9983602 DOI: 10.2147/dddt.s397185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Background Knee osteoarthritis (KOA) is the primary prevalent disabling joint disorder among osteoarthritis (OA), and there is no particularly effective treatment at the clinic. Traditional Chinese medicine (TCM) herbs, such as Eucommia ulmoides Oliv. and Glycyrrhiza uralensis Fisch. (E.G.) couplet medicines, have been reported to exhibit beneficial health effects on KOA, exact mechanism of E.G. nevertheless is not fully elucidated. Purpose We assess the therapeutic effects of E.G. on KOA and explore its underlying molecular mechanism. Methods UPLC-Q-TOF/MS technique was used to analyze the active chemical constituents of E.G. The destabilization of the medial meniscus model (DMM) was employed to evaluate the chondroprotective action of E.G. in KOA mice using histomorphometry, μCT, behavioral testing and immunohistochemical staining. Additionally, network pharmacology and molecular docking were used to predict potential targets for anti-KOA activities of E.G., which was further verified through in vitro experiments. Results In vivo studies have shown that E.G. could significantly ameliorate DMM-induced KOA phenotypes including subchondral bone sclerosis, cartilage degradation, gait abnormality and thermal pain reaction sensibility. E.G. treatment could also promote extracellular matrix synthesis to protect articular chondrocytes, which was indicated by Col2 and Aggrecan expressions, as well as reducing matrix degradation by inhibiting MMP13 expression. Interestingly, network pharmacologic analysis showed that PPARG might be a therapeutic center. Further study proved that E.G.-containing serum (EGS) could up-regulate PPARG mRNA level in IL-1β-induced chondrocytes. Notably, significant effects of EGS on the increment of anabolic gene expressions (Col2, Aggrecan) and the decrement of catabolic gene expressions (MMP13, Adamts5) in KOA chondrocytes were abolished due to the silence of PPARG. Conclusion E.G. played a chondroprotective role in anti-KOA by inhibiting extracellular matrix degradation, which might be related to PPARG.
Collapse
Affiliation(s)
- Pinger Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jianbo Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Qi Sun
- Department of Orthopedic Joint Surgery, Hangzhou Fuyang Hospital of TCM Orthopaedics and Traumatology, Hangzhou, People's Republic of China
| | - Qinwen Ge
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Min Qiu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Kaiao Zou
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jun Ying
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,Department of Orthopedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Wenhua Yuan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jiali Chen
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Qinghe Zeng
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Qi Cui
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Chunchun Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Fanzhu Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| |
Collapse
|
30
|
Geniposidic Acid from Eucommia ulmoides Oliver Staminate Flower Tea Mitigates Cellular Oxidative Stress via Activating AKT/NRF2 Signaling. Molecules 2022; 27:molecules27238568. [PMID: 36500666 PMCID: PMC9739628 DOI: 10.3390/molecules27238568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Eucommia ulmoides Oliver staminate flower (ESF) tea enjoys a good reputation in folk medicine and displays multiple bioactivities, such as antioxidant and antifatigue properties. However, the underlying biological mechanisms remain largely unknown. In this study, we aimed to investigate whether ESF tea can mitigate cellular oxidative stress. Crude ethyl alcohol extract and its three subfractions prepared by sequential extraction with chloroform, n-butyl alcohol and residual water were prepared from ESF tea. The results of antioxidant activity tests in vitro manifested n-butyl alcohol fraction (n-BUF) showed the strongest antioxidant capacity (DPPH: IC50 = 24.45 ± 0.74 μg/mL, ABTS: IC50 = 17.25 ± 0.04 μg/mL). Moreover, all subfractions of ESF tea, especially the n-BUF, exhibited an obvious capacity to scavenge the reactive oxygen species (ROS) and stimulate the NRF2 antioxidative response in human keratinocytes HaCaT treated by H2O2. Using ultra-high-performance liquid chromatography, we identified geniposidic acid (GPA) as the most abundant component in ESF tea extract. Furthermore, it was found that GPA relieved oxidative stress in H2O2-induced HaCaT cells by activating the Akt/Nrf2/OGG1 pathway. Our findings indicated that ESF tea may be a source of natural antioxidants to protect against skin cell oxidative damage and deserves further development and utilization.
Collapse
|
31
|
Yang P, Zhang Q, Shen H, Bai X, Liu P, Zhang T. Research progress on the protective effects of aucubin in neurological diseases. PHARMACEUTICAL BIOLOGY 2022; 60:1088-1094. [PMID: 35634723 PMCID: PMC9154787 DOI: 10.1080/13880209.2022.2074057] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/29/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Aucubin (AU), an iridoid glycoside that is one of the active constituents of Eucommia ulmoides Oliv. (EUO) (Eucommiaceae), a traditional Chinese medicine, has been extensively studied in the management of neurological diseases (NDs). However, a comprehensive review of its effects and mechanisms in this regard is currently not available. OBJECTIVE To compile the protective effects and mechanisms of AU in NDs and provide a basis for further research. METHODS We used 'aucubin' as the 'All Fields' or 'MeSH' in PubMed, Web of Science and China National Knowledge Infrastructure without any limitation to search all relevant articles as comprehensively as possible; we selected the articles on AU treatment of NDs for summary. RESULTS Studies reviewed herein reported that AU improved the symptoms or prognosis of Parkinson's disease, Alzheimer's disease, intracerebral haemorrhage, diabetic encephalopathy, epilepsy, anxiety and depression, and traumatic brain injury. The pharmacological mechanisms involved in repairing neuronal loss were postulated to include increasing γ-aminobutyric acid (GABA) content in the synapse, promoting differentiation of neural precursor cells into GABAergic neurons, providing antioxidant and anti-neuroinflammation activities, as well as enhancing autophagy and anti-apoptotic actions. DISCUSSION AND CONCLUSIONS The protective effects of AU on some NDs have been confirmed. According to the pharmacological effects, AU is also highly likely to have protective effects on other NDs, which can be realized by further in vivo and in vitro basic research, and clinical trials. In the future, AU may be used for clinical prevention or treatment of patients with neurological diseases.
Collapse
Affiliation(s)
- Ping Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qiaoyue Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Hengyan Shen
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xinyu Bai
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Ping Liu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tao Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
32
|
Liu X, Zhang J, Li Y, Yao C, An Y, Wei W, Yao S, Yang L, Huang Y, Qu H, Guo DA. In-depth profiling, nontargeted metabolomic and selective ion monitoring of eight chemical markers for simultaneous identification of different part of Eucommia ulmoides in 12 commercial products by UPLC/QDa. Food Chem 2022; 393:133346. [DOI: 10.1016/j.foodchem.2022.133346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 11/04/2022]
|
33
|
Feng Y, Shi T, Fu Y, Lv B. Traditional chinese medicine to prevent and treat diabetic erectile dysfunction. Front Pharmacol 2022; 13:956173. [PMID: 36210810 PMCID: PMC9532934 DOI: 10.3389/fphar.2022.956173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic erectile dysfunction (DED) is one of the most common complications of diabetes mellitus. However, current therapeutics have no satisfactory effect on DED. In recent years, traditional Chinese medicine (TCM) has shown good effects against DED. By now, several clinical trials have been conducted to study the effect of TCM in treating DED; yet, the underlying mechanism is not fully investigated. Therefore, in this review, we briefly summarized the pathophysiological mechanism of DED and reviewed the published clinical trials on the treatment of DED by TCM. Then, the therapeutic potential of TCM and the underlying mechanisms whereby TCM exerts protective effects were summarized. We concluded that TCM is more effective than chemical drugs in treating DED by targeting multiple signaling pathways, including those involved in oxidation, apoptosis, atherosclerosis, and endothelial function. However, the major limitation in the application of TCM against DED is the lack of a large-scale, multicenter, randomized, and controlled clinical trial on the therapeutic effect, and the underlying pharmaceutical mechanisms also need further investigation. Despite these limitations, clinical trials and further experimental studies will enhance our understanding of the mechanisms modulated by TCM and promote the widespread application of TCM to treat DED.
Collapse
Affiliation(s)
- Yanfei Feng
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tianhao Shi
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuli Fu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bodong Lv
- Zhejiang Province Key Laboratory of Traditional Chinese Medicine (Laboratory of Andrology), Hangzhou, China
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Bodong Lv,
| |
Collapse
|
34
|
Liu T, Long W, Hu Z, Guan Y, Lei G, He J, Yang X, Yang J, Fu H. Rapid identification of the geographical origin of Eucommia ulmoides by using excitation-emission matrix fluorescence combined with chemometric methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 277:121243. [PMID: 35468376 DOI: 10.1016/j.saa.2022.121243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Eucommia ulmoides is an important and valuable traditional Chinese medicine with various medical functions, and has been widely used as health food in China, Japan, South Korea and other Asian countries for many years. The efficacy and quality of E. ulmoides are closely associated with the geographical origin. In this work, the potential of excitation-emission matrix (EEMs) fluorescence coupled with chemometric methods was investigated for simple, rapid and accurate for identification E. ulmoides from different geographical origins. Parallel factor analysis (PARAFAC) was applied for characterizing the fluorescence fingerprints of E. ulmoides samples. Moreover, k-nearest neighbor (kNN), principal component analysis-linear discriminant analysis (PCA-LDA) and partial least squares discriminant analysis (PLS-DA) models were used for the classification of E. ulmoides samples according to their geographical origins. The results showed that kNN model was more suitable for identification of E. ulmoides samples from different provinces. The kNN model could identify E. ulmoides samples from eight different geographical origins with 100% accuracy on the training and test sets. Therefore, the proposed method was available for conveniently and accurately determining the geographical origin of E. ulmoides, which can expect to be an attractive alternative method for identifying the geographic origin of other traditional Chinese medicines.
Collapse
Affiliation(s)
- Tingkai Liu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Zikang Hu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Yuting Guan
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Guanghua Lei
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Jieling He
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Xiaolong Yang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China.
| |
Collapse
|
35
|
Wang Y, Fan Q, Xu Y, Zeng F, Liu X, Zhao D, Zhang L, Bai G. Effect of Eucommia water extract on gingivitis and periodontitis in experimental rats. BMC Oral Health 2022; 22:326. [PMID: 35932002 PMCID: PMC9356420 DOI: 10.1186/s12903-022-02353-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Herein, we evaluated the potential therapeutic effects of water extracts from Eucommia on periodontitis in experimental rats. We ligated the maxillary second molars of Sprague-Dawley(SD) rats with 4.0 silk threads and locally smeared Porphyromonas gingivalis(P. gingivalis) to induce gingivitis and periodontitis.After the model was successfully established, we exposed the rats to Eucommia water extracts through topical smearing and intragastric administration and evaluated the therapeutic effect of the extracts on gingivitis (for a 2 week treatment period) and periodontitis (over 4 weeks). We analyzed histopathological sections of the periodontal tissue and quantified the alveolar bone resorption levels, molecules related to periodontal oxidative stress, and periodontal inflammatory factors to assess the feasibility of Eucommia in treating gingivitis and periodontitis. We found that damage to the periodontal tissue was reduced after treatment with extracts,indicating that Eucommia has a positive effect in treating gingivitis and periodontitis in experimental rats. These findings are expected to provide the foothold for future research on secondary metabolites derived from Eucommia and guide the development of novel approaches for preventing and treating periodontal disease.
Collapse
Affiliation(s)
- Yueyue Wang
- grid.417409.f0000 0001 0240 6969Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000 China
| | - Qin Fan
- grid.417409.f0000 0001 0240 6969Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000 China
| | - Yanglong Xu
- grid.417409.f0000 0001 0240 6969Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000 China
| | - Fengjiao Zeng
- grid.417409.f0000 0001 0240 6969Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000 China
| | - Xia Liu
- grid.417409.f0000 0001 0240 6969Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000 China
| | - Dan Zhao
- grid.443382.a0000 0004 1804 268XInstitute of Agro-Bioengineering and College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025 China
| | - Lei Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| | - Guohui Bai
- Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China. .,Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
36
|
Yan J, Hu R, Li B, Tan J, Wang Y, Tang Z, Liu M, Fu C, He J, Wu X. Effect of Eucommia ulmoides Leaf Extract on Growth Performance, Carcass Traits, Parameters of Oxidative Stress, and Lipid Metabolism in Broiler Chickens. Front Vet Sci 2022; 9:945981. [PMID: 35968002 PMCID: PMC9371477 DOI: 10.3389/fvets.2022.945981] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/23/2022] [Indexed: 11/14/2022] Open
Abstract
Eucommia ulmoides bark has been traditionally used as a Chinese medicine to attenuate stress, but the leaf, which is rich in polyphenols and polysaccharides, has been rarely used. This study aimed to investigate the effect of Eucommia ulmoides leaf extracts (EULEs) on oxidative stress and meat quality of broilers. A total of 252 broilers were randomly divided into 3 treatments and fed with a control basal diet (CON), or a diet containing 250 mg/kg or 1,000 mg/kg of EULE for 51 days. Results showed that dietary supplementation of 250 mg/kg EULE increased significantly the average daily gain of broilers in the early stage (1–21 days), while 250 mg/kg or 1,000 mg/kg of EULE decreased the feed conversion ratio in the whole period (P < 0.05). Supplementation of 250 mg/kg EULE reduced the level of MDA in the liver (P < 0.05), while 1,000 mg/kg EULE decreased the serum level of MDA (P < 0.05), and the HDL level in serum was increased by 250 mg/kg or 1,000 mg/kg EULE (P < 0.05). Additionally, 250 mg/kg EULE decreased abdominal fat ratio and serum triglyceride (TC) level in broilers, while 250 or 1,000 mg/kg of EULE reduced drip loss in breast muscle (P < 0.05), and 1,000 mg/kg EULE reduced the cooking loss in thigh muscle (P < 0.05). In conclusion, dietary supplementation of 250 mg/kg of EULE could attenuate oxidative stress and improve the growth performance and meat quality in broilers.
Collapse
Affiliation(s)
- Jiahao Yan
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ruizhi Hu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Baizhen Li
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jijun Tan
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ying Wang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhiyi Tang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ming Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Chenxing Fu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jianhua He
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Jianhua He
| | - Xiaosong Wu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- *Correspondence: Xiaosong Wu
| |
Collapse
|
37
|
Han R, Yu Y, Zhao K, Wei J, Hui Y, Gao JM. Lignans from Eucommia ulmoides Oliver leaves exhibit neuroprotective effects via activation of the PI3K/Akt/GSK-3β/Nrf2 signaling pathways in H 2O 2-treated PC-12 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154124. [PMID: 35487038 DOI: 10.1016/j.phymed.2022.154124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Neuronal apoptosis and oxidative stress have the most crucial influence on neurodegenerative diseases, including Parkinson's disease. Rat adrenal pheochromocytoma cells (PC-12) induced by H2O2 are one of the primary in vitro models of Parkinson's disease (PD) . Previous studies have found that E ulmoides leaf extract exerts good neuroprotective activity and has the potential to treat neurodegenerative diseases. However, the molecular pathways involved in the neuroprotective effects of its primary leaf component, lignans, have not yet been well elucidated yet. PURPOSE This study aimed to evaluate the neuroprotective effects of lignans in E. ulmoides leaves and to explore the underlying mechanism. METHODS Cell viability was measured using the CCK-8 assay. Apoptosis was assessed by calcein/PI staining. The release levels of ROS and LDH were assessed using a commercial assay kit. The enzyme activities of SOD and GPx were measured using kits. The establishment of the compound-target-pathway-disease network was performed using a database and computer software. Antioxidant proteins (HO-1, NQO-1, and Cat) and related regulatory proteins (Nrf2, GSK-3β, p-GSK 3β (Ser 9), Akt, p-Akt (Tyr326), PI3K) were detected by western blotting. Apoptosis in the zebrafish head was assessed using acridine orange (AO) staining. RESULTS In the present study, 12 lignans were isolated and characterized from E. ulmoides leaves, including a new compound, (-)-7‑epi-pinoresinol mr1 (1). Compounds 1-12 exerted neuroprotective effects in H2O2-treated PC-12 cells by increasing cell viability, improving the enzyme activity of SOD and GPx, and reducing levels of ROS and LDH. Compared to the positive control group (25 μM hesperetin), cell viability in response to 25 μM compound 1 (78.0 ± 0.8%) was highest, but its relative percent LDH release (20.1 ± 2.5%) was the lowest; 25 μM compound 4 resulted in the lowest ROS release levels (101.7 ± 2.6%) and highest SOD enzyme activity (35.9 ± 4.2 U/mg), and the GPx enzyme activity of 25 μM compound 1 was strongest (197.6 ± 0.6 U/mg). Next, the potential targets (PI3K, GSK-3β) of the test compounds' antioxidant activity were identified using pharmacological network analysis. Using DAVID software for pharmacological network analysis, potential targets (PI3K, GSK-3β, and SOD2) of 12 lignans were identified. Based on the initial screening results, biological experiments confirmed that diepoxylignans 1, 2, and 4 exerted significant neuroprotection by regulating the PI3K/AKT/GSK-3β/Nrf2 signaling pathways, increasing protein expression of HO-1, NQO-1, and CAT, and enhancing the antioxidant enzyme activity of SOD and GPx. CONCLUSION Our experiments first propose that the diepoxylignans from E. ulmoides leaves exert neuroprotective effects via activation of the PI3K/Akt/GSK-3β/Nrf2 signaling pathway. These findings further indicate that lignans could be the primary components of E. ulmoides Oliver as agents for the prevention and treatment of neurodegenerative diseases. Collectively, Eucommia ulmoides leaves with important research value may be a potential candidate for traditional Chinese medicine for treating oxidative stress-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Rui Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yao Yu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Kanghong Zhao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jing Wei
- College of Biology Pharmacy & Food Engineering, Shangluo University, Shangluo, Shaanxi 726000, People's Republic of China
| | - Yuhu Hui
- Shaanxi Jiahe Pharmaceutical Co., Ltd. No. 7 Binhe Road, Yangling, Shaanxi 712100, People's Republic of China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
38
|
Kong F, Zeng Q, Li Y, Ding Y, Xue D, Guo X. Improving Antioxidative and Antiproliferative Properties Through the Release of Bioactive Compounds From Eucommia ulmoides Oliver Bark by Steam Explosion. Front Nutr 2022; 9:916609. [PMID: 35845794 PMCID: PMC9280486 DOI: 10.3389/fnut.2022.916609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
Eucommia ulmoides Oliver bark is a potential medicinal plant-based feedstock for bioactive products and possesses the effective functions of antioxidant and antitumor. Network pharmacology was employed to reveal the oxidative and free radical damage and cancer-related potential compounds of Eucommia ulmoides Oliver in this study. The result showed that quercetin might be the key compound to resist these two types of diseases. Then, the effect of steam explosion on the release of bioactive compounds and the antioxidative and antiproliferative properties of the extract from Eucommia ulmoides Oliver bark were investigated. Results showed that steam explosion at 0.7 MPa for 30 min significantly enhanced the total phenolic, total flavonoids, and quercetin content of Eucommia ulmoides Oliver bark. Reducing power and 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging activity of the steam-exploded extracting solution were 1.72 and 2.76 times of native. The antiproliferative activity to CT26 and HepG2 of the extract from steam-exploded Eucommia ulmoides Oliver bark (SEU) was higher than those of native-exploded Eucommia ulmoides Oliver bark (NEU). All these results suggested that steam explosion could be applied to release the bioactive compounds, thus enhanced the antioxidative and antiproliferative activities of medicinal and edible plant-based sources.
Collapse
|
39
|
Zhao Y, Tan DC, Peng B, Yang L, Zhang SY, Shi RP, Chong CM, Zhong ZF, Wang SP, Liang QL, Wang YT. Neuroendocrine-Immune Regulatory Network of Eucommia ulmoides Oliver. Molecules 2022; 27:molecules27123697. [PMID: 35744822 PMCID: PMC9229650 DOI: 10.3390/molecules27123697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Eucommia ulmoides Oliver (E. ulmoides) is a popular medicinal herb and health supplement in China, Japan, and Korea, and has a variety of pharmaceutical properties. The neuroendocrine-immune (NEI) network is crucial in maintaining homeostasis and physical or psychological functions at a holistic level, consistent with the regulatory theory of natural medicine. This review aims to systematically summarize the chemical compositions, biological roles, and pharmacological properties of E. ulmoides to build a bridge between it and NEI-associated diseases and to provide a perspective for the development of its new clinical applications. After a review of the literature, we found that E. ulmoides has effects on NEI-related diseases including cancer, neurodegenerative disease, hyperlipidemia, osteoporosis, insomnia, hypertension, diabetes mellitus, and obesity. However, clinical studies on E. ulmoides were scarce. In addition, E. ulmoides derivatives are diverse in China, and they are mainly used to enhance immunity, improve hepatic damage, strengthen bones, and lower blood pressure. Through network pharmacological analysis, we uncovered the possibility that E. ulmoides is involved in functional interactions with cancer development, insulin resistance, NAFLD, and various inflammatory pathways associated with NEI diseases. Overall, this review suggests that E. ulmoides has a wide range of applications for NEI-related diseases and provides a direction for its future research and development.
Collapse
Affiliation(s)
- Yi Zhao
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - De-Chao Tan
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Bo Peng
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Lin Yang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Si-Yuan Zhang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Rui-Peng Shi
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Cheong-Meng Chong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Zhang-Feng Zhong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Sheng-Peng Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Qiong-Lin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
- Correspondence: (Q.-L.L.); (Y.-T.W.); Tel.: +86-010-6277-2263 (Q.-L.L.); +853-8822-4691 (Y.-T.W.); Fax: +86-010-6277-2263 (Q.-L.L.); +853-2884-1358 (Y.-T.W.)
| | - Yi-Tao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
- Correspondence: (Q.-L.L.); (Y.-T.W.); Tel.: +86-010-6277-2263 (Q.-L.L.); +853-8822-4691 (Y.-T.W.); Fax: +86-010-6277-2263 (Q.-L.L.); +853-2884-1358 (Y.-T.W.)
| |
Collapse
|
40
|
Liu Z, Ma W, Chen B, Pan H, Zhu M, Pang X, Zhang Q. Deep eutectic solvents in the extraction of active compounds from Eucommia Ulmoides Oliv. leaves. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01427-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Cheng M, Wijayawardene NN, Promputtha I, de Vries RP, Lan Y, Luo G, Wang M, Li Q, Guo X, Wang F, Liu Y, Kang Y. Potential Fungi Isolated From Anti-biodegradable Chinese Medicine Residue to Degrade Lignocellulose. Front Microbiol 2022; 13:877884. [PMID: 35620098 PMCID: PMC9127797 DOI: 10.3389/fmicb.2022.877884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
Traditional Chinese medicine is one of the ancient medicines which is popular in Asian countries, among which the residue produced by the use of anti-biodegradables is endless, and causes significant adverse impacts on the environment. However, the high acidity of anti-biodegradable residues and some special biological activities make it difficult for microorganisms to survive, resulting in a very low degradation rate of lignocellulose in naturally stacked residues, which directly impedes the degradation of residues. We aimed to identify the fungal strains that efficiently biodegrade anti-biodegradable residue and see the possibility to improve the biodegradation of it and other agricultural wastes by co-cultivating these fungi. We isolated 302 fungal strains from anti-biodegradable residue to test hydrolysis ability. Finally, we found Coniochaeta sp., Fomitopsis sp., Nemania sp., Talaromyces sp., Phaeophlebiopsis sp. which inhabit the anti-biodegradable residues are capable of producing higher concentrations of extracellular enzymes. Synergistic fungal combinations (viz., Fomitopsis sp. + Phaeophlebiopsis sp.; Talaromyces sp. + Coniochaeta sp. + Fomitopsis sp.; Talaromyces sp. + Fomitopsis sp. + Piloderma sp. and Talaromyces sp. + Nemania sp. + Piloderma sp.) have better overall degradation effect on lignocellulose. Therefore, these fungi and their combinations have strong potential to be further developed for bioremediation and biological enzyme industrial production.
Collapse
Affiliation(s)
- Min Cheng
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Nalin N Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China.,Section of Genetics, Institute for Research and Development in Health and Social Care, Battaramulla, Sri Lanka
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Faculty of Science, Environmental Science Research Center, Chiang Mai University, Chiang Mai, Thailand
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Yongzhe Lan
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Gang Luo
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Meizhu Wang
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Qirui Li
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xinyao Guo
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Feng Wang
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Yanxia Liu
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Yingqian Kang
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| |
Collapse
|
42
|
Deng P, Wang Y, Hu F, Yu H, Liang Y, Zhang H, Wang T, Zhou Y, Li Z. Phenotypic Trait Subdivision Provides New Sight Into the Directional Improvement of Eucommia ulmoides Oliver. FRONTIERS IN PLANT SCIENCE 2022; 13:832821. [PMID: 35463430 PMCID: PMC9026163 DOI: 10.3389/fpls.2022.832821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Eucommia ulmoides Oliver has been used extensively in many fields. To satisfy increasing demand, great efforts must be made to further improve its traits. However, limited information is available on these traits, which is a factor that restricts their improvement. To improve traits directionally, nine clones were assigned to six sites to analyze the effect of different variation sources (the genotype, site, and genotype × environment interaction) on the phenotypic trait. In addition, a mixed linear model was used to assess the contribution of variations. In general, for most traits, the site effect accounted for a larger proportion of the variance, followed by the genotype and genotype × environment interaction effects. All the studied genotypes and sites had a significant effect, indicating that they could be improved by selecting preferable genotypes or cultivation areas, respectively. Interestingly, growth traits or economic traits could be improved simultaneously. Trait performance and stability are necessary when selecting genotypes. Moreover, the discriminating ability of genotypes should be considered in selecting cultivation areas. Annual mean temperature and annual sunshine duration proved to be crucial factors that affected the traits. They were correlated positively with economic traits and leaf yield and correlated negatively with growth traits. These findings contributed to selecting a wider range of cultivation areas. Regarding the genotype × environment interaction effect, there were significant differences only in the gutta-percha content, the total number of leaves, and the chlorogenic acid content. These traits could also be improved by choosing appropriate genotypes for the local environment. The research has provided preliminary data on the main factors that affect the traits of E. ulmoides and offered solutions for trait improvement. This information could be a reference for the trait improvement of other plants.
Collapse
Affiliation(s)
- Peng Deng
- College of Forestry, Northwest A&F University, Yangling, China
| | - Yiran Wang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Fengcheng Hu
- Lveyang County Forest Tree Seedling Workstation, Forestry Bureau of Lveyang County, Lveyang, China
| | - Hang Yu
- College of Forestry, Northwest A&F University, Yangling, China
| | - Yangling Liang
- College of Humanities and Social Development, Northwest A&F University, Yangling, China
| | - Haolin Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Ting Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuhao Zhou
- College of Forestry, Northwest A&F University, Yangling, China
| | - Zhouqi Li
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
43
|
Whole genome re-sequencing reveals the genetic diversity and evolutionary patterns of Eucommia ulmoides. Mol Genet Genomics 2022; 297:485-494. [PMID: 35146538 DOI: 10.1007/s00438-022-01864-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/23/2022] [Indexed: 10/19/2022]
Abstract
Eucommia ulmoides (E. ulmoides) is a deciduous perennial tree belonging to the order Garryales, and is known as "living fossil" plant, along with ginkgo (Ginkgo biloba), metaspaca (Metasequoia glyptostroboides) and dove tree (Davidia involucrata Baill). However, the genetic diversity and population structure of E. ulmoides are still ambiguous nowdays. In this study, we re-sequenced the genomes of 12 E. ulmoides accessions from different major climatic geography regions in China to elucidate the genetic diversity, population structure and evolutionary pattern. By integration of phylogenetic analysis, principal component analysis and population structure analysis based on a number of high-quality SNPs, a total of 12 E. ulmoides accessions were clustered into four different groups. This result is consistent with their geographical location except for group samples from Shanghai and Hunan province. E. ulmoides accessions from Hunan province exhibited a closer genetic relationship with E. ulmoides accessions from Shanghai in China compared with other regions, which is also supported by the result of population structure analyses. Genetic diversity analysis further revealed that E. ulmoides samples in Shanghai and Hunan province were with higher genetic diversity than those in other regions in this study. In addition, we treated the E. ulmoides materials from Shanghai and Hunan province as group A, and the other materials from other places as group B, and then analyzed the evolutionary pattern of E. ulmoides. The result showed the significant differentiation (Fst = 0.1545) between group A and group B. Some candidate highly divergent genome regions were identified in group A by selective sweep analyses, and the function analysis of candidate genes in these regions showed that biological regulation processes could be correlated with the Eu-rubber biosynthesis. Notably, nine genes were identified from selective sweep regions. They were involved in the Eu-rubber biosynthesis and expressed in rubber containing tissues. The genetic diversity research and evolution model of E. ulmoides were preliminarily explored in this study, which laid the foundation for the protection of germplasm resources and the development and utilization of multipurpose germplasm resources in the future.
Collapse
|
44
|
Qian C, Zhang R, Li J, Huang Z, Liu X, Yu L, Yan L, Fu Y. The characteristics of habitat, functional traits and medicinal components of Eucommia ulmoides from Guizhou. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:12629-12647. [PMID: 34462860 DOI: 10.1007/s11356-021-15596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
To find out the genuine characteristics of Eucommia ulmoides produced in Guizhou.The habitat, functional characters and the content of medicinal components of Eucommia ulmoides in Guizhou were studied by using the method of sample survey combined with typical survey, related laboratory experiments and quantitative analysis. The results showed that the yield of Eucommia ulmoides plantation in Guizhou was divided into low altitude, low middle and high temperature rain slope latitude mixing, short sunshine hours type(A type), medium altitude, low longitude and latitude, high temperature rain, positive oblique steep slope, medium sunshine hours type (B type), middle altitude, low longitude and latitude, moderate high temperature rain, shady side and sunny side have gentle deflection steep slope, medium sunshine hours type (C type), High altitude, low longitude and latitude, low temperature moderate rain, positive gentle slope, long sunshine hours type (D type); Different types of Eucommia ulmoides plantation, Different habitat quality, B type is intensity karst rocky desertification habitat, A type is potential karst rocky desertification habitat, the C and D types are light and moderate rocky desertification areas, respectively, the species diversity of shrub layer in Eucommia ulmoides plantation was higher in D type and B type, A type and C type followed; There was no significant difference in root carbon content and leaf nitrogen content in 4 types of Eucommia ulmoides plantation, Among the four types of A, B, C, D, there were significant or extremely significant differences in other indexes of plant functional traits; Both genipinic acid and aucubin had the highest content of root bark, followed by trunk bark and lowest leaves, Chlorogenic acid is the opposite, The content of geniposide was higher in trunk bark and lower in root bark and leaves; Genipinic acid is higher in D type, Aucubin is higher in A and D type, Chlorogenic acid has higher leaves content in B type, Geniposide was the highest in trunk bark of D type; The element enrichment coefficient K and Mn leaves are the largest, the largest in trunk bark is Ca and Zn, Fe root bark is the largest; Effects of soil potassium, phosphorus, pH value and bulk weight on the functional traits of Eucommia ulmoides were significant. The contents of medicinal components in root bark, trunk bark, and leaves was influenced by species diversity of shrub layer, The contents of geniposide in root bark, aucubin in root bark and trunk bark, genipinic acid in bark and chlorogenic acid in leaves were particularly affected by soil physical and chemical indexes and metal element contents, The functional traits of Eucommia ulmoides can affect the content of medicinal components in root bark, trunk bark, and leaves, Especially on the root bark, trunk bark, and leaves in the content of aucubin content; The content of medicinal components of Eucommia ulmoides was high and stable. The above research results have important theoretical reference significance for the cultivation of Eucommia ulmoides and the cultivation of target medicinal components and the comprehensive exploitation and utilization of resources.
Collapse
Affiliation(s)
- Changjiang Qian
- Guizhou University, The Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering(CICMEAB), Guiyang, 550025, Guizhou, China
- College of Biological Sciences, Guizhou Education University, Guiyang, 550018, Guizhou, China
| | - Rongrong Zhang
- College of Biological Sciences, Guizhou Education University, Guiyang, 550018, Guizhou, China
| | - Jia Li
- College of Biological Sciences, Guizhou Education University, Guiyang, 550018, Guizhou, China
| | - Zongsheng Huang
- Guizhou University, The Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering(CICMEAB), Guiyang, 550025, Guizhou, China.
| | - Xun Liu
- College of Biological Sciences, Guizhou Education University, Guiyang, 550018, Guizhou, China
| | - Lifei Yu
- Guizhou University, The Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering(CICMEAB), Guiyang, 550025, Guizhou, China.
| | - Lingbin Yan
- Guizhou University, The Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering(CICMEAB), Guiyang, 550025, Guizhou, China
| | - Yuhong Fu
- College of Biological Sciences, Guizhou Education University, Guiyang, 550018, Guizhou, China
| |
Collapse
|
45
|
Gong M, Su C, Fan M, Wang P, Cui B, Guo Z, Liang S, Yang L, Liu X, Dai L, Wang Z. Mechanism by which Eucommia ulmoides leaves Regulate Nonalcoholic fatty liver disease based on system pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114603. [PMID: 34496264 DOI: 10.1016/j.jep.2021.114603] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eucommia ulmoides (E. ulmoides) leaves are included in the Chinese Pharmacopoeia, and are traditionally used to treat hypertension, obesity, diabetes, and other diseases. Numerous pharmacological studies have shown that E. ulmoides has a good effect on lowering blood lipids and can improve obesity and nonalcoholic fatty liver. AIM To study the mechanism of E. ulmoides leaves in regulating nonalcoholic fatty liver disease by combining prediction and validation. METHODS Using network pharmacology, and molecular docking to predict E. ulmoides in regulating the action mechanism and potential active ingredients of nonalcoholic fatty liver, large hole adsorption resin enrichment active sites, in vitro experiments were performed to verify its fat-lowering effect and mechanism. RESULTS The major components of E. ulmoides leaves exhibited good combination with lipid metabolism-regulating core proteins, particularly flavonoids. EUL 50 significantly reduced lipid accumulation, and increased PPARγ. Compared with the control group, the autophagy level increased after the administration of EUL 50. PPARγ decreased significantly after the addition of chloroquine (CQ, autophagy inhibitor). CONCLUSION The active ingredients in E. ulmoides leaves regulating nonalcoholic fatty liver disease are mainly flavonoids and phenolics. EUL 50 may play a role in lowering lipids by regulating PPARγ expression through inducing autophagy.
Collapse
Affiliation(s)
- Man Gong
- Henan University of Chinese Medicine, Henan Zhengzhou, 450046, China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials from Henan, Henan Zhengzhou, 450046, China
| | - Chengfu Su
- Henan University of Chinese Medicine, Henan Zhengzhou, 450046, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Mengzhe Fan
- Henan University of Chinese Medicine, Henan Zhengzhou, 450046, China
| | - Ping Wang
- Henan University of Chinese Medicine, Henan Zhengzhou, 450046, China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials from Henan, Henan Zhengzhou, 450046, China
| | - Bingdi Cui
- Henan University of Chinese Medicine, Henan Zhengzhou, 450046, China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials from Henan, Henan Zhengzhou, 450046, China
| | - Zhongyuan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shaojia Liang
- Henan Golden Eucommia Agricultural Technology Co., Ltd, Henan Xuchang, 461000, China
| | - Lianhe Yang
- Henan University of Chinese Medicine, Henan Zhengzhou, 450046, China
| | - Xiaoqian Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liping Dai
- Henan University of Chinese Medicine, Henan Zhengzhou, 450046, China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials from Henan, Henan Zhengzhou, 450046, China; Henan Zhongjing Key Laboratory of Prescription, Henan Zhengzhou, 450046, China.
| | - Zhimin Wang
- Henan University of Chinese Medicine, Henan Zhengzhou, 450046, China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials from Henan, Henan Zhengzhou, 450046, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
46
|
Chen J, Wang W, Kong J, Yue Y, Dong Y, Zhang J, Liu L. Application of UHPLC-Q-TOF MS based untargeted metabolomics reveals variation and correlation amongst different tissues of Eucommia ulmoides Oliver. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
47
|
Deng P, Xie X, Long F, Zhang L, Li Y, Zhao Z, Yang S, Wang Y, Fan R, Li Z. Trait Variations and Probability Grading Index System on Leaf-Related Traits of Eucommia ulmoides Oliver Germplasm. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112280. [PMID: 34834643 PMCID: PMC8620490 DOI: 10.3390/plants10112280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 05/14/2023]
Abstract
Eucommia ulmoides Oliver (EUO), an economic tree grown specifically in China, is widely used in various fields. To satisfy the requirements of industrial development, superior varieties need to be selected for different uses. However, there is no unified standard for breeders to reference. In this study, leaf-related traits were classified by a probability grading method. The results indicated there were significant differences between different planting models for the studied traits, and the traits in the Arbor forest model showed more abundant variation. Compared with genotype, the planting model accounted for relatively bigger variance, indicating that the standard should be divided according to planting models. Furthermore, the optimum planting model for different traits would be obtained by analyzing the variation range. Association analyses were conducted among traits to select the crucial evaluation indexes. The indexes were divided into three grades in different planting models. The evaluation system on leaf-related traits of EUO germplasm was established preliminarily, which considered planting models and stability across years for the first time. It can be treated as a reference to identify and evaluate EUO germplasm resources. Additionally, the study served as an example for the classification of quantitative traits in other economically important perennial plants.
Collapse
Affiliation(s)
- Peng Deng
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (P.D.); (X.X.); (F.L.); (L.Z.); (Y.L.); (Y.W.); (R.F.)
| | - Xiangchen Xie
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (P.D.); (X.X.); (F.L.); (L.Z.); (Y.L.); (Y.W.); (R.F.)
| | - Feiyu Long
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (P.D.); (X.X.); (F.L.); (L.Z.); (Y.L.); (Y.W.); (R.F.)
| | - Liang Zhang
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (P.D.); (X.X.); (F.L.); (L.Z.); (Y.L.); (Y.W.); (R.F.)
| | - Yonghang Li
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (P.D.); (X.X.); (F.L.); (L.Z.); (Y.L.); (Y.W.); (R.F.)
| | - Zhangxu Zhao
- College of Economics and Management, Northwest A&F University, Xianyang 712100, China;
| | - Shiyao Yang
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China;
| | - Yiran Wang
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (P.D.); (X.X.); (F.L.); (L.Z.); (Y.L.); (Y.W.); (R.F.)
| | - Ruishen Fan
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (P.D.); (X.X.); (F.L.); (L.Z.); (Y.L.); (Y.W.); (R.F.)
| | - Zhouqi Li
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (P.D.); (X.X.); (F.L.); (L.Z.); (Y.L.); (Y.W.); (R.F.)
- Correspondence:
| |
Collapse
|
48
|
Jiang H, Li J, Zhang N, He HY, An JM, Dou YN. Optimization of the Extraction Technology and Assessment of Antioxidant Activity of Chlorogenic Acid-Rich Extracts From Eucommia ulmoides Leaves. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211046105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chlorogenic acid has been proved to have cardiovascular protection, antibacterial, antiviral, hemostatic, and hypolipidemia effects. Modern scientific research on the bioactivity of chlorogenic acid has been extended to the fields of food, medicine, health care and daily-use chemical industry. The aim of this research was to optimize the extraction conditions for chlorogenic acid from Eucommia ulmoides (Eucommiaceae) leaves. The significant variables were screened and optimized by a combination of Plackett-Burman test and Box-Behnken design. Optimum extraction parameters with ethanol concentration of 50%, solvent pH value of 3, and particle size of 60 mesh were determined according to variance analysis and contour plots. Under these conditions, the yield of chlorogenic acid was up to 4.36 mg/g, which was basically consistent with the theoretical prediction value of 4.50 mg/g. This study also proved the potential antioxidant activity of E. ulmoides leaves. The optimal extract of E. ulmoides leaves rich in chlorogenic acid showed the highest antioxidant activity in the FRAP method, which was 219.8 μM Trolox equivalents (TE) per g extract weight (EW) (μM TE/g EW). The DPPH method gave a similar value (168 μM TE/g EW) to the ABTS method (152 μM TE/g EW). The established extraction process was efficient in the recovery of chlorogenic acid from E. ulmoides leaves, encouraging its valorization as a cheap and sustainable alternative for the isolation of chlorogenic acid.
Collapse
Affiliation(s)
- Hua Jiang
- Chemical Engineering and Pharmaceutical College, Henan University of Science and Technology, Luoyang, China
| | - Jun Li
- Chemical Engineering and Pharmaceutical College, Henan University of Science and Technology, Luoyang, China
| | - Ning Zhang
- Chemical Engineering and Pharmaceutical College, Henan University of Science and Technology, Luoyang, China
| | - Hai-Yang He
- Chemical Engineering and Pharmaceutical College, Henan University of Science and Technology, Luoyang, China
| | - Jia-Min An
- Chemical Engineering and Pharmaceutical College, Henan University of Science and Technology, Luoyang, China
| | - Ya-Ning Dou
- Chemical Engineering and Pharmaceutical College, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
49
|
Zhai Z, Niu KM, Liu Y, Lin C, Wu X. The Gut Microbiota-Bile Acids-TGR5 Axis Mediates Eucommia ulmoides Leaf Extract Alleviation of Injury to Colonic Epithelium Integrity. Front Microbiol 2021; 12:727681. [PMID: 34489916 PMCID: PMC8416499 DOI: 10.3389/fmicb.2021.727681] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Eucommia ulmoides leaves (EL) are rich in phenolic acids and flavonoids, showing enhancing intestinal health effects. The intestinal microbiota-bile acid axis plays important roles in the occurrence and recovery of inflammatory bowel disease (IBD). However, whether EL extract (ELE) has regulatory effects on the intestinal microbiota, bile acid metabolism, and IBD is still unclear. To fill this gap, 2% dextran sulfate sodium (DSS)-induced mild IBD in a C57BL/6J mouse model that was treated with 200 or 400 mg/kg (intake dose/body weight) ELE was used. Oral ELE supplementation alleviated DSS-induced shortening of colon and colonic epithelial injury. Compared with the DSS group, ELE supplementation significantly decreased Toll-like receptor 4 (TLR4) and interlukin-6 (IL-6) and increased occludin and claudin-1 mRNA expression level in the colon (p < 0.05). Combined 16S rRNA gene sequencing and targeted metabolomic analyses demonstrated that ELE significantly improved the diversity and richness of the intestinal microbiota, decreased the abundance of Bacteroidaceae, and increased Akkermansiaceae and Ruminococcaceae abundance (p < 0.05) compared with DSS-induced IBD mice. Moreover, ELE significantly increased the serum contents of deoxycholic acid (DCA) and tauroursodeoxycholic acid (TUDCA), which were highly positively correlated with Akkermansia and unidentified_Ruminococccaceae relative to the DSS group. We then found that ELE increased Takeda G-protein coupled receptor 5 (TGR5), claudin-1, and occludin mRNA expression levels in the colon. In the Caco-2 cell model, we confirmed that activation of TGR5 improved the reduction in transepithelial electoral resistance (TEER) and decreased the permeability of FITC-dextran on monolayer cells induced by LPS (p < 0.05). siRNA interference assays showed that the decrease in TGR5 expression led to the decrease in TEER, an increase in FITC-dextran permeability, and a decrease in claudin-1 protein expression in Caco-2 cells. In summary, ELE alleviated IBD by influencing the intestinal microbiota structure and composition of bile acids, which in turn activated the colonic TGR5 gene expression in the colon and promoted the expression of tight junction proteins. These findings provide new insight for using ELE as a functional food with adjuvant therapeutic effects in IBD.
Collapse
Affiliation(s)
- Zhenya Zhai
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, China.,CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
| | - Kai-Min Niu
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, China.,CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
| | - Yichun Liu
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, China.,College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Chong Lin
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, China.,College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xin Wu
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, China.,CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
50
|
Li R, Huang T, Nie L, Jia A, Zhang L, Yuan Y, Hong Y, Wang J, Hu X. Chemical Constituents from Staminate Flowers of Eucommia ulmoides Oliver and Their Anti-Inflammation Activity in Vitro. Chem Biodivers 2021; 18:e2100331. [PMID: 34155779 DOI: 10.1002/cbdv.202100331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/18/2021] [Indexed: 11/11/2022]
Abstract
Three new monoterpenoids, named eucomylides A-C (1-3), along with six known compounds (4-9) were isolated from the staminate flowers of Eucommia ulmoides Oliver. The structures were elucidated by extensive analyses of spectroscopic methods, and their absolute configurations were established by time-dependent density functional theory electronic circular dichroism (TDDFT ECD) calculation. All the compounds along with previously isolated components (10-14) were tested for their anti-inflammatory effects. Two iridoid glycosides (11 and 12) and a flavonoid glycoside (14) showed potent suppressive effects on nitric oxide (NO) production in RAW 264.7 cells, with IC50 values ranging from 17.11 to 22.26 μM.
Collapse
Affiliation(s)
- Rui Li
- Shanghai Innovation Center of Health Service, Shanghai University of Traditional Chinese Medicine, No. 1220, Cailun Rd., Shanghai, 201203, P. R. China.,Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai, 201203, P. R. China
| | - Tao Huang
- Medical School, Huanghe Science and Technology College, Zhengzhou, 450000, P. R. China
| | - Lanlan Nie
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai, 201203, P. R. China
| | - An Jia
- Medical School, Huanghe Science and Technology College, Zhengzhou, 450000, P. R. China
| | - Lei Zhang
- Shanghai Innovation Center of Health Service, Shanghai University of Traditional Chinese Medicine, No. 1220, Cailun Rd., Shanghai, 201203, P. R. China
| | - Ying Yuan
- Shanghai Innovation Center of Health Service, Shanghai University of Traditional Chinese Medicine, No. 1220, Cailun Rd., Shanghai, 201203, P. R. China
| | - Yanlong Hong
- Shanghai Innovation Center of Health Service, Shanghai University of Traditional Chinese Medicine, No. 1220, Cailun Rd., Shanghai, 201203, P. R. China
| | - Jianying Wang
- Shanghai Innovation Center of Health Service, Shanghai University of Traditional Chinese Medicine, No. 1220, Cailun Rd., Shanghai, 201203, P. R. China
| | - Xiao Hu
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai, 201203, P. R. China.,Medical School, Huanghe Science and Technology College, Zhengzhou, 450000, P. R. China
| |
Collapse
|