1
|
Wang Z, Qi J, Yang Y, Li C. Insufficient and excessive Ca 2+ intake negatively impact the life history performance and disrupt the hemolymph metabolism of Spodoptera litura. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116921. [PMID: 39182284 DOI: 10.1016/j.ecoenv.2024.116921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Calcium ions (Ca2+), essential as second messengers in all cells, play a pivotal role as micronutrients in insects. However, few studies have explored the effects of both insufficient and excessive Ca2+ intake on life history performance and population parameters. This study examines the impact of varying Ca2+ intake levels-insufficient (0 mg/kg), appropriate (100 mg/kg), and excessive (250 mg/kg)-on the life history performance and population parameters of Spodoptera litura using two-sex life tables. Insufficient and excessive Ca2+ intakes significantly extended the preadult development period and decreased the preadult survival rates of S. litura, compared to those on an appropriate Ca2+ intake. The population parameters (Intrinsic rate of increase (r), Finite rate of increase (λ), and Net reproductive rate (R0)) of S. litura on a 100 mg/kg diet (r = 0.1364, λ = 1.1462, R0 = 390) were significantly higher than those on a 0 mg/kg diet (r = 0.1091, λ = 1.1153, R0 = 130.52). Additionally, untargeted metabolomics analysis revealed that inappropriate Ca2+ levels (either insufficient or excessive) triggered significant up-regulation of 71.1 % and 92.8 % of the metabolites in the hemolymph, respectively, compared to the appropriate Ca2+ intake. Notably, disruptions in metabolite balance affected critical components such as melatonin and melanin within the tryptophan and tyrosine metabolism pathways. These findings underscore that both insufficient and excessive Ca2+ intakes adversely affect the life history performance and disrupt hemolymph metabolic balance in S. litura.
Collapse
Affiliation(s)
- Zailing Wang
- Hubei Engineering Research Center for Pest Forewarning and Management; Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China.
| | - Jingwei Qi
- Hubei Engineering Research Center for Pest Forewarning and Management; Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Yang Yang
- Hubei Engineering Research Center for Pest Forewarning and Management; Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Chuanren Li
- Hubei Engineering Research Center for Pest Forewarning and Management; Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
2
|
Qi J, Xia Z, Yang Y, Li C, Wang Z. Effects of Dietary Zinc Chloride and Zinc Sulfate on Life History Performance and Hemolymph Metabolism of Spodoptera litura (Lepidoptera: Noctuidae). INSECTS 2024; 15:687. [PMID: 39336655 PMCID: PMC11431870 DOI: 10.3390/insects15090687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Zinc is an essential micronutrient crucial in various biological processes of an organism. However, the effects of zinc vary depending on its chemical form. Therefore, the aim of this study was to conduct a comparative analysis of the life history performances and hemolymph metabolism of Spodoptera litura exposed to different concentrations of dietary zinc chloride (ZnCl2) and zinc sulfate (ZnSO4), utilizing two-sex life tables and untargeted metabolomics. The preadult survival rate of S. litura significantly decreased, while the preadult developmental period of S. litura was prolonged as the dietary ZnCl2 concentration increased. However, the fecundity of S. litura at 50 mg/kg dietary ZnCl2 was significantly increased. The intrinsic rate of increase (r) and the finite rate of increase (λ) in S. litura in the control group (CK, no exogenous ZnCl2 or ZnSO4 added) and with 50 mg/kg dietary ZnCl2 were significantly higher than those at 100 mg/kg, 200 mg/kg, and 300 mg/kg. Dietary ZnSO4 exerts a devastating effect on the survival of S. litura. Even at the lowest concentration of 50 mg/kg dietary ZnSO4, only 1% of S. litura could complete the entire life cycle. Furthermore, as the dietary ZnSO4 concentration increased, the developmental stage achievable by the S. litura larvae declined. High-throughput untargeted metabolomics demonstrated that both 100 mg/kg dietary ZnCl2 and ZnSO4 decreased the hemolymph vitamins levels and increased the vitamin C content, thereby helping S. litura larvae to counteract the stress induced by ZnCl2 and ZnSO4. Simultaneously, dietary ZnCl2 obstructed the chitin synthesis pathway in the hemolymph of S. litura, thus extending the developmental period of S. litura larvae. These results indicate that low concentrations of Zn2+ positively impact populations of S. litura, but the effectiveness and toxicity of Zn depend on its chemical form and concentration.
Collapse
Affiliation(s)
- Jingwei Qi
- Hubei Engineering Research Center for Pest Forewarning and Management, Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China; (J.Q.); (Z.X.); (Y.Y.); (C.L.)
| | - Zhenzhou Xia
- Hubei Engineering Research Center for Pest Forewarning and Management, Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China; (J.Q.); (Z.X.); (Y.Y.); (C.L.)
- Huanggang Academy of Agricultural Sciences, Huanggang 438000, China
| | - Yang Yang
- Hubei Engineering Research Center for Pest Forewarning and Management, Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China; (J.Q.); (Z.X.); (Y.Y.); (C.L.)
| | - Chuanren Li
- Hubei Engineering Research Center for Pest Forewarning and Management, Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China; (J.Q.); (Z.X.); (Y.Y.); (C.L.)
| | - Zailing Wang
- Hubei Engineering Research Center for Pest Forewarning and Management, Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China; (J.Q.); (Z.X.); (Y.Y.); (C.L.)
| |
Collapse
|
3
|
Shi YX, Bian DD, Liu X, Jiang JJ, Zhu XR, Zhang DZ, Liu QN, Tang BP, Dai LS. Transcriptome analysis provides new insight into the mechanism of Bombyx mori under zinc exposure. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101320. [PMID: 39244797 DOI: 10.1016/j.cbd.2024.101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Zinc is a significant source of heavy metal pollution that poses risks to both human health and biodiversity. Excessive concentrations of zinc can hinder the growth and development of insects and trigger cell death through oxidative damage. The midgut is the main organ affected by exposure to heavy metals. The silkworm, a prominent insect species belonging to the Lepidoptera class and widely used in China, serves as a model for studying the genetic response to heavy metal stress. In this study, high-throughput sequencing technology was employed to investigate detoxification-related genes in the midgut that are induced by zinc exposure. A total of 11,320 unigenes and 14,723 transcripts were identified, with 553 differentially expressed genes (DEGs) detected, among which 394 were up-regulated and 159 were down-regulated. The Gene Ontology (GO) analysis revealed that 452 DEGs were involved in 18 biological process subclasses, 14 cellular component subclasses and 8 molecular functional subclasses. Furthermore, the KEGG analysis demonstrated enrichment in pathways such as Protein digestion, absorption and Lysosome. Validation of the expression levels of 9 detoxification-related DEGs through qRT-PCR confirmed the accuracy of the RNA-seq results. This study not only contributes new insights into the detoxification mechanisms mechanism of silkworms against zinc contamination, but also serves as a foundation basis for understanding the molecular detoxification processes in lepidopteran insects.
Collapse
Affiliation(s)
- Yan-Xia Shi
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Dan-Dan Bian
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, College of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Xin Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Jun-Jie Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Xi-Rong Zhu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.
| |
Collapse
|
4
|
Wang Y, Lv J, Li C, Xu Y, Jin F, Wang F. Walnut protein isolate-epigallocatechin gallate nanoparticles: A functional carrier enhanced stability and antioxidant activity of lycopene. Food Res Int 2024; 189:114536. [PMID: 38876589 DOI: 10.1016/j.foodres.2024.114536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
Walnut isolate protein (WPI)-epigallocatechin gallate (EGCG) conjugates can be employed to creat food-grade delivery systems for preserving bioactive compounds. In this study, WPI-EGCG nanoparticles (WENPs) were developed for encapsulating lycopene (LYC) using the ultrasound-assisted method. The results indicated successful loading of LYC into these WENPs, forming the WENPs/LYC (cylinder with 200-300 nm in length and 14.81-30.05 nm in diameter). Encapsulating LYC in WENPs led to a notable decrease in release rate and improved stability in terms of thermal, ultraviolet (UV), and storage conditions compared to free LYC. Simultaneously, WENPs/LYC exhibited a synergistic and significantly higher antioxidant activity with an EC50 value of 23.98 μg/mL in HepG2 cells compared to free LYC's 31.54 μg/mL. Treatment with WENPs/LYC led to a dose-dependent restoration of intracellular antioxidant enzyme activities (SOD, CAT, and GSH-Px) and inhibition of intracellular malondialdehyde (MDA) formation. Furthermore, transcriptome analysis indicated that enrichment in glutathione metabolism and peroxisome processes following WENPs/LYC addition. Quantitative real-time reverse transcription PCR (qRT-PCR) verified the expression levels of related genes involved in the antioxidant resistance pathway of WENPs/LYC on AAPH-induced oxidative stress. This study offers novel perspectives into the antioxidant resistance pathway of WENPs/LYC, holding significant potential in food industry.
Collapse
Affiliation(s)
- Yuzhen Wang
- National Key Laboratory for Efficient Production of Forest Resources, Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jiao Lv
- National Key Laboratory for Efficient Production of Forest Resources, Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Chang Li
- National Key Laboratory for Efficient Production of Forest Resources, Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yizhuo Xu
- National Key Laboratory for Efficient Production of Forest Resources, Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Feng Jin
- National Key Laboratory for Efficient Production of Forest Resources, Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Fengjun Wang
- National Key Laboratory for Efficient Production of Forest Resources, Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
5
|
Ye Y, Shi YX, Jiang Q, Jin Y, Chen FX, Tang WH, Peng Q, Liu QN, Tang BP, Wang JL. Transcriptome Analysis Reveals Antioxidant Defense Mechanisms in the Silkworm Bombyx mori after Exposure to Lead. Animals (Basel) 2024; 14:1822. [PMID: 38929441 PMCID: PMC11201215 DOI: 10.3390/ani14121822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Lead (Pb) is a major source of heavy metal contamination, and poses a threat to biodiversity and human health. Elevated levels of Pb can hinder insect growth and development, leading to apoptosis via mechanisms like oxidative damage. The midgut of silkworms is the main organ exposed to heavy metals. As an economically important lepidopteran model insect in China, heavy metal-induced stress on silkworms causes considerable losses in sericulture, thereby causing substantial economic damage. This study aimed to investigate Pb-induced detoxification-related genes in the midgut of silkworms using high-throughput sequencing methods to achieve a deeper comprehension of the genes' reactions to lead exposure. This study identified 11,567 unigenes and 14,978 transcripts. A total of 1265 differentially expressed genes (DEGs) were screened, comprising 907 upregulated and 358 downregulated genes. Subsequently, Gene Ontology (GO) classification analysis revealed that the 1265 DEGs were distributed across biological processes, cellular components, and molecular functions. This suggests that the silkworm midgut may affect various organelle functions and biological processes, providing crucial clues for further exploration of DEG function. Additionally, the expression levels of 12 selected detoxification-related DEGs were validated using qRT-PCR, which confirmed the reliability of the RNA-seq results. This study not only provides new insights into the detoxification defense mechanisms of silkworms after Pb exposure, but also establishes a valuable foundation for further investigation into the molecular detoxification mechanisms in silkworms.
Collapse
Affiliation(s)
- Yang Ye
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Yan-Xia Shi
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China
| | - Qi Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Ye Jin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Fan-Xing Chen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Wen-Hui Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Qin Peng
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Jia-Lian Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
| |
Collapse
|
6
|
Song J, Huang F, Ma K, Ding R, Tan K, Lv D, Soyano K, Zhao K. Bifenthrin induces changes in clinical poisoning symptoms, oxidative stress, DNA damage, histological characteristics, and transcriptome in Chinese giant salamander (Andrias davidianus) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172041. [PMID: 38554955 DOI: 10.1016/j.scitotenv.2024.172041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Bifenthrin (BF) is a broad-spectrum insecticide that has gained widespread use due to its high effectiveness. However, there is limited research on the potential toxic effects of bifenthrin pollution on amphibians. This study aimed to investigate the 50 % lethal concentration (LC50) and safety concentration of Chinese giant salamanders (CGS) exposed to BF (at 0, 6.25,12.5,25 and 50 μg/L BF) for 96 h. Subsequently, CGS were exposed to BF (at 0, 0.04, and 4 μg/L BF) for one week to investigate its toxic effects. Clinical poisoning symptoms, liver pathology, oxidative stress factors, DNA damage, and transcriptome differences were observed and analyzed. The results indicate that exposure to BF at 4 μg/L significantly decreased the adenosine-triphosphate (ATP), superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) contents in the brain, liver, and kidney of CGS. Additionally, the study found that the malondialdehyde (MDA), reactive oxygen species (ROS), and 8-hydroxydeoxyguanosine (8-OHdG) contents were increased. The liver tissue exhibited significant inflammatory reactions and structural malformations. RNA-seq analysis of the liver showed that BF caused abnormal antioxidant indices of CGS. This affected molecular function genes such as catalytic activity, ATP-dependent activity, metabolic processes, signaling and immune system processes, behavior, and detoxification, which were significantly upregulated, resulting in the differential genes significantly enriched in the calcium signaling pathway, PPARα signaling pathway and NF-kB signaling pathway. The results suggest that BF induces the abnormal production of free radicals, which overwhelms the body's self-defense system, leading to varying degrees of oxidative stress. This can result in oxidative damage, DNA damage, abnormal lipid metabolism, autoimmune diseases, clinical poisoning symptoms, and tissue inflammation. This work provides a theoretical basis for the rational application of bifenthrin and environmental risk assessment, as well as scientific guidance for the conservation of amphibian populations.
Collapse
Affiliation(s)
- Jing Song
- College of Life Science, Anqing Normal University, Anqing 246133, Anhui, China; The Belt and Road Model International Science and Technology Cooperation Base for Biodiversity Conservation and Utilization in Basins of Anhui Province, Anqing Normal University, Anqing 246133, Anhui, China; Institute for East China Sea Research, Organization for Marine Science and Technology, Nagasaki University, Nagasaki 851-2213, Japan
| | - Fengyun Huang
- College of Life Science, Anqing Normal University, Anqing 246133, Anhui, China; The Belt and Road Model International Science and Technology Cooperation Base for Biodiversity Conservation and Utilization in Basins of Anhui Province, Anqing Normal University, Anqing 246133, Anhui, China
| | - Kun Ma
- College of Life Science, Anqing Normal University, Anqing 246133, Anhui, China; The Belt and Road Model International Science and Technology Cooperation Base for Biodiversity Conservation and Utilization in Basins of Anhui Province, Anqing Normal University, Anqing 246133, Anhui, China
| | - Rui Ding
- College of Life Science, Anqing Normal University, Anqing 246133, Anhui, China; The Belt and Road Model International Science and Technology Cooperation Base for Biodiversity Conservation and Utilization in Basins of Anhui Province, Anqing Normal University, Anqing 246133, Anhui, China
| | - Kai Tan
- College of Life Science, Anqing Normal University, Anqing 246133, Anhui, China; The Belt and Road Model International Science and Technology Cooperation Base for Biodiversity Conservation and Utilization in Basins of Anhui Province, Anqing Normal University, Anqing 246133, Anhui, China
| | - Dan Lv
- College of Life Science, Anqing Normal University, Anqing 246133, Anhui, China
| | - Kiyoshi Soyano
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Institute for East China Sea Research, Organization for Marine Science and Technology, Nagasaki University, Nagasaki 851-2213, Japan
| | - Kai Zhao
- College of Life Science, Anqing Normal University, Anqing 246133, Anhui, China; The Belt and Road Model International Science and Technology Cooperation Base for Biodiversity Conservation and Utilization in Basins of Anhui Province, Anqing Normal University, Anqing 246133, Anhui, China
| |
Collapse
|
7
|
Yang N, Liu M, Han J, Jiang M, Zeng Y, Liu Y, Xiang H, Zheng Y. Rational engineering of Halomonas salifodinae to enhance hydroxyectoine production under lower-salt conditions. Appl Microbiol Biotechnol 2024; 108:353. [PMID: 38819481 PMCID: PMC11142988 DOI: 10.1007/s00253-024-13197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/01/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Hydroxyectoine is an important compatible solute that holds potential for development into a high-value chemical with broad applications. However, the traditional high-salt fermentation for hydroxyectoine production presents challenges in treating the high-salt wastewater. Here, we report the rational engineering of Halomonas salifodinae to improve the bioproduction of hydroxyectoine under lower-salt conditions. The comparative transcriptomic analysis suggested that the increased expression of ectD gene encoding ectoine hydroxylase (EctD) and the decreased expressions of genes responsible for tricarboxylic acid (TCA) cycle contributed to the increased hydroxyectoine production in H. salifodinae IM328 grown under high-salt conditions. By blocking the degradation pathway of ectoine and hydroxyectoine, enhancing the expression of ectD, and increasing the supply of 2-oxoglutarate, the engineered H. salifodinae strain HS328-YNP15 (ΔdoeA::PUP119-ectD p-gdh) produced 8.3-fold higher hydroxyectoine production than the wild-type strain and finally achieved a hydroxyectoine titer of 4.9 g/L in fed-batch fermentation without any detailed process optimization. This study shows the potential to integrate hydroxyectoine production into open unsterile fermentation process that operates under low-salinity and high-alkalinity conditions, paving the way for next-generation industrial biotechnology. KEY POINTS: • Hydroxyectoine production in H. salifodinae correlates with the salinity of medium • Transcriptomic analysis reveals the limiting factors for hydroxyectoine production • The engineered strain produced 8.3-fold more hydroxyectoine than the wild type.
Collapse
Affiliation(s)
- Niping Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Mengshuang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Mingyue Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Zeng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Ying Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanning Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
8
|
Khan MM, Rothenberg DO, Shahfahad, Qiu BL, Zhu ZR. Identification and transcriptional profiling of UV-A-responsive genes in Bemisia tabaci. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115300. [PMID: 37494735 DOI: 10.1016/j.ecoenv.2023.115300] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Ultraviolet-A (UV-A) radiation directly impacts the growth and spread of Bemisia tabaci. However, the mechanistic pathways of this phenomenon remain unknown. We analyzed B. tabaci transcriptome data after exposure to UV-A radiation for 6 h. The 453 genes were identified whose expression were significantly altered in response to the stress induced by UV-A irradiation. Forty genes were up-regulated, while 413 genes were down-regulated. Enrichment analysis using GO, KEGG, and Genomes databases revealed that the DEGs play key roles in antioxidation and detoxification, protein turnover, metabolic, developmental processes, and immunological response. Among the gene families involved in detoxification, shock, and development, down-regulated DEGs in transcriptional factor gene families were significantly greater than those up-regulated DEGs. Our findings demonstrated that exposure to UV-A stress can suppress immunity and affect the growth and biological parameters of B. tabaci by altering gene regulation. These results suggest a potential utility of UV-A stress in managing B. tabaci under greenhouse conditions.
Collapse
Affiliation(s)
- Muhammad Musa Khan
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572000, PR China
| | - Dylan O'Neill Rothenberg
- College of Horticulture Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Shahfahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Bao-Li Qiu
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Zeng-Rong Zhu
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572000, PR China.
| |
Collapse
|
9
|
Liu X, Bao X, Yang J, Zhu X, Li Z. Preliminary study on toxicological mechanism of golden cuttlefish (Sepia esculenta) larvae exposed to cd. BMC Genomics 2023; 24:503. [PMID: 37649007 PMCID: PMC10466719 DOI: 10.1186/s12864-023-09630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Cadmium (Cd) flows into the ocean with industrial and agricultural pollution and significantly affects the growth and development of economic cephalopods such as Sepia esculenta, Amphioctopus fangsiao, and Loligo japonica. As of now, the reasons why Cd affects the growth and development of S. esculenta are not yet clear. RESULTS In this study, transcriptome and four oxidation and toxicity indicators are used to analyze the toxicological mechanism of Cd-exposed S. esculenta larvae. Indicator results indicate that Cd induces oxidative stress and metal toxicity. Functional enrichment analysis results suggest that larval ion transport, cell adhesion, and some digestion and absorption processes are inhibited, and the cell function is damaged. Comprehensive analysis of protein-protein interaction network and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to explore S. esculenta larval toxicological mechanisms, and we find that among the 20 identified key genes, 14 genes are associated with neurotoxicity. Most of them are down-regulated and enriched to the neuroactive ligand-receptor interaction signaling pathway, suggesting that larval nervous system might be destroyed, and the growth, development, and movement process are significantly affected after Cd exposure. CONCLUSIONS S. esculenta larvae suffered severe oxidative damage after Cd exposure, which may inhibit digestion and absorption functions, and disrupt the stability of the nervous system. Our results lay a function for understanding larval toxicological mechanisms exposed to heavy metals, promoting the development of invertebrate environmental toxicology, and providing theoretical support for S. esculenta artificial culture.
Collapse
Affiliation(s)
- Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xibo Zhu
- Fishery Technology Service Center of Lanshan District, Rizhao, 276800, China.
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
10
|
Rong W, Chen Y, Lu J, Huang S, Xin L, Guan D, Li X. Effects of Chromium Exposure on the Gene Expression of the Midgut in Silkworms, Bombyx mori. Genes (Basel) 2023; 14:1616. [PMID: 37628667 PMCID: PMC10454352 DOI: 10.3390/genes14081616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Chromium is a severe heavy metal pollutant with significant environmental risks. The effects of Chromium on the digestion of Bombyx mori (silkworms) are of particular importance due to their ecological and economic significance. Herein, RNA sequencing was conducted on nine midgut samples from silkworms exposed to control, 12 g/kg and 24 g/kg Chromium chemical diets. Comparative transcriptomics revealed that under moderate Chromium exposure, there was a significant increase in up-regulated genes (1268 up-regulated to 857 down-regulated), indicating a stimulation response. At higher stress levels, a weakened survival response was observed, with a decrease in up-regulated genes and an increase in down-regulated genes (374 up-regulated to 399 down-regulated). A notable shift in cellular responses under medium chromium exposure was exposed, signifying the activation of crucial metabolic and transport systems and an elevation in cellular stress and toxicity mechanisms. The observation of up-regulated gene expression within xenobiotic metabolism pathways suggests a heightened defense against Chromium-induced oxidative stress, which was primarily through the involvement of antioxidant enzymes. Conversely, high-dose Chromium exposure down-regulates the folate biosynthesis pathway, indicating biological toxicity. Two novel genes responsive to pressure were identified, which could facilitate future stress adaptation understanding. The findings provide insights into the molecular mechanisms underlying silkworms' digestion response to Chromium exposure and could inform its biological toxicity.
Collapse
Affiliation(s)
- Wantao Rong
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (W.R.)
| | - Yazhen Chen
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China; (Y.C.)
| | - Jieyou Lu
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (W.R.)
| | - Shuiwang Huang
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China; (Y.C.)
| | - Lei Xin
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (W.R.)
| | - Delong Guan
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (W.R.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China; (Y.C.)
| | - Xiaodong Li
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (W.R.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China; (Y.C.)
| |
Collapse
|
11
|
Li C, Fu Y, Tian Y, Zang Z, Gentekaki E, Wang Z, Warren A, Li L. Comparative transcriptome and antioxidant biomarker response reveal molecular mechanisms to cope with zinc ion exposure in the unicellular eukaryote Paramecium. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131364. [PMID: 37080029 DOI: 10.1016/j.jhazmat.2023.131364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
The development of industry has resulted in excessive environmental zinc exposure which has caused various health problems in a wide range of organisms including humans. The mechanisms by which aquatic microorganisms respond to environmental zinc stress are still poorly understood. Paramecium, a well-known ciliated protozoan and a popular cell model in heavy metal stress response studies, was chosen as the test unicellular eukaryotic organism in the present research. In this work, Paramecium cf. multimicronucleatum cells were exposed in different levels of zinc ion (0.1 and 1.0 mg/L) for different periods of exposure (1 and 4 days), and then analyzed population growth, transcriptomic profiles and physiological changes in antioxidant enzymes to explore the toxicity and detoxification mechanisms during the zinc stress response. Results demonstrated that long-term zinc exposure could have restrained population growth in ciliates, however, the response mechanism to zinc exposure in ciliates is likely to show a dosage-dependent and time-dependent manner. The differentially expressed genes (DEGs) were identified the characters by high-throughput sequencing, which remarkably enriched in the phagosome, indicating that the phagosome pathway might mediate the uptake of zinc, while the pathways of ABC transporters and Na+/K+-transporting ATPase contributed to the efflux transport of excessive zinc ions and the maintenance of osmotic balance, respectively. The accumulation of zinc ions triggered a series of adverse effects, including damage to DNA and proteins, disturbance of mitochondrial function, and oxidative stress. In addition, we found that gene expression changed significantly for metal ion binding, energy metabolism, and oxidation-reduction processes. RT-qPCR of ten genes involved in important biological functions further validated the results of the transcriptome analysis. We also continuously monitored changes in activity of four antioxidant enzymes (SOD, CAT, POD and GSH-PX), all of which peaked on day 4 in cells subjected to zinc stress. Collectively, our results indicate that excessive environmental zinc exposure initially causes damage to cellular structure and function and then initiates detoxification mechanisms to maintain homeostasis in P. cf. multimicronucleatum cells.
Collapse
Affiliation(s)
- Congjun Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Yu Fu
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Yingxuan Tian
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Zihan Zang
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Eleni Gentekaki
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Zhenyuan Wang
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Lifang Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China.
| |
Collapse
|
12
|
Li Z, Qin H, Zhang Y, He X, Bao X, Sun G, Cui C, Xu X, Liu X, Yang J, Zhang G. Transcriptome analysis preliminary reveals the immune response mechanism of golden cuttlefish (Sepia esculenta) larvae exposed to Cd. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108494. [PMID: 36565999 DOI: 10.1016/j.fsi.2022.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/18/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
As a well-known marine metal element, Cd can significantly affect bivalve mollusk life processes such as growth and development. However, the effects of Cd on the molecular mechanisms of the economically important cephalopod species Sepia esculenta remain unclear. In this study, S. esculenta larval immunity exposed to Cd is explored based on RNA-Seq. The analyses of GO, KEGG, and protein-protein interaction (PPI) network of 1,471 differentially expressed genes (DEGs) reveal that multiple immune processes are affected by exposure such as inflammatory reaction and cell adhesion. Comprehensive analyses of KEGG signaling pathways and the PPI network are first used to explore Cd-exposed S. esculenta larval immunity, revealing the presence of 16 immune-related key and hub genes involved in exposure response. Results of gene and pathway functional analyses increase our understanding of Cd-exposed S. esculenta larval immunity and improve our overall understanding of mollusk immune functions.
Collapse
Affiliation(s)
- Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Huimin Qin
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yining Zhang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaohua He
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Cuiju Cui
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Guoguang Zhang
- School of Agriculture, Ludong University, Yantai, 264025, China; Laizhou Marine Development and Fishery Service Center, Yantai, 261499, China.
| |
Collapse
|
13
|
Bao X, Li Y, Liu X, Feng Y, Xu X, Sun G, Wang W, Li B, Li Z, Yang J. Effect of acute Cu exposure on immune response mechanisms of golden cuttlefish (Sepia esculenta). FISH & SHELLFISH IMMUNOLOGY 2022; 130:252-260. [PMID: 36122637 DOI: 10.1016/j.fsi.2022.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Sepia esculenta is a common economic cephalopod that has received extensive attention due to the tender meat, rich protein content and certain medicinal value thereof. Over the past decade, multiple industries have discharged waste into the ocean in large quantities, thereby significantly increasing the concentration of heavy metals in the ocean. Copper (Cu) is a common heavy metal in the ocean. The increase of Cu content will affect numerous biological processes such as immunity and metabolism of marine organisms. High concentrations of Cu may inhibit S. esculenta growth, development, swimming, and other processes, which would significantly affect its culture. In this research, transcriptome analysis is used to initially explore Cu-exposed S. esculenta larval immune response mechanisms. And compared to control group with normally growing larvae, 2056 differentially expressed genes (DEGs) are identified in experimental group with Cu-exposed larvae. The results of DEGs functional enrichment analyses including GO and KEGG indicate that Cu exposure might promote inflammatory and innate immune responses in cuttlefish larvae. Then, 10 key genes that might regulate larval immunity are identified using a comprehensive analysis that combines protein-protein interaction (PPI) network and KEGG functional enrichment analyses, of which three genes with the highest number of protein interactions or involve in more KEGG signaling pathways are identified as hub genes that might significantly affect larval immune response processes. Comprehensive analysis of PPI network and KEGG signaling pathway are used for the first time to explore Cu-exposed S. esculenta larval immune response mechanisms. Our results preliminarily reveal immune response mechanisms of cephalopods exposed to heavy metals and provide valuable resources for further understanding mollusk immunity.
Collapse
Affiliation(s)
- Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yan Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Bin Li
- School of Agriculture, Ludong University, Yantai, 264025, China; Yantai Haiyu Marine Science and Technology Co. Ltd., Yantai, 264004, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
14
|
A β-glucan from Aureobasidium pullulans enhanced the antitumor effect with rituximab against SU-DHL-8. Int J Biol Macromol 2022; 220:1356-1367. [PMID: 36116589 DOI: 10.1016/j.ijbiomac.2022.09.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 09/11/2022] [Indexed: 11/20/2022]
Abstract
β-Glucans affect the immune system and have antitumor activity; therefore, they are being investigated as immunomodulators and chemotherapeutic adjuvants. In this study, we investigated a specific β-glucan, exopolysaccharide (EPS-1) derived from Aureobasidium pullulans (CGMCC 20363), to investigate its impact on the efficacy of rituximab against diffuse large B cell lymphoma (SU-DHL-8 cells) in vitro and in vivo. The results show that compared to rituximab alone, EPS-1 enhanced the inhibition of SU-DHL-8, had antitumor effects in vivo, and improved the response of the immune system of the host. RNA sequencing results reveal that EPS-1 had a chemotactic effect on T cells through the JAK-STAT signaling pathway and recruited immune cells into tumor tissues. EPS-1 also played an antitumor role through the mitochondrial and death receptor Fas-related apoptotic pathways. In summary, EPS-1 may be an effective adjuvant to treat diffuse large B cell lymphoma in combination with rituximab.
Collapse
|
15
|
Ma L, Andoh V, Shen Z, Liu H, Li L, Chen K. Subchronic toxicity of magnesium oxide nanoparticles to Bombyx mori silkworm. RSC Adv 2022; 12:17276-17284. [PMID: 35765455 PMCID: PMC9186304 DOI: 10.1039/d2ra01161a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Despite many research efforts devoted to the study of the effects of magnesium oxide nanoparticles (MgO NPs) on cells or animals in recent years, data related to the potential long-term effects of this nanomaterial are still scarce. The aim of this study is to explore the subchronic effects of MgO NPs on Bombyx mori silkworm, a complete metamorphosis insect with four development stages (egg, larva, pupa, month). With this end in view, silkworm larvae were exposed to MgO NPs at different mass concentrations (1%, 2%, 3% and 4%) throughout their fifth instar larva. Their development, survival rate, cell morphology, gene expressions, and especially silk properties were compared with a control. The results demonstrate that MgO NPs have no significant negative impact on the growth or tissues. The cocooning rate and silk quality also display normal results. However, a total of 806 genes are differentially expressed in the silk gland (a vital organ for producing silk). GO (Gene Ontology) results show that the expression of many genes related to transporter activity are significantly changed, revealing that active transport is the main mechanism for the penetration of MgO NPs, which also proves that MgO NPs are adsorbed by cells. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis demonstrates that the longevity regulating pathway-worm, peroxisome and MAPK signaling pathway are closely involved in the biological effects of MgO NPs. Overall, subchronic exposure to MgO NPs induced no apparent negative impact on silkworm growth or silks but changed the expressions of some genes.
Collapse
Affiliation(s)
- Lin Ma
- College of Biotechnology, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212001 P. R. China
| | - Vivian Andoh
- College of Biotechnology, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212001 P. R. China .,Institute of Life Science, Jiangsu University Zhenjiang Jiangsu 212013 P. R. China
| | - Zhongyuan Shen
- College of Biotechnology, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212001 P. R. China
| | - Haiyan Liu
- Tea and Food Science and Technology Institute, Jiangsu Vocational College of Agriculture and Forestry Jurong 212400 China
| | - Long Li
- College of Biotechnology, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212001 P. R. China
| | - Keping Chen
- Institute of Life Science, Jiangsu University Zhenjiang Jiangsu 212013 P. R. China
| |
Collapse
|
16
|
Cai S, Shu Y, Tian C, Wang C, Fang T, Xiao B, Wu X. Effects of chronic exposure to microcystin-LR on life-history traits, intestinal microbiota and transcriptomic responses in Chironomus pallidivittatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153624. [PMID: 35124034 DOI: 10.1016/j.scitotenv.2022.153624] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Microcystins (MCs) are the most widely distributed cyanobacterial toxins that can exert adverse effects on aquatic organisms, but aside from the study of the harmful effect of cyanobacterial blooms, little is known about the effect of released MCs on the growth and development of chironomid larvae. To assess the harmful effect and the toxic mechanism of MCs on midges, the life-history traits, intestinal microbiota, and transcriptome of Chironomus pallidivittatus were analyzed after chronic exposure to 30 μg/L of MC-LR. Exposure inhibited larvae body length by 35.61% and wet weight by 21.92%, increased emergence time of midges, damaged mitochondria in the intestine, promoted oxidative stress, dysregulated lipid metabolism of chironomid larvae, and increased detoxification enzymes glutathione S-transferase (GST) and superoxide dismutase (SOD) by 32.44% and 17.41%, respectively. Exposure also altered the diversity and abundance of the intestinal microbiota, favoring pathogenic and MC degradation bacteria. RNA sequencing identified 261 differentially expressed genes under MC-LR stress, suggesting that impairment of the peroxisome proliferator-activated receptor signaling pathway upregulated fatty acid biosynthesis and elongation to promote lipid accumulation. In addition, exposure-induced detoxification and antioxidant responses, indicating that the chironomid larvae had the potential ability to resist MC-LR. To our knowledge, this is the first time that lipid accumulation, oxidative stress, and detoxification have been studied in this organism at the environmentally relevant concentration of MC-LR; the information may assist in ecological risk assessment of cyanobacterial toxins and their effects on benthic organisms.
Collapse
Affiliation(s)
- Shenghe Cai
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China
| | - Cuicui Tian
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chunbo Wang
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tao Fang
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bangding Xiao
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xingqiang Wu
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
17
|
Chen ZL, Huang C, Li XS, Li GC, Yu TH, Fu GJ, Zhang X, Song C, Bai PH, Cao L, Qian WQ, Wan FH, Han RC, Tang R. Behavioural regulator and molecular reception of a double-edge-sword hunter beetle. PEST MANAGEMENT SCIENCE 2022; 78:2693-2703. [PMID: 35388600 DOI: 10.1002/ps.6901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/26/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The black carabid beetle Calosoma maximoviczi is a successful predator that serves as both a beneficial insect and a severe threat to economic herbivores. Its hunting technique relies heavily on olfaction, but the underlying mechanism has not been studied. Here, we report the electrophysiological, ecological and molecular traits of bioactive components identified from a comprehensive panel of natural odorants in the beetle-prey-plant system. The aim of this work was to investigate olfactory perceptions and their influence on the behaviours of C. maximoviczi. RESULTS Among the 200 identified volatiles, 18 were concentrated in beetle and prey samples, and 14 were concentrated in plants. Insect feeding damage to plants led to a shift in the emission fingerprint. Twelve volatiles were selected using successive electrophysiological tests. Field trials showed that significant sex differences existed when trapping with a single chemical or chemical mixture. Expression profiles indicated that sex-biased catches were related to the expression of 15 annotated CmaxOBPs and 40 CmaxORs across 12 chemosensory organs. In silico evaluations were conducted with 16 CmaxORs using modelling and docking. Better recognition was predicted for the pairs CmaxOR5-(Z)-3-hexenyl acetate, CmaxOR6-β-caryophyllene, CmaxOR18-(E)-β-ocimene and CmaxOR18-tetradecane, with higher binding affinity and a suitable binding pocket. Lastly, 168Y in CmaxOR6 and 142Y in CmaxOR18 were predicted as key amino acid residues for binding β-caryophyllene and tetradecane, respectively. CONCLUSION This work provides an example pipeline for de novo investigation in C. maximoviczi baits and the underlying olfactory perceptions. The results will benefit the future development of trapping-based integrated pest management strategies and the deorphanization of odorant receptors in ground beetles. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zeng-Liang Chen
- Sericultural Institute of Liaoning Province, Fengcheng, China
| | - Cong Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xi-Sheng Li
- Sericultural Institute of Liaoning Province, Fengcheng, China
| | - Guo-Cheng Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ting-Hong Yu
- Sericultural Institute of Liaoning Province, Fengcheng, China
| | - Guan-Jun Fu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xue Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ce Song
- Sericultural Institute of Liaoning Province, Fengcheng, China
| | - Peng-Hua Bai
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wan-Qiang Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Fang-Hao Wan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ri-Chou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Tang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
18
|
Shephard AM, Brown NS, Snell‐Rood EC. Anthropogenic Zinc Exposure Increases Mortality and Antioxidant Gene Expression in Monarch Butterflies with Low Access to Dietary Macronutrients. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1286-1296. [PMID: 35119130 PMCID: PMC9314993 DOI: 10.1002/etc.5305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/04/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Biologists seek to understand why organisms vary in their abilities to tolerate anthropogenic contaminants, such as heavy metals. However, few studies have considered how tolerance may be affected by condition-moderating factors such as dietary resource availability. For instance, the availability of crucial limiting macronutrients, such as nitrogen and phosphorous, can vary across space and time either naturally or due to anthropogenic nutrient inputs (e.g., agricultural fertilizers or vehicle emissions). Organisms developing in more macronutrient-rich environments should be of higher overall condition, displaying a greater ability to tolerate metal contaminants. In monarch butterflies (Danaus plexippus), we factorially manipulated dietary macronutrient availability and exposure to zinc, a common metal contaminant in urban habitats that can be toxic but also has nutritional properties. We tested whether (1) the ability to survive zinc exposure depends on dietary macronutrient availability and (2) whether individuals exposed to elevated zinc levels display higher expression of antioxidant genes, given the roles of antioxidants in combatting metal-induced oxidative stress. Exposure to elevated zinc reduced survival only for monarchs developing on a low-macronutrient diet. However, for monarchs developing on a high-macronutrient diet, elevated zinc exposure tended to increase survival. In addition, monarchs exposed to elevated zinc displayed higher expression of antioxidant genes when developing on the low-macronutrient diet but lower expression when developing on the high-macronutrient diet. Altogether, our study shows that organismal survival and oxidative stress responses to anthropogenic zinc contamination depend on the availability of macronutrient resources in the developmental environment. In addition, our results suggest the hypothesis that whether zinc acts as a toxicant or a nutrient may depend on macronutrient supply. Environ Toxicol Chem 2022;41:1286-1296. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Alexander M. Shephard
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Noah S. Brown
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Emilie C. Snell‐Rood
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSaint PaulMinnesotaUSA
| |
Collapse
|
19
|
Liu Y, Han Y, Guo J, Zhang J, Hou Y, Song Y, Lu C, Li H, Zhong Y. New insights of simultaneous partial nitritation, anammox and denitrification (SNAD) system to Zn(II) exposure: Focus on affecting the regulation of quorum sensing on extracellular electron transfer and microbial metabolism. BIORESOURCE TECHNOLOGY 2022; 346:126602. [PMID: 34953995 DOI: 10.1016/j.biortech.2021.126602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Here, the toxicity responses mechanism of the simultaneous partial nitritation, anammox and denitrification (SNAD) system to Zn(II) exposure were explored with emphasis on the repressed quorum sensing (QS) regulation on extracellular electron transfer and microbial metabolism. Results showed that Zn(II) accumulated in cells and induced oxidative stress, which led to microbial structure destruction. The increased electron transfer impedance and reduced redox substances (flavin/Cytochrome c) implied that Zn(II) affected electron transfer. The decreased ATP level, dehydrogenase and nitrogen related enzymatic activities showed Zn(II) affected organic matter and nitrogen metabolism. Furthermore, combined with Pearson network analysis, Zn(II) exposure disturbed the QS to decrease Acyl Homoserine Lactones (AHLs) secretion responsible for regulating extracellular electron transfer and microbial metabolism, thereby disturbing the performance of the SNAD system. This study provided new insights into the toxicity responses mechanism of the SNAD system to HM exposure.
Collapse
Affiliation(s)
- Yinuo Liu
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Yi Han
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China.
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China; School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China.
| | - Jianbing Zhang
- Tianjin Municipal Engineering Design & Research Institute Co.,Ltd., Tianjin 300051, China
| | - Yanan Hou
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Yuanyuan Song
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Caicai Lu
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Haibo Li
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Yuan Zhong
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
20
|
Gao K, Yang M, Li B, Chen R, Dong J, Liu Q, Gao Z, Guo X, Deng X. Molecular response mechanisms of silkworm (Bombyx mori L.) to the toxicity of 1-octyl-3-methylimidazole chloride based on transcriptome analysis of midguts and silk glands. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112915. [PMID: 34687943 DOI: 10.1016/j.ecoenv.2021.112915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/30/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
In a previous study, silkworm larvae were used as a novel model to assess the biotoxicity of ILs, which showed that ILs could cause significant physiological and biochemical changes in midguts and silk glands of the larvae, and result in the death of larvae. In order to investigate the toxicity of 1-octyl-3-methylimidazole chloride ([C8mim]Cl) to the larvae at molecular level, RNA-sequencing technology was used to construct transcriptomic profiles of midguts and silk glands in this work. Results showed that a lot of differentially expressed genes (DEGs) were effectively screened out through bioinformatics software based on the transcriptome data and reference genome. To give more detail, 5118 and 2211 DEGs (926 and 822 DEGs) were obtained in the midguts (silk glands) when the larvae were exposed to [C8mim]Cl for 6 and 12 h, respectively, relative to the controls. In addition, gene ontology (GO) analysis suggested that the DEGs could be divided into three categories (i.e., biological process, cellular component, and molecular function), and were involved in multiple organelle functions and complex biological processes. Kyoto encyclopedia of genes and genomes (KEGG) analysis showed that the DEGs were enriched in a variety of pathways, such as signal transduction, apoptosis, glycolysis, peroxisome, autophagy, hippo signaling pathway, arginine and proline metabolism. Results of quantitative real-time PCR and histopathological observation indicated that molecular mechanism of the larvae against [C8mim]Cl toxicology may be attributed to cell apoptosis regulation via both the mitochondrial pathway and the death receptor-initiated pathway. Thus, these results provided useful data for exploring the toxicity of ILs to insects at molecular level.
Collapse
Affiliation(s)
- Kun Gao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China
| | - Mengting Yang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China
| | - Bin Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China
| | - Runzhen Chen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China
| | - Jingwei Dong
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China
| | - Qiaoqiao Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China
| | - Zheng Gao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China
| | - Xijie Guo
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China
| | - Xiangyuan Deng
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China.
| |
Collapse
|
21
|
Chen J, Guo Y, Huang S, Zhan H, Zhang M, Wang J, Shu Y. Integration of transcriptome and proteome reveals molecular mechanisms underlying stress responses of the cutworm, Spodoptera litura, exposed to different levels of lead (Pb). CHEMOSPHERE 2021; 283:131205. [PMID: 34147986 DOI: 10.1016/j.chemosphere.2021.131205] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Heavy metals are major environmental pollutants that affect organisms across different trophic levels. Herbivorous insects play an important role in the bioaccumulation, and eventually, biomagnification of these metals. Although effects of heavy metal stress on insects have been well-studied, the molecular mechanisms underlying their effects remain poorly understood. Here, we used the RNA-Seq profiling and isobaric tags for relative and absolute quantitation (iTRAQ) approaches to unravel these mechanisms in the polyphagous pest Spodoptera litura exposed to lead (Pb) at two different concentrations (12.5 and 100 mg Pb/kg; PbL and PbH, respectively). Altogether, 1392 and 1630 differentially expressed genes (DEGs) and 58, 114 differentially expressed proteins (DEPs) were identified in larvae exposed to PbL and PbH, respectively. After exposed to PbL, the main up-regulated genes clusters and proteins in S. litura larvae were associated with their metabolic processes, including carbohydrate, protein, and lipid metabolism, but the levels of cytochrome P450 associated with the pathway of xenobiotic biodegradation and metabolism were found to be decreased. In contrast, the main up-regulated genes clusters and proteins in larvae exposed to PbH were enriched in the metabolism of xenobiotic by cytochrome P450, drug metabolism-cytochrome P450, and other drug metabolism enzymes, while the down-regulated genes and proteins were found to be closely related to the lipid (lipase) and protein (serine protease, trypsin) metabolism and growth processes (cuticular protein). These findings indicate that S. litura larvae exposed to PbL could enhance food digestion and absorption to prioritize for growth rather than detoxification, whereas S. litura larvae exposed to PbH reduced food digestion and absorption and channelized the limited energy for detoxification rather than growth. These contrasting results explain the dose-dependent effects of heavy metal stress on insect life-history traits, wherein low levels of heavy metal stress induce stimulation, while high levels of heavy metal stress cause inhibition at the transcriptome and proteome levels.
Collapse
Affiliation(s)
- Jin Chen
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Centre for Modern Eco-agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yeshan Guo
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Centre for Modern Eco-agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Shimin Huang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Centre for Modern Eco-agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Huiru Zhan
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Centre for Modern Eco-agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Meifang Zhang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Centre for Modern Eco-agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jianwu Wang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Centre for Modern Eco-agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Yinghua Shu
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Centre for Modern Eco-agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
22
|
Yang CL, Meng JY, Yao MS, Zhang CY. Transcriptome Analysis of Myzus persicae to UV-B Stress. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6281128. [PMID: 34021758 PMCID: PMC8140603 DOI: 10.1093/jisesa/ieab033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 06/12/2023]
Abstract
As an environmental stress factor, ultraviolet-B (UV-B) radiation directly affects the growth and development of Myzus persicae (Sulzer) (Homoptera: Aphididae). How M. persicae responds to UV-B stress and the molecular mechanisms underlying this adaptation remain unknown. Here, we analyzed transcriptome data for M. persicae following exposure to UV-B radiation for 30 min. We identified 758 significant differentially expressed genes (DEGs) following exposure to UV-B stress, including 423 upregulated and 335 downregulated genes. In addition, enrichment analysis using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases illustrated that these DEGs are associated with antioxidation and detoxification, metabolic and protein turnover, immune response, and stress signal transduction. Simultaneously, these DEGs are closely related to the adaptability to UV-B stress. Our research can raise awareness of the mechanisms of insect responses to UV-B stress.
Collapse
Affiliation(s)
- Chang-Li Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, People’s Republic of China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, Guizhou 550081, People’s Republic of China
| | - Meng-Shuang Yao
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, People’s Republic of China
| | - Chang-Yu Zhang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, People’s Republic of China
| |
Collapse
|
23
|
Jin P, Chen J, Zhan H, Huang S, Wang J, Shu Y. Accumulation and excretion of zinc and their effects on growth and food utilization of Spodoptera litura (Lepidoptera: Noctuidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110883. [PMID: 32570104 DOI: 10.1016/j.ecoenv.2020.110883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/22/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
By exposing larvae of the holometabolous insect Spodoptera litura to the artificial diets supplemented with a range of Zinc (Zn) contents, we investigated Zn ingestion, excretion and accumulation in the insect throughout its life cycle. The effects of Zn stress on the survival, growth and food utilization of S. litura were also determined. Zn concentrations in the body (larvae, pupae, and adults), faeces, exuviates, puparium, eggs increased with the increasing Zn concentrations in the diets, while Zn excretion and accumulation by S. litura in 750 mg/kg Zn treatments was lower than the 600 mg/kg Zn treatment. In the 450 mg/kg Zn treatment, the Zn accumulation in S. litura at different developmental stages differed as follows: larvae > pupa > adult. S. litura ingested Zn via feeding and could excrete most of the Zn via faeces (compared with Zn excretion via exuviates) to reduce its internal Zn accumulation (compared with Zn ingestion). Survival and weight were significantly inhibited, and the prolonged period of development (larvae, pupae) and shortened longevity of adults were found in S. litura exposed to Zn stress greater than 450 mg Zn/kg. In the 150-450 mg/kg Zn treatments, the 6th instar larvae increased their relative consumption rate (RCR) and approximate digestibility (AD) (namely, food eaten) to gain weight, which resulted in greater Zn accumulation in the body. Therefore, below the threshold level (being close to 450 mg/kg Zn), S. litura seemed to have a strong homeostatic adjustment ability (increase the amount of food eaten, thereby increasing AD, RCR and Zn excretion via faeces and exuviates) to sustain their weight, and Zn was beneficial and harmless. Although larvae treated with 750 mg/kg Zn had a similar RCR and AD as the control, a reduced weight gain and prolonged larval period resulted in significantly lower relative growth rate (RGR), which indicated surviving insects may allocate more energy from foods for detoxification than for growth.
Collapse
Affiliation(s)
- Pan Jin
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Centre for Modern Eco-agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jin Chen
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Centre for Modern Eco-agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Huiru Zhan
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Centre for Modern Eco-agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Shimin Huang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Centre for Modern Eco-agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jianwu Wang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Centre for Modern Eco-agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yinghua Shu
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Centre for Modern Eco-agriculture, Guangzhou, 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
24
|
Duan J, Li Y, Du J, Duan E, Lei Y, Liang S, Zhang X, Zhao X, Kan Y, Yao L, Yang X, Zhang X, Wu X. A chromosome‐scale genome assembly of
Antheraea pernyi
(Saturniidae, Lepidoptera). Mol Ecol Resour 2020; 20:1372-1383. [DOI: 10.1111/1755-0998.13199] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Jianping Duan
- Henan Key Laboratory of Funiu Mountain Insect Biology, Henan Engineering Lab of Insects Bio‐reactor College of Agricultural Engineering, Nanyang Normal University Nanyang China
| | - Ying Li
- Henan Key Laboratory of Funiu Mountain Insect Biology, Henan Engineering Lab of Insects Bio‐reactor College of Agricultural Engineering, Nanyang Normal University Nanyang China
| | - Jie Du
- Henan Key Laboratory of Funiu Mountain Insect Biology, Henan Engineering Lab of Insects Bio‐reactor College of Agricultural Engineering, Nanyang Normal University Nanyang China
| | - Erzhen Duan
- College of Biological Engineering Henan University of Technology Zhengzhou China
| | - Yuyu Lei
- Henan Key Laboratory of Funiu Mountain Insect Biology, Henan Engineering Lab of Insects Bio‐reactor College of Agricultural Engineering, Nanyang Normal University Nanyang China
| | - Shimei Liang
- Henan Key Laboratory of Funiu Mountain Insect Biology, Henan Engineering Lab of Insects Bio‐reactor College of Agricultural Engineering, Nanyang Normal University Nanyang China
| | - Xian Zhang
- Henan Key Laboratory of Funiu Mountain Insect Biology, Henan Engineering Lab of Insects Bio‐reactor College of Agricultural Engineering, Nanyang Normal University Nanyang China
| | - Xin Zhao
- Henan Key Laboratory of Funiu Mountain Insect Biology, Henan Engineering Lab of Insects Bio‐reactor College of Agricultural Engineering, Nanyang Normal University Nanyang China
| | - Yunchao Kan
- Henan Key Laboratory of Funiu Mountain Insect Biology, Henan Engineering Lab of Insects Bio‐reactor College of Agricultural Engineering, Nanyang Normal University Nanyang China
| | - Lunguang Yao
- Henan Key Laboratory of Funiu Mountain Insect Biology, Henan Engineering Lab of Insects Bio‐reactor College of Agricultural Engineering, Nanyang Normal University Nanyang China
| | - Xinfeng Yang
- Henan Institute of Sericulture Science Zhengzhou China
| | - Xingtan Zhang
- Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology Fujian Agriculture and Forestry University Fuzhou China
| | | |
Collapse
|
25
|
Zhang H, Hong X, Yan S, Zha J, Qin J. Environmentally relevant concentrations of bifenthrin induce changes in behaviour, biomarkers, histological characteristics, and the transcriptome in Corbicula fluminea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138821. [PMID: 32361119 DOI: 10.1016/j.scitotenv.2020.138821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Bifenthrin (BF) is an insecticide that is commonly used to control agricultural and domestic pests and is widespread in aquatic environments. Although previous studies have found that BF is toxic to aquatic organisms, such a comprehensive study of the mechanism of toxic effects in bivalves is not common. In this study, to assess the toxic effects of BF on bivalves, adult Corbicula fluminea (C. fluminea) were exposed to 0, 1, 5, and 25 μg/L BF for 15 days. Transcriptome analysis revealed that BF exposure significantly altered the expression of genes involved in detoxification, antioxidation, and metabolism. Moreover, the ROS content and GST activity at 25 μg/L treatments were significantly increased (p < 0.05), and significant increases of MDA concentration and CAT activity were observed at 5 and 25 μg/L treatments (p < 0.05). However, AChE activity was markedly inhibited at 25 μg/L treatments (p < 0.05). In addition, vacuolation in the digestive tubules and the hemolytic infiltration of connective tissue were observed at all treatments, and the degeneration of the digestive tubule was observed at 5 and 25 μg/L treatments. In the behavioural assay, the siphoning behaviour of C. fluminea was significantly inhibited at 25 μg/L treatments (p < 0.05), whereas no significant change in burrowing behaviour was observed. Our findings suggested that BF exposure caused changes in detoxification, antioxidation, and metabolism pathways, biomarker activity or concentrations and histopathological characteristics, resulting in changes in behaviour. Therefore, our findings provide a basis for further evaluation of the toxicity of pyrethroid insecticides in bivalves.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University, Wuhan 430070, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University, Wuhan 430070, China.
| | - Jianhui Qin
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University, Wuhan 430070, China
| |
Collapse
|
26
|
Su H, Yang Y, Zou J, Cheng Y, Yang Y, Wu J, Pollak P, Yang Y. Transcriptome analysis of the ovary of beet armyworm Spodoptera exigua under different exposures of cadmium stress. CHEMOSPHERE 2020; 251:126372. [PMID: 32169707 DOI: 10.1016/j.chemosphere.2020.126372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Heavy metal pollution is becoming an increasingly serious problem globally, and cadmium pollution ranks first in the world. Reproduction in insects is affected by cadmium stress in a dose-dependent manner. However, no previous studies have examined the molecular mechanisms underlying the influence of cadmium exposure on insect reproduction. In this study, RNA-Seq was used to investigate changes in ovary gene expression in newly emerged female beet army worms. The beet armyworms were reared under 4 cadmium concentrations: 0 mg/kg (control), low 0.2 mg/kg (L), medium 12.8 mg/kg (M) and high 51.2 mg/kg (H). Compared with the control (CK), a total of 3453 differentially expressed genes (DEGs) were identified in L cadmium stress, including 1791 up-regulated and 1662 down-regulated candidates; in L versus M groups, 982 up-regulated and 658 down-regulated DEGs; and in M versus H groups, 6508 up-regulated and 2000 down-regulated DEGs were identified and the expression patterns of ten genes were verified by q PCR. Many of the identified DEGs were relevant to juvenile hormone and molting hormone biosynthesis, insulin secretion, estrogen signaling, amino acid metabolism and lipid biosynthesis. These data will provide a molecular prospective to understand the ecological risk of heavy metal pollution and are a resource for selecting key genes as targets in gene-editing/silencing technologies for sustainable pest management.
Collapse
Affiliation(s)
- Honghua Su
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, PR China.
| | - Yang Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, PR China
| | - Jincheng Zou
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, PR China
| | - Yuqing Cheng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, PR China
| | - Yong Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, PR China
| | - Jiaojiao Wu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, PR China
| | - Patrick Pollak
- Entomology Department, Cornell University, Ithaca, NY, 14853, USA
| | - Yizhong Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
27
|
Jiang L, Peng LL, Cao YY, Thakur K, Hu F, Tang SM, Wei ZJ. Transcriptome analysis reveals gene expression changes of the fat body of silkworm (Bombyx mori L.) in response to selenium treatment. CHEMOSPHERE 2020; 245:125660. [PMID: 31869670 DOI: 10.1016/j.chemosphere.2019.125660] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
A comparative transcriptome analysis was conducted to investigate the gene expression changes in the fat body of silkworm after treatment with different concentrations (50 μM and 200 μM) of selenium (Se). 912 differential expression genes (DEGs) (371 up-regulated and 541 down-regulated) and 1420 DEGs (1078 up-regulated and 342 down-regulated) were identified in silkworm fat body treated with 50 μM and 200 μM of Se, respectively. In case of 50 μM group, DEGs were mainly enriched in the peroxisome pathway and fatty acid metabolism pathway, and later were associated with antioxidant defense and nutrition regulation. After 200 μM Se-treatment, DEGs were mainly located in the glycerolipid metabolism and arachidonic acid metabolism pathways, which further encoded detoxification related genes. Furthermore, 32 candidate DEGs from these pathways had been selected to confirm the RNA-seq data. Among these DEGs, 14 genes were up-regulated in the 50 μM Se-treated group (only three genes in the 200 μM Se-treated group) which were involved in lipid metabolism and antioxidant defense, and 13 up-regulated genes (only two genes were up-regulated in the 50 μM Se-treated group) were involved in detoxification of the 200 μM Se-treated group. These changes showed that lower concentration of Se could regulate the nutrition and promote antioxidation pathways; whereas, high levels of Se promoted the detoxification of silkworm. These findings can be helpful to understand the possible mechanisms of Se action and detoxification in silkworm and other insects.
Collapse
Affiliation(s)
- Li Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| | - Li-Li Peng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| | - Yu-Yao Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| | - Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| | - Shun-Ming Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, PR China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| |
Collapse
|
28
|
Liu M, Feng M, Yang K, Cao Y, Zhang J, Xu J, Hernández SH, Wei X, Fan M. Transcriptomic and metabolomic analyses reveal antibacterial mechanism of astringent persimmon tannin against Methicillin-resistant Staphylococcus aureus isolated from pork. Food Chem 2020; 309:125692. [DOI: 10.1016/j.foodchem.2019.125692] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022]
|
29
|
Ma Z, Xu M, Wang Q, Wang F, Zheng H, Gu Z, Li Y, Shi G, Ding Z. Development of an Efficient Strategy to Improve Extracellular Polysaccharide Production of Ganoderma lucidum Using L-Phenylalanine as an Enhancer. Front Microbiol 2019; 10:2306. [PMID: 31681192 PMCID: PMC6804554 DOI: 10.3389/fmicb.2019.02306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/20/2019] [Indexed: 11/30/2022] Open
Abstract
Ganoderma lucidum has been a well-known species of basidiomycetes for a long time, and has been widely applied in the fields of food and medicine. Based on the simulation results of model iZBM1060 in our previous research, the effect of L-phenylalanine on G. lucidum extracellular polysaccharides (EPSs) was investigated in this study. EPS production reached 0.91 g/L at 0.4 g/L L-phenylalanine after a 24 h culture, which was 62.5% higher than that of control (0.56 g/L). Transcriptome and genome analysis showed that L-phenylalanine deaminase and benzoate 4-hydroxylase (related to L-phenylalanine metabolism) were significantly up-regulated, while the cell wall mannoprotein gene was down-regulated. Transmission electronic microscopy (TEM) and atomic force microscopy results showed that the cell wall thickness decreased by 58.58%, and cell wall porosity increased in cells treated with L-phenylalanine, which probably contribute to the increasing EPS production. This study provides an efficient strategy for fungal polysaccharide production with high output and low cost.
Collapse
Affiliation(s)
- Zhongbao Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Mengmeng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Qiong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Huihua Zheng
- Jiangsu Alphay Biological Technology Co., Ltd., Nantong, China
| | - Zhenghua Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Youran Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
30
|
Zhang Y, Li Z, Kholodkevich S, Sharov A, Feng Y, Ren N, Sun K. Cadmium-induced oxidative stress, histopathology, and transcriptome changes in the hepatopancreas of freshwater crayfish (Procambarus clarkii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:944-955. [PMID: 30970501 DOI: 10.1016/j.scitotenv.2019.02.159] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/01/2019] [Accepted: 02/10/2019] [Indexed: 05/06/2023]
Abstract
Cadmium (Cd) is a common contaminant in environment. Crayfish are considered suitable for indicating the impact of heavy metals on the environment. However, there is limited information on the mechanisms causing damage to the hepatopancreas of Procambarus clarkii exposed to Cd. We exposed adult male P. clarkii to 2.0, 5.0, and 10.0 mg/L Cd for 24, 48, and 72 h to explore Cd toxicity. Afterwards, we measured bioaccumulations in the hepatopancreas and determined malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST). Additionally, the hepatopancreas histopathology was analyzed and the transcriptome analysis of the P. clarkii hepatopancreas under Cd stress was conducted. The results revealed that hepatopancreas could accumulate Cd in a time- and dose-dependent manner. Cd induced significant changes in MDA content and antioxidant enzyme activity. Severe histological alterations were observed in crayfish hepatopancreas. After 72 h exposure to 2.0, 5.0, and 10.0 mg/L Cd, transcriptome analysis identified 1061, 747, and 1086 differentially expressed genes (DEGs), respectively. Exposure to 5.0 mg/L Cd inhibited heme binding, tetrapyrrole binding, iron ion binding and activity of oxidoreductase and sulfotransferase, while exposure to 10.0 mg/L Cd enhanced the export of matters from nucleus. In the hepatopancreas treated with 10.0 mg/L Cd, pathways related to diseases and immune system were significantly enriched. Meanwhile, 31, 31, 24, 7, and 12 identified DEGs were associated with the oxidation-reduction process, immune system, ion homeostasis, digestion and absorption, and ATPases, respectively. Our study provides comprehensive information for exploring the toxic mechanisms of Cd and candidate biomarkers for aquatic Cd risk evaluation.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zheyu Li
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Sergey Kholodkevich
- Institute of Earth Sciences, Saint-Petersburg State University, Saint-Petersburg 199034, Russia
| | - Andrey Sharov
- Institute of Earth Sciences, Saint-Petersburg State University, Saint-Petersburg 199034, Russia
| | - Yujie Feng
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kai Sun
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
31
|
Wang H, Yu Q, Ding X, Hu X, Hou K, Liu X, Nie S, Xie M. RNA-seq based elucidation of mechanism underlying Ganoderma atrum polysaccharide induced immune activation of murine myeloid-derived dendritic cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
32
|
Meng X, Hong L, Yang TT, Liu Y, Jiao T, Chu XH, Zhang DZ, Wang JL, Tang BP, Liu QN, Zhang WW, He WF. Transcriptome-wide identification of differentially expressed genes in Procambarus clarkii in response to chromium challenge. FISH & SHELLFISH IMMUNOLOGY 2019; 87:43-50. [PMID: 30590169 DOI: 10.1016/j.fsi.2018.12.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/17/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Because of the high protein content and rich meat quality of crayfish Procambarus clarkii, it has become widely popular in China in recent years and has a high economic value. When P. clarkii is stimulated by heavy metals, it reacts to oxidation. P. clarkii has evolved antioxidant defense systems, including antioxidant enzymes such as catalase (CAT). The hexavalent form of Cr (VI) is a pathogenic factor that is of particular concern in aqueous systems because of its great toxicity to living organisms. In this study, we characterized the transcriptome of P. clarkii using a RNA sequencing method and performed a comparison between K2Cr2O7-treated samples and controls. In total, 34,237 unigenes were annotated. We identified 5098 significantly differentially expressed genes (DEGs), including 2536 and 2562 were significantly up-regulated and down-regulated, respectively. In addition, quantitative real time-PCR (qRT-PCR) confirmed the up-regulation of a random selection of DEGs. Our results contribute to a more comprehensive understanding of the antioxidant defense system used by P. clarkii in response to heavy metal stress.
Collapse
Affiliation(s)
- Xun Meng
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Liang Hong
- Department of Infectious Disease, Ruian People's Hospital, Wenzhou, Zhejiang, 325200, PR China
| | - Ting-Ting Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, PR China
| | - Yu Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, PR China
| | - Ting Jiao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Xiao-Hua Chu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Jia-Lian Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China.
| | - Wei-Wei Zhang
- Department of Infectious Disease, Ruian People's Hospital, Wenzhou, Zhejiang, 325200, PR China.
| | - Wen-Fei He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|