1
|
Zaccarelli A, Mattina B, Pont L, Benavente F, Zanotti I, Cioffi F, Elviri L. Synergy of Analytical Characterization and Biocompatible Extractions for the Enhancement of High-Quality Biorefinery Products from Medicago sativa. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:938-953. [PMID: 39723940 DOI: 10.1021/acs.jafc.4c09161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
This study presents the development of an analytical characterization strategy tailored to end products derived from an alfalfa (Medicago sativa)-based biorefinery with particular emphasis on protein concentrates and phenolic-enriched fractions. Our approach began with a comprehensive full-factorial experimental design aimed at optimizing the extraction process, taking care to design a biocompatible extraction protocol. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) techniques were used to characterize the molecular profile of the extracts. In particular, the extracts showed a significant relative abundance of flavonoids and isoflavonoids in both their aglycone and glycosylated forms, in which antioxidant activity was evaluated. In addition, we elucidated the proteomic profiles of the protein concentrates. This proteomic characterization served as a valuable resource for understanding the differences between these end products, providing insights that can guide informed decisions about their potential applications.
Collapse
Affiliation(s)
| | - Beatrice Mattina
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, 08028 Barcelona, Spain
- Serra Húnter Program, Generalitat de Catalunya, 08007 Barcelona, Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, 08028 Barcelona, Spain
| | - Ilaria Zanotti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Flavio Cioffi
- Contento Trade Srl, Pozzuolo de Friuli, 33050 Friuli-Venezia Giulia, Italy
| | - Lisa Elviri
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| |
Collapse
|
2
|
Infante-Neta AA, de Carvalho ÁAO, D'Almeida AP, Gonçalves LRB, de Albuquerque TL. Xylitol production from passion fruit peel hydrolysate: Optimization of hydrolysis and fermentation processes. BIORESOURCE TECHNOLOGY 2024; 414:131628. [PMID: 39396579 DOI: 10.1016/j.biortech.2024.131628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/06/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The passion fruit peel (PFP) has a high cellulose and hemicellulose content, which can be used to produce fermentable sugars. In this context, this study aims to optimize the release of xylose and the production of xylitol from PFP. The optimized conditions were 0.71 M dilute sulfuric acid and a 21.84-minute treatment, yielding 19.03 g/L of xylose (PFP-1). Different PFP hydrolysates were evaluated to improve xylitol production by the yeast Kluyveromyces marxianus ATCC 36907: PFP-2 (PFP1 treated with Ca(OH)2), PFP-3 (PFP-1 treated with Ca(OH)2 and activated carbon), PFP-4 (PFP-3 with biological elimination of glucose with S. cerevisiae, and concentrated at different xylose concentrations). The applied methods resulted in higher xylitol production (14.97 g/L), when PFP hydrolysate was detoxified with Ca(OH)2, treated with activated charcoal for 1 h, biotreated for glucose removal, and concentrated to 40 g/L of xylose.
Collapse
Affiliation(s)
- Aida Aguilera Infante-Neta
- Federal University of Ceará, Department of Food Engineering, Center for Agricultural Sciences, Fortaleza, CE 60020-181, Brazil
| | | | - Alan Portal D'Almeida
- Federal University of Ceará, Department of Chemical Engineering, Technology Center, Fortaleza, CE 60455-760, Brazil
| | | | - Tiago Lima de Albuquerque
- Federal University of Ceará, Department of Food Engineering, Center for Agricultural Sciences, Fortaleza, CE 60020-181, Brazil.
| |
Collapse
|
3
|
Matabane AN, Egbu CF, Mnisi CM. Jumbo quail responses to diets containing incremental levels of apple (Malus domestica Borkh) pomace. Trop Anim Health Prod 2024; 56:395. [PMID: 39589632 PMCID: PMC11599319 DOI: 10.1007/s11250-024-04240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024]
Abstract
The utilization of nutraceutical sources such as apple (Malus domestica Borkh) pomace powder (APP) could be a strategy to reduce the excessive disposal of this agro-waste in landfills and promote sustainable Jumbo quail (Coturnix sp.) production. However, the amount of the APP that can be included in Jumbo quail diets to achieve optimum production is unknown. This study evaluated the impact of including incremental levels of APP on performance metrics, haemato-biochemical parameters, and meat quality responses in Jumbo quail. A total of 350 Jumbo quail (7-day-old; 28.0 ± 0.817 g live weight) were weighed and randomly allotted to five dietary treatments, where each treatment had seven replicates with 10 birds each. The diets were formulated to contain 0, 25, 50, 75, and 100 g/kg APP. Dietary APP induced negative quadratic effects (p < 0.05) on feed intake in weeks 2 and 3. Body weight gain and gain-to-feed ratio decreased linearly in weeks 2, 3, and 4, but quadratically responded to APP levels in week 5. Platelets, heterophils, lymphocytes, and serum phosphorus and calcium showed linear or quadratic responses (p < 0.05) as APP levels increased. Increasing levels of APP linearly (p < 0.05) reduced carcass performance and 24-hour breast meat redness and chroma values but increased 1-hour yellowness and 24-hour lightness. The inclusion of APP compromised growth and carcass performance in young growing Jumbo quail. However, feed efficiency and final body weight were maximized between 50 and 75 g APP levels/kg diet in five-week-old Jumbo quail without compromising blood and meat quality parameters.
Collapse
Affiliation(s)
| | - Chidozie Freedom Egbu
- Department of Animal Science, School of Agricultural Science, North-West University, Mafikeng, South Africa
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, Private Bag x2046, Mmabatho, 2735, South Africa
| | - Caven Mguvane Mnisi
- Department of Animal Science, School of Agricultural Science, North-West University, Mafikeng, South Africa.
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, Private Bag x2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
4
|
Viggiano S, Argenziano R, Lordi A, Conte A, Del Nobile MA, Panzella L, Napolitano A. Combining the Powerful Antioxidant and Antimicrobial Activities of Pomegranate Waste Extracts with Whey Protein Coating-Forming Ability for Food Preservation Strategies. Antioxidants (Basel) 2024; 13:1394. [PMID: 39594536 PMCID: PMC11591387 DOI: 10.3390/antiox13111394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Different solvents water, ethanol and ethanol/water (6:4 v/v), were compared in the extraction of pomegranate peels and seeds (PPS) in terms of recovery yields, antioxidant properties, and antimicrobial action against typical spoilage bacterial and fungal species. The best performing extract (ethanol/water (6:4 v/v) was shown to contain mostly ellagic acid and punicalagin as phenolic compounds (5% overall) and hydrolysable tannins (16% as ellagic acid equivalents) and was able to inhibit the growth of the acidophilic Alicyclobacillus acidoterrestris at a concentration as low as 1%. The preservation of the organoleptic profile of A. acidoterrestris-inoculated apple juice with extract at 1% over 20 days was also observed thanks to the complete inhibition of bacterial growth, while the extract at 0.1% warranted a significant (40%) inhibition of the enzymatic browning of apple smoothies over the first 30 min. When incorporated in whey proteins' isolate (WPI) at 5% w/w, the hydroalcoholic extract conferred well appreciable antioxidant properties to the resulting coating-forming hydrogel, comparable to those expected for the pure extract considering the amount present. The WPI coatings loaded with the hydroalcoholic extract at 5% were able to delay the browning of cut fruit by ca. 33% against a 22% inhibition observed with the sole WPI. In addition, the functionalized coating showed an inhibition of lipid peroxidation of Gouda cheese 2-fold higher with respect to that observed with WPI alone. These results open good perspectives toward sustainable food preservation strategies, highlighting the potential of PPS extract for the implementation of WPI-based active packaging.
Collapse
Affiliation(s)
- Sara Viggiano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 6, 80126 Naples, Italy; (S.V.); (R.A.); (L.P.)
| | - Rita Argenziano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 6, 80126 Naples, Italy; (S.V.); (R.A.); (L.P.)
- Department of Agricultural Sciences, University of Naples “Federico II”, Carlo di Borbone 1, 80055 Naples, Italy
| | - Adriana Lordi
- Department of Economics, Management and Territory, University of Foggia, Via A. da Zara 11, 71122 Foggia, Italy; (A.L.); (M.A.D.N.)
| | - Amalia Conte
- Department of Department of Humanistic Studies, Letters, Cultural Heritage, Educational Sciences, University of Foggia, Via Arpi 176, 71121 Foggia, Italy;
| | - Matteo Alessandro Del Nobile
- Department of Economics, Management and Territory, University of Foggia, Via A. da Zara 11, 71122 Foggia, Italy; (A.L.); (M.A.D.N.)
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 6, 80126 Naples, Italy; (S.V.); (R.A.); (L.P.)
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 6, 80126 Naples, Italy; (S.V.); (R.A.); (L.P.)
| |
Collapse
|
5
|
Bejenaru LE, Radu A, Segneanu AE, Biţă A, Manda CV, Mogoşanu GD, Bejenaru C. Innovative Strategies for Upcycling Agricultural Residues and Their Various Pharmaceutical Applications. PLANTS (BASEL, SWITZERLAND) 2024; 13:2133. [PMID: 39124251 PMCID: PMC11314045 DOI: 10.3390/plants13152133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
This review investigates innovative strategies for upcycling agricultural residues into valuable pharmaceutical compounds. The improper disposal of agricultural residues contributes to significant environmental issues, including increased greenhouse gas emissions and ecosystem degradation. Upcycling offers a sustainable solution, transforming these residues into high-value bioproducts (antioxidants, antitumor agents, antidiabetic compounds, anti-inflammatory agents, and antiviral drugs). Nanotechnology and microbial biotechnology have a crucial role in enhancing bioavailability and targeted delivery of bioactive compounds. Advanced techniques like enzymatic hydrolysis, green solvents, microwave processing, pyrolysis, ultrasonic processing, acid and alkaline hydrolysis, ozonolysis, and organosolv processes are explored for their effectiveness in breaking down agricultural waste and extracting valuable compounds. Despite the promising potential, challenges such as variability in residue composition, scalability, and high costs persist. The review emphasizes the need for future research on cost-effective extraction techniques and robust regulatory frameworks to ensure the safety, efficacy, and quality of bioproducts. The upcycling of agricultural residues represents a viable path towards sustainable waste management and production of pharmaceutical compounds, contributing to environmental conservation and public health improvements. This review provides an analysis of the current literature and identifies knowledge gaps, offering recommendations for future studies to optimize the use of agricultural residues in the drug industry.
Collapse
Affiliation(s)
- Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (L.E.B.); (A.B.); (G.D.M.)
| | - Antonia Radu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (A.R.); (C.B.)
| | - Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Romania
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (L.E.B.); (A.B.); (G.D.M.)
| | - Costel-Valentin Manda
- Department of Analytical and Instrumental Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (L.E.B.); (A.B.); (G.D.M.)
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (A.R.); (C.B.)
| |
Collapse
|
6
|
Niyogi A, Sarkar P, Bhattacharyya S, Pal S, Mukherjee S. Harnessing the potential of agriculture biomass: reuse, transformation and applications in energy and environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34232-7. [PMID: 39023731 DOI: 10.1007/s11356-024-34232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/30/2024] [Indexed: 07/20/2024]
Abstract
Biomass, an organic matter, has gained worldwide attention due to the overconsumption of fossil fuels. Biomass has emerged as a new alternative resource with implications for efficient energy production, environmental benefits and socio-economic impacts. According to the World Bioenergy Association, biomass has accounted for 14% of the energy supply in 2016 and is expected to provide 44% of the energy demand by 2030. This literary endeavour comprises insights into past developments, including biomass types, characterization methods and conversion technologies. This review article aims to facilitate a deeper understanding of agriculture biomass utilization and its significance in achieving sustainable development goals by analysing the latest research findings. Moreover, the emerging role of biosensors in optimizing biomass utilization and monitoring environmental impacts has been documented. The scope embraces the vast realm of bioenergy production, environmental mitigation and the generation of valuable by-products. In conclusion, portraying biomass conversion technologies as the transition towards cleaner, renewable energy, the potential benefits and challenges extend beyond energy production, encompassing effective agricultural residue management and the creation of valuable by-products. This review will guide the researchers and stakeholders towards a deeper understanding of the transformative potential embedded in biomass conversion processes for a sustainable and cleaner energy future.
Collapse
Affiliation(s)
- Arindam Niyogi
- Agri and Environmental Electronics (AEE) Group, Centre for Development of Advanced Computing (C-DAC), Sector - V, Salt Lake, Kolkata, West Bengal, 700091, India
| | - Priyanka Sarkar
- Department of Biotechnology, Techno India University, Kolkata, West Bengal, 700091, India.
| | - Soumyadeb Bhattacharyya
- Agri and Environmental Electronics (AEE) Group, Centre for Development of Advanced Computing (C-DAC), Sector - V, Salt Lake, Kolkata, West Bengal, 700091, India
| | - Souvik Pal
- Agri and Environmental Electronics (AEE) Group, Centre for Development of Advanced Computing (C-DAC), Sector - V, Salt Lake, Kolkata, West Bengal, 700091, India
| | - Subhankar Mukherjee
- Agri and Environmental Electronics (AEE) Group, Centre for Development of Advanced Computing (C-DAC), Sector - V, Salt Lake, Kolkata, West Bengal, 700091, India
| |
Collapse
|
7
|
Latella R, Calzoni E, Urbanelli L, Cerrotti G, Porcellati S, Emiliani C, Buratta S, Tancini B. Isolation of Extracellular Vesicles from Agri-Food Wastes: A Novel Perspective in the Valorization of Agri-Food Wastes and By-Products. Foods 2024; 13:1492. [PMID: 38790792 PMCID: PMC11120153 DOI: 10.3390/foods13101492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Agri-food wastes generated by industrial food processing are valorized through the extraction of biomolecules to obtain value-added products useful for various industrial applications. In the present review, we describe the valuable by-products and bioactive molecules that can be obtained from agricultural wastes and propose extracellular vesicles (EVs) as innovative nutraceutical and therapeutic compounds that could be derived from agriculture residues. To support this idea, we described the general features and roles of EVs and focused on plant-derived extracellular vesicles (PDEVs) that are considered natural carriers of bioactive molecules and are involved in intercellular communication between diverse kingdoms of life. Consistently, PDEVs exert beneficial effects (anti-inflammatory, anti-tumor, and immune-modulatory) on mammalian cells. Although this research field is currently in its infancy, in the near future, the isolation of EVs and their use as nutraceutical tools could represent a new and innovative way to valorize waste from the agri-food industry in an ecofriendly way.
Collapse
Affiliation(s)
- Raffaella Latella
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.L.); (E.C.); (L.U.); (G.C.); (S.P.); (C.E.); (B.T.)
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.L.); (E.C.); (L.U.); (G.C.); (S.P.); (C.E.); (B.T.)
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.L.); (E.C.); (L.U.); (G.C.); (S.P.); (C.E.); (B.T.)
| | - Giada Cerrotti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.L.); (E.C.); (L.U.); (G.C.); (S.P.); (C.E.); (B.T.)
| | - Serena Porcellati
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.L.); (E.C.); (L.U.); (G.C.); (S.P.); (C.E.); (B.T.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.L.); (E.C.); (L.U.); (G.C.); (S.P.); (C.E.); (B.T.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.L.); (E.C.); (L.U.); (G.C.); (S.P.); (C.E.); (B.T.)
| | - Brunella Tancini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.L.); (E.C.); (L.U.); (G.C.); (S.P.); (C.E.); (B.T.)
| |
Collapse
|
8
|
Ezieke AH, Serrano A, Peces M, Clarke W, Villa-Gomez D. Effect of feeding frequency on the anaerobic digestion of berry fruit waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:66-75. [PMID: 38377770 DOI: 10.1016/j.wasman.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
On-site anaerobic digesters for small agricultural farms typically have feeding schedules that fluctuate according to farm operations. Shocks in feeding, particularly for putrescible waste can disrupt the stable operation of a digester. The effect of intermittent feeding on the anaerobic digestion of rejected raspberries was investigated in four 3L reactors operated in semicontinuous mode for 350 days at 38 °C with a hydraulic retention time of 25 days and an organic loading rate (OLR) of 1gVS/L/d. During the acclimatisation period (147 days) the organic loading was 5 feeds per week. The feeding regime of two reactors was then changed while maintaining the same OLR and HRT to one weekly feed event in one reactor and 3 equal feeds per week in another. The feeding regime did not significantly affect specific methane yield (369 ± 47 L/kgVS on average) despite very different weekly patterns in methane production. Volatile fatty acids (VFA) comprised >83 % of the organics in the effluent, while the rest included non-inhibitory concentrations of phenolic compounds (515-556 mg gallic acid/L). The microbial composition and relative abundance of predominant groups in all reactors were the archaeal genera Methanobacterium and Methanolinea and the bacterial phyla Bacteridota and Firmicutes. Increasing the OLR to 2gVS/L/d on day 238 resulted in failure of all reactors, attributed to the insufficient alkalinity to counterbalance the VFA produced, and the pH decrease below 6. Overall results suggests that optimal digestion of raspberry waste is maintained despite variations in feeding frequency, but acidification can occur with OLR changes.
Collapse
Affiliation(s)
| | - Antonio Serrano
- The University of Queensland, School of Civil Engineering, Brisbane 4072, Australia; Institute of Water Research, University of Granada, Granada 18071, Spain; Department of Microbiology, Pharmacy Faculty, University of Granada, Campus de Cartuja s/n, Granada 18071, Spain
| | - Miriam Peces
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg East 9220, Denmark
| | - William Clarke
- The University of Queensland, School of Civil Engineering, Brisbane 4072, Australia
| | - Denys Villa-Gomez
- The University of Queensland, School of Civil Engineering, Brisbane 4072, Australia.
| |
Collapse
|
9
|
Panja A, Paul S, Jha P, Ghosh S, Prasad R. Waste and their polysaccharides: Are they worth bioprocessing? BIORESOURCE TECHNOLOGY REPORTS 2023; 24:101594. [DOI: 10.1016/j.biteb.2023.101594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Caballero-Guerrero B, Garrido-Fernández A, Fermoso FG, Fernández-Prior MÁ, Cubero-Cardoso J, Reinhard C, Nyström L, Benítez-Cabello A, López-García E, Arroyo-López FN. Modeling the antimicrobial effects of olive mill waste extract, rich in hydroxytyrosol, on the growth of lactic acid bacteria using response surface methodology. J Food Sci 2023; 88:4059-4067. [PMID: 37589305 DOI: 10.1111/1750-3841.16737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023]
Abstract
The objective of this study is to assess the inhibitory effects of an aqueous extract from olive oil mill waste (alperujo) on the growth of a lactic acid bacteria (LAB) cocktail consisting of various strains of Lactiplantibacillus pentosus and Lactiplantibacillus plantarum species. For this purpose, response surface methodology was employed using two independent variables (pH levels 3.5-5.55; hydroxytyrosol concentration ranging from 0.93-2990 ppm). The response variable was the average inhibition per treatment on the LAB cocktail (expressed as a percentage). The developed model identified significant terms, including the linear effect of hydroxytyrosol and pH, their interaction, and the quadratic effect of pH. Maximum inhibition of the LAB cocktail was observed at progressively higher concentrations of hydroxytyrosol and lower pH values. Therefore, complete inhibition of LAB in the synthetic culture medium could only be achieved for concentrations of 2984 ppm hydroxytyrosol at a pH of 3.95. These findings suggest that extracts derived from "alperujo" could be utilized as a natural preservative in acidified foods with a bitter flavor and antioxidant requirements.
Collapse
Affiliation(s)
| | | | | | | | | | - Claudio Reinhard
- Department of Health Science and Technology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Laura Nyström
- Department of Health Science and Technology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
11
|
Cubero-Cardoso J, Jiménez-Páez E, Trujillo-Reyes Á, Serrano A, Urbano J, Rodríguez-Gutiérrez G, Borja R, Fermoso FG. Valorization of strawberry extrudate waste: Recovery of phenolic compounds by direct-hydrothermal treatment and subsequent methane production by mesophilic semi-continuous anaerobic digestion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:310-318. [PMID: 37499411 DOI: 10.1016/j.wasman.2023.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/07/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Strawberry extrudate (SE) is an underused by-product from strawberry industry. Recovery of the phenolic compounds present in SE would represent a very interesting valorisation option. Two main challenges need to be solved, firstly, the solubilisation and recovery of the phenolic compounds contained in SE, and, after that, the stabilisation of the resulted de-phenolized SE. The present research evaluates the potential of a biorefinery process combining a hydrothermal pre-treatment, followed by a phenolic extraction process and, finally, the anaerobic digestion of the remaining SE for producing energy that will contribute to compensate the energy requirements of the whole system. Following the hydrothermal pre-treatment at 170 °C for 60 min, an extraction of 0.6 ± 0.1 g of gallic acid per kilogram of SE was achieved using an adsorbent resin, representing a recovery rate of 64 %. Long-term semi-continuous anaerobic digestion of de-phenolized SE was evaluated at different organic loading rates to evaluate the stability of the process. The anaerobic digestion of pre-treated SE achieved a stable methane production value of 243 ± 34 mL CH4·g volatile solids-1·d-1 at an organic loading rate (ORL) of 1.25 g volatile solids·L-1·d-1. During the operation at this ORL, the control parameters including pH, alkalinity, soluble chemical organic demand (sCOD), and volatile fatty acid (VFA) remained stable and consistently constant. Specifically, the VFA in the reactor during this stable period achieved a value of 102 ± 128 mg O2/L. Also, an economic balance showed that the minimal price of the generated phenolic extract for having benefited from the proposed biorefinery system was 0.812 €·(g of gallic acid equivalents)-1, a price within the range of phenolic compounds used in the food industry.
Collapse
Affiliation(s)
- Juan Cubero-Cardoso
- Instituto de Grasa, Spanish National Research Council (CSIC). Campus Universidad Pablo de Olavide, Building 46. Ctra. de Utrera, km. 1, 41013 Seville, Spain; Laboratory of Sustainable and Circular Technology. CIDERTA and Chemistry Department, Faculty of Experimental Sciences. Campus de "El Carmen", University of Huelva, 21071 Huelva, Spain.
| | - Elena Jiménez-Páez
- Instituto de Grasa, Spanish National Research Council (CSIC). Campus Universidad Pablo de Olavide, Building 46. Ctra. de Utrera, km. 1, 41013 Seville, Spain; Institute of Water Research, University of Granada, 18071 Granada, Spain
| | - Ángeles Trujillo-Reyes
- Instituto de Grasa, Spanish National Research Council (CSIC). Campus Universidad Pablo de Olavide, Building 46. Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Antonio Serrano
- Institute of Water Research, University of Granada, 18071 Granada, Spain; Department of Microbiology, Pharmacy Faculty, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Juan Urbano
- Laboratory of Sustainable and Circular Technology. CIDERTA and Chemistry Department, Faculty of Experimental Sciences. Campus de "El Carmen", University of Huelva, 21071 Huelva, Spain
| | - Guillermo Rodríguez-Gutiérrez
- Instituto de Grasa, Spanish National Research Council (CSIC). Campus Universidad Pablo de Olavide, Building 46. Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Rafael Borja
- Instituto de Grasa, Spanish National Research Council (CSIC). Campus Universidad Pablo de Olavide, Building 46. Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Fernando G Fermoso
- Instituto de Grasa, Spanish National Research Council (CSIC). Campus Universidad Pablo de Olavide, Building 46. Ctra. de Utrera, km. 1, 41013 Seville, Spain.
| |
Collapse
|
12
|
Hulkko LSS, Chaturvedi T, Custódio L, Thomsen MH. Harnessing the Value of Tripolium pannonicum and Crithmum maritimum Halophyte Biomass through Integrated Green Biorefinery. Mar Drugs 2023; 21:380. [PMID: 37504911 PMCID: PMC10381832 DOI: 10.3390/md21070380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Bioactive extracts are often the target fractions in bioprospecting, and halophyte plants could provide a potential source of feedstock for high-value applications as a part of integrated biorefineries. Tripolium pannonicum (Jacq.) Dobrocz. (sea aster) and Crithmum maritimum L. (sea fennel) are edible plants suggested for biosaline halophyte-based agriculture. After food production and harvesting of fresh leaves for food, the inedible plant fractions could be utilized to produce extracts rich in bioactive phytochemicals to maximize feedstock application and increase the economic feasibility of biomass processing to bioenergy. This study analyzed fresh juice and extracts from screw-pressed sea aster and sea fennel for their different phenolic compounds and pigment concentrations. Antioxidant and enzyme inhibition activities were also tested in vitro. Extracts from sea aster and sea fennel had phenolic contents up to 45.2 mgGAE/gDM and 64.7 mgGAE/gDM, respectively, and exhibited >70% antioxidant activity in several assays. Ethanol extracts also showed >70% inhibition activity against acetylcholinesterase and >50% inhibition of tyrosinase and α-glucosidase. Therefore, these species can be seen as potential feedstocks for further investigations.
Collapse
Affiliation(s)
| | - Tanmay Chaturvedi
- AAU Energy, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| | - Luísa Custódio
- Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal
| | | |
Collapse
|
13
|
Zhu Y, Luan Y, Zhao Y, Liu J, Duan Z, Ruan R. Current Technologies and Uses for Fruit and Vegetable Wastes in a Sustainable System: A Review. Foods 2023; 12:foods12101949. [PMID: 37238767 DOI: 10.3390/foods12101949] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
The fruit and vegetable industry produces millions of tons of residues, which can cause large economic losses. Fruit and vegetable wastes and by-products contain a large number of bioactive substances with functional ingredients that have antioxidant, antibacterial, and other properties. Current technologies can utilize fruit and vegetable waste and by-products as ingredients, food bioactive compounds, and biofuels. Traditional and commercial utilization in the food industry includes such technologies as microwave-assisted extraction (MAE), supercritical fluid extraction (SFE), ultrasonic-assisted extraction (UAE), and high hydrostatic pressure technique (HHP). Biorefinery methods for converting fruit and vegetable wastes into biofuels, such as anaerobic digestion (AD), fermentation, incineration, pyrolysis and gasification, and hydrothermal carbonization, are described. This study provides strategies for the processing of fruit and vegetable wastes using eco-friendly technologies and lays a foundation for the utilization of fruit and vegetable loss/waste and by-products in a sustainable system.
Collapse
Affiliation(s)
- Yingdan Zhu
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Yueting Luan
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yingnan Zhao
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jiali Liu
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhangqun Duan
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| |
Collapse
|
14
|
Taneja A, Sharma R, Khetrapal S, Sharma A, Nagraik R, Venkidasamy B, Ghate MN, Azizov S, Sharma S, Kumar D. Value Addition Employing Waste Bio-Materials in Environmental Remedies and Food Sector. Metabolites 2023; 13:metabo13050624. [PMID: 37233665 DOI: 10.3390/metabo13050624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/05/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Overall, combating food waste necessitates a multifaceted approach that includes education, infrastructure, and policy change. By working together to implement these strategies, we can help reduce the negative impacts of food waste and create a more sustainable and equitable food system. The sustained supply of nutrient-rich agrifood commodities is seriously threatened by inefficiencies caused by agricultural losses, which must be addressed. As per the statistical data given by the Food and Agriculture Organisation (FAO) of the United Nations, nearly 33.33% of the food that is produced for utilization is wasted and frittered away on a global level, which can be estimated as a loss of 1.3 billion metric tons per annum, which includes 30% cereals, 20% dairy products 35% seafood and fish, 45% fruits and vegetables, and 20% of meat. This review summarizes the various types of waste originating from various segments of the food industry, such as fruits and vegetables, dairy, marine, and brewery, also focusing on their potential for developing commercially available value-added products such as bioplastics, bio-fertilizers, food additives, antioxidants, antibiotics, biochar, organic acids, and enzymes. The paramount highlights include food waste valorization, which is a sustainable yet profitable alternative to waste management, and harnessing Machine Learning and Artificial Intelligence technology to minimize food waste. Detail of sustainability and feasibility of food waste-derived metabolic chemical compounds, along with the market outlook and recycling of food wastes, have been elucidated in this review.
Collapse
Affiliation(s)
- Akriti Taneja
- School of Bioengineering and Food Technology, Shoolini University, Himachal Pradesh, Solan 173229, India
| | - Ruchi Sharma
- School of Bioengineering and Food Technology, Shoolini University, Himachal Pradesh, Solan 173229, India
| | - Shreya Khetrapal
- School of Bioengineering and Food Technology, Shoolini University, Himachal Pradesh, Solan 173229, India
| | - Avinash Sharma
- School of Bioengineering and Food Technology, Shoolini University, Himachal Pradesh, Solan 173229, India
| | - Rupak Nagraik
- School of Bioengineering and Food Technology, Shoolini University, Himachal Pradesh, Solan 173229, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Manju Nath Ghate
- School of Pharmacy, National Forensic Sciences University, Gandhinagar Gujarat 382007, India
| | - Shavkatjon Azizov
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Academy of Sciences Uzbekistan, Tashkent 100015, Uzbekistan
- Department of Pharmaceutical Chemistry, Tashkent Pharmaceutical Institute, Tashkent 100015, Uzbekistan
| | - Somesh Sharma
- School of Bioengineering and Food Technology, Shoolini University, Himachal Pradesh, Solan 173229, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| |
Collapse
|
15
|
Stillage Waste from Strawberry Spirit Production as a Source of Bioactive Compounds with Antioxidant and Antiproliferative Potential. Antioxidants (Basel) 2023; 12:antiox12020421. [PMID: 36829982 PMCID: PMC9951990 DOI: 10.3390/antiox12020421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
The production of fruit distillates generates solid residues which are potentially rich in bioactive compounds worthy of valorization and exploitation. We report herein the in vitro antioxidant and antiproliferative properties of an extract obtained from the waste of fermented strawberry distillate production. The main low molecular weight phenolic components of the extract were identified as ellagic acid and p-coumaric acid using spectroscopic and chromatographic analysis. The extract exhibited high antioxidant properties, particularly in the ferric reducing/antioxidant power (FRAP) assay, and a high total phenolic content (TPC). It was also able to induce an antiproliferative effect on different human cancer cell lines. A strong decrease in viability in human promyelocytic leukemia (HL-60) cells through a rapid and massive apoptosis were observed. Moreover, at an early time (<30 min), reactive oxygen species (ROS) production and inactivation of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinases (MAPK) pathway were detected. Notably, the antiproliferative activity of the sample was comparable to that observed with an analogous extract prepared from unfermented, fresh strawberries. These results bring new opportunities for the valorization of fruit distillery by-products as low-cost resources for the design of bioactive formulations of comparable value to that from fresh food.
Collapse
|
16
|
Transformation of Agro-Waste into Value-Added Bioproducts and Bioactive Compounds: Micro/Nano Formulations and Application in the Agri-Food-Pharma Sector. Bioengineering (Basel) 2023; 10:bioengineering10020152. [PMID: 36829646 PMCID: PMC9952426 DOI: 10.3390/bioengineering10020152] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The agricultural sector generates a significant amount of waste, the majority of which is not productively used and is becoming a danger to both world health and the environment. Because of the promising relevance of agro-residues in the agri-food-pharma sectors, various bioproducts and novel biologically active molecules are produced through valorization techniques. Valorization of agro-wastes involves physical, chemical, and biological, including green, pretreatment methods. Bioactives and bioproducts development from agro-wastes has been widely researched in recent years. Nanocapsules are now used to increase the efficacy of bioactive molecules in food applications. This review addresses various agri-waste valorization methods, value-added bioproducts, the recovery of bioactive compounds, and their uses. Moreover, it also covers the present status of bioactive micro- and nanoencapsulation strategies and their applications.
Collapse
|
17
|
Hollas CE, Rodrigues HC, Bolsan AC, Venturin B, Bortoli M, Antes FG, Steinmetz RLR, Kunz A. Swine manure treatment technologies as drivers for circular economy in agribusiness: A techno-economic and life cycle assessment approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159494. [PMID: 36257411 DOI: 10.1016/j.scitotenv.2022.159494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic digestion has been employed as a technology capable of adding value to waste coupled with environmental impact mitigation. However, many issues need to be elucidated to ensure the systems viability based on this technology. In this sense, the present study evaluated technically, environmentally, and economically, four configurations of swine waste treatment systems focused on the promotion of decarbonization and circularity of the swine chain. For this, a reference plant, based on a compact treatment process named SISTRATES® (Portuguese acronym for swine effluent treatment system) was adopted to serve as a model for comparison and validation. The results showed the importance of prioritization of the energy recuperation routes through anaerobic digestion, providing increased economic benefits and minimizing environmental damage. Thus, the SISTRATES® configuration was the one that presented the best designs in a circular context, maximizing the recovery of energy and nutrients, along with the reduction of greenhouse gas emissions, ensuring the sustainability of the pig production chain.
Collapse
Affiliation(s)
- C E Hollas
- Universidade Estadual do Oeste do Paraná, UNIOESTE/CCET/PGEAGRI, Cascavel, PR, Brazil
| | - H C Rodrigues
- Universidade Tecnológica Federal do Paraná, 85660-000 Dois Vizinhos, PR, Brazil
| | - A C Bolsan
- Universidade Tecnológica Federal do Paraná, 85660-000 Dois Vizinhos, PR, Brazil
| | - B Venturin
- Universidade Estadual do Oeste do Paraná, UNIOESTE/CCET/PGEAGRI, Cascavel, PR, Brazil
| | - M Bortoli
- Universidade Tecnológica Federal do Paraná, 85601-970 Francisco Beltrão, PR, Brazil
| | - F G Antes
- Embrapa Suínos e Aves, 89715-899 Concórdia, SC, Brazil
| | | | - A Kunz
- Universidade Estadual do Oeste do Paraná, UNIOESTE/CCET/PGEAGRI, Cascavel, PR, Brazil; Embrapa Suínos e Aves, 89715-899 Concórdia, SC, Brazil.
| |
Collapse
|
18
|
Cubero-Cardoso J, Maluf Braga AF, Trujillo-Reyes Á, Alonso-Segovia G, Serrano A, Borja R, Fermoso FG. Effect of metals on mesophilic anaerobic digestion of strawberry extrudate in batch mode. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116783. [PMID: 36435128 DOI: 10.1016/j.jenvman.2022.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
According to recent studies, the anaerobic digestion of strawberry extrudate is a promising option with potential in the berry industry biorefinery. However, the lack and/or unbalance of concentrations of metals in some agro-industrial residues could hamper methane production during the anaerobic digestion of these kinds of wastes. In this study, a fractional factorial design was applied to screen the supplementation requirements regarding six metals (Co, Ni, Fe, Cu, Mn, and Zn) for methane production from strawberry extrudate (SE). The logistic model was used to fit the experimental data of methane production-time. It allowed identifying two different stages in the anaerobic process and obtaining the kinetic parameters for each step. Maximum methane production obtained in the first (Bmax) kinetic stage, the methane production in the second stage (P), and the maximum methane production rates (Rmax) concluded a statistically significant effect for Ni and Zn. The second set of experiments was carried out with Ni and Zn through a central composite design to study the concentration effect in the anaerobic digestion process of the strawberry extrudate. The parameters P and Rmax demonstrated a positive interaction between Ni and Zn. Although, Bmax did not prove a statistically significant effect between Ni and Zn.
Collapse
Affiliation(s)
- Juan Cubero-Cardoso
- Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, Km. 1, 41013 Seville, Spain.
| | - Adriana Ferreira Maluf Braga
- Biological Process Laboratory, São Carlos School of Engineering, University of São Paulo (LPB/EESC/USP), Av.João Dagnone 1100, São Carlos, São Paulo, 13563-120, Brazil.
| | - Ángeles Trujillo-Reyes
- Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, Km. 1, 41013 Seville, Spain.
| | - Gabriel Alonso-Segovia
- Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, Km. 1, 41013 Seville, Spain.
| | - Antonio Serrano
- Institute of Water Research, University of Granada, Granada, 18071, Spain; Department of Microbiology, Pharmacy Faculty, University of Granada, Campus de Cartuja S/n, Granada, 18071, Spain.
| | - Rafael Borja
- Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, Km. 1, 41013 Seville, Spain.
| | - Fernando G Fermoso
- Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, Km. 1, 41013 Seville, Spain.
| |
Collapse
|
19
|
Kovács E, Szűcs C, Farkas A, Szuhaj M, Maróti G, Bagi Z, Rákhely G, Kovács KL. Pretreatment of lignocellulosic biogas substrates by filamentous fungi. J Biotechnol 2022; 360:160-170. [PMID: 36273669 DOI: 10.1016/j.jbiotec.2022.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/12/2022] [Accepted: 10/16/2022] [Indexed: 11/19/2022]
Abstract
Decomposition of lignocellulosic plant biomass by four filamentous fungi was carried out to facilitate subsequent anaerobic degradation and biogas formation. Agricultural side products, wheat straw and corn stover and forestry energy plant willow chips were selected as plant biomass sources. The substrates were confronted by pure cultures of Penicillium aurantiogriseum (new isolate from rumen), Trichoderma reesei (DSM768), Gilbertella persicaria (SZMC11086) and Rhizomucor miehei (SZMC11005). In addition to total cellulolytic filter paper degradation activity, the production of endoglucanase, cellobiohydrolase, β-glucosidase enzymes were followed during the pretreatment period, which lasted for 10 days at 37 °C. The products of pretreatments were subsequently tested for mesophilic biogas production in batch reactors. All 4 strains effectively pretreated the lignocellulosic substrates albeit in varying degrees, which was related to the level of the tested hydrolytic enzyme activities. Penicillium aurantiogriseum showed outstanding hydrolytic enzyme production and highest biogas yield from the partially degraded substrates. Corn stover was the best substrate for biomass decomposition and biogas production. Scanning electron microscopy confirmed the deep penetration of fungal hyphae into the lignocellulosic substrate in all cases.
Collapse
Affiliation(s)
- Etelka Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Csilla Szűcs
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Attila Farkas
- Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Márk Szuhaj
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Zoltán Bagi
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Plant Biology, Biological Research Center, Szeged, Hungary; Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | - Kornél L Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Plant Biology, Biological Research Center, Szeged, Hungary; Institute of Biophysics, Biological Research Center, Szeged, Hungary; Department of Oral Biology and Experimental Dentistry, University of Szeged, Szeged, Hungary.
| |
Collapse
|
20
|
Aristi Capetillo A, Bauer F, Chaminade C. Emerging Technologies Supporting the Transition to a Circular Economy in the Plastic Materials Value Chain. CIRCULAR ECONOMY AND SUSTAINABILITY 2022; 3:1-30. [PMID: 36065416 PMCID: PMC9434076 DOI: 10.1007/s43615-022-00209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/21/2022] [Indexed: 11/24/2022]
Abstract
Plastic waste has come to the forefront of academic and political debates as a global problem that demands an urgent solution. Promoted by policymakers, academia, and corporations alike, the circular economy model presents a viable path to reach more sustainable levels of development. Emerging and disruptive technologies can catalyse the transition to a circular economy, but their application to the transition of the plastic materials realm is not fully understood. Based on a systematic review of the literature, this paper aims to understand the role of key emerging technologies in the transition towards a circular economy in the plastic materials value chain, their potential impact, as well as the barriers of adoption and diffusion. Employing the ReSOLVE framework, the analysis reveals that rather than individual technologies, four technology sets associated with Industry 4.0, distributed economies, bio-based systems, and chemical recycling stand as major enablers of this transition. The complementarity of technologies and the change needed from a systemic perspective are discussed along with a proposal for governance and practical implementation pathway to overcome barriers and resistance to the transition.
Collapse
Affiliation(s)
| | - Fredric Bauer
- Environmental and Energy Systems Studies, Lund University, Lund, Sweden
- CIRCLE – Centre for Innovation Research, Lund University, Lund, Sweden
| | - Cristina Chaminade
- CIRCLE – Centre for Innovation Research, Lund University, Lund, Sweden
- Department of Economic History, Lund University, Lund, Sweden
- Department of Business and Management, Aalborg University, Aalborg, Denmark
| |
Collapse
|
21
|
Influence of olive mill waste phenolic compounds levels on carotenoid production by Rhodotorula spp. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Ubando AT, Anderson S Ng E, Chen WH, Culaba AB, Kwon EE. Life cycle assessment of microalgal biorefinery: A state-of-the-art review. BIORESOURCE TECHNOLOGY 2022; 360:127615. [PMID: 35840032 DOI: 10.1016/j.biortech.2022.127615] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Microalgal biorefineries represent an opportunity to economically and environmentally justify the production of bioproducts. The generation of bioproducts within a biorefinery system must quantitatively demonstrate its viability in displacing traditional fossil-based refineries. To this end, several works have conducted life cycle analyses on microalgal biorefineries and have shown technological bottlenecks due to energy-intensive processes. This state-of-the-art review covers different studies that examined microalgal biorefineries through life cycle assessments and has identified strategic technologies for the sustainable production of microalgal biofuels through biorefineries. Different metrics were introduced to supplement life cycle assessment studies for the sustainable production of microalgal biofuel. Challenges in the comparison of various life cycle assessment studies were identified, and the future design choices for microalgal biorefineries were established.
Collapse
Affiliation(s)
- Aristotle T Ubando
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Center for Engineering and Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Thermomechanical Laboratory, De La Salle University, Laguna Campus, LTI Spine Road, Laguna Blvd, Biñan, Laguna 4024, Philippines
| | - Earle Anderson S Ng
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| | - Alvin B Culaba
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Center for Engineering and Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
23
|
Peredo-Mancilla D, Matei Ghimbeu C, Réty B, Ho BN, Pino D, Vaulot C, Hort C, Bessieres D. Surface-Modified Activated Carbon with a Superior CH 4/CO 2 Adsorption Selectivity for the Biogas Upgrading Process. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Deneb Peredo-Mancilla
- Department of Fisheries, Universidad Autónoma de Baja California Sur, La Paz 23080, Mexico
- CNRS/Total/Univ Pau & Pays Adour/E2S UPPA, Laboratoire des Fluides Complexes et Leurs Reservoirs-IPRA, UMRS5150, 64000 Pau, France
| | - Camelia Matei Ghimbeu
- Institut de Science des Matériaux de Mulhouse (IS2M) UMR 7361, Université de Haute-Alsace, CNRS, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Bénédicte Réty
- Institut de Science des Matériaux de Mulhouse (IS2M) UMR 7361, Université de Haute-Alsace, CNRS, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Bich-Ngoc Ho
- CNRS/Total/Univ Pau & Pays Adour/E2S UPPA, Laboratoire des Fluides Complexes et Leurs Reservoirs-IPRA, UMRS5150, 64000 Pau, France
- Université Pau & Pays Adour/E2S UPPA, Laboratoire de Thermique, Energetique et Procedes-IPRA, EA1932, 64000 Pau, France
| | - David Pino
- CNRS/Total/Univ Pau & Pays Adour/E2S UPPA, Laboratoire des Fluides Complexes et Leurs Reservoirs-IPRA, UMRS5150, 64000 Pau, France
| | - Cyril Vaulot
- Institut de Science des Matériaux de Mulhouse (IS2M) UMR 7361, Université de Haute-Alsace, CNRS, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Cécile Hort
- Université Pau & Pays Adour/E2S UPPA, Laboratoire de Thermique, Energetique et Procedes-IPRA, EA1932, 64000 Pau, France
| | - David Bessieres
- CNRS/Total/Univ Pau & Pays Adour/E2S UPPA, Laboratoire des Fluides Complexes et Leurs Reservoirs-IPRA, UMRS5150, 64000 Pau, France
| |
Collapse
|
24
|
Rodrigues RP, Gando-Ferreira LM, Quina MJ. Increasing Value of Winery Residues through Integrated Biorefinery Processes: A Review. Molecules 2022; 27:molecules27154709. [PMID: 35897883 PMCID: PMC9331683 DOI: 10.3390/molecules27154709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
The wine industry is one of the most relevant socio-economic activities in Europe. However, this industry represents a growing problem with negative effects on the environment since it produces large quantities of residues that need appropriate valorization or management. From the perspective of biorefinery and circular economy, the winery residues show high potential to be used for the formulation of new products. Due to the substantial quantities of phenolic compounds, flavonoids, and anthocyanins with high antioxidant potential in their matrix, these residues can be exploited by extracting bioactive compounds before using the remaining biomass for energy purposes or for producing fertilizers. Currently, there is an emphasis on the use of new and greener technologies in order to recover bioactive molecules from solid and liquid winery residues. Once the bio compounds are recovered, the remaining residues can be used for the production of energy through bioprocesses (biogas, bioethanol, bio-oil), thermal processes (pyrolysis, gasification combustion), or biofertilizers (compost), according to the biorefinery concept. This review mainly focuses on the discussion of the feasibility of the application of the biorefinery concept for winery residues. The transition from the lab-scale to the industrial-scale of the different technologies is still lacking and urgent in this sector.
Collapse
|
25
|
Caballero-Guerrero B, Garrido-Fernández A, Fermoso FG, Rodríguez-Gutierrez G, Fernández-Prior MÁ, Reinhard C, Nyström L, Benítez-Cabello A, Arroyo-López FN. Antimicrobial effects of treated olive mill waste on foodborne pathogens. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Lim YF, Chan YJ, Abakr YA, Sethu V, Selvarajoo A, Singh A, Lee J, Gareth M. Evaluation of potential feedstock for biogas production via anaerobic digestion in Malaysia: kinetic studies and economics analysis. ENVIRONMENTAL TECHNOLOGY 2022; 43:2492-2509. [PMID: 33502966 DOI: 10.1080/09593330.2021.1882587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
As the population increases, energy demands continue to rise rapidly. In order to satisfy this increasing energy demand, biogas offers a potential alternative. Biogas is economically viable to be produced through anaerobic digestion (AD) from various biomass feedstocks that are readily available in Malaysia, such as food waste (FW), palm oil mill effluent (POME), garden waste (GW), landfill, sewage sludge (SS) and animal manure. This paper aims to determine the potential feedstocks for biogas production via AD based on their characteristics, methane yield, kinetic studies and economic analysis. POME and FW show the highest methane yield with biogas yields up to 0.50 L/g VS while the lowest is 0.12 L/g VS by landfill leachate. Kinetic study shows that modified Gompertz model fits most of the feedstock with R 2 up to 1 indicating that this model can be used for estimating treatment efficiencies of full-scale reactors and performing scale-up analysis. The economic analysis shows that POME has the shortest payback period (PBP), highest internal rate of return (IRR) and net present value (NPV). However, it has already been well explored, with 93% of biogas plants in Malaysia using POME as feedstock. The FW generation rate in Malaysia is approximately 15,000 tonnes per day, at the same time FW as the second place shows potential to have a PBP of 5.4 years and 13.3% IRR, which is close to the results achieved with POME. This makes FW suitable to be used as the feedstock for biogas production.
Collapse
Affiliation(s)
- Yik Fu Lim
- Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Yi Jing Chan
- Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Yousif Abdalla Abakr
- Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Vasanthi Sethu
- Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Anurita Selvarajoo
- Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Ajit Singh
- Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Junyan Lee
- Tex Cycle (P2) Sdn. Bhd, Port Klang, Selangor, Malaysia
| | - Milton Gareth
- Ricardo UK Ltd, Shoreham Technical centre, West Sussex, UK
| |
Collapse
|
27
|
Erinle TJ, Adewole DI. Fruit pomaces-their nutrient and bioactive components, effects on growth and health of poultry species, and possible optimization techniques. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:357-377. [PMID: 35600557 PMCID: PMC9110891 DOI: 10.1016/j.aninu.2021.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
The ever-growing human population, coupled with the exigent need to meet the increasing demand for poultry meat and egg, has put the onus on poultry nutritionists and farmers to identify alternative feed ingredients that could assure the least-cost feed formulation. In addition, the public desire for non-antibiotic-treated poultry products has also necessitated the ultimate search for potent antibiotic alternatives for use in poultry production. While some identified alternatives are promising, their cost implications and technical know-how requirements may discourage their ease of adoption in poultry. The use of plants and/or their by-products, like fruit pomaces, present a pocket-friendly advantage and as a result, are gaining much interest. This is traceable to their rich phytochemical profile, nutritional composition, ready availability, and relatively cheap cost. The fruit juice and wine pressing industries generate a plethora of fruit wastes annually. Interestingly, fruit pomaces contain appreciable dietary fibre, protein, and phenolic compounds, and thus, their adoption could serve the poultry industry in dual capacities including as substitutes to antibiotics and some conventional feedstuff. Thus, there is a possibility to reduce fruit wastes produced and feed-cost in poultry farming from environmental and economical standpoints, respectively. This review seeks to provide reinforcing evidence on the applicability and impact of fruit pomaces in poultry nutrition.
Collapse
Affiliation(s)
- Taiwo J Erinle
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| | - Deborah I Adewole
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| |
Collapse
|
28
|
Srivastava V, Balakrishnan M. Phytochemicals from fruit and vegetable waste generated in hotels: Optimization of recovery procedure and potential for value-addition. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 144:401-410. [PMID: 35452948 DOI: 10.1016/j.wasman.2022.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Fifteen star-category hotels in the National Capital Region of India were surveyed to assess the mixed fruit and vegetable waste generated. Based on the survey, a model mixed waste was prepared and used to identify the optimal procedure for recovery of bioactive phytochemicals and Trolox equivalent antioxidant capacity (TEAC) followed by preliminary identification of phytochemical constituents. The optimization procedure was done over (i) level I focusing on sample type (fresh, oven dried, vacuum dried), extraction technique (maceration, ultrasound assisted extraction), removal of interfering components by treatment with dichloromethane (DCM) and extraction in different solvents, and (ii) level II focusing on solvent concentration and extraction time, in both non DCM and DCM treated samples. The model mixed waste consisted of peels of pineapple, papaya, potato, pomegranate, apple, onion and citrus. The optimal conditions for recovery of phytochemicals and TEAC were non DCM treated vacuum dried samples subjected to ultrasonic assisted extraction for 60 min using ∼ 63% acetone. This resulted in recovery of appreciable amounts of total extractable phytochemicals consisting of polyphenols and flavonoids as the major components with relatively smaller amounts of flavones and flavanols. High TEAC values were obtained with both aqueous phase (ABTS) and organic phase (DPPH) assays. Preliminary investigation revealed the presence of various high-value compounds particularly gallic acid, ferulic acid, rutin and catechin in the phytochemicals extract. Consequently, there is significant potential to recover value-added phytochemicals from mixed fruit and vegetable waste from hotels contributing towards a circular bioeconomy.
Collapse
Affiliation(s)
- Varsha Srivastava
- Department of Energy and Environment, TERI School of Advanced Studies, Vasant Kunj, New Delhi 110070, India.
| | - Malini Balakrishnan
- The Energy and Resources Institute (TERI), Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110003, India
| |
Collapse
|
29
|
Bio-refinery of plant drinks press cake permeate using ultrafiltration and lactobacillus fermentation into antimicrobials and its effect on the growth of wheatgrass in vivo. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Awasthi MK, Sindhu R, Sirohi R, Kumar V, Ahluwalia V, Binod P, Juneja A, Kumar D, Yan B, Sarsaiya S, Zhang Z, Pandey A, Taherzadeh MJ. Agricultural waste biorefinery development towards circular bioeconomy. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2022; 158:112122. [DOI: 10.1016/j.rser.2022.112122] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
31
|
Ribeiro TB, Voss GB, Coelho MC, Pintado ME. Food waste and by-product valorization as an integrated approach with zero waste: Future challenges. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00017-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
32
|
The Antidiabetic Effect of Grape Pomace Polysaccharide-Polyphenol Complexes. Nutrients 2021; 13:nu13124495. [PMID: 34960047 PMCID: PMC8709276 DOI: 10.3390/nu13124495] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most prevalent chronic metabolic diseases of the 21st century. Nevertheless, its prevalence might be attenuated by taking advantage of bioactive compounds commonly found in fruits and vegetables. This work is focused on the recovery of polyphenols and polysaccharide–polyphenol conjugates from grape pomace for T2DM management and prevention. Bioactives were extracted by solid–liquid extraction and by pressurized hot water extraction (PHWE). Polyphenolic fraction recovered by PHWE showed the highest value for total phenolic content (427 μg GAE.mg−1), mainly anthocyanins and proanthocyanidins, and higher antioxidant activity compared to the fraction recovered by solid–liquid extraction. Polysaccharide–polyphenol conjugates comprehended pectic polysaccharides to which approximately 108 μg GAE of phenolic compounds (per mg fraction) were estimated to be bound. Polyphenols and polysaccharide–polyphenol conjugates exhibited distinct antidiabetic effects, depending on the extraction methodologies employed. Extracts were particularly relevant in the inhibition of a-glucosidase activity, with free polyphenols showing an IC50 of 0.47 μg.mL−1 while conjugates showed an IC50 of 2.7, 4.0 and 5.2 μg.mL−1 (solid–liquid extraction, PHWE at 95 and 120 °C, respectively). Antiglycation effect was more pronounced for free polyphenols recovered by PHWE, while the attenuation of glucose uptake by Caco-2 monolayers was more efficient for conjugates obtained by PHWE. The antidiabetic effect of grape pomace bioactives opens new opportunities for the exploitation of these agri-food wastes in food nutrition, the next step towards reaching a circular economy in grape products.
Collapse
|
33
|
Value-Added Metabolites from Agricultural Waste and Application of Green Extraction Techniques. SUSTAINABILITY 2021. [DOI: 10.3390/su132011432] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The agricultural sector generates approximately 1300 million tonnes of waste annually, where up to 50% comprising of raw material are discarded without treatment. Economic development and rising living standards have increased the quantity and complexity of waste generated resulting in environmental, health and economic issues. This calls for a greener waste management system such as valorization or recovery of waste into products. For successful implementation, social acceptance is an essential component with involvement of all local stakeholders including community to learn and understand the process and objective of the implementation. The agricultural waste product manufacturing industry is expected to increase with the growing demand for organic food. Thus, proper livestock and crop waste management is vital for environmental protection. It will be essential to successfully convert waste into a sustainable product that is reusable and circulated in the system in line with the green concept of circular economy. This review identifies the commercially produced crops by-product that have been considered for valorization and implemented green extraction for recovery. We highlight the importance of social acceptance and the economic value to agricultural waste recycling. Successful implementation of these technologies will overcome current waste management problems, reduce environmental impacts of landfills, and sustainability issue for farm owners.
Collapse
|
34
|
Dietary Fiber and Prebiotic Compounds in Fruits and Vegetables Food Waste. SUSTAINABILITY 2021. [DOI: 10.3390/su13137219] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The fruits and vegetables processing industry is one of the most relevant food by-products, displaying limited commercial exploitation entailing economic and environmental problems. However, these by-products present a considerable amount of dietary fiber and prebiotics with important biological activities, such as gut microbiota modulation, lowering the glycemic load and replacing some unhealthy ingredients with an impact on food texture. Therefore, the international scientific community has considered incorporating their extracts or powders to preserve or fortify food products an area of interest, mainly because nowadays consumers demand the production of safer and health-promoting foods. In the present review, literature, mainly from the last 5 years, is critically analyzed and presented. A particular focus is given to utilizing the extracted dietary fibers in different food products and their impact on their characteristics. Safety issues regarding fruits and vegetables wastes utilization and anti-nutritional compounds impact were also discussed.
Collapse
|
35
|
Hunter SM, Blanco E, Borrion A. Expanding the anaerobic digestion map: A review of intermediates in the digestion of food waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144265. [PMID: 33422959 DOI: 10.1016/j.scitotenv.2020.144265] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion is a promising technology as a renewable source of energy products, but these products have low economic value and process control is challenging. Identifying intermediates formed throughout the process could enhance understanding and offer opportunities for improved monitoring, control, and valorisation. In this review, intermediates present in the anaerobic digestion process are identified and discussed, including the following: volatile fatty acids, carboxylic acid, amino acids, furans, terpenes and phytochemicals. The key limitations associated with exploiting these intermediates are also addressed including challenging mixed cultures of microbiology, complex feedstocks, and difficult extraction and separation techniques.
Collapse
Affiliation(s)
- Sarah M Hunter
- Department of Civil, Environmental and Geomatic Engineering, University College London, UK
| | - Edgar Blanco
- Anaero Technology Limited, Cowley Road, Cambridge, UK
| | - Aiduan Borrion
- Department of Civil, Environmental and Geomatic Engineering, University College London, UK.
| |
Collapse
|
36
|
Arruda HS, Silva EK, Peixoto Araujo NM, Pereira GA, Pastore GM, Marostica Junior MR. Anthocyanins Recovered from Agri-Food By-Products Using Innovative Processes: Trends, Challenges, and Perspectives for Their Application in Food Systems. Molecules 2021; 26:2632. [PMID: 33946376 PMCID: PMC8125576 DOI: 10.3390/molecules26092632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Anthocyanins are naturally occurring phytochemicals that have attracted growing interest from consumers and the food industry due to their multiple biological properties and technological applications. Nevertheless, conventional extraction techniques based on thermal technologies can compromise both the recovery and stability of anthocyanins, reducing their global yield and/or limiting their application in food systems. The current review provides an overview of the main innovative processes (e.g., pulsed electric field, microwave, and ultrasound) used to recover anthocyanins from agri-food waste/by-products and the mechanisms involved in anthocyanin extraction and their impacts on the stability of these compounds. Moreover, trends and perspectives of anthocyanins' applications in food systems, such as antioxidants, natural colorants, preservatives, and active and smart packaging components, are addressed. Challenges behind anthocyanin implementation in food systems are displayed and potential solutions to overcome these drawbacks are proposed.
Collapse
Affiliation(s)
- Henrique Silvano Arruda
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Eric Keven Silva
- Department of Food Engineering, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
| | - Nayara Macêdo Peixoto Araujo
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Gustavo Araujo Pereira
- School of Food Engineering, Institute of Technology, Federal University of Pará, Augusto Corrêa Street S/N, Belém 66075-110, Brazil;
| | - Glaucia Maria Pastore
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Mario Roberto Marostica Junior
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
| |
Collapse
|
37
|
Fernández-Prior Á, Trujillo-Reyes Á, Serrano A, Rodríguez-Gutiérrez G, Reinhard C, Fermoso FG. Biogas Potential of the Side Streams Obtained in a Novel Phenolic Extraction System from Olive Mill Solid Waste. Molecules 2020; 25:molecules25225438. [PMID: 33233611 PMCID: PMC7699709 DOI: 10.3390/molecules25225438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 11/22/2022] Open
Abstract
The olive oil production is an important industrial sector in many Mediterranean areas, but it is currently struggled by the necessity of a proper valorisation of the olive mill solid waste or alperujo. The alperujo is the main by-product generated during the two-phase olive oil extraction, accounting for up to 80% of the initial olive mass. The alperujo is a source of valuable compounds, such as the pomace olive oil or highly interesting phenolic compounds. In the present research, a novel biorefinery approach has been used for phenolic compounds recovery. However, the extraction of these valuables compounds generates different exhausted phases with high organic matter content that are required to be managed. This study consists of the evaluation of the anaerobic biodegradability of the different fractions obtained in a novel biorefinery approach for the integral valorisation of alperujo. The results show that the different phases obtained during the biorefinery of the alperujo can be effectively subjected to anaerobic digestion and no inhibition processes were detected. The highest methane yield coefficients were obtained for the phases obtained after a two-months storages, i.e., suspended solids and liquid phase free of suspended solids, which generated 366 ± 7 mL CH4/g VS and 358 ± 6 mL CH4/g VS, respectively. The phenol extraction process reduced the methane yield coefficient around 25% due to the retention of biodegradable compounds during the extraction process. Regardless of this drop, the anaerobic digestion is a suitable technology for the stabilization of the different generated residual phases, whereas the high market price of the extracted phenols can largely compensate the slight decrease in the methane generation.
Collapse
Affiliation(s)
- África Fernández-Prior
- Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, km. 1, 41013 Seville, Spain; (Á.F.-P.); (Á.T.-R.); (A.S.); (G.R.-G.)
| | - Ángeles Trujillo-Reyes
- Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, km. 1, 41013 Seville, Spain; (Á.F.-P.); (Á.T.-R.); (A.S.); (G.R.-G.)
| | - Antonio Serrano
- Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, km. 1, 41013 Seville, Spain; (Á.F.-P.); (Á.T.-R.); (A.S.); (G.R.-G.)
- School of Civil Engineering, The University of Queensland, Campus St. Lucia—AEB Ed 49, St. Lucia, QLD 4067, Australia
| | - Guillermo Rodríguez-Gutiérrez
- Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, km. 1, 41013 Seville, Spain; (Á.F.-P.); (Á.T.-R.); (A.S.); (G.R.-G.)
| | - Claudio Reinhard
- Laboratory of Food Biochemistry, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland;
| | - Fernando G. Fermoso
- Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, km. 1, 41013 Seville, Spain; (Á.F.-P.); (Á.T.-R.); (A.S.); (G.R.-G.)
- Correspondence: ; Tel.: +34-954-611-550
| |
Collapse
|
38
|
Green synthesis of metal–organic frameworks: A state-of-the-art review of potential environmental and medical applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213407] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
39
|
Gómez-Brandón M, Lores M, Martínez-Cordeiro H, Domínguez J. Effectiveness of vermicomposting for bioconversion of grape marc derived from red winemaking into a value-added product. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33438-33445. [PMID: 30900119 DOI: 10.1007/s11356-019-04820-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Grape marc, the main solid by-product of the wine industry, can be used as a nutrient-rich organic amendment if treated appropriately before its application into soil. In this study, we evaluated the potential of vermicomposting to process grape marc derived from the red winemaking of Mencía grapes in order to yield a high-quality, polyphenol-free organic vermicompost that could be used as an environmentally friendly fertiliser. We observed that the grape marc from this cultivar appears to be an optimum substrate for feeding earthworms providing optimum conditions for growth and reproduction, and sufficient energy to sustain large populations. Moreover, earthworm activity favoured the stabilisation of the grape marc resulting in a final vermicompost characterised by a higher concentration of macro- and micro-nutrients and a reduced polyphenol content after 112 days of vermicomposting. Lower values of microbial activity, indicative of stabilised materials, were recorded at the end of the process. These findings highlight vermicomposting as an environmentally sound management system for processing grape marc that could easily be scaled up for industrial application.
Collapse
Affiliation(s)
- María Gómez-Brandón
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, E-36310, Vigo, Spain.
| | - Marta Lores
- Laboratorio de Investigación y Desarrollo de Soluciones Analíticas (LIDSA), Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Quimica, Universidade de Santiago de Compostela, Avda das Ciencias s/n, Campus Vida, E-15782, Santiago de Compostela, Spain
| | | | - Jorge Domínguez
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, E-36310, Vigo, Spain
| |
Collapse
|
40
|
Serrano A, Wyn H, Dupont L, Villa-Gomez DK, Yermán L. Self-sustaining treatment as a novel alternative for the stabilization of anaerobic digestate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 264:110544. [PMID: 32250925 DOI: 10.1016/j.jenvman.2020.110544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
Self-sustaining smouldering combustion (SSS) is a technology based on the flameless oxidation of an organic substrate and limited by the rate at which oxygen is diffused to the surface of the substrate. This work aims to evaluate the SSS combustion as a treatment process for the stabilization of anaerobic digestate, determining the limits of operational conditions, (moisture content (MC), air flux) that allow for a self-sustaining process. Maximum possible MC was found at 82 wt% with Darcy air flux of 50 cm/s. The digestate destruction rate (kg/(h·m2), and the addition of sand as an inert solid, to enhance the oxygen diffusion, were also investigated. A sand/substrate mass ratio of 1 allowed for SSS at 85 wt% MC, but decreased the digestate destruction rate. The average composition of the emitted gases showed ca. 25% CO and 10% H2, whereas the analysis of the ashes showed almost complete digestate inertization.
Collapse
Affiliation(s)
- A Serrano
- School of Civil Engineering, The University of Queensland, Brisbane, 4072, Australia; Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, km. 1, Seville, Spain
| | - H Wyn
- School of Civil Engineering, The University of Queensland, Brisbane, 4072, Australia
| | - L Dupont
- Département Génie Énergétique et Environnement, INSA, 69100, Villeurbanne, France
| | - D K Villa-Gomez
- School of Civil Engineering, The University of Queensland, Brisbane, 4072, Australia
| | - L Yermán
- School of Civil Engineering, The University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
41
|
Ahmad B, Yadav V, Yadav A, Rahman MU, Yuan WZ, Li Z, Wang X. Integrated biorefinery approach to valorize winery waste: A review from waste to energy perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137315. [PMID: 32135320 DOI: 10.1016/j.scitotenv.2020.137315] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
The ever-increasing environmental crisis, depleting natural resources, and uncertainties in fossil fuel availability have rekindled researchers' attention to develop green and environmentally friendlier strategies. In this context, a biorefinery approach with a zero-waste theme has stepped-up as the method of choice for sustainable production of an array of industrially important products to address bio-economy challenges. Grape winery results in substantial quantities of solid organic and effluent waste, which epitomizes an increasing concentration of pollution problems with direct damage to human health, economy and nature. From the perspective of integrated biorefinery and circular economy, winery waste could be exploited for multiple purpose value-added products before using the biomass for energy security. This review covers state-of-the-art biorefinery opportunities beyond traditional methods as a solution to overcome many current challenges such as waste minimization in grape leaves, stems, seeds, pomace, wine lees, vinasse etc. and the biosynthesis of various high-value bioproducts viz., phenolic compounds, hydroxybenzoic acids, hydroxycinnamic acids, flavonoids, tartaric acids, lignocellulosic substrates etc.. The critical discussion on the valorization of winery waste (solid, liquid, or gaseous) and life cycle assessment was deployed to find a sustainable solution with value added energy products in an integrated biorefinery approach, keeping the environment and circular economy in the background.
Collapse
Affiliation(s)
- Bilal Ahmad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Ashish Yadav
- ICAR-Central Institute for Sub Tropical Horticulture, Lucknow 226101, U.P., India
| | - Mati Ur Rahman
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Wang Zhong Yuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| |
Collapse
|
42
|
Moccia F, Agustin-Salazar S, Verotta L, Caneva E, Giovando S, D’Errico G, Panzella L, d’Ischia M, Napolitano A. Antioxidant Properties of Agri-food Byproducts |and Specific Boosting Effects of Hydrolytic Treatments. Antioxidants (Basel) 2020; 9:E438. [PMID: 32443466 PMCID: PMC7278820 DOI: 10.3390/antiox9050438] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023] Open
Abstract
Largely produced agri-food byproducts represent a sustainable and easily available source of phenolic compounds, such as lignins and tannins, endowed with potent antioxidant properties. We report herein the characterization of the antioxidant properties of nine plant-derived byproducts. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays indicated the superior activity of pomegranate peels and seeds, grape pomace and pecan nut shell. An increase in the antioxidant potency was observed for most of the waste materials following a hydrolytic treatment, with the exception of the condensed tannin-rich pecan nut shell and grape pomace. UV-Vis and HPLC investigation of the soluble fractions coupled with the results from IR analysis and chemical degradation approaches on the whole materials allowed to conclude that the improvement of the antioxidant properties was due not only to removal of non-active components (mainly carbohydrates), but also to structural modifications of the phenolic compounds. Parallel experiments run on natural and bioinspired model phenolic polymers suggested that these structural modifications positively impacted on the antioxidant properties of lignins and hydrolyzable tannins, whereas significant degradation of condensed tannin moieties occurred, likely responsible for the lowering of the reducing power observed for grape pomace and pecan nut shell. These results open new perspectives toward the exploitation and manipulation of agri-food byproducts for application as antioxidant additives in functional materials.
Collapse
Affiliation(s)
- Federica Moccia
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (F.M.); (G.D.); (M.d.); (A.N.)
| | - Sarai Agustin-Salazar
- Departamento de Ingeniería Química y Metalurgía, Universidad de Sonora, Del Conocimiento, Centro, 83000 Hermosillo, Mexico;
| | - Luisella Verotta
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via G. Celoria 2, I-20133 Milan, Italy;
| | - Enrico Caneva
- Unitech COSPECT, Direzione servizi per la Ricerca, Università degli Studi di Milano, Via C. Golgi 33, I-20133 Milan, Italy;
| | - Samuele Giovando
- Centro Ricerche per la Chimica Fine Srl for Silvateam Spa, Via Torre 7, I-12080 San Michele Mondovì, CN, Italy;
| | - Gerardino D’Errico
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (F.M.); (G.D.); (M.d.); (A.N.)
- CSGI—Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (F.M.); (G.D.); (M.d.); (A.N.)
| | - Marco d’Ischia
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (F.M.); (G.D.); (M.d.); (A.N.)
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy; (F.M.); (G.D.); (M.d.); (A.N.)
| |
Collapse
|
43
|
Panzella L, Moccia F, Nasti R, Marzorati S, Verotta L, Napolitano A. Bioactive Phenolic Compounds From Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front Nutr 2020; 7:60. [PMID: 32457916 PMCID: PMC7221145 DOI: 10.3389/fnut.2020.00060] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Phenolic compounds are broadly represented in plant kingdom, and their occurrence in easily accessible low-cost sources like wastes from agri-food processing have led in the last decade to an increase of interest in their recovery and further exploitation. Indeed, most of these compounds are endowed with beneficial properties to human health (e.g., in the prevention of cancer and cardiovascular diseases), that may be largely ascribed to their potent antioxidant and scavenging activity against reactive oxygen species generated in settings of oxidative stress and responsible for the onset of several inflammatory and degenerative diseases. Apart from their use as food supplements or as additives in functional foods, natural phenolic compounds have become increasingly attractive also from a technological point of view, due to their possible exploitation in materials science. Several extraction methodologies have been reported for the recovery of phenolic compounds from agri-food wastes mostly based on the use of organic solvents such as methanol, ethanol, or acetone. However, there is an increasing need for green and sustainable approaches leading to phenolic-rich extracts with low environmental impact. This review addresses the most promising and innovative methodologies for the recovery of functional phenolic compounds from waste materials that have appeared in the recent literature. In particular, extraction procedures based on the use of green technologies (supercritical fluid, microwaves, ultrasounds) as well as of green solvents such as deep eutectic solvents (DES) are surveyed.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Federica Moccia
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Rita Nasti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Stefania Marzorati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Luisella Verotta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
44
|
Assessment of the microbial interplay during anaerobic co-digestion of wastewater sludge using common components analysis. PLoS One 2020; 15:e0232324. [PMID: 32357180 PMCID: PMC7194399 DOI: 10.1371/journal.pone.0232324] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/12/2020] [Indexed: 12/29/2022] Open
Abstract
Anaerobic digestion (AD) is used to minimize solid waste while producing biogas by the action of microorganisms. To give an insight into the underlying microbial dynamics in anaerobic digesters, we investigated two different AD systems (wastewater sludge mixed with either fish or grass waste). The microbial activity was characterized by 16S RNA sequencing. 16S data is sparse and dispersed, and existent data analysis methods do not take into account this complexity nor the potential microbial interactions. In this line, we proposed a data pre-processing pipeline addressing these issues while not restricting only to the most abundant microorganisms. The data were analyzed by Common Components Analysis (CCA) to decipher the effect of substrate composition on the microorganisms. CCA results hinted the relationships between the microorganisms responding similarly to the AD physicochemical parameters. Thus, in overall, CCA allowed a better understanding of the inter-species interactions within microbial communities.
Collapse
|
45
|
Zhang X, Zhao Y, Meng H, Li L, Cui H, Wei Z, Yang T, Dang Q. Revealing the Inner Dynamics of Fulvic Acid from Different Compost-Amended Soils through Microbial and Chemical Analyses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3722-3728. [PMID: 32129998 DOI: 10.1021/acs.jafc.0c00658] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The formation of fulvic acid (FA), an aromatic compound, is affected by the compost amendment. This study aimed to assess the extent of the humification of FA in soil amended with seven different composts. Results showed that composts improved the FA concentration in soil. Parallel factor (PARAFAC) analysis, combined with hetero-two-dimensional correlation spectroscopy (hetero-2DCOS), indicated that the inner changes in FA components determined the evolution of mineralization. The diversity in the composts used and the dominant microbes present might be responsible for the evolution of different mechanisms of FA transformation. Structural equation models (SEMs) demonstrated that the FA components were transformed directly by microbes, or indirectly via changes in the total organic carbon (TOC) and total nitrogen (TN) contents, C:N ratio, humic substance (HS) levels, and humic acid (HA): FA ratio, which regulate the microbial community structure. Our results will be useful for improving the bioavailability of compost products and realizing sustainable utilization of the soil.
Collapse
Affiliation(s)
- Xu Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hanhan Meng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Liangyu Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianxue Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiuling Dang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
46
|
Qian Y, Dong F, Guo L, Guo J, Shaghaleh H, Wang Y, Xu X, Wang S, Liu S. Preparation and properties of room temperature vulcanized silicone rubber using triethoxy(2-(4-methylcyclohex-3-en-1-yl)propyl)silane as a novel cross-linking agent. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2019.109068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
47
|
Mahato N, Sinha M, Sharma K, Koteswararao R, Cho MH. Modern Extraction and Purification Techniques for Obtaining High Purity Food-Grade Bioactive Compounds and Value-Added Co-Products from Citrus Wastes. Foods 2019; 8:E523. [PMID: 31652773 PMCID: PMC6915388 DOI: 10.3390/foods8110523] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/27/2022] Open
Abstract
Citrus contains a range of highly beneficial bioactive compounds, such as polyphenols, carotenoids, and vitamins that show antimicrobial and antioxidant properties and help in building the body's immune system. On consumption or processing, approximately 50% of the fruit remains as inedible waste, which includes peels, seeds, pulp, and segment residues. This waste still consists of substantial quantities of bioactive compounds that cause environmental pollution and are harmful to the ecosystem because of their high biological oxygen demand. In recent years, citrus cultivation and the production of processed foods have become a major agricultural industry. In addition to being a substantial source of economy, it is an ideal and sustainable and renewable resource for obtaining bioactive compounds and co-products for food and pharmaceutical industries. In the present article, the various methods of extraction, conventional and modern, as well as separation and isolation of individual bioactive compounds from the extraction mixture and their determination have been reviewed. This article presents both aspects of extraction methods, i.e., on a small laboratory scale and on an industrial mass scale. These methods and techniques have been extensively and critically reviewed with anticipated future perspectives towards the maximum utilization of the citrus waste.
Collapse
Affiliation(s)
- Neelima Mahato
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea.
| | - Mukty Sinha
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Palej, Gandhinagar 382 355, India.
| | - Kavita Sharma
- Department of Chemistry, Idaho State University, Pocatello, ID 83209, USA.
| | - Rakoti Koteswararao
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Palej, Gandhinagar 382 355, India.
| | - Moo Hwan Cho
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea.
| |
Collapse
|
48
|
Lappa IK, Papadaki A, Kachrimanidou V, Terpou A, Koulougliotis D, Eriotou E, Kopsahelis N. Cheese Whey Processing: Integrated Biorefinery Concepts and Emerging Food Applications. Foods 2019; 8:E347. [PMID: 31443236 PMCID: PMC6723228 DOI: 10.3390/foods8080347] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 12/27/2022] Open
Abstract
Cheese whey constitutes one of the most polluting by-products of the food industry, due to its high organic load. Thus, in order to mitigate the environmental concerns, a large number of valorization approaches have been reported; mainly targeting the recovery of whey proteins and whey lactose from cheese whey for further exploitation as renewable resources. Most studies are predominantly focused on the separate implementation, either of whey protein or lactose, to configure processes that will formulate value-added products. Likewise, approaches for cheese whey valorization, so far, do not exploit the full potential of cheese whey, particularly with respect to food applications. Nonetheless, within the concept of integrated biorefinery design and the transition to circular economy, it is imperative to develop consolidated bioprocesses that will foster a holistic exploitation of cheese whey. Therefore, the aim of this article is to elaborate on the recent advances regarding the conversion of whey to high value-added products, focusing on food applications. Moreover, novel integrated biorefining concepts are proposed, to inaugurate the complete exploitation of cheese whey to formulate novel products with diversified end applications. Within the context of circular economy, it is envisaged that high value-added products will be reintroduced in the food supply chain, thereby enhancing sustainability and creating "zero waste" processes.
Collapse
Affiliation(s)
- Iliada K Lappa
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Vasiliki Kachrimanidou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece.
- Department of Food and Nutritional Sciences, University of Reading, Berkshire RG6 6AP, UK.
| | - Antonia Terpou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | | | - Effimia Eriotou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece.
| |
Collapse
|
49
|
Trujillo-Reyes Á, Cubero-Cardoso J, Rodríguez-Gutiérrez G, García-Martín JF, Rodríguez-Galán M, Borja R, Serrano A, Fermoso FG. Extraction of phenolic compounds and production of biomethane from strawberry and raspberry extrudates. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
50
|
Zhang X, Ge J, Zhang S, Zhao Y, Cui H, Wei Z, Luo S, Cao J. Bioavailability Evaluation of Dissolved Organic Matter Derived from Compost-Amended Soils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5940-5948. [PMID: 31070909 DOI: 10.1021/acs.jafc.9b01073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, hetero-two-dimensional correlation spectroscopy (hetero-2DCOS) combined with parallel factor analysis (PARAFAC) was employed to reveal the inner changes in the dissolved organic matter (DOM) components derived from soil amended with seven different composts. The dynamics of the four DOM components showed that the fluorescence peaks in each component varied in different directions during mineralization. Structural equation models (SEMs) demonstrated that the compost amendments changed the correlations of the total organic carbon (TOC), total nitrogen (TN), and bacterial community composition with DOM components and strengthened the cooperative function related to transformation of DOM components. The compost sources were further ranked as cabbage waste (CW) > chicken manure (CM), dairy cattle manure (DCM), tomato stem waste (TSW), peat (P) > municipal solid waste (MSW), sewage sludge (SS) by projection pursuit regression (PPR) analysis. It is helpful to improve the bioavailability of compost products to obtain composts with a particular function.
Collapse
Affiliation(s)
- Xu Zhang
- College of Life Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Jingping Ge
- College of Life Science , Heilongjiang University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Shuang Zhang
- College of Life Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Yue Zhao
- College of Life Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Hongyang Cui
- College of Life Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Zimin Wei
- College of Life Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Sheng Luo
- Yi'an County Agricultural Technology Promotion Center , Qiqihar , Heilongjiang 161500 , People's Republic of China
| | - Jinxiang Cao
- Yi'an County Agricultural Technology Promotion Center , Qiqihar , Heilongjiang 161500 , People's Republic of China
| |
Collapse
|