1
|
Hu L, Chen G, Chen J, Zou Z, Qiu Y, Du J, Tong X, Chen J, Yao X, Lin P, He L, Yao Z. Quantitative ternary network-oriented discovery of Q-markers from traditional Chinese medicine prescriptions: Bu-Zhong-Yi-Qi-Tang as a case study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155918. [PMID: 39121536 DOI: 10.1016/j.phymed.2024.155918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND The proposal of Q-markers for traditional Chinese medicine (TCM) represents a novel avenue of research pertaining to the quality control of TCM prescriptions. However, prior exploratory studies on Q-markers with multiple properties consistently neglected the consideration of weights, hampering our ability to accurately gauge the significance of each property and potentially leading to a flawed comprehension of Q-markers. PURPOSE In this study, a quantitative ternary network strategy was firstly proposed to visually discover the Q-markers from TCM prescriptions, and it has been successfully applied into the quality control study of Bu-Zhong-Yi-Qi-Tang (BZYQT), a classical TCM prescription. METHODS Firstly, the contents of 34 components in BZYQT, along with the kinetic features of 17 candidate Q-markers in biosamples (plasma and small intestinal contents), were characterized by UPLC-QqQ-MS/MS, and their immunomodulatory activities in macrophages and splenic lymphocytes were also assessed. Next, the obtained data were integrated into three properties: testability, bioavailability, effectiveness, and their weights were calculated using the entropy weight method to further establish a ternary network for quantitatively screening Q-markers. Subsequently, the identified Q-markers of BZYQT were utilized for the holistic quality evaluation of 36 batches of the commercial BZYQT preparation, Bu-Zhong-Yi-Qi-Pill (BZYQP) produced by three manufacturers, through similarity evaluation of the Q-marker-based fingerprint. RESULTS Nine compounds (hesperidin, astragaloside IV, ononin, 18β-glycyrrhizic acid, narirutin, calycosin, cimigenoside, astragaloside II, and liquiritin) showing three core properties, including testability, bioavailability, and effectiveness, were screened out as Q-markers of BZYQT based on their rankings in terms of regression area of the ternary network. Employing Q-markers as common peaks, the similarity values of 36 batches BZYQP ranged 0.914-0.998 under HPLC-UVD mode, and 0.631-1.000 under HPLC-ELSD mode, which were less than the similarity values evaluated by the conventional common peaks (HPLC-UVD mode: 0.946-0.990; HPLC-ELSD mode: 0.957-0.997). This observation suggests that the identified Q-markers are more representative as common peaks in chromatographic fingerprints for the holistic quality evaluation of TCM-related products from different manufacturers. CONCLUSION The quantitative discovery of Q-markers from BZYQT laid an important foundation for holistic quality assessment of its related commercially available products, and our work offering a new strategy for ensuring the consistency and efficacy of TCM prescriptions.
Collapse
Affiliation(s)
- Liufang Hu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Guotao Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jiali Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Zhenyu Zou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yuan Qiu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jing Du
- Tong Ren Tang Technologies Co. Ltd, Beijing 100079, China
| | - Xupeng Tong
- Hangzhou Chenfeng Qingxing Technology Co., Ltd, Hangzhou, China
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Xinsheng Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Pei Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China.
| | - Liangliang He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China.
| | - Zhihong Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Fan Z, Li L, Cui Y, Tang X, Shen G, Feng B, Guan J, Zhu H. Identification of the absorbed constituents and metabolites of Huangqi Guizhi Wuwu decoction by ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Biomed Chromatogr 2024; 38:e5783. [PMID: 38014563 DOI: 10.1002/bmc.5783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
Huangqi Guizhi Wuwu decoction (HGWWD) is a widely used traditional Chinese medicine (TCM) preparation for the treatment of ischemic stroke and diabetes peripheral neuropathy. However, the material basis for the efficacy of HGWWD remains unclear. In this study, a rapid, sensitive and selective ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) method was developed to separate and identify the absorbed components and metabolites of HGWWD in rat plasma after oral administration for the first time. By comparing the retention time, high-resolution mass spectrometry primary and secondary mass spectrometry data of blank plasma and drug-containing plasma, a total of 42 constituents, including 24 prototype compounds and 18 metabolites, were identified or tentatively characterized. The results indicated that monoterpenes, flavonoids, organic acids, amino acids, gingerols and alkaloids were main prototype compounds in rat plasma, and flavonoid-related metabolites, organic acid-related metabolites and gingerol-related metabolites were major metabolites. It is concluded the developed UHPLC-Q-TOF-MS method with high sensitivity and resolution is suitable for identifying and characterizing the absorbed components and metabolites of HGWWD, and the results will provide important data for further study on the relationship between the chemical constituents and pharmacological activities of HGWWD.
Collapse
Affiliation(s)
- Zhuoyu Fan
- School of Pharmacy, Jilin Medical University, Jilin, Jilin, P. R. China
- School of Pharmacy, Yanbian University, Jilin, Yanji, P. R. China
| | - Lele Li
- School of Pharmacy, Jilin Medical University, Jilin, Jilin, P. R. China
| | - Yue Cui
- School of Pharmacy, Jilin Medical University, Jilin, Jilin, P. R. China
| | - Xinmiao Tang
- School of Pharmacy, Jilin Medical University, Jilin, Jilin, P. R. China
- School of Pharmacy, Yanbian University, Jilin, Yanji, P. R. China
| | - Guanghai Shen
- School of Pharmacy, Yanbian University, Jilin, Yanji, P. R. China
| | - Bo Feng
- School of Pharmacy, Jilin Medical University, Jilin, Jilin, P. R. China
| | - Jiao Guan
- School of Pharmacy, Jilin Medical University, Jilin, Jilin, P. R. China
| | - Heyun Zhu
- School of Pharmacy, Jilin Medical University, Jilin, Jilin, P. R. China
| |
Collapse
|
3
|
Wang Q, Chen T, La M, Song Z, Gao M, Yang T, Li Y, He L, Zou D. Activity labelled molecular networking fuels the antioxidation active molecules profile of Ginger. Food Chem 2023; 424:136343. [PMID: 37229896 DOI: 10.1016/j.foodchem.2023.136343] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/29/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Ginger has been used as consumed food spice and folk medicine in daily life for thousands of years in various regions of the world. Considerable antioxidation is one of the major activities for Ginger to exhibit health-promoting effects. In this study, a bioinformatic workflow was developed to generate activity labelled molecular networking (ALMN) to fuel the antioxidation active molecules profile of Ginger. In ALMN, antioxidation activity data, which was defined as correlation (r and p value) between the relative abundance of a molecule in fractions and the activity level of each fraction, was labelled to feature-based molecular network to profile out antioxidation active molecules visually. Fragmentation tree was further computed as a complementary way to conduct high confidence structure annotations of antioxidation active molecules. Consequently, 48 molecules were prioritized as antioxidation active molecules from 11,720 metabolite molecules of Ginger in a systematical way.
Collapse
Affiliation(s)
- Qiqi Wang
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Tao Chen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China
| | - Mencuo La
- School of Life Science, Qinghai Normal University, Xining 810000, PR China
| | - Zhibo Song
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China
| | - Mengze Gao
- School of Life Science, Qinghai Normal University, Xining 810000, PR China
| | - Tingqin Yang
- School of Life Science, Qinghai Normal University, Xining 810000, PR China
| | - Yulin Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China.
| | - Liangliang He
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| | - Denglang Zou
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China; School of Life Science, Qinghai Normal University, Xining 810000, PR China.
| |
Collapse
|
4
|
Li J, Wang Q, Wang Y, La M, Mian R, He L, Suonan J, Zou D. An efficient strategy for large-scale preparation of low polarity gingerols directly from ginger crude extract by high-speed countercurrent chromatography with different rotation mode. J Sep Sci 2023; 46:e2300320. [PMID: 37541285 DOI: 10.1002/jssc.202300320] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/01/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023]
Abstract
This study presents an efficient strategy for large-scale preparation of low polarity gingerols directly from ginger crude extract by high-speed countercurrent chromatography with different rotation mode. The ultrasonic-assisted extraction conditions were optimized by response surface methodology and the results showed the major low polarity gingerols could be well enriched under the optimized extraction conditions. Then the crude extract without any pretreatment was directly separated by high-speed countercurrent chromatography with different rotation mode using n-hexane/ethyl acetate/methanol/water (6:4:6:4, v/v/v/v) as the solvent system. In about 400 min, five major gingerols including 150 mg of [6]-gingerol, 50 mg of [8]-gingerol, 20 mg of [6]-shogaol, 43 mg of [6]-dehydrogingerdione, and 40 mg of [10]-gingerol were obtained from 1.2 g of crude extract in a single run with repeated injection. Their structures were identified by 1 H-NMR spectroscopy.
Collapse
Affiliation(s)
- Jisheng Li
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, P. R. China
| | - Qiqi Wang
- College of Pharmacy, Jinan University, Guangzhou, P. R. China
| | - Yao Wang
- School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Mencuo La
- School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Ruisha Mian
- School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Liangliang He
- College of Pharmacy, Jinan University, Guangzhou, P. R. China
| | - Ji Suonan
- School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Denglang Zou
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, P. R. China
- College of Pharmacy, Jinan University, Guangzhou, P. R. China
- School of Life Science, Qinghai Normal University, Xining, P. R. China
| |
Collapse
|
5
|
Ma X, Wang Q, Liu C, Liu J, Luo G, He L, Yuan T, He RR, Yao Z. Regulation of phospholipid peroxidation signaling by a traditional Chinese medicine formula for coronary heart disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154749. [PMID: 36931097 DOI: 10.1016/j.phymed.2023.154749] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Phospholipid peroxidation signaling was recently revealed as a novel pathological mechanism of coronary heart disease (CHD), and small molecules involved in this redox-metabolic pathway are suggested as the potential anti-CHD drugs. Danlou Tablet (DLT), a famous traditional Chinese medicine (TCM) formula characterized by multi-component and multi-target regulation, is widely used in the clinical treatment of CHD by regulating lipid metabolism. However, little information is available addressing the corresponding pharmacological mechanisms and associated active components of DLT. PURPOSE To study whether phospholipid peroxidation involves a novel mechanism of DLT for the therapeutic effect of CHD and to explain the essential active components. METHODS Firstly, the HPLC fingerprint was constructed to ensure the controllability of the quality of DLT. Then, a CHD animal model with the characteristics of lipid disorder and myocardial ischemia was established by a high-fat diet (HFD) combined with left anterior descending coronary artery (LAD) ligation. The therapeutic effect of DLT was further evaluated based on the results of the rat survival rate, cardiac function, cardiac histopathology, and myocardial ischemia indicators. Correspondingly, whether DLT can regulate the key indicators (ALOX15, GPX4, MDA, GSH, and NADPH) of the phospholipid peroxidation pathway was investigated, and Alox15-/- mice have been applied to confirm the mechanism of DLT. Finally, the target-mediated characterization strategy based on ALOX15, including the integration of in vivo component characterization, network pharmacology, molecular docking analysis, and activity verification, has been further implemented to reveal the key bio-active components in DLT. RESULTS In this study, a high-fat diet (HFD) combined with left anterior descending coronary artery (LAD) ligation was utilized to generate a CHD model, and DLT significantly improved the cardiac dysfunction and reduced the myocardial cell death susceptibility. Further results revealed that DLT reversed the protein expression of ALOX15 and GPX4, the key proteins of phospholipid peroxidation pathways, which subsequently influenced the parameters of phospholipid peroxidation (MDA, GSH, and NADPH). The ALOX15 knockout transgenic animal model confirmed that Alox15-/- mice lost their cardioprotective effects with DLT, suggesting that DLT exerted therapeutic effects on CHD by regulating ALOX15-mediated phospholipid peroxidation. Finally, the target-mediated characterization strategy identified that daidzein is an active component in DLT against CHD by modulating ALOX15. CONCLUSION Innovatively, ALOX15-mediated phospholipid peroxidation was identified as one of the critical mechanisms of DLT exerting cardioprotective effects. Our findings elucidate a novel mechanism of DLT and provide some new drug evaluation targets and therapeutic strategies for CHD.
Collapse
Affiliation(s)
- Xiaohui Ma
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China; Key Laboratory of High Incidence Diseases in Xinjiang Region, Ministry of Education (MOE), Xinjiang Medical University, Urumqi 830054, China
| | - Qi Wang
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China
| | - Chunyu Liu
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China
| | - Jianghanzi Liu
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China
| | - Ganqing Luo
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China
| | - Liangliang He
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China.
| | - Tianhui Yuan
- Department of Cardiology, International Medical Services, The Clinical Research Ward (Geriatrics), The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China.
| | - Zhihong Yao
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
He L, Duan H, Chen X, Chen Y, Mo Q, Huang J, Zhao H, Yao X, Chen J, Yao Z. Quality assessment of commercial dried ginger (Zingiber officinale Roscoe) based on targeted and non-targeted chemical profiles and anti-inflammatory activity. Food Res Int 2023; 166:112589. [PMID: 36914321 DOI: 10.1016/j.foodres.2023.112589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Dried ginger, a well-known medicine and food homologous production, has been widely circulated in China with high health benefits and economic value. Currently, there is still a lack of quality assessment on whether dried ginger in China exhibits chemically and biologically distinct properties, which creates a barrier to its quality control in commercial circulation. In this study, the chemical characteristics of 34 batches of common dried ginger samples in China were first explored using non-targeted chemometrics based on the UPLC-Q/TOF-MS analysis, leading to the identification of 35 chemicals that contributed to clustering into two categories, with sulfonated conjugates being the key chemically distinct components. By comparing the samples before and after sulfur-containing treatment and the further synthesis of a key differentiating component of [6]-gingesulfonic acid, it was then demonstrated that sulfur-containing treatment was the primary cause of the formation of sulfonated conjugates, as opposed to regional or environmental factors. Furthermore, the anti-inflammatory efficacy of dried ginger with high presence of sulfonated conjugates was significantly decreased. Consequently, for the first time, UPLC-QqQ-MS/MS was used to develop a targeted quantification method for 10 characteristic chemicals in dried ginger, allowing researchers to quickly determine whether dried ginger has been processed with sulfur and quantitatively evaluate the quality of dried ginger. These results provided an insight into the quality of commercial dried ginger in China and a suggested method for its quality supervision as well.
Collapse
Affiliation(s)
- Liangliang He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Huifang Duan
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xintong Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yuanshan Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qingmei Mo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Junqing Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Huinan Zhao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xinsheng Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Zhihong Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
7
|
Bai R, Sun J, Qiao X, Zheng Z, Li M, Zhang B. Hot Air Convective Drying of Ginger Slices: Drying Behaviour, Quality Characteristics, Optimisation of Parameters, and Volatile Fingerprints Analysis. Foods 2023; 12:foods12061283. [PMID: 36981210 PMCID: PMC10047944 DOI: 10.3390/foods12061283] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Ginger is one of the most popular spices and medical herbs with its unique pungent flavour and taste. Although there has been much research into the drying methods of ginger, the effect of drying parameters in hot air convective drying on ginger quality needs to be explored in depth. This study investigated the differences in drying behaviour and quality characteristics of ginger with the variables of temperature, thickness, and loading density. The moisture states and diffusion pattern in the different stages during the drying process were analysed using low-field NMR techniques. The results of quality evaluation showed that the temperature greatly influenced the colour and gingerol content of dried ginger, and the thickness of a ginger slice greatly influenced the rehydration rate. Optimal drying conditions were determined by considering a combination of specific energy consumptions with quality retention based on the response surface methodology: a temperature of 66.41 °C, thickness of 2 mm, and loading density of 5 kg/m2. HS-GC-IMS combined with multivariate chemometrics was used to achieve the characterisation of flavour profiles and fingerprinting of dried ginger. The principal component analysis and correlation analysis revealed that the alterations in ginger quality were intimately related to moisture diffusion during drying.
Collapse
Affiliation(s)
- Ruoxi Bai
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, No. 61, Daizong Road, Tai’an 271018, China
| | - Jieru Sun
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, No. 61, Daizong Road, Tai’an 271018, China
| | - Xuguang Qiao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, No. 61, Daizong Road, Tai’an 271018, China
| | - Zhenjia Zheng
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, No. 61, Daizong Road, Tai’an 271018, China
| | - Meng Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, No. 61, Daizong Road, Tai’an 271018, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Correspondence: (M.L.); (B.Z.)
| | - Bin Zhang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, No. 61, Daizong Road, Tai’an 271018, China
- Correspondence: (M.L.); (B.Z.)
| |
Collapse
|
8
|
Chen C, Chen X, Mo Q, Liu J, Yao X, Di X, Qin Z, He L, Yao Z. Cytochrome P450 metabolism studies of [6]-gingerol, [8]-gingerol, and [10]-gingerol by liver microsomes of humans and different species combined with expressed CYP enzymes. RSC Adv 2023; 13:5804-5812. [PMID: 36816071 PMCID: PMC9933181 DOI: 10.1039/d2ra06184h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/03/2023] [Indexed: 02/18/2023] Open
Abstract
Gingerols, mainly [6]-gingerol (6G), [8]-gingerol (8G), and [10]-gingerol (10G), are the functional and specific pungent phytochemicals in ginger. However, poor oral bioavailability limits their applications owing to extensive metabolism. The present study aims to characterize the cytochrome P450 (CYP) metabolic characteristics of 6G, 8G, and 10G by using pooled human liver microsomes (HLM), different animal liver microsomes, and the expressed CYP enzymes. It is shown that NADPH-dependent oxidation and hydrogenation metabolisms of gingerols are the main metabolic types in HLM. With the increase of the carbon chain, the polarity of gingerols decreases and the formation of hydrogenated metabolites is more efficient (CLint: 1.41 μL min-1 mg-1 for 6G, 7.79 μL min-1 mg-1 for 8G and 14.11 μL min-1 mg-1 for 10G), indicating that the phase I metabolism of gingerols by HLM varied with the chemical structure of the substrate. The phase I metabolism of gingerols revealed considerable species variations, and compared to HLM, novel metabolites such as (3S,5S)-gingerdiols and demethylated metabolites are generated in some animal liver microsomes. The primary enzymes involved in the oxidized and demethylated metabolism of these gingerols are CYP1A2 and CYP2C19, but their affinities for gingerols are not the same. CYP2D6 and CYP2B6 contributed significantly to the formation of (3R,5S)-[8]-gingerdiol and (3R,5S)-[10]-gingerdiol, respectively; however, the enzyme responsible for the production of (3R,5S)-[6]-gingerediol is yet to be identified. Some metabolites in microsomes cannot be detected by the 12 investigated CYP enzymes, which may be related to the combined effects of multiple enzymes in microsomes, the different affinity of mixed liver microsomes and CYP enzymes, gene polymorphisms, etc. Overall, this work provides a deeper knowledge of the influence of CYP metabolism on the gingerols, as well as the mode of action and the possibility for drug-herbal interactions.
Collapse
Affiliation(s)
- Chanjuan Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Ministry of Education of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/College of Pharmacy, Jinan University Guangzhou 510632 China
| | - Xintong Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Ministry of Education of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/College of Pharmacy, Jinan University Guangzhou 510632 China
| | - Qingmei Mo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Ministry of Education of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/College of Pharmacy, Jinan University Guangzhou 510632 China
| | - Jie Liu
- School of Pharmacy, Shenyang Pharmaceutical University103 Wenhua RoadShenyang 110016China
| | - Xinsheng Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Ministry of Education of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/College of Pharmacy, Jinan University Guangzhou 510632 China
| | - Xin Di
- School of Pharmacy, Shenyang Pharmaceutical University103 Wenhua RoadShenyang 110016China
| | - Zifei Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052 P. R. China
| | - Liangliang He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Ministry of Education of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/College of Pharmacy, Jinan University Guangzhou 510632 China
| | - Zhihong Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Ministry of Education of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/College of Pharmacy, Jinan University Guangzhou 510632 China .,Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Jinan University Guangzhou 510632 P. R. China
| |
Collapse
|
9
|
Hu L, Yamamoto M, Chen J, Duan H, Du J, He L, Shi D, Yao X, Nagai T, Kiyohara H, Yao Z. Integrating network pharmacology and experimental verification to decipher the immunomodulatory effect of Bu-Zhong-Yi-Qi-Tang against poly (I:C)-induced pulmonary inflammation. Front Pharmacol 2022; 13:1015486. [DOI: 10.3389/fphar.2022.1015486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary inflammation caused by respiratory tract viral infections is usually associated with acute exacerbation of respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Therefore, maintaining the pulmonary immune homeostasis is particular important for prevention of the acute exacerbation. Bu-Zhong-Yi-Qi-Tang (BZYQT), a traditional Chinese medicine formula, has been broadly used to improve respiratory and gastrointestinal disorders in China for over 700 years. Previously, we have found the regulatory activity of BZYQT on the lower respiratory immune system, while its potential effects during pulmonary inflammation remain unknown. Thus, the current study focused on deciphering its immunomodulatory effect and potential mechanism against pulmonary inflammation by using a viral RNA analogue, poly (I:C), induced murine pulmonary inflammation model and BEAS-2B cell model coupled with network pharmacology. Inflammatory cells in the bronchoalveolar lavage fluid were counted through microscope examination according to the cell’s morphology and staining characteristics; protein and gene levels of inflammatory mediators were determined with Elisa and quantitative PCR, respectively; network pharmacology was conducted based on 46 BZYQT-related potential bioactive components, pulmonary inflammation and immune-related targets. Our results indicated that the recruitment of neutrophils and the expression of Adgre1 (encoding the F4/80, which is a macrophage marker) in the lung induced by poly (I:C) were significantly reduced after BZYQT treatment, and these effects were further demonstrated to be related to the interference of leukocyte transendothelial migration from the decreased levels of CXCL10, IL-6, TNF-α, CXCL2, ICAM-1, VCAM-1, and E/P-selectins. Furthermore, BZYQT inhibited the CXCL10, TNF-α, and IFN-β expression of poly (I:C)-challenged BEAS-2B cells in a dose-dependent manner. Through integrating results from network pharmacology, experiments, and the published literature, isoliquiritigenin, Z-ligustilide, atractylenolide I, atractylenolide III, formononetin, ferulic acid, hesperidin, and cimigenoside were presumed as the bioactive components of BZYQT against pulmonary inflammation. Overall, our findings demonstrated that BZYQT possesses a pronounced immunomodulatory effect on poly (I:C)-induced pulmonary inflammation, which provides a pharmacological basis for BZYQT in the treatment of respiratory disorders.
Collapse
|
10
|
Zhang WH, Luo HY, Fang J, Zhao CL, Chan KC, Chan YM, Dong CX, Chen HB, Zhao ZZ, Li SL, Xu J. Impact of Sulfur Fumigation on Ginger: Chemical and Biological Evidence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12577-12586. [PMID: 36130944 PMCID: PMC9545147 DOI: 10.1021/acs.jafc.2c05710] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/01/2023]
Abstract
We previously found that sulfur fumigation, a commonly used controversial method for the post-harvest handling of ginger, induces the generation of a compound in ginger, which was speculated to be a sulfur-containing derivative of 6-shogaol based on its mass data. However, the chemical and biological properties of the compound remain unknown. As a follow-up study, here we report the chemical structure, systemic exposure, and anticancer activity of the compound. Chromatographic separation, nuclear magnetic resonance analysis, and chemical synthesis structurally elucidated the compound as 6-gingesulfonic acid. Pharmacokinetics in rats found that 6-gingesulfonic acid was more slowly absorbed and eliminated, with more prototypes existing in the blood than 6-shogaol. Metabolism profiling indicated that the two compounds produced qualitatively and quantitatively different metabolites. It was further found that 6-gingesulfonic acid exerted significantly weaker antiproliferative activity on tumor cells than 6-shogaol. The data provide chemical and biological evidence that sulfur fumigation may impair the healthcare functions of ginger.
Collapse
Affiliation(s)
- Wei-Hao Zhang
- School
of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Han-Yan Luo
- School
of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Jing Fang
- School
of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Chen-Liang Zhao
- College
of Pharmacy, Guizhou University of Traditional
Chinese Medicine, Guiyang 550002, China
| | - Kam-Chun Chan
- School
of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yui-Man Chan
- School
of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Cai-Xia Dong
- Tianjin
Key Laboratory on Technologies Enabling Development of Clinical Therapeutics
and Diagnosis, School of Pharmacy, Tianjin
Medical University, Tianjin 300070, China
| | - Hu-Biao Chen
- School
of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Zhong-Zhen Zhao
- School
of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Song-Lin Li
- Department
of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional
Chinese and Western Medicine, Nanjing University
of Chinese Medicine, Nanjing 210028, China
| | - Jun Xu
- School
of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
- Department
of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional
Chinese and Western Medicine, Nanjing University
of Chinese Medicine, Nanjing 210028, China
| |
Collapse
|
11
|
Ooi SL, Pak SC, Campbell R, Manoharan A. Polyphenol-Rich Ginger ( Zingiber officinale) for Iron Deficiency Anaemia and Other Clinical Entities Associated with Altered Iron Metabolism. Molecules 2022; 27:6417. [PMID: 36234956 PMCID: PMC9573525 DOI: 10.3390/molecules27196417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Ginger (Zingiber officinale) is rich in natural polyphenols and may potentially complement oral iron therapy in treating and preventing iron deficiency anaemia (IDA). This narrative review explores the benefits of ginger for IDA and other clinical entities associated with altered iron metabolism. Through in vivo, in vitro, and limited human studies, ginger supplementation was shown to enhance iron absorption and thus increase oral iron therapy's efficacy. It also reduces oxidative stress and inflammation and thus protects against excess free iron. Ginger's bioactive polyphenols are prebiotics to the gut microbiota, promoting gut health and reducing the unwanted side effects of iron tablets. Moreover, ginger polyphenols can enhance the effectiveness of erythropoiesis. In the case of iron overload due to comorbidities from chronic inflammatory disorders, ginger can potentially reverse the adverse impacts and restore iron balance. Ginger can also be used to synthesise nanoparticles sustainably to develop newer and more effective oral iron products and functional ingredients for IDA treatment and prevention. Further research is still needed to explore the applications of ginger polyphenols in iron balance and anaemic conditions. Specifically, long-term, well-designed, controlled trials are required to validate the effectiveness of ginger as an adjuvant treatment for IDA.
Collapse
Affiliation(s)
- Soo Liang Ooi
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia
| | - Sok Cheon Pak
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia
| | - Ron Campbell
- The Oaks Medical Practice, The Oaks, NSW 2570, Australia
| | - Arumugam Manoharan
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
12
|
Screening for the extracorporeal coagulation activity quality markers(Q-markers)of Dried and Stir fried ginger. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Mahoney O, Melo C, Lockhart A, Cornejal N, Alsaidi S, Wu Q, Simon J, Juliani R, Zydowsky TM, Priano C, Koroch A, Fernández Romero JA. Antiviral activity of aframomum melegueta against severe acute respiratory syndrome coronaviruses type 1 and 2. SOUTH AFRICAN JOURNAL OF BOTANY : OFFICIAL JOURNAL OF THE SOUTH AFRICAN ASSOCIATION OF BOTANISTS = SUID-AFRIKAANSE TYDSKRIF VIR PLANTKUNDE : AMPTELIKE TYDSKRIF VAN DIE SUID-AFRIKAANSE GENOOTSKAP VAN PLANTKUNDIGES 2022; 146:735-739. [PMID: 34955582 PMCID: PMC8683269 DOI: 10.1016/j.sajb.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/20/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Plant-based compounds with antiviral properties against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been identified in Aframomum melegueta through computational models. The seed extract have been traditionally used to treat different illnesses. In this study, ethanolic extracts were prepared for six commercial samples of A. melegueta seeds. Antiviral activity was tested using the XTT cytotoxicity assay and cell-based SARS-CoV-1 and 2 pseudoviral models. The presence of gingerols and other non-volatile components in the seed extracts was determined using an Agilent 1290 UPLC/DAD in tandem with an Agilent 6546 QTOF-MS. Our results showed selective antiviral activity with TI values as high as 13.1. Fifteen gingerols were identified by chromatographic analysis, with 6-gingerol being the dominant component in each seed extract. A combination of 6-gingerol with techtochrysin, previously identified in computational models as a potential active ingredient against SARS-CoV-2, demonstrated additive antiviral activity with CI values between 0.8715 and 0.9426. We confirmed the antiviral activity of A. melegueta predicted through computational models and identified a different compound, 6-gingerol, as a potential active ingredient.
Collapse
Key Words
- Antiviral
- CC50, half-maximal cytotoxic concentration
- CI, Combination Index
- COVID-19, Coronavirus disease 2019
- EC50, half-maximal effective concentration
- Gingerols
- METLIM, Metabolomics Database and Library
- PCDL, comprehensive database of metabolites that includes MS/MS spectra
- Phytotherapy
- PsV, pseudovirus
- QTOF/MS, quadrupole technologies with a time-of-flight mass analyser
- SARS-COV-2
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2
- SE, Seed Extract
- TI, Therapeutic index
- UPLC/DAD, ultra-performance liquid chromatography method with diode array detection
- XTT, 2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide
- hACE-2, human angiotensin-converting enzyme 2
Collapse
Affiliation(s)
- Oneil Mahoney
- Science Department, Borough of Manhattan Community College, The City University of New York, NY, 199 Chambers Street, Science Department room N699, New York, NY 10007, USA
| | | | | | | | - Sahar Alsaidi
- Lehman College, The City University of New York, NY USA
| | - Qingli Wu
- Rutgers University, New Brunswick, NJ USA
| | - Jim Simon
- Rutgers University, New Brunswick, NJ USA
| | | | - Thomas M Zydowsky
- Center for Biomedical Research, Population Council, New York, NY USA
| | - Christine Priano
- Science Department, Borough of Manhattan Community College, The City University of New York, NY, 199 Chambers Street, Science Department room N699, New York, NY 10007, USA
| | - Adolfina Koroch
- Science Department, Borough of Manhattan Community College, The City University of New York, NY, 199 Chambers Street, Science Department room N699, New York, NY 10007, USA
| | - José A Fernández Romero
- Science Department, Borough of Manhattan Community College, The City University of New York, NY, 199 Chambers Street, Science Department room N699, New York, NY 10007, USA
- Center for Biomedical Research, Population Council, New York, NY USA
| |
Collapse
|
14
|
Lai W, Yang S, Lin X, Zhang X, Huang Y, Zhou J, Fu C, Li R, Zhang Z. Zingiber officinale: A Systematic Review of Botany, Phytochemistry and Pharmacology of Gut Microbiota-Related Gastrointestinal Benefits. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1007-1042. [PMID: 35729087 DOI: 10.1142/s0192415x22500410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ginger (Zingiber officinale Rosc.) is a traditional edible medicinal herb with a wide range of uses and long cultivation history. Fresh ginger (Zingiberis Recens Rhizoma; Sheng Jiang in Chinese, SJ) and dried ginger (Zingiberis Rhizoma; Gan Jiang in Chinese, GJ) are designated as two famous traditional Chinese herbal medicines, which are different in plant cultivation, appearances and functions, together with traditional applications. Previous researches mainly focused on the differences in chemical composition between them, but there was no systematical comparison on the similarity concerning research achievements of the two herbs. Meanwhile, ginger has traditionally been used for the treatment of gastrointestinal disorders, but so far, the possible interaction with human gut microbiota has hardly been considered. This review comprehensively presents similarities and differences between SJ and GJ retrospectively, particularly proposing them the significant differences in botany, phytochemistry and ethnopharmacology, which can be used as evidence for clinical application of SJ and GJ. Furthermore, the pharmacology of gut microbiota-related gastrointestinal benefits has also been discussed in order to explore better ways to prevent and treat gastrointestinal disorders, which can be used as a reference for further research.
Collapse
Affiliation(s)
- Wenjing Lai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Shasha Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Xia Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Xing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - You Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jingwei Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
- Key Laboratory of Quality Control and Efficacy Evaluation of Traditional Chinese Medicine Formula Granules, Sichuan New Green Medicine Science and Technology Development Co., Ltd., Pengzhou 610081, P. R. China
| |
Collapse
|
15
|
Lan Z, Zhang Y, Sun Y, Wang L, Huang Y, Cao H, Wang S, Meng J. Identifying of Anti-Thrombin Active Components From Curcumae Rhizoma by Affinity-Ultrafiltration Coupled With UPLC-Q-Exactive Orbitrap/MS. Front Pharmacol 2021; 12:769021. [PMID: 34955839 PMCID: PMC8703108 DOI: 10.3389/fphar.2021.769021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/11/2021] [Indexed: 01/14/2023] Open
Abstract
Recent studies concerning products that originate from natural plants have sought to clarify active ingredients, which both explains the mechanisms of the function and aids in quality control during production. As a traditional functional plant, Curcumae Rhizoma (CR) has been proven to be effective in promoting blood circulation and removing blood stasis. However, the components that play a role in its huge compound library are still unclear. The present study aimed to develop a high-throughput screening method to identify thrombin inhibitors in CR and validate them by in vitro and in vivo experiments. The effect of CR on thrombin in HUVECs cells was determined by ELISA, then an affinity-ultrafiltration-UPLC-Q-Exactive Orbitrap/MS approach was applied. Agatroban and adenosine were used as positive and negative drugs respectively to verify the reliability of the established method. The in vitro activity of the compounds was determined by specific substrate S-2238. The in vivo effect of the active ingredients was determined using zebrafish. Molecular docking was used to understand the internal interactions between compounds and enzymes. ELISA results showed that CR had an inhibitory effect on thrombin. The screening method established in this paper is reliable, by which a total of 15 active compounds were successfully identified. This study is the first to report that C7, 8, and 11 have in vitro thrombin-inhibitory activity and significantly inhibit thrombosis in zebrafish models at a safe dose. Molecular docking studies were employed to analyze the possible active binding sites, with the results suggesting that compound 16 is likely a better thrombin inhibitor compared with the other compounds. Based on the affinity-ultrafiltration-UPLC-Q-Exactive Orbitrap/MS approach, a precisely targeted therapy method using bio-active compounds from CR might be successfully established, which also provides a valuable reference for targeted therapy, mechanism exploration, and the quality control of traditional herbal medicine.
Collapse
Affiliation(s)
- Zhenwei Lan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Ying Zhang
- College of Pharmacy, Jinan University, Research Center for Traditional Chinese Medicine of Lingnan, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Yue Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Lvhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Yuting Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Hui Cao
- College of Pharmacy, Jinan University, Research Center for Traditional Chinese Medicine of Lingnan, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Shumei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Jiang Meng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| |
Collapse
|
16
|
Fan S, Li B, Tian Y, Feng W, Niu L. Comprehensive characterization and identification of chemical constituents in Yangwei decoction using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. J Sep Sci 2021; 45:1006-1019. [PMID: 34962084 DOI: 10.1002/jssc.202100723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 11/10/2022]
Abstract
Yangwei decoction, a classical traditional Chinese medicine prescription, has been widely used to treat exogenous cold and internal injury with damp stagnation for many centuries. However, its systematic chemical profiling remains ambiguous, which has hampered the interpretation of pharmacology and the mechanism of its formula. In the present study, a ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry method was successfully established for the first time to separate and identify the complicated components of Yangwei decoction. The accurate mass data of the protonated molecules, deprotonated molecules, and fragment ions were detected in positive and negative ion modes. A total of 226 compounds in Yangwei decoction were tentatively identified and unambiguously characterized by comparing their retention times and mass spectrometry data with those of reference standards and literature, including 24 lignans, 18 alkaloids, 9 phenylpropanoid glycosides, 76 flavonoids, 59 triterpenoids, 17 organic acids, 7 gingerols, 8 lactones, and 8 other compounds. The present study provides a novel method of constituents characterization for well-known Chinese medicine prescriptions. The study aims to lay a robust foundation for future research, providing the holistic quality control and pharmacology of Yangwei decoction. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shuaishuai Fan
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Hebei, P. R. China
| | - Baolin Li
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Hebei, P. R. China.,Hebei TCM Formula Granule Technology Innovation Center & TCM Formula Granule Research Center of Hebei Province University & TCM Quality Evaluation and Standardization Engineering Research Center, Hebei, P. R. China
| | - Yurou Tian
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Hebei, P. R. China.,Hebei TCM Formula Granule Technology Innovation Center & TCM Formula Granule Research Center of Hebei Province University & TCM Quality Evaluation and Standardization Engineering Research Center, Hebei, P. R. China
| | - Wei Feng
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Hebei, P. R. China.,Hebei TCM Formula Granule Technology Innovation Center & TCM Formula Granule Research Center of Hebei Province University & TCM Quality Evaluation and Standardization Engineering Research Center, Hebei, P. R. China
| | - Liying Niu
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Hebei, P. R. China.,Hebei TCM Formula Granule Technology Innovation Center & TCM Formula Granule Research Center of Hebei Province University & TCM Quality Evaluation and Standardization Engineering Research Center, Hebei, P. R. China
| |
Collapse
|
17
|
Hu L, Song X, Nagai T, Yamamoto M, Dai Y, He L, Kiyohara H, Yao X, Yao Z. Chemical profile of Cimicifuga heracleifolia Kom. And immunomodulatory effect of its representative bioavailable component, cimigenoside on Poly(I:C)-induced airway inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113615. [PMID: 33242624 DOI: 10.1016/j.jep.2020.113615] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried rhizome of Cimicifuga heracleifolia Kom. (C. heracleifolia) is a popular traditional Chinese medicine, which has been extensively used in Asian countries for its anti-inflammatory, antipyretic and analgesic activities. However, further utilization and application of C. heracleifolia have been hampered due to a lack of full understanding of its active ingredients. AIM OF STUDY The present study aims for clarification of the systematical chemical profile of C. heracleifolia and the immunomodulatory effect of its main bioavailable component. MATERIALS AND METHODS Comprehensive chemical profile of C. heracleifolia was systematically analyzed by ultra-performance liquid chromatography hyphenated with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS). Xenobiotics after oral administration of C. heracleifolia extracts were investigated to hunt for bioavailable components. The immunomodulatory activity evaluation of cimigenoside was achieved on poly(I:C)-induced airway inflammation mouse and BEAS-2B cell models from aspects of neutrophil infiltration, lung inflammation by using microscope analysis, quantification of production and expression of inflammatory cytokine and chemokines by using ELISA and quantitative PCR. RESULTS By UPLC-Q-TOF/MS analysis, 110 compounds (including 81 triterpenoids, 21 cinnamic acid derivatives, and 8 other structure types) were identified or tentatively characterized in ethanolic extract of C. heracleifolia. Based on the data of chemical profile, xenobiotics of C. heracleifolia were subsequently analyzed, and triterpene glycosides were detected as the major bioavailable ingredients. Oral administration of cimigenoside, a representative triterpene glycoside, could prevent neutrophils infiltration in the lung due to suppression of the production of CXCL2 and CXCL10, and the expression of P-selectin, VCAM1 in poly(I:C)-induced airway inflammation model mice. Moreover, cimigenoside also inhibited the productions of inflammatory cytokines and chemokines from human airway epithelial cell line (BEAS-2B cells) induced by poly(I:C). CONCLUSION Triterpene glycosides were the main components of C. heracleifolia extract, and cimigenoside was considered as the effective component with immunomodulatory effect on the pulmonary immune system by oral administration.
Collapse
Affiliation(s)
- Liufang Hu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; Laboratory of Biochemical Pharmacology for Phytomedicines, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, 1088641, Japan
| | - Xiaojun Song
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Takayuki Nagai
- Laboratory of Biochemical Pharmacology for Phytomedicines, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, 1088641, Japan; Oriental Medicine Research Center, Kitasato University, Tokyo, 1088642, Japan
| | - Marina Yamamoto
- Laboratory of Biochemical Pharmacology for Phytomedicines, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, 1088641, Japan
| | - Yi Dai
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Liangliang He
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Hiroaki Kiyohara
- Laboratory of Biochemical Pharmacology for Phytomedicines, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, 1088641, Japan; Oriental Medicine Research Center, Kitasato University, Tokyo, 1088642, Japan.
| | - Xinsheng Yao
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Zhihong Yao
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
18
|
He L, Liu Y, Yang K, Zou Z, Fan C, Yao Z, Dai Y, Li K, Chen J, Yao X. The discovery of Q-markers of Qiliqiangxin Capsule, a traditional Chinese medicine prescription in the treatment of chronic heart failure, based on a novel strategy of multi-dimensional "radar chart" mode evaluation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 82:153443. [PMID: 33429210 DOI: 10.1016/j.phymed.2020.153443] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Qiliqiangxin Capsule (QLQX), a traditional Chinese medicine (TCM) prescription, is especially used for clinical treatment of chronic heart failure (CHF) in China. However, the holistic quality control of QLQX has not been well established due to lack of system research on the quality marker (Q-marker). PURPOSE In this study, a new strategy of multi-dimensional "radar chart" mode was proposed to overcome the problem that traditional methods cannot evaluate the multiple properties of Q-markers comprehensively and visually, and the strategy was successfully applied to discover the Q-markers of QLQX. METHODS First, nineteen prototypes that entered the in vivo systemic circulation were selected out as the candidate Q-markers based on our previous studies of chemical and in vivo metabolic profiles. Then, their contents in QLQX were quantitatively analyzed by UHPLC-MS/MS, and the bioactivities on the H9c2 cardiomyocytes cell model was evaluated. The network of in vivo component-target closely related to CHF was further constructed. Finally, a multi-dimensional "radar chart" mode was developed and corresponding Regression Area (RA) and Coefficient Variation (CV) were calculated after data standardization and integration visually based on the Q-marker related multiple characteristics (including the compatibility contribution of herbal medicines, the content, the bioactivity, the in vivo predicted bioavailability and the degree of network pharmacology of candidate components in the TCM prescription). RESULTS By comparison of RA and CV of the chemicals in the "radar chart", seven compounds mainly from King and Minister herbs (songorin, calycosin-7-O-β-D-glucopyranoside, astragaloside, tanshinone IIA, ginsenoside Re, hesperidin and alisol A) were screened out as the Q-markers of QLQX, showing the reasonable compatibility contribution and high content in QLQX, preferable pharmacological effect on CHF, as well as good bioavailable characteristics and high target hits in system pharmacology. CONCLUSION The Q-marker discovery of QLQX in this study laid an important foundation for its quality control improvement, and the mode standardized the abstract definitions of Q-marker and realized the comprehensive assessment of multiple properties of Q-marker in TCM prescriptions, which has a reference value for revealing the Q-marker in the quality control researches of TCM prescriptions.
Collapse
Affiliation(s)
- Liangliang He
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China; College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Yuehe Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Kefeng Yang
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Zhenyu Zou
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Cailian Fan
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China; College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Zhihong Yao
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development Ministry of P.R. China, Jinan University, Guangzhou 510632, PR China.
| | - Yi Dai
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development Ministry of P.R. China, Jinan University, Guangzhou 510632, PR China.
| | - Keshen Li
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China
| | - Jiaxu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Xinsheng Yao
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development Ministry of P.R. China, Jinan University, Guangzhou 510632, PR China
| |
Collapse
|
19
|
Wang Q, Zou Z, Zhang Y, Lin P, Lan T, Qin Z, Xu D, Wu H, Yao Z. Characterization of chemical profile and quantification of major representative components of Wendan decoction, a classical traditional Chinese medicine formula. J Sep Sci 2021; 44:1036-1061. [PMID: 33403778 DOI: 10.1002/jssc.202000952] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/22/2020] [Accepted: 12/26/2020] [Indexed: 12/13/2022]
Abstract
Wendan decoction, a classical traditional Chinese medicine formula consisting of six herbal medicines, has been widely used in clinical treatments for thousands of years due to the expectorant effects. However, the chemical basis of Wendan decoction remains unclear, which hinders the elucidation of the scientific connotation and mechanism of its effective components. In this study, an ultra-high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry method was first developed for characterization of its chemical profile, and a total of 142 chemical components including flavonoids, triterpenoids, alkaloids, coumarins, pungent phytochemicals, and other types were detected, among which 41 components were definitively identified with authentic standards. Furthermore, 14 major representative components were simultaneously quantified by high-performance liquid chromatography with ultraviolet detector, indicating that the content levels of flavonoids were the most abundant in Wendan decoction. In summary, this study established sensitive and practical methods to systematically characterize chemical profile for the first time and simultaneous quantify representative components of Wendan decoction. These findings above would provide a solid chemical basis for disclosure of potential effective components by further in vivo disposal study, and promote therapeutic mechanism researches of Wendan decoction.
Collapse
Affiliation(s)
- Qi Wang
- College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Zhenyu Zou
- College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Yezi Zhang
- College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Pei Lin
- College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Taohua Lan
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Zifei Qin
- College of Pharmacy, Jinan University, Guangzhou, P.R. China.,Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Danping Xu
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Huanlin Wu
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Zhihong Yao
- College of Pharmacy, Jinan University, Guangzhou, P.R. China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, P.R. China
| |
Collapse
|
20
|
Liu LX, Cao L, Shi DF, Wang ZZ, Xiao W, Yao XS, Li HB, Yu Y. Metabolic profiles of Jin-hong tablets in rats by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Biomed Chromatogr 2021; 35:e5072. [PMID: 33453065 DOI: 10.1002/bmc.5072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/30/2020] [Accepted: 01/11/2021] [Indexed: 11/06/2022]
Abstract
Jin-hong tablets (JHTs), a well-known traditional Chinese patent medicine (TCPM), have been effectively used for the treatment of chronic superficial gastritis (CSG). The metabolic profile of TCPMs is performed to determine their bioactive components. In this study, a five-step strategy based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry and metabolynx™ software combined with mass defect filter technique was developed to delineate the metabolic profile of JHT in vivo. As a result, a total of 163 JHT-related xenobiotics (38 prototypes and 125 metabolites) were identified or tentatively characterized in rat biological samples, and the phase I and II metabolism processes mainly included demethylation, hydroxylation, sulfation, and glucuronidation. In addition, after oral administration of JHT, a large amount of alkaloid-related ingredients was detected in rat plasma samples, indicating that alkaloids may play an important role in the treatment of CSG with JHT. This study is beneficial for understanding the JHT's in vivo metabolic profiles and characteristics, which helps to reveal its in vivo effective components and provides a solid basis for further studies on its functional mechanism.
Collapse
Affiliation(s)
- Ling-Xian Liu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Liang Cao
- Jiangsu Kanion Pharmaceutical Co. Ltd. and State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, China
| | - Dan-Feng Shi
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Zhen-Zhong Wang
- Jiangsu Kanion Pharmaceutical Co. Ltd. and State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co. Ltd. and State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Hai-Bo Li
- Jiangsu Kanion Pharmaceutical Co. Ltd. and State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, China
| | - Yang Yu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| |
Collapse
|
21
|
Shi D, Liu L, Li H, Pan D, Yao X, Xiao W, Yao X, Yu Y. Identifying the molecular basis of Jinhong tablets against chronic superficial gastritis via chemical profile identification and symptom-guided network pharmacology analysis. J Pharm Anal 2021; 12:65-76. [PMID: 35573887 PMCID: PMC9073317 DOI: 10.1016/j.jpha.2021.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Danfeng Shi
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, 510632, China
| | - Lingxian Liu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, 510632, China
| | - Haibo Li
- Kanion Pharmaceutical Co., Ltd., State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China
| | - Dabo Pan
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, 510632, China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Wei Xiao
- Kanion Pharmaceutical Co., Ltd., State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China
- Corresponding author.
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, 510632, China
- Corresponding author.
| | - Yang Yu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, 510632, China
- Corresponding author.
| |
Collapse
|
22
|
Tian C, Song Y, Xu H, Yao X, Niu S, Shen L, He L. Chemical characterization of ginger and vinegar soaked ginger: Changes in volatiles and chemical profile. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Cheng‐piao Tian
- College of Chemistry and Chemical Engineering Guangxi University for Nationalities Nanning China
| | - Ya‐ling Song
- College of Chemistry and Chemical Engineering Guangxi University for Nationalities Nanning China
| | - Hai‐tang Xu
- College of Chemistry and Chemical Engineering Guangxi University for Nationalities Nanning China
| | - Xing‐dong Yao
- College of Chemistry and Chemical Engineering Guangxi University for Nationalities Nanning China
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products Guangxi University for Nationalities Nanning China
| | - Si‐qi Niu
- College of Chemistry and Chemical Engineering Guangxi University for Nationalities Nanning China
| | - Li‐qun Shen
- College of Chemistry and Chemical Engineering Guangxi University for Nationalities Nanning China
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products Guangxi University for Nationalities Nanning China
| | - Li‐li He
- National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China Guangxi Botanical Garden of Medicinal Plants Nanning China
| |
Collapse
|
23
|
Yuan N, Gong L, Tang K, He L, Hao W, Li X, Ma Q, Chen J. An Integrated Pharmacology-Based Analysis for Antidepressant Mechanism of Chinese Herbal Formula Xiao-Yao-San. Front Pharmacol 2020; 11:284. [PMID: 32256358 PMCID: PMC7094752 DOI: 10.3389/fphar.2020.00284] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/27/2020] [Indexed: 12/18/2022] Open
Abstract
Clinical studies and basic science experiments have widely demonstrated the antidepressant and anxiolytic effects of the herbal formula Xiao-Yao-San (XYS). However, the system mechanism of these effects has not been fully characterized. The present study conducted a comprehensive network pharmacological analysis of XYS and sorted all pharmacologically active components (149) through the TCMSP webserver. Then, all potential molecular targets (449) were predicted, of which there were 99 genes clearly related to depression. To further investigate the mechanism of antidepressant effects of XYS, a compound-depression targets (C-DTs) network was constructed, and Gene Ontology (GO) functional and KEGG pathway enrichment analyses were performed for the 99 targets. Enrichment results revealed that XYS could regulate multiple aspects of depression through these targets, related to metabolism, neuroendocrine function, and neuroimmunity. Prediction and analysis of protein–protein interactions resulted in selection of three hub genes (AKT1, TP53, and VEGFA). In addition, a total of seven ingredients from XYS could act on these hub genes and they were identified through ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS), including paeoniflorin, quercetin, luteolin, acacetin, aloe-emodin, Glyasperin C, kaempferol. Hereafter, we investigated the effects of paeoniflorin and its predicted target, the results suggest that it can reverse the neurotoxicity produced by CORT and could be a neuroprotective effect by promoting the phosphorylation of Akt. Overall, our research revealed the complicated antidepressant mechanism of XYS, and also provided a rational strategy for revealing the complex composition and function of Chinese herbal formula.
Collapse
Affiliation(s)
- Naijun Yuan
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lian Gong
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Kairui Tang
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Liangliang He
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Wenzhi Hao
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaojuan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qingyu Ma
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiaxu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
24
|
Du T, Sun R, Du S, Gao S, Hu M, Zhang Y, Chen J, Yang G. Metabolic profiles of Xiao Chai Hu Tang in mouse plasma, bile and urine by the UHPLC–ESI-Q-TOF/MS technique. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1128:121767. [DOI: 10.1016/j.jchromb.2019.121767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/09/2019] [Accepted: 08/16/2019] [Indexed: 01/30/2023]
|
25
|
In vivo metabolic profiles of Bu-Zhong-Yi-Qi-Tang, a famous traditional Chinese medicine prescription, in rats by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. J Pharm Biomed Anal 2019; 171:81-98. [DOI: 10.1016/j.jpba.2019.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/23/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
|
26
|
Banihani SA. Effect of ginger (Zingiber officinale) on semen quality. Andrologia 2019; 51:e13296. [PMID: 31012134 DOI: 10.1111/and.13296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/22/2022] Open
Abstract
To date, according to the Scopus database, the biological effects of ginger (binominal name: Zingiber officinale), or ginger extracts, and its derived compounds on semen quality and sperm parameters have been revealed in more than 35 original articles. Though, still, there are no collective systematic or narrative discussion and conclusion of this specific research streak. Here, we systematically review and summarise the current link between ginger and its bioactive compounds with semen quality. To achieve this, we searched the central databases (Scopus and PubMed) for original studies, published in English language from August 2004 through February 2019 using the keywords "ginger" versus "sperm" and "semen." In summary, there is solid evidence that ginger enhances semen quality and improves the main sperm parameters such as concentration, viability, motility and morphology. Such beneficial effects of ginger on semen quality are attributable, at least in part, to increased levels of gonadal hormones, in particular, testosterone and luteinising hormone, decreased oxidative damage to cells, increased production of nitric oxide, hypoglycaemic response of ginger and the presence of valued nutrients in ginger such as manganese. Still, the positive effects of ginger on semen quality require additional approval in men.
Collapse
Affiliation(s)
- Saleem Ali Banihani
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
27
|
Abstract
Enhancing and protecting testosterone production is one target for many scientists because of its crucial role as a primary sex hormone in males. Several in vivo trials have utilized different dietary supplements and medicinal plants to enhance testosterone production in males. Since 1991, various in-vivo, as well as basic research studies, have discovered a link between ginger (Zingiber officinale) and testosterone. However, such a link has not yet been collectively reviewed. This review systematically discusses and summarizes the effect of ginger and ginger extracts on testosterone. To achieve this contribution, we searched the PubMed, Scopus, and Web of Science databases for English language articles (full texts or abstracts) from November 1991 through August 2018 using the keywords "ginger" and "Zingiber officinale" versus "testosterone". Additionally, the references from related published articles were also reviewed, only if relevant. In conclusion, the mainstream of research that links ginger to testosterone demonstrated that ginger supplementation, particularly in oxidative stress conditions, enhances testosterone production in males. The mechanisms by which this occurs mainly by enhancing luteinizing hormone (LH) production, increasing the level of cholesterol in the testes, reducing oxidative stress and lipid peroxidation in the testes, enhancing the activity of the antioxidant enzymes, normalizing blood glucose, increasing blood flow in the testes, increasing testicular weight, and recycling testosterone receptors. However, the effect of ginger on testosterone is not yet confirmed in humans. Therefore, clinical studies in this context of research are imperative.
Collapse
Affiliation(s)
- Saleem Ali Banihani
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.
| |
Collapse
|
28
|
He L, Xu J, Wang Q, Zhang Y, Qin Z, Yu Y, Qian Z, Yao Z, Yao X. Glucuronidation of [6]-shogaol, [8]-shogaol and [10]-shogaol by human tissues and expressed UGT enzymes: identification of UGT2B7 as the major contributor. RSC Adv 2018; 8:41368-41375. [PMID: 35559294 PMCID: PMC9091938 DOI: 10.1039/c8ra08466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/26/2018] [Indexed: 11/26/2022] Open
Abstract
Shogaols, mainly [6]-shogaol (6S), [8]-shogaol (8S) and [10]-shogaol (10S), the predominant and characteristic pungent phytochemicals in ginger, are responsible for most of its beneficial effects. However, poor oral bioavailability owing to extensive glucuronidation limits their application. The present study aimed to characterize the glucuronidation pathways of 6S, 8S and 10S by using pooled human liver microsomes (HLM), human intestine microsomes (HIM) and recombinant human UDP-glucosyltransferases (UGTs). The rates of glucuronidation were determined by incubating shogaols with uridine diphosphate glucuronic acid-supplemented microsomes. Kinetic parameters were derived by appropriate model fitting. Reaction phenotyping assays, activity correlation analyses and relative activity factors were performed to identify the main UGT isoforms. As a result, one mono-4′-O-glucuronide was detected after incubating each shogaol with HLM and HIM. Enzymes kinetic analysis demonstrated that glucuronidation of shogaols consistently displayed the substrate inhibition profile, and the liver showed higher metabolic activity for shogaols (CLint = 1.37–2.87 mL min−1 mg−1) than the intestine (CLint = 0.67–0.85 mL min−1 mg−1). Besides, reaction phenotyping assays revealed that UGT2B7 displayed the highest catalytic ability (CLint = 0.47–1.17 mL min−1 mg−1) among all tested UGTs. In addition, glucuronidation of shogaols was strongly correlated with AZT glucuronidation (r = 0.886, 0.803 and 0.871 for glucuronidation of 6S, 8S and 10S, respectively; p < 0.01) in a bank of individual HLMs (n = 9). Furthermore, UGT2B7 contributed to 40.8%, 34.2% and 36.0% for the glucuronidation of 6S, 8S and 10S in HLM, respectively. Taken altogether, shogaols were efficiently metabolized through the glucuronidation pathway, and UGT2B7 was the main contributor to their glucuronidation. The glucuronidation pathways of shogaols ([6]-shogaol, [8]-shogaol and [10]-shogaol) were characterized in human tissues and recombinant human UDP-glucosyltransferases, and UGT2B7 was identified as the main contributor to their glucuronidation.![]()
Collapse
Affiliation(s)
- Liangliang He
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Jinjin Xu
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Qi Wang
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Key Laboratory of State Administration of Traditional Chinese Medicine
| | - Yezi Zhang
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Zifei Qin
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Department of Pharmacy
| | - Yang Yu
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Zhengming Qian
- Key Laboratory of State Administration of Traditional Chinese Medicine
- Sunshine Lake Pharma Co., LTD
- Dongguan
- P. R. China
| | - Zhihong Yao
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Xinsheng Yao
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| |
Collapse
|