1
|
El Gazzar WB, Farag AA, Samir M, Bayoumi H, Youssef HS, Marei YM, Mohamed SK, Marei AM, Abdelfatah RM, Mahmoud MM, Aboelkomsan EAF, Khalfallah EKM, Anwer HM. Berberine chloride loaded nano-PEGylated liposomes attenuates imidacloprid-induced neurotoxicity by inhibiting NLRP3/Caspase-1/GSDMD-mediated pyroptosis. Biofactors 2025; 51:e2107. [PMID: 39074847 DOI: 10.1002/biof.2107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Concerns have been expressed about imidacloprid (IMI), one of the most often used pesticides, and its potential neurotoxicity to non-target organisms. Chronic neuroinflammation is central to the pathology of several neurodegenerative disorders. Hence, exploring the molecular mechanism by which IMI would trigger neuroinflammation is particularly important. This study examined the neurotoxic effects of oral administration of IMI (45 mg/kg/day for 30 days) and the potential neuroprotective effect of berberine (Ber) chloride loaded nano-PEGylated liposomes (Ber-Lip) (10 mg/kg, intravenously every other day for 30 days) using laboratory rat. The histopathological changes, anti-oxidant and oxidative stress markers (GSH, SOD, and MDA), proinflammatory cytokines (IL1β and TNF-α), microglia phenotype markers (CD86 and iNOS for M1; CD163 for M2), the canonical pyroptotic pathway markers (NLRP3, caspase-1, GSDMD, and IL-18) and Alzheimer's disease markers (Neprilysin and beta amyloid [Aβ] deposits) were assessed. Oral administration of IMI resulted in apparent cerebellar histopathological alterations, oxidative stress, predominance of M1 microglia phenotype, significantly upregulated NLRP3, caspase-1, GSDMD, IL-18 and Aβ deposits and significantly decreased Neprilysin expression. Berberine reduced the IMI-induced aberrations in the measured parameters and improved the IMI-induced histopathological and ultrastructure alterations brought on by IMI. This study highlights the IMI neurotoxic effect and its potential contribution to the development of Alzheimer's disease and displayed the neuroprotective effect of Ber-Lip.
Collapse
Affiliation(s)
- Walaa Bayoumie El Gazzar
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Medical Biochemistry and Molecular biology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| | - Amina A Farag
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| | - Mohamed Samir
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharqia, Egypt
- School of Science, Faculty of Engineering and Science, University of Greenwich, Kent, UK
| | - Heba Bayoumi
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha City, Egypt
| | - Heba S Youssef
- Department of Physiology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| | - Yasmin Mohammed Marei
- Department of Medical Biochemistry and Molecular biology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| | - Shimaa K Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Azza M Marei
- Department of Zoology, Faculty of Science, Benha University, Benha City, Qalyubia, Egypt
| | - Reham M Abdelfatah
- Department of Pesticides, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | | | | | - Eman Kamel M Khalfallah
- Department of Biochemistry, Toxicology and Feed Deficiency, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Dokki, Giza, Egypt
| | - Hala Magdy Anwer
- Department of Physiology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| |
Collapse
|
2
|
Nanda S, Ganguly A, Mandi M, Das K, Rajak P. Unveiling the physical, behavioural, and biochemical effects of clothianidin on a non-target organism, Drosophila melanogaster. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177198. [PMID: 39471953 DOI: 10.1016/j.scitotenv.2024.177198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Clothianidin is a novel neonicotinoid pesticide globally used in agriculture to enhance crop production. However, unintentional exposure to clothianidin via contaminated environmental matrices and food products can be detrimental to non-target organisms, including humans. Hence, to unravel the potential health risks at organismal and sub-organismal levels, first instar larvae of a non-target organism, Drosophila melanogaster, were exposed to sub-lethal concentrations (0.05 to 0.1 μg/mL) of clothianidin till their third instar stage (chronic exposure). Larvae from the control and clothianidin-exposed groups were examined for their body weight, physical activity, behaviour, and enzymatic activities using in vivo and molecular docking approaches. Results have suggested that clothianidin at sub-lethal concentrations reduces body weight and physical fitness of D. melanogaster. Interestingly, AChE activity in larvae was reduced by 35 % and 41.13 % following exposure to 0.07 and 0.1 μg/mL of clothianidin, respectively. Further, the activity of mitoferrin, a major importer of iron inside the mitochondrial matrix and malate dehydrogenase, an integral component of the TCA cycle, were down-regulated by 58 % and 45.93 %, respectively, at 0.1 μg/mL clothianidin. Additionally, the activities of glucose 6-phosphate dehydrogenase, a vital enzyme of the pentose phosphate pathway and angiotensin-converting enzyme, responsible for maintaining optimum body physiology, were significantly declined by 43.58 % and 57.63 % at 0.1 μg/mL concentration of clothianidin. Binding affinity analyses have revealed that clothianidin can potentially bind with these enzymes using varying numbers of hydrogen bonds and other hydrophobic interactions to subvert their catalytic functions. Therefore, results of the present study equivocally suggest that chronic exposure to clothianidin, even at low concentrations, can disturb the physical, behavioural, and enzymatic activities of non-target organisms.
Collapse
Affiliation(s)
- Sayantani Nanda
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Abhratanu Ganguly
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Moutushi Mandi
- Toxicology Research Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal, India
| | - Kanchana Das
- Toxicology Research Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal, India
| | - Prem Rajak
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
3
|
Moyano P, Flores A, San Juan J, García J, Anadón MJ, Plaza JC, Naval MV, Fernández MDLC, Guerra-Menéndez L, Del Pino J. Imidacloprid unique and repeated treatment produces cholinergic transmission disruption and apoptotic cell death in SN56 cells. Food Chem Toxicol 2024; 193:114988. [PMID: 39251036 DOI: 10.1016/j.fct.2024.114988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Imidacloprid (IMI), the most widely used worldwide neonicotinoid biocide, produces cognitive disorders after repeated and single treatment. However, little was studied about the possible mechanisms that produce this effect. Cholinergic neurotransmission regulates cognitive function. Most cholinergic neuronal bodies are present in the basal forebrain (BF), regulating memory and learning process, and their dysfunction or loss produces cognition decline. BF SN56 cholinergic wild-type or acetylcholinesterase (AChE), β-amyloid-precursor-protein (βAPP), Tau, glycogen-synthase-kinase-3-beta (GSK3β), beta-site-amyloid-precursor-protein-cleaving enzyme 1 (BACE1), and/or nuclear-factor-erythroid-2-related-factor-2 (NRF2) silenced cells were treated for 1 and 14 days with IMI (1 μM-800 μM) with or without recombinant heat-shock-protein-70 (rHSP70), recombinant proteasome 20S (rP20S) and with or without N-acetyl-cysteine (NAC) to determine the possible mechanisms that mediate this effect. IMI treatment for 1 and 14 days altered cholinergic transmission through AChE inhibition, and triggered cell death partially through oxidative stress generation, AChE-S overexpression, HSP70 downregulation, P20S inhibition, and Aβ and Tau peptides accumulation. IMI produced oxidative stress through reactive oxygen species production and antioxidant NRF2 pathway downregulation, and induced Aβ and Tau accumulation through BACE1, GSK3β, HSP70, and P20S dysfunction. These results may assist in determining the mechanisms that produce cognitive dysfunction observed following IMI exposure and provide new therapeutic tools.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Andrea Flores
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Javier San Juan
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jimena García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - María José Anadón
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Jose Carlos Plaza
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Maria Victoria Naval
- Department of Pharmacology, Pharmacognosy and Bothanic, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - María de la Cabeza Fernández
- Department of Chemistry and Pharmaceutical Sciences, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Lucía Guerra-Menéndez
- Department of Physiology, Medicine School, San Pablo CEU University, 28003 Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
4
|
Soliman MM, Tohamy AF, Prince AM, Hussien AM, Nashed MS. The mechanistic pathway induced by fenpropathrin toxicity: Oxidative stress, signaling pathway, and mitochondrial damage. J Biochem Mol Toxicol 2024; 38:e70020. [PMID: 39415699 DOI: 10.1002/jbt.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Fenpropathrin (FNP) is a kind of insecticide and acaricide known as pyrethroid. It is very effective, has a wide range of activities, and works quickly. Internationally, it is commonly considered the most powerful pyrethroid insecticide. Nevertheless, an increasing amount of data indicates a substantial link between Fenpropathrin and adverse effects on nontarget species, including liver toxicity, kidney toxicity, nerve damage, and reproductive toxicity. Oxidative stress plays a vital role in the toxicity of fenpropathrin, in addition to its mechanical mechanism. This study offers a thorough examination of the harmful effects of Fenpropathrin on oxidative and mitochondrial processes, as well as the signaling pathways involved in these effects. The significant impact of oxidative stress emphasizes the toxicity of Fenpropathrin.
Collapse
Affiliation(s)
- Maher M Soliman
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Adel F Tohamy
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Abdelbary M Prince
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed M Hussien
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marsail S Nashed
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Zou X, Tang Q, Ojiro R, Ozawa S, Shobudani M, Sakamaki Y, Ebizuka Y, Jin M, Yoshida T, Shibutani M. Increased spontaneous activity and progressive suppression of adult neurogenesis in the hippocampus of rat offspring after maternal exposure to imidacloprid. Chem Biol Interact 2024; 399:111145. [PMID: 39002876 DOI: 10.1016/j.cbi.2024.111145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Imidacloprid (IMI) is a widely used neonicotinoid insecticide that poses risks for developmental neurotoxicity in mammals. The present study investigated the effects of maternal exposure to IMI on behaviors and adult neurogenesis in the hippocampal dentate gyrus (DG) of rat offspring. Dams were exposed to IMI via diet (83, 250, or 750 ppm in diet) from gestational day 6 until day 21 post-delivery on weaning, and offspring were maintained until adulthood on postnatal day 77. In the neurogenic niche, 750-ppm IMI decreased numbers of late-stage neural progenitor cells (NPCs) and post-mitotic immature granule cells by suppressing NPC proliferation and ERK1/2-FOS-mediated synaptic plasticity of granule cells on weaning. Suppressed reelin signaling might be responsible for the observed reductions of neurogenesis and synaptic plasticity. In adulthood, IMI at ≥ 250 ppm decreased neural stem cells by suppressing their proliferation and increasing apoptosis, and mature granule cells were reduced due to suppressed NPC differentiation. Behavioral tests revealed increased spontaneous activity in adulthood at 750 ppm. IMI decreased hippocampal acetylcholinesterase activity and Chrnb2 transcript levels in the DG on weaning and in adulthood. IMI increased numbers of astrocytes and M1-type microglia in the DG hilus, and upregulated neuroinflammation and oxidative stress-related genes on weaning. In adulthood, IMI increased malondialdehyde level and number of M1-type microglia, and downregulated neuroinflammation and oxidative stress-related genes. These results suggest that IMI persistently affected cholinergic signaling, induced neuroinflammation and oxidative stress during exposure, and increased sensitivity to oxidative stress after exposure in the hippocampus, causing hyperactivity and progressive suppression of neurogenesis in adulthood. The no-observed-adverse-effect level of IMI for offspring behaviors and hippocampal neurogenesis was determined to be 83 ppm (5.5-14.1 mg/kg body weight/day).
Collapse
Affiliation(s)
- Xinyu Zou
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Qian Tang
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Momoka Shobudani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Yuri Sakamaki
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Yuri Ebizuka
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, PR China.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
6
|
Maya-Aguirre CA, Torres A, Gutiérrez-Castañeda LD, Salazar LM, Abreu-Villaça Y, Manhães AC, Arenas NE. Changes in the proteome of Apis mellifera acutely exposed to sublethal dosage of glyphosate and imidacloprid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45954-45969. [PMID: 38980489 PMCID: PMC11269427 DOI: 10.1007/s11356-024-34185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Uncontrolled use of pesticides has caused a dramatic reduction in the number of pollinators, including bees. Studies on the effects of pesticides on bees have reported effects on both metabolic and neurological levels under chronic exposure. In this study, variations in the differential expression of head and thorax-abdomen proteins in Africanized A. mellifera bees treated acutely with sublethal doses of glyphosate and imidacloprid were studied using a proteomic approach. A total of 92 proteins were detected, 49 of which were differentially expressed compared to those in the control group (47 downregulated and 2 upregulated). Protein interaction networks with differential protein expression ratios suggested that acute exposure of A. mellifera to sublethal doses of glyphosate could cause head damage, which is mainly associated with behavior and metabolism. Simultaneously, imidacloprid can cause damage associated with metabolism as well as, neuronal damage, cellular stress, and impairment of the detoxification system. Regarding the thorax-abdomen fractions, glyphosate could lead to cytoskeleton reorganization and a reduction in defense mechanisms, whereas imidacloprid could affect the coordination and impairment of the oxidative stress response.
Collapse
Affiliation(s)
- Carlos Andrés Maya-Aguirre
- Instituto de Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C, Colombia
- Grupo Ciencias Básicas en Salud-CBS-FUCS, Fundación Universitaria de Ciencias de La Salud, Hospital Infanti L Universitario de San José, Carrera 54 No.67A-80, Bogota, D.C., Colombia
| | - Angela Torres
- Departmento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C., Colombia
| | - Luz Dary Gutiérrez-Castañeda
- Grupo Ciencias Básicas en Salud-CBS-FUCS, Fundación Universitaria de Ciencias de La Salud, Hospital Infanti L Universitario de San José, Carrera 54 No.67A-80, Bogota, D.C., Colombia
| | - Luz Mary Salazar
- Departmento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C., Colombia
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
| | - Alex Christian Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
| | - Nelson Enrique Arenas
- Facultad de Medicina, Universidad de Cartagena, Campus Zaragocilla, Barrio Zaragocilla, Carrera 50a #24-63, Cartagena de Indias, Bolivar, Colombia.
| |
Collapse
|
7
|
Namba K, Tominaga T, Ishihara Y. Decreases in the number of microglia and neural circuit dysfunction elicited by developmental exposure to neonicotinoid pesticides in mice. ENVIRONMENTAL TOXICOLOGY 2024; 39:3944-3955. [PMID: 38581179 DOI: 10.1002/tox.24263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/09/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Neonicotinoids are insecticides widely used in the world. Although neonicotinoids are believed to be toxic only to insects, their developmental neurotoxicity in mammals is a concern. Therefore, we examined the effects of developmental exposure to neonicotinoids on immune system in the brain and post-developmental behaviors in this study. Imidacloprid or clothianidin was orally administered to dams at a dosage of 0.1 mg/kg/day from embryonic day 11 to postnatal day 21. Imidacloprid decreased sociability, and both imidacloprid and clothianidin decreased locomotor activity and induced anxiety, depression and abnormal repetitive behaviors after the developmental period. There was no change in the number of neurons in the hippocampus of mice exposed to imidacloprid. However, the number and activity of microglia during development were significantly decreased by imidacloprid exposure. Imidacloprid also induced neural circuit dysfunction in the CA1 and CA3 regions of the hippocampus during the early postnatal period. Exposure to imidacloprid suppressed the expression of csf1r during development. Collectively, these results suggest that developmental exposure to imidacloprid decreases the number and activity of microglia, which can cause neural circuit dysfunction and abnormal behaviors after the developmental period. Care must be taken to avoid exposure to neonicotinoids, especially during development.
Collapse
Affiliation(s)
- Kaede Namba
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takashi Tominaga
- Institute of Neuroscience, Tokushima Bunri University, Sanuki, Japan
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
8
|
Abd Elkader HTAE, Hussein MM, Mohammed NA, Abdou HM. The protective role of L-carnitine on oxidative stress, neurotransmitter perturbations, astrogliosis, and apoptosis induced by thiamethoxam in the brains of male rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4365-4379. [PMID: 38099937 PMCID: PMC11111572 DOI: 10.1007/s00210-023-02887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/04/2023] [Indexed: 05/23/2024]
Abstract
Synthetic organic insecticides such as pyrethroids, organophosphates, neonicotinoids, and others have the potential to disrupt ecosystems and are often toxic to humans. Thiamethoxam (TMX), a neonicotinoid insecticide , is a widely used insecticide with neurotoxic potential. L-Carnitine (LC) is regarded as the "gatekeeper" in charge of allowing long-chain fatty acids into cell mitochondria. LC is an endogenous chemical that is renowned for its prospective biological activity in addition to its role in energy metabolism. This study investigated the protective effects of LC against TMX-induced neurotoxicity in male Wistar rats. For 28 days, animals were divided into four groups and treated daily with either LC (300 mg/kg), TMX (100 mg/kg), or both at the aforementioned doses. Our results revealed marked serum lipid profile and electrolyte changes, declines in brain antioxidants and neurotransmitters (acetylcholine, dopamine, and serotonin levels) with elevations in thiobarbituric acid reactive substances and proinflammatory cytokine levels, as well as acetylcholinesterase and monoamine oxidase brain activity in TMX-treated rats. TMX also increased the expression of caspase-3 and glial fibrillary acidic protein. In contrast, pretreatment with LC attenuated TMX-induced brain injury by suppressing oxidative stress and proinflammatory cytokines and modulating neurotransmitter levels. It also ameliorated the expression of apoptotic and astrogliosis markers. It could be concluded that LC has antioxidant, anti-inflammatory, anti-astrogliosis, and anti-apoptotic potential against TMX neurotoxicity.
Collapse
Affiliation(s)
| | | | - Nema A Mohammed
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Heba M Abdou
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Liu Y, Lin F, Yue X, Zhang S, Wang H, Xiao J, Cao H, Shi Y. Inhalation bioaccessibility of imidacloprid in particulate matter: Implications for risk assessment during spraying. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133986. [PMID: 38493632 DOI: 10.1016/j.jhazmat.2024.133986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Adverse health outcomes due to the inhalation of pesticide residues in atmospheric particulate matter (PM) are gaining global attention. Quantitative health risk assessments of pesticide inhalation exposure highlight the need to understand the bioaccessibility of pesticide residues. Herein, the inhalation bioaccessibility of imidacloprid in PM was determined using three commonly used in vitro lung modeling methods (Artificial Lysosomal Fluid, Gamble Solution, and Simulated Lung Fluid). To validate its feasibility and effectiveness, we evaluated the bioavailability of imidacloprid using a mouse nasal instillation assay. The in vitro inhalation bioaccessibility of imidacloprid was extracted using Gamble Solution with a solid-liquid ratio of 1/1000, an oscillation rate of 150 r/min, and an extraction time of 24 h, showed a strong linear correlation with its in vivo liver-based bioavailability (R2 =0.8928). Moreover, the margin of exposure was incorporated into the inhalation exposure risk assessment, considering both formulations and nozzles. The inhalation unit exposure of imidacloprid for residents was 0.95-4.09 ng/m3. The margin of exposure for imidacloprid was determined to be acceptable when considering inhalation bioaccessibility. Taken together, these results indicate that the inhalation bioaccessibility of pesticides should be incorporated into assessments of human health risks posed by PM particles.
Collapse
Affiliation(s)
- Yuying Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China
| | - Fengxiang Lin
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China
| | - Xingyu Yue
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China
| | - Sai Zhang
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China
| | - Han Wang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China
| | - Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China; Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China; Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yanhong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China; Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
10
|
Benchikh I, Ziani K, Gonzalez Mateos A, Khaled BM. Non-acute exposure of neonicotinoids, health risk assessment, and evidence integration: a systematic review. Crit Rev Toxicol 2024; 54:194-213. [PMID: 38470098 DOI: 10.1080/10408444.2024.2310593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 03/13/2024]
Abstract
Neonicotinoid pesticides are utilized against an extensive range of insects. A growing body of evidence supports that these neuro-active insecticides are classified as toxicants in invertebrates. However, there is limited published data regarding their toxicity in vertebrates and mammals. the current systematic review is focused on the up-to-date knowledge available for several neonicotinoid pesticides and their non-acute toxicity on rodents and human physiology. Oral lethal dose 50 (LD50) of seven neonicotinoids (i.e. imidacloprid, acetamiprid, clothianidin, dinotefuran, thiamethoxam, thiacloprid, and nitenpyram) was initially identified. Subsequently, a screening of the literature was conducted to collect information about non-acute exposure to these insecticides. 99 studies were included and assessed for their risk of bias and level of evidence according to the Office of Health and Translation (OHAT) framework. All the 99 included papers indicate evidence of reproductive toxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, immunotoxicity, and oxidative stress induction with a high level of evidence in the health effect of rodents and a moderate level of evidence for human health. The most studied type of these insecticides among 99 papers was imidacloprid (55 papers), followed by acetamiprid (22 papers), clothianidin (21 papers), and thiacloprid (11 papers). While 10 of 99 papers assessed the relationship between clothianidin, thiamethoxam, dinotefuran, and nitenpyram, showing evidence of liver injury, dysfunctions of oxidative stress markers in the reproductive system, and intestinal toxicity. This systematic review provides a comprehensive overview of the potential risks caused by neonicotinoid insecticides to humans and rodents with salient health effects. However, further research is needed to better emphasize and understand the patho-physiological mechanisms of these insecticides, taking into account various factors that can influence their toxicity.
Collapse
Affiliation(s)
- Imen Benchikh
- Laboratory of Applied Hydrology and Environment, Department of Biology, Faculty of Natural Sciences and Life, Belhadj Bouchaib University, Ain Témouchent, Algeria
- Laboratoire de Nutrition, Pathologie, Agro-Biotechnologie et Santé (Lab-NuPABS), Department of Biology, Faculty of Natural Sciences and Life, Djillali Liabès University, Sidi-Bel-Abbès, Algeria
| | - Kaddour Ziani
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants, Department of Biology, University of Saida-Dr. Taher Moulay, Saida, Algeria
| | - Antonio Gonzalez Mateos
- Department of Physiology, Cell Biology and Communication Research Group, University of Extremadura, Caceres, Spain
| | - Boumediène Méghit Khaled
- Laboratoire de Nutrition, Pathologie, Agro-Biotechnologie et Santé (Lab-NuPABS), Department of Biology, Faculty of Natural Sciences and Life, Djillali Liabès University, Sidi-Bel-Abbès, Algeria
| |
Collapse
|
11
|
Yan S, Sun W, Tian S, Meng Z, Diao J, Zhou Z, Li L, Zhu W. Pre-mating nitenpyram exposure in male mice leads to depression-like behavior in offspring by affecting tryptophan metabolism in gut microbiota. J Environ Sci (China) 2024; 137:120-130. [PMID: 37980001 DOI: 10.1016/j.jes.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 11/20/2023]
Abstract
Several studies have confirmed that the health status of the paternal affects the health of the offspring, however, it remains unknown whether paternal exposure to pesticides affect the offspring health. Here, we used untargeted metabolomics and 16S rRNA sequencing technology, combined with tail suspension test and RT-qPCR to explore the effects of paternal exposure to nitenpyram on the neurotoxicity of offspring. Our results found that the paternal exposure to nitenpyram led to the offspring's depressive-like behaviors, accompanied by the reduction of tryptophan content and the disorder of microbial abundance in the gut of the offspring. Further, we determined the expression of tryptophan metabolism-related genes tryptophanase (tnaA) and tryptophan hydroxylase 1 (TpH1) in gut bacteria and colonic tissues. We found that tryptophan is metabolized to indoles rather than being absorbed into colonocytes, which coursed the reduce of tryptophan availability after nitenpyram exposure. In conclusion, our study deepens our understanding of the intergenerational toxic effects of pesticides.
Collapse
Affiliation(s)
- Sen Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiyuan Meng
- College of Plant Protection/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Li Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Eriksson I, Ward LJ, Vainikka L, Sultana N, Leanderson P, Flodin U, Li W, Yuan XM. Imidacloprid Induces Lysosomal Dysfunction and Cell Death in Human Astrocytes and Fibroblasts-Environmental Implication of a Clinical Case Report. Cells 2023; 12:2772. [PMID: 38132092 PMCID: PMC10742227 DOI: 10.3390/cells12242772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Imidacloprid (IMI), a neonicotinoid insecticide, has potential cytotoxic and genotoxic effects on human and experimental models, respectively. While being an emerging environmental contaminant, occupational exposure and related cellular mechanisms are unknown. Herein, we were motivated by a specific patient case where occupational exposure to an IMI-containing plant protection product was associated with the diagnosis of Bell's palsy. The aim was to investigate the toxic effects and cellular mechanisms of IMI exposure on glial cells (D384 human astrocytes) and on human fibroblasts (AG01518). IMI-treated astrocytes showed a reduction in cell number and dose-dependent cytotoxicity at 24 h. Lower doses of IMI induced reactive oxygen species (ROS) and lysosomal membrane permeabilisation (LMP), causing apoptosis and autophagic dysfunction, while high doses caused significant necrotic cell death. Using normal fibroblasts, we found that IMI-induced autophagic dysfunction and lysosomal damage, activated lysophagy, and resulted in a compensatory increase in lysosomes. In conclusion, the observed IMI-induced effects on human glial cells and fibroblasts provide a possible link between IMI cytotoxicity and neurological complications observed clinically in the patient exposed to this neonicotinoid insecticide.
Collapse
Affiliation(s)
- Ida Eriksson
- Experimental Pathology, Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden; (I.E.); (L.V.)
| | - Liam J. Ward
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 587 85 Linköping, Sweden; (L.J.W.)
| | - Linda Vainikka
- Experimental Pathology, Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden; (I.E.); (L.V.)
| | - Nargis Sultana
- Laboratory Medicine, Linköping University Hospital, 581 85 Linköping, Sweden; (N.S.)
| | - Per Leanderson
- Occupational and Environmental Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, 581 85 Linköping, Sweden; (P.L.); (U.F.); (X.-M.Y.)
| | - Ulf Flodin
- Occupational and Environmental Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, 581 85 Linköping, Sweden; (P.L.); (U.F.); (X.-M.Y.)
| | - Wei Li
- Obstetrics and Gynaecology, Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden; (W.L.)
| | - Xi-Ming Yuan
- Occupational and Environmental Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, 581 85 Linköping, Sweden; (P.L.); (U.F.); (X.-M.Y.)
| |
Collapse
|
13
|
Sardar A, David M, Jahan S, Afsar T, Ahmad A, Ullah A, Almajwal A, Shafique H, Razak S. Determination of biochemical and histopathological changes on testicular and epididymis tissues induced by exposure to insecticide Imidacloprid during postnatal development in rats. BMC Pharmacol Toxicol 2023; 24:68. [PMID: 38012698 PMCID: PMC10680247 DOI: 10.1186/s40360-023-00709-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 11/16/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Imidacloprid is a neonicotinoid insecticide belonging to the chloronicotinyl nitroguanidine chemical family. Toxicity of IMD for mammals in scientific studies has shown high mutagenic, immunotoxic, teratogenic and neurotoxic effects. The present study was designed to assess the toxic effects of imidacloprid (IMD) on the testicular and epididymis tissues as well as testosterone levels of neonatal male rats. METHODS Neonatal male rats from postnatal day (PND) 1 to PND 26 were consecutively administered with different concentrations of IMD (1, 5 and 10 mg/kg) subcutaneously. The effect of IMD on body and organ weight, lipid profile, histopathological alterations, oxidative stress and altered testosterone levels were assessed in the testis and plasma. RESULTS The results of body weight gain showed a significant difference in group 4 (10 mg/kg) animals as compared to the control. A significant increase in total cholesterol and triglycerides, while a decrease in high-density lipoprotein concentrations was evident. Similarly, a significant decrease in concentrations of antioxidant enzymes (CAT and SOD) among all the IMD-treated groups was evident, when compared to the control. Increased production of ROS was also noticed in the highest-dose treatment group. Further, we observed that IMD-treated rats indicated histopathological changes in the testis and epididymis along with a significant decrease in the plasma testosterone concentrations among IMI-treated groups in contrast to the control. Histological examination of the testis of IMD-treated neonatal male rats also showed decreased spermatogenesis in the treated groups when compared to the control. Furthermore, an increase in lumen diameter and a decrease in epithelial height of seminiferous tubules were also observed in IMD-treated rats in comparison with the control. CONCLUSION It is concluded that sub-chronic exposure to IMD in neonatal male rats may induce histopathological changes in reproductive tissues and damage normal testicular functions via inducing oxidative stress, decrease in body weight, disturbing normal blood lipid profile and testosterone concentration. IMD exposure can induce pathophysiological effects calls for further evaluation of this widely used insecticide.
Collapse
Affiliation(s)
- Amina Sardar
- Reproductive Physiology Laboratory, Department of Zoology, Quaid-I-Azam University, Islamabad, Pakistan
| | - Mehwish David
- Reproductive Physiology Laboratory, Department of Zoology, Quaid-I-Azam University, Islamabad, Pakistan
| | - Sarwat Jahan
- Reproductive Physiology Laboratory, Department of Zoology, Quaid-I-Azam University, Islamabad, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Aneela Ahmad
- Reproductive Physiology Laboratory, Department of Zoology, Quaid-I-Azam University, Islamabad, Pakistan
| | - Asad Ullah
- Reproductive Physiology Laboratory, Department of Zoology, Quaid-I-Azam University, Islamabad, Pakistan
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Huma Shafique
- Institute of Cellular Medicine, Newcastle University Medical School, Newcastle University, Upon Tyne, United Kingdom
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
14
|
Abd-Elhakim YM, Saber TM, Metwally MMM, Abd-Allah NA, Mohamed RMSM, Ahmed GA. Thymol abates the detrimental impacts of imidacloprid on rat brains by lessening oxidative damage and apoptotic and inflammatory reactions. Chem Biol Interact 2023; 383:110690. [PMID: 37648049 DOI: 10.1016/j.cbi.2023.110690] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/29/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Imidacloprid (IMID) is one of the most widely used neonicotinoid insecticides globally and, consequently, a probable widespread environmental contaminant. The potential neurotoxic effects of IMID have been previously reported. This study aimed to investigate the possible beneficial effect of thymol (TML) in relieving IMID-induced harmful effects on the brain of male Sprague-Dawley rats. For this aim, four groups (10 rats/group) were orally administered corn oil, TML (30 mg/kg b.wt), IMID (22.5 mg/kg b.wt), or TML + IMID for 56 days. The brain tissues were biochemically, histopathologically, and immunohistochemically evaluated. The results displayed that TML significantly restored the IMID-induced depletion of the total antioxidant capacity of the brain tissues. At the same time, the IMID-associated increased levels of lipid peroxidation in terms of malondialdehyde content were markedly suppressed in the TML + IMID group. Also, TML oral dosing markedly reduced the release of inflammatory elements, including nitric oxide and myeloperoxidase, resulting from IMID exposure. Furthermore, the IMID-induced decrease in gamma-aminobutyric acid but the increase in acetylcholinesterase was considerably reversed by TML oral dosing. Additionally, TML oral administration significantly counteracted the IMID-induced brainepatic DNA damage, as revealed by the comet assay. Besides, a significant downregulatibrainepatic Caspase-3 was evident in the TML + IMID group compared to the IMID group. However, TML oral dosing has not significantly altered the IMID-induced nuclear factor (NF-κB p65) increase. Therefore, TML could be a protective agent against IMID-induced detrimental impacts on brain tissue, possibly through its antioxidant, antiapoptotic, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Taghred M Saber
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Noura A Abd-Allah
- Clinical Pathology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Rasha M S M Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Gehan A Ahmed
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
15
|
Abdelhafez HEDH, Hammam FM, EL-Dahshan AA, AboDalam H, Guo J. Imidacloprid Induces Neurotoxicity in Albino Male Rats by Inhibiting Acetylcholinesterase Activity, Altering Antioxidant Status, and Primary DNA Damage. J Toxicol 2023; 2023:4267469. [PMID: 37727350 PMCID: PMC10506876 DOI: 10.1155/2023/4267469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/18/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
Imidacloprid (IMI) is a neonicotinoid insecticide used worldwide, either alone or in combination with other pesticides. The goal of this study was to assess the effects of IMI on the central nervous system of rats and its mechanism of oxidative stress-induced DNA damage by oxidant/antioxidant parameters. Fifteen male rats, divided into three groups, were used: the first group received 5 ml/kg body weight corn oil as a control, the second received a high oral dose of IMI (45 mg/kg body weight), while the third received a low dose (22 mg/kg body weight). After 28 days, acetylcholinesterase (AChE) activity, oxidative stress markers, histopathological alterations, and DNA damage were examined in the brains of these rats. The AChE activities decreased significantly after IMI exposure, reaching 2.45 and 2.75 nmol/min/mg protein in high dose and low dose, respectively, compared to the control group (3.75 nmol/g tissues), while the concentration of malondialdehyde MDA increased significantly (29.28 and 23.92 nmol/g tissues) vs. the control group (19.28 nmol/g tissues). The antioxidant status parameters such as reduced glutathione (GSH) content was 13.77 and 17.63 nmol/g, catalase (CAT) activity was 22.56 and 26.65 µmol/min/g, and superoxide dismutase (SOD) activity was 6.66 and 7.23 µmol/min/g in both doses against the control group (21.37 nmol/g, 30.67 µmol/min/g, 11.76 µmol/min/g), respectively, and histopathological changes in the brain tissues were observed. More in vivo research using epigenetic methods is needed to determine the ability of IMI and its metabolites to cause neurotoxicity and DNA lesions in mammalian brains.
Collapse
Affiliation(s)
- Hossam El Din H. Abdelhafez
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, P.O. Box. 12618, Dokki, Giza, Egypt
| | - Fatma M. Hammam
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, P.O. Box. 12618, Dokki, Giza, Egypt
| | - Asmaa A. EL-Dahshan
- Department of Zoology, Faculty of Science (Girls Branch), Al-Azhar University, Cairo, Egypt
| | - Hussien AboDalam
- Plant Pathology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Jiangfeng Guo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| |
Collapse
|
16
|
Pan D, Lin M, Mu C, Yu C, Ye B, Liang J, Sheng Y, Huang D, Liu S, Zeng X, Jennifer Tan HJ, Chongsuvivatwong V, Qiu X. Maternal exposure to neonicotinoid insecticides and fetal growth restriction: A nested case-control study in the guangxi Zhuang birth cohort. CHEMOSPHERE 2023:139217. [PMID: 37336441 DOI: 10.1016/j.chemosphere.2023.139217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Fetal growth restriction (FGR) is a major determinant of perinatal morbidity and mortality, with adverse long-term neurocognitive effects in childhood and adulthood. Prenatal exposure to environmental pollutants has been reported to be associated with FGR. Neonicotinoids (NEOs) are extensively used insecticides worldwide and are suggested to have embryonic and developmental neurotoxicity. However, the effects of NEOs exposure on FGR is unknown. OBJECTIVES We aimed to quantify the single and combined associations of maternal exposure to NEOs and FGR. METHODS We conducted a nested case-control study based on the Guangxi Zhuang Birth Cohort, China. A total of 387 with FGR cases and 1096 without- FGR controls were included between 2015 and 2018. Ten NEOs were measured by UPLC-MS from the maternal blood samples were pre-collected in the first trimester. After adjusting for potential confounders, multivariable logistic regressions, weighted quantile sum regression and quantile g-computation were performed for individual and NEOs mixtures. RESULTS In the individual exposure models, each 1-standard deviation increment of the natural-log in dinotefuran and acetamiprid concentrations were significantly associated with odds ratios of 1.93 (95% CI: 1.69, 2.20) and 1.31 (95% CI: 1.07, 1.59) higher odds of FGR, respectively. However, the FGR risk was negatively associated with thiacloprid, sulfoxaflor, and nitenpyram (OR = 0.23, 95%CI: 0.15, 0.34; OR = 0.48, 95%CI: 0.41, 0.56; OR = 0.86, 95%CI: 0.80, 0.93; respectively). Similar findings were found in the combined exposure analysis. Dinotefuran was the most strongly attributable to increase FGR, while sulfoxaflor and thiacloprid contributed the highest negative weighted on FGR. Furthermore, each quintile increase in all ten NEOs exposures was associated with FGR (OR = 0.21, 95% CI: 0.08, 0.54). CONCLUSION Our findings suggest that maternal single and combined exposures to NEOs were associated with varying FGR risks. They contribute to the mounting evidence on serum NEOs exposure impact on FGR. However, a replication of these associations in other populations is warranted.
Collapse
Affiliation(s)
- Dongxiang Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Mengrui Lin
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Changhui Mu
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chuanxiang Yu
- Wuxi Center for Disease Control and Prevention, Jiangsu, China
| | - Bowen Ye
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yonghong Sheng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shun Liu
- Department of Child and Adolescent Health & Maternal and Child Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hui Juan Jennifer Tan
- Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Virasakdi Chongsuvivatwong
- Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Hatyai, Songkhla, 90110, Thailand.
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
17
|
Rajagopalan V, Venkataraman S, Rajendran DS, Vinoth Kumar V, Kumar VV, Rangasamy G. Acetylcholinesterase biosensors for electrochemical detection of neurotoxic pesticides and acetylcholine neurotransmitter: A literature review. ENVIRONMENTAL RESEARCH 2023; 227:115724. [PMID: 36948285 DOI: 10.1016/j.envres.2023.115724] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
Neurotoxic pesticides are a group of chemicals that pose a severe threat to both human health and the environment. These molecules are also known to accumulate in the food chain and persist in the environment, which can lead to long-term exposure and adverse effects on non-target organisms. The detrimental effects of these pesticides on neurotransmitter levels and function can lead to a range of neurological and behavioral symptoms, which are closely associated with neurodegenerative diseases. Hence, the accurate and reliable detection of these neurotoxic pesticides and associated neurotransmitters is essential for clinical applications, such as diagnosis and treatment. Over the past few decades, acetylcholinesterase (AchE) biosensors have emerged as a sensitive and reliable tool for the electrochemical detection of neurotoxic pesticides and acetylcholine. These biosensors can be tailored to utilize the high specificity and sensitivity of AchE, enabling the detection of these chemicals. Additionally, enzyme immobilization and the incorporation of nanoparticles have further improved the detection capabilities of these biosensors. AchE biosensors have shown tremendous potential in various fields, including environmental monitoring, clinical diagnosis, and pesticide residue analysis. This review summarizes the advancements in AchE biosensors for electrochemical detection of neurotoxic pesticides and acetylcholine over the past two decades.
Collapse
Affiliation(s)
- Vahulabaranan Rajagopalan
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Swethaa Venkataraman
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Devi Sri Rajendran
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India.
| | - Vaithyanathan Vasanth Kumar
- Department of Electronics and Communication Engineering, Hindustan Institute of Technology and Science, Chennai, India.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| |
Collapse
|
18
|
Hassanen EI, Issa MY, Hassan NH, Ibrahim MA, Fawzy IM, Fahmy SA, Mehanna S. Potential Mechanisms of Imidacloprid-Induced Neurotoxicity in Adult Rats with Attempts on Protection Using Origanum majorana L. Oil/Extract: In Vivo and In Silico Studies. ACS OMEGA 2023; 8:18491-18508. [PMID: 37273614 PMCID: PMC10233680 DOI: 10.1021/acsomega.2c08295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/19/2023] [Indexed: 06/06/2023]
Abstract
Imidacloprid (IMI) insecticide is rapidly metabolized in mammals and contributes to neurotoxicity via the blocking of nicotinic acetylcholine receptors, as in insects. Origanum majorana retains its great antioxidant potential in both fresh and dry forms. No data is available on the neuroprotective effect of this plant in laboratory animals. In this context, aerial parts of O. majorana were used to prepare the essential oil (OMO) and methanol extract (OME). The potential neuroprotective impact of both OMO and OME against IMI-induced neurotoxicity in rats was explored. Forty-two rats were divided into 6 groups, with 7 rats in each one. Rats were daily administered the oral treatments: normal saline, OMO, OME, IMI, IMI + OMO, and IMI + OME. Our results revealed the identification of 55 components in O. majorana essential oil, most belonging to the oxygenated and hydrocarbon monoterpenoid group. Moreover, 37 constituents were identified in the methanol extract, mostly phenolics. The potent neurotoxic effect of IMI on rats was confirmed by neurobehavioral and neuropathological alterations and a reduction of both acetylcholine esterase (AchE) activity and dopamine (DA), serotonin (5HT), and γ-aminobutyric acid (GABA) levels in the brain. Exposure of rats to IMI elevates the malondialdehyde (MDA) levels and reduces the antioxidant capacity. IMI could upregulate the transcription levels of nuclear factor-κB (NF-κB), interleukin-1 β (IL-1β), and tumor necrosis factor (TNF-α) genes and express strong caspase-3 and inducible nitric oxide synthase (iNOS) immunostaining in most examined brain areas. On the other hand, rats coadministered OMO or OME with IMI showed a marked improvement in all of the studied toxicological parameters. In conclusion, cotreatment of O. majorana extracts with IMI can protect against IMI neurotoxicity via their potent antioxidant, anti-inflammatory, and anti-apoptotic effects. Thus, we recommend a daily intake of O. majorana to protect against insecticide's oxidative stress-mediated neuroinflammatory stress and apoptosis. The molecular docking study of linalool, rosmarinic acid, γ-terpene, and terpene-4-ol justify the observed normalization of the elevated iNOS and TNF-α levels induced after exposure to IMI.
Collapse
Affiliation(s)
- Eman I. Hassanen
- Department
of Pathology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Marwa Y. Issa
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr El-Aini
Street, 11562 Cairo, Egypt
| | - Neven H. Hassan
- Department
of Physiology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Marwa A. Ibrahim
- Department
of Biochemistry, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Iten M. Fawzy
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, 11835 Cairo, Egypt
| | - Sherif Ashraf Fahmy
- Department
of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative
Capital, 11835 Cairo, Egypt
| | - Sally Mehanna
- Department
of Animal Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| |
Collapse
|
19
|
Mendonça-Soares S, Fortuna M, Freddo N, Varela ACC, Pompermaier A, Mozzato MT, Costa VC, Tamagno WA, Rossato-Grando LG, Barcellos LJG. Behavioral, biochemical, and endocrine responses of zebrafish to 30-min exposure with environmentally relevant concentrations of imidacloprid-based insecticide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27667-x. [PMID: 37195604 DOI: 10.1007/s11356-023-27667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/11/2023] [Indexed: 05/18/2023]
Abstract
The imidacloprid-based insecticides (IBIs) are among the most used insecticides worldwide, and chronic and acute toxic effects (days exposure protocols) have been reported in several species in studies of IBIs at lethal concentrations. However, there is little information on shorter time exposures and environmentally relevant concentrations. In this study, we investigated the effect of a 30-min exposure to environmentally relevant concentrations of IBI on the behavior, redox status, and cortisol levels of zebrafish. We showed that the IBI decreased fish locomotion and social and aggressive behaviors and induced an anxiolytic-like behavior. Furthermore, IBI increased cortisol levels and protein carbonylation and decreased nitric oxide levels. These changes were mostly observed at 0.013 and 0.0013 µg·L-1 of IBI. In an environmental context, these behavioral and physiological disbalances, which were immediately triggered by IBI, can impair the ability of fish to evade predators and, consequently, affect their survival.
Collapse
Affiliation(s)
- Suelen Mendonça-Soares
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, Bairro Camobi, Santa Maria, Rio Grande Do Sul, Brazil
| | - Milena Fortuna
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, Bairro Camobi, Santa Maria, Rio Grande Do Sul, Brazil
| | - Natália Freddo
- Programa de Pós-Graduação Em Bioexperimentação, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil
| | - Amanda Carolina Cole Varela
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, Bairro Camobi, Santa Maria, Rio Grande Do Sul, Brazil
| | - Aline Pompermaier
- Programa de Pós-Graduação Em Bioexperimentação, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil
| | - Mateus Timbola Mozzato
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil
| | - Vitória Cadore Costa
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil
| | - Wagner Antonio Tamagno
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, Bairro Camobi, Santa Maria, Rio Grande Do Sul, Brazil
| | - Luciana Grazziotin Rossato-Grando
- Programa de Pós-Graduação Em Bioexperimentação, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil
| | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, Bairro Camobi, Santa Maria, Rio Grande Do Sul, Brazil.
- Programa de Pós-Graduação Em Bioexperimentação, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil.
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil.
| |
Collapse
|
20
|
Zhou X, Ming R, Guo M, Jiao H, Cui H, Hu D, Lu P. Characterization of imidacloprid-induced hepatotoxicity and its mechanisms based on a metabolomic approach in Xenopus laevis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161794. [PMID: 36707007 DOI: 10.1016/j.scitotenv.2023.161794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The toxic effects of imidacloprid are attracting increased concern because of its widespread use in agriculture and its persistence in the aquatic environment. Imidacloprid bioaccumulates and triggers various morphological and behavioral responses in amphibians, but the toxic effects and mechanism of imidacloprid in amphibians remain uncertain. In this study, the acute toxicity and chronic effects of imidacloprid on Xenopus laevis were studied. Acute toxicity for 96 h revealed that imidacloprid had an LC50 value of 74.18 mg/L. After exposure for 28 d under 1/10 and 1/100 LC50, liver samples from X. laevis were employed for biochemical analyses, pathological studies, and nontargeted metabolomics to systematically assess the toxic effects and mechanisms of imidacloprid. The results showed that oxidative stress and hepatic tissue morphology changes were observed in treated X. laevis liver. Twelve metabolites involved in metabolic pathway were altered between the control and high exposure groups and twenty-one metabolites were altered between the control and low exposure group. Eight metabolic pathways exposed to high levels and nine metabolic pathways exposed to low level of imidacloprid were disturbed. These pathways were primarily related to amino acid metabolism, lipid metabolism, and nucleotide metabolism. Our research provides essential information to evaluate the potential toxicity of imidacloprid to nontarget aquatic organisms.
Collapse
Affiliation(s)
- Xia Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Renyue Ming
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Meiting Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hui Jiao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Honghao Cui
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Deyu Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ping Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
21
|
Mudgal R, Sharma S, Singh S, Ravichandiran V. The neuroprotective effect of ascorbic acid against imidacloprid-induced neurotoxicity and the role of HO-1 in mice. Front Neurol 2023; 14:1130575. [PMID: 37153653 PMCID: PMC10157196 DOI: 10.3389/fneur.2023.1130575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/06/2023] [Indexed: 05/10/2023] Open
Abstract
Imidacloprid (IMI) is not only a neurotoxic agricultural pesticide but also a possible food contaminant. The aims of this study were to (1) explore the relationship between recurrent IMI administration and neuronal toxicity in mice and (2) evaluate the potential neuroprotective effect of ascorbic acid (AA), a substance with significant free radical scavenger and having property to block the inflammatory pathways. Mice were categorized as naïve controls (administered vehicles for 28 days); the IMI-treatment animal group (administered po 45-mg/kg body weight of IMI per day for 28 days); and the IMI + AA treatment animal group (administered the same IMI dose + 200 mg/kg of AA orally for 28 days). On day 28, memory losses were assessed using the Y-maze and novel target identification behavioral tests. Mice were sacrificed 24 h after the final IMI treatments, as well as hippocampus tissues, were utilized to determine histological assessments, oxidative stress biomarkers, and Heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) gene expression levels. The findings demonstrated that IMI-treated mice had substantial impairment of spatial and non-spatial memory functions, as well as reduced antioxidant enzyme and acetylcholinesterase activity. The AA neuroprotective action was achieved through the suppression of the HO-1 expression as well as the stimulation of Nrf2 expression in hippocampal tissues. In summary, recurrent IMI exposure causes oxidative stress and neurotoxicity in mice, and the administration of AA significantly reduces the IMI toxicity possibly by the activation of the HO-1/Nrf2 pathway.
Collapse
|
22
|
Yang Y, Yu Q, Zhang C, Wang X, He L, Huang Y, Li E, Qin J, Chen L. Acute thiamethoxam exposure induces hepatotoxicity and neurotoxicity in juvenile Chinese mitten crab (Eriocheir sinensis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114399. [PMID: 36508784 DOI: 10.1016/j.ecoenv.2022.114399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The similar nervous system structure between crustaceans and insects and the high-water solubility of thiamethoxam can lead to the more severe toxicity of thiamethoxam to crustaceans. However, the effects of thiamethoxam on crustaceans are unclear. Therefore, a 96-h acute toxicity test was performed to explore the hepatotoxicity and neurotoxicity effects of thiamethoxam on Chinese mitten crab (Eriocheir sinensis) at concentrations 0 µg/L, 150 µg/L and 300 µg/L. The antioxidant and detoxification systems (including phases I and II) were significantly activated after exposure of juvenile crabs to thiamethoxam for 24 h in 300 µg/L group, whereas the toxic activation effect in 150 μg/L group was delayed. Moreover, a similar pattern was observed for the transcription levels of immune-related genes. Further analysis of inflammatory signaling pathway-related genes showed that thiamethoxam exposure with 300 µg/L for 24 h may induce a pro-inflammatory response through the NF-κB pathway. In contrast, the gene expression levels in 150 µg/L group were significantly upregulated compared with 0 µg/L group after 96 h. In addition, although the acute exposure of 150 μg/L thiamethoxam did not seem to induce significant neurotoxicity, the acetylcholinesterase activity was significantly decreased in 300 μg/L group after thiamethoxam exposure for 96 h. Correspondingly, thiamethoxam exposure with 300 µg/L for 24 h resulted in significantly downregulated transcriptional levels of synaptic transmission-related genes (e.g. dopamine-, gamma-aminobutyric acid- and serotonin-related receptors). Therefore, thiamethoxam may be harmful and cause potential toxic threats such as neurotoxicity and metabolic damage to crustaceans.
Collapse
Affiliation(s)
- Yiwen Yang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Qiuran Yu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Cong Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Long He
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Yuxing Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| |
Collapse
|
23
|
Miao Z, Miao Z, Liu M, Xu S. Melatonin ameliorates imidacloprid-induced intestinal injury by negatively regulating the PGN/P38MAPK pathway in the common carp (Cyprinuscarpio). FISH & SHELLFISH IMMUNOLOGY 2022; 131:1063-1074. [PMID: 36375784 DOI: 10.1016/j.fsi.2022.11.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Imidacloprid (IMI), one of the most frequently used neonicotinoid insecticides in agriculture, is resided in surface water worldwide and poses a threat to aquatic organisms. Melatonin (MT) provides effective protection against insecticide-induced toxicity, nevertheless, the toxic effects and whether MT attenuates intestinal injury caused by IMI exposure in the common carps remains poorly explored. Previous studies have reported adverse effects of IMI exposure on intestinal health status. Therefore, we first demonstrated that IMI altered the composition and function of the intestinal microbiota, destroying the integrity of intestinal ultrastructure, increasing intestinal permeability. Meanwhile, metagenomic sequencing and ELISA kits results hypothesized that peptidoglycan (PGN) is an IMI-triggered intestinal microbial metabolite. Subsequently, we thus further elucidated that IMI induced an increase in intestinal tight junction permeability by inducing PGN secretion in vitro model. MT addition dramatically attenuated IMI-induced intestinal toxicity by remitting PGN synthesis and thus resecuring tight junction permeability, thereby reducing intestinal injury. SB203580 was supplied as a P38MAPK inhibitor to alleviate the increased permeability of tight junctions induced by IMI/PGN. Therefore, these findings confirmed that MT protects against IMI-induced intestinal injury by negatively regulating PGN/P38MAPK pathway to antagonize the increased tight junction permeability.
Collapse
Affiliation(s)
- Zhiruo Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhiying Miao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Min Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
24
|
Li X, He S, Xiao H, He TT, Zhang JD, Luo ZR, Ma JZ, Yin YL, Luo L, Cao LY. Neonicotinoid insecticides promote breast cancer progression via G protein-coupled estrogen receptor: In vivo, in vitro and in silico studies. ENVIRONMENT INTERNATIONAL 2022; 170:107568. [PMID: 36240625 DOI: 10.1016/j.envint.2022.107568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/02/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Neonicotinoid insecticides (NIs) have been widely detected in environmental media and human body with concentrations reaching hundreds of nanomolar to micromolar levels. However, the information about their human health toxicology and mechanism is deficient. Previous studies have implied that NIs might exert estrogenic disruption and promote breast cancer progression, but the molecular mechanism is unclear, especially the molecular initiating event. G protein-coupled estrogen receptor (GPER), as a candidate therapeutic target, plays vital roles in the development of breast cancer. This work aimed to reveal the potential mechanism through GPER pathway. Firstly, we screened the activities of seven most common NIs on GPER signal pathway by calcium mobilization assay. Clothianidin, acetamiprid (ACE), and dinotefuran activated GPER most potently and ACE displayed the highest agonistic activity with the lowest observed effective concentration (LOEC) of 1 μM. The molecular docking and dynamics simulation showed favored interaction trend between the NIs and GPER. The three NIs with GPER activity induced 4T1 breast cancer cells migration and ACE showed the highest potency with LOEC of 100 nM. ACE also induced 4T1 cells proliferation at high concentration of 50 μM and up-regulated GPER expression in a dose-dependent manner. We speculated that both the induction effects of ACE on 4T1 cells proliferation and migration might be owing to the activation and up-regulation of GPER. By using 4T1-Luc cells injected orthotopic tumor model, we found that ACE also promoted in-situ breast cancer growth and lung metastasis in normal mouse dependent on GPER. However, ACE only promoted in-situ breast cancer growth through GPER but not lung metastasis in ovariectomized mice, implying that the ACE-induced lung metastasis should be related to endogenous estrogen from ovary. Overall, we demonstrated that NIs promoted breast cancer progression via GPER pathway at human related exposure levels and their female health risks need urgent concerns.
Collapse
Affiliation(s)
- Xin Li
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Sen He
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Han Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Ting-Ting He
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Jia-Da Zhang
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Zi-Rui Luo
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Jie-Zhi Ma
- Department of Obstetrics and Gynecology, Xiangya Third Hospital, Central South University, Changsha 410013, China
| | - Yu-Long Yin
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Lin-Ying Cao
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China.
| |
Collapse
|
25
|
Palliative effect of Moringa olifera-mediated zinc oxide nanoparticles against acrylamide-induced neurotoxicity in rats. Food Chem Toxicol 2022; 171:113537. [PMID: 36442736 DOI: 10.1016/j.fct.2022.113537] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Repeated acrylamide (ACR) exposure in experimental animals and humans causes variable degrees of neuronal damage. Because of its unique features, several green synthesized nanomaterials are explored for neuromodulatory activity. Hence, this study investigated the effect of green synthesized zinc oxide nanoparticles using Moriga olifera leaves extract (MO-ZnONP) against acrylamide (ACR)-induced neurobehavioral and neurotoxic impacts in rat. Forty male Sprague Dawley rats were distributed into four groups orally given distilled water, MO-ZnONP (10 mg/kg b.wt), ACR (20 mg/kg b.wt), or MO-ZnONP + ACR for 60 days. Gait quality and muscular, motor, and sensory function were assessed. Acetylcholinesterase (AChE), dopamine, catalase, malondialdehyde (MDA), and Zn brain contents were determined. Brain histopathology and immunohistochemical localization of the amyloid-β protein and abnormal Tau were performed. The results revealed that MO-ZnONP significantly reduced ACR-induced sensory dysfunctions, hind limb abnormality, and motor deficits. Additionally, the ACR-induced increase in dopamine and AChE were significantly supressed by MO-ZnONP. Besides, MO-ZnONP significantly restored catalase and Zn content but reduced increased MDA brain content resulting from ACR. Furthermore, the ACR-induced neurodegenerative changes and increased amyloid-β and phosphorylated Tau immunoexpression was significantly abolished by MO-ZnONP. Conclusively, MO-ZnONP could be used as a biologically effective compound for mitigating ACR's neurotoxic and neurobehavioral effects.
Collapse
|
26
|
Hirai A, Yamazaki R, Kobayashi A, Kimura T, Nomiyama K, Shimma S, Nakayama SMM, Ishizuka M, Ikenaka Y. Detection of Changes in Monoamine Neurotransmitters by the Neonicotinoid Pesticide Imidacloprid Using Mass Spectrometry. TOXICS 2022; 10:696. [PMID: 36422903 PMCID: PMC9695199 DOI: 10.3390/toxics10110696] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Monoamine neurotransmitters (MAs), including dopamine (DA) and serotonin (5-HT), regulate brain functions such as behavior, memory, and learning. Neonicotinoids are pesticides that are being used more frequently. Neonicotinoid exposure has been observed to produce neurological symptoms, such as altered spontaneous movements and anxiety-like behaviors, which are suspected to be caused by altered MA levels. However, current neurotoxicity tests are not sufficiently sensitive enough to make these determinations. In this study, we performed some behavior tests, and derivatization reagents to improve the ionization efficiency, which was applied to liquid chromatography mass spectrometry (LC-MS/MS) to reveal the effect of neonicotinoid administration on MAs in the brain. We orally administered the neonicotinoid imidacloprid (0, 10, and 50 mg/kg body weight) to C57BL/6NCrSlc mice. In the behavior tests, a decrease in activity was observed. The LC-MS/MS quantification of MAs in various brain regions showed a decrease in some MA levels in the olfactory bulb and the striatum. These results showed, for the first time, that even a low dose of imidacloprid could alter MA levels in various parts of the brain.
Collapse
Affiliation(s)
- Anri Hirai
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Ryo Yamazaki
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Shouta M. M. Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman Street, Potchefstroom 2531, South Africa
| |
Collapse
|
27
|
Eser N, Cicek M, Yoldas A, Demir M, Deresoy FA. Caffeic acid phenethyl ester ameliorates imidacloprid-induced acute toxicity in the rat cerebral cortex. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103980. [PMID: 36191819 DOI: 10.1016/j.etap.2022.103980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to investigate the role of caffeic acid phenethyl ester (CAPE), a compound found in propolis, on imidacloprid (IMI), a nicotinic acetylcholine receptor agonist that causes cerebral toxicity. 60 adult rats were randomly divided into five groups: control, IMI (100 mg/kg), and IMI+CAPE (1, 5, 10 mg/kg). Cerebral cortex tissue was examined histopathologically, biochemically, spectrophotometrically and immunohistochemically. The results showed that IMI caused toxicity in the cerebral cortex. However, CAPE (5 and 10 mg/kg) attenuated the deteriorated histopathological score and normalized the apoptotic markers (Bax and Caspase-3). Additionally, CAPE dose-dependently normalized the levels of TNF-α, dopamin, GFAP and NGF, and at the highest dose (10 mg/kg) also normalized the balance of oxidative parameters (MDA, SOD, CAT, and GSH). In conclusion, the antioxidant, anti-inflammatory, and anti-apoptotic effects of CAPE may be a promising treatment for acute IMI-induced cerebral cortex toxicity.
Collapse
Affiliation(s)
- Nadire Eser
- Department of Pharmacology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey.
| | - Mustafa Cicek
- Department of Medical Biology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Atila Yoldas
- Department of Anatomy, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mehmet Demir
- Department of Anatomy, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Faik Alev Deresoy
- Department of Pathology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
28
|
Saber TM, Abo-Elmaaty AMA, Said EN, Beheiry RR, Moselhy AAA, Abdelgawad FE, Arisha MH, Saber T, Arisha AH, Fahmy EM. Alhagi maurorum Ethanolic Extract Rescues Hepato-Neurotoxicity and Neurobehavioral Alterations Induced by Lead in Rats via Abrogating Oxidative Stress and the Caspase-3-Dependent Apoptotic Pathway. Antioxidants (Basel) 2022; 11:1992. [PMID: 36290715 PMCID: PMC9598489 DOI: 10.3390/antiox11101992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 09/29/2023] Open
Abstract
This work investigated the probable protective effect of an Alhagi maurorum ethanolic extract on the hepatotoxicity and neurotoxicity accompanied by neurobehavioral deficits caused by lead in rats. Rats in four groups were orally administered distilled water, ethanolic extract of A. maurorum (300 mg/kg BW daily), lead (100 mg/kg BW daily for 3 months), and lead + A. maurorum extract. The results demonstrated that lead exposure resulted in elevated locomotor activities and sensorimotor deficits associated with a decrease in brain dopamine levels. Moreover, lead exposure significantly increased liver function markers. In addition, the lead-treated rats exhibited extensive liver and brain histological changes and apoptosis. The lead treatment also triggered oxidative stress, as demonstrated by the increase in malondialdehyde (MDA) concentrations with a remarkable reduction in the activities of antioxidant enzymes, reduced glutathione (GSH) levels, and transcriptional mRNA levels of antioxidant genes in the liver and brain. Nevertheless, co-treatment with the A. maurorum extract significantly ameliorated the lead-induced toxic effects. These findings indicate that the A. maurorum extract has the ability to protect hepatic and brain tissues against lead exposure in rats through the attenuation of apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Taghred M. Saber
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Azza M. A. Abo-Elmaaty
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Enas N. Said
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Rasha R. Beheiry
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Attia A. A. Moselhy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Fathy Elsayed Abdelgawad
- Medical Biochemistry Department, Faculty of Medicine, Al-Azhar University, Cairo 11651, Egypt
- Chemistry Department, Faculty of Science, Islamic University of Madinah, P.O. Box 170, Madinah 42351, Saudi Arabia
| | - Mariam H. Arisha
- Department of Psychology, Faculty of Arts, Zagazig University, Zagazig 44519, Egypt
| | - Taisir Saber
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Esraa M. Fahmy
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
29
|
Deng N, Lv Y, Bing Q, Li S, Han B, Jiang H, Yang Q, Wang X, Wu P, Liu Y, Zhang Z. Inhibition of the Nrf2 signaling pathway involved in imidacloprid-induced liver fibrosis in Coturnix japonica. ENVIRONMENTAL TOXICOLOGY 2022; 37:2354-2365. [PMID: 35716027 DOI: 10.1002/tox.23601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Imidacloprid (IMI) is a kind of widely used neonicotinoid insecticide. However, the toxicity of IMI is not only applied to target pests but also causes serious negative effects on birds and other creatures. Our previous studies have shown that long-term exposure to IMI can induce liver fibrosis in quails. However, the specific mechanism of quail liver fibrosis induced by IMI is not completely clear. Accordingly, the purpose of this study is to further clarify the potential molecular mechanism of IMI-induced liver fibrosis in quails. Japanese quails (Coturnix japonica) were treated with/without IMI (intragastric administration with 6 mg/kg body weight) in the presence/absence of luteolin (Lut) (fed with 800 mg/kg) for 90 days. The results reveal that IMI can induce hepatic fibrosis, oxidative stress, fatty degeneration, inflammation, and the down-expression of nuclear factor-E2-related factor-2 (Nrf2). Furthermore, the treatment of Lut, a kind of Nrf2 activator, increased the expression of Nrf2 in livers and alleviated liver fibrosis in quails. Altogether, our study demonstrates that inhibition of the Nrf2 pathway is the key to liver fibrosis induced by IMI in quails. These results provide a new understanding for the study of the toxicity of IMI and a practical basis for the treatment of liver fibrosis caused by IMI.
Collapse
Affiliation(s)
- Ning Deng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yueying Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qizheng Bing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
30
|
Martins-Gomes C, Coutinho TE, Silva TL, Andreani T, Silva AM. Neurotoxicity Assessment of Four Different Pesticides Using In Vitro Enzymatic Inhibition Assays. TOXICS 2022; 10:toxics10080448. [PMID: 36006126 PMCID: PMC9413506 DOI: 10.3390/toxics10080448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 12/23/2022]
Abstract
Pesticides affect different organs and tissues according to their bioavailability, chemical properties and further molecular interactions. In animal models exposed to several classes of pesticides, neurotoxic effects have been described, including the reduction of acetylcholinesterase activity in tissue homogenates. However, in homogenates, the reduction in enzymatic activity may also result from lower enzymatic expression and not only from enzymatic inhibition. Thus, in this work, we aimed to investigate the neurotoxic potential of four distinct pesticides: glyphosate (herbicide), imazalil (fungicide), imidacloprid (neonicotinoid insecticide) and lambda-cyhalothrin (pyrethroid insecticide), by assessing their inhibitory effect on the activity of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase, by using direct in vitro enzymatic inhibition methods. All pesticides dose-dependently inhibited AChE activity, with an inhibition of 11 ± 2% for glyphosate, 48 ± 2% for imidacloprid, 49 ± 3% for imazalil and 50 ± 3% for lambda-cyhalothrin, at 1 mM. Only imazalil inhibited BChE. Imazalil induced dose-dependent inhibition of BChE with identical pattern as that observed for AChE; however, for lower concentrations (up to 500 μM), imazalil showed higher specificity for AChE, and for higher concentrations, the same specificity was found. Imazalil, at 1 mM, inhibited the activity of BChE by 49 ± 1%. None of the pesticides, up to 1 mM, inhibited tyrosinase activity. In conclusion, the herbicide glyphosate shows specificity for AChE but low inhibitory capacity, the insecticides imidacloprid and λ-cyhalothrin present selective AChE inhibition, while the fungicide IMZ is a broad-spectrum cholinesterase inhibitor capable of inhibiting AChE and BChE in an equal manner. Among these pesticides, the insecticides and the fungicide are the ones with higher neurotoxic potential.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (T.E.C.); (T.L.S.)
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
| | - Tiago E. Coutinho
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (T.E.C.); (T.L.S.)
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
| | - Tânia L. Silva
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (T.E.C.); (T.L.S.)
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
| | - Tatiana Andreani
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
- GreenUPorto—Sustainable Agrifood Production Research Centre & Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Amélia M. Silva
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (T.E.C.); (T.L.S.)
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
- Correspondence: ; Tel.: +351-259-350-921
| |
Collapse
|
31
|
Tonietto BD, Laurentino AOM, Costa-Valle MT, Cestonaro LV, Antunes BP, Sates C, Dos Santos NG, Dallegrave E, Garcia SC, Leal MB, Arbo MD. Imidacloprid-based commercial pesticide causes behavioral, biochemical, and hematological impairments in Wistar rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103924. [PMID: 35787953 DOI: 10.1016/j.etap.2022.103924] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Imidacloprid (IMI) is a neonicotinoid insecticide employed worldwide for crop protection. IMI's mode of action occurs through the agonism of postsynaptic nicotinic acetylcholine receptors (nAChRs), with high specificity for insect nAChRs although there are reports of mammals' toxicity. Studies on IMI's neurotoxicity are not conclusive; therefore, the aim of this study was to evaluate the subchronic toxic effects of an IMI based commercial pesticide on rats. Adult male Wistar rats received an IMI suspension via the oral route at doses of 1.5, 5, and 15 mg/kg for 45 consecutive days. IMI caused an increase in rearing and time spent at the periphery in the locomotor activity test and a decrease in time spent to finish the OX maze task (p < 0.05; ANOVA/Bonferroni). In blood, there was a decrease in mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration (p < 0.05; ANOVA/Bonferroni) and an increase in serum butyrylcholinesterase activity (p < 0.001; ANOVA/Bonferroni). Therefore, subchronic administration of an IMI-based-pesticide caused behavioral and systemic impairments in rats.
Collapse
Affiliation(s)
- Bruna Ducatti Tonietto
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia - Anexo I, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana Olívia Martins Laurentino
- Laboratório de Farmacologia e Toxicologia Neurocomportamental, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Marina Tuerlinckx Costa-Valle
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Larissa Vivan Cestonaro
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia - Anexo I, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Bibiana Pereira Antunes
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia - Anexo I, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Cleofas Sates
- Laboratório de Farmacologia e Toxicologia Neurocomportamental, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Nícolas Guimarães Dos Santos
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia - Anexo I, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Eliane Dallegrave
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Solange Cristina Garcia
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia - Anexo I, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mirna Bainy Leal
- Laboratório de Farmacologia e Toxicologia Neurocomportamental, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcelo Dutra Arbo
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia - Anexo I, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
32
|
Silva AM, Martins-Gomes C, Ferreira SS, Souto EB, Andreani T. Molecular Physicochemical Properties of Selected Pesticides as Predictive Factors for Oxidative Stress and Apoptosis-Dependent Cell Death in Caco-2 and HepG2 Cells. Int J Mol Sci 2022; 23:ijms23158107. [PMID: 35897683 PMCID: PMC9331544 DOI: 10.3390/ijms23158107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, three pesticides of different physicochemical properties: glyphosate (GLY, herbicide), imidacloprid (IMD, insecticide), and imazalil (IMZ, fungicide), were selected to assess their cytotoxicity against Caco-2 and HepG2 cells. Cell viability was assessed by the Alamar Blue assay, after 24 and 48 h exposure to different concentrations, and IC50 values were calculated. The mechanisms underlying toxicity, namely cellular reactive oxygen species (ROS), glutathione (GSH) content, lipid peroxidation, loss of mitochondrial membrane potential (MMP), and apoptosis/necrosis induction were assessed by flow cytometry. Cytotoxic profiles were further correlated with the molecular physicochemical parameters of pesticides, namely: water solubility, partition coefficient in an n-octanol/water (Log Pow) system, topological polar surface area (TPSA), the number of hydrogen-bonds (donor/acceptor), and rotatable bonds. In vitro outputs resulted in the following toxicity level: IMZ (Caco-2: IC50 = 253.5 ± 3.37 μM, and HepG2: IC50 = 94 ± 12 μM) > IMD (Caco-2: IC50 > 1 mM and HepG2: IC50 = 624 ± 24 μM) > GLY (IC50 >>1 mM, both cell lines), after 24 h treatment, being toxicity time-dependent (lower IC50 values at 48 h). Toxicity is explained by oxidative stress, as IMZ induced a higher intracellular ROS increase and lipid peroxidation, followed by IMD, while GLY did not change these markers. However, the three pesticides induced loss of MMP in HepG2 cells while in Caco-2 cells only IMZ produced significant MMP loss. Increased ROS and loss of MMP promoted apoptosis in Caco-2 cells subjected to IMZ, and in HepG2 cells exposed to IMD and IMZ, as assessed by Annexin-V/PI. The toxicity profile of pesticides is directly correlated with their Log Pow, as affinity for the lipophilic environment favours interaction with cell membranes governs, and is inversely correlated with their TPSA; however, membrane permeation is favoured by lower TPSA. IMZ presents the best molecular properties for membrane interaction and cell permeation, i.e., higher Log Pow, lower TPSA and lower hydrogen-bond (H-bond) donor/acceptor correlating with its higher toxicity. In conclusion, molecular physicochemical factors such as Log Pow, TPSA, and H-bond are likely to be directly correlated with pesticide-induced toxicity, thus they are key factors to potentially predict the toxicity of other compounds.
Collapse
Affiliation(s)
- Amélia M. Silva
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (S.S.F.)
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
- Correspondence: ; Tel.: +351-259-350-921
| | - Carlos Martins-Gomes
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (S.S.F.)
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
| | - Sandrine S. Ferreira
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (S.S.F.)
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- UCIBIO/REQUIMTE, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Tatiana Andreani
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
- GreenUPorto—Sustainable Agrifood Production Research Centre and Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
33
|
Ogaly HA, Abdel-Rahman RF, Mohamed MAE, O A AF, Khattab MS, Abd-Elsalam RM. Thymol ameliorated neurotoxicity and cognitive deterioration in a thioacetamide-induced hepatic encephalopathy rat model; involvement of the BDNF/CREB signaling pathway. Food Funct 2022; 13:6180-6194. [PMID: 35583008 DOI: 10.1039/d1fo04292k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the present study, we aimed to delineate the neuroprotective potential of thymol (THY) against neurotoxicity and cognitive deterioration induced by thioacetamide (TAA) in an experimental model of hepatic encephalopathy (HE). Rats received TAA (100 mg kg-1, intraperitoneally injected, three times per week) for two weeks. THY (30 and 60 mg kg-1), and Vit E (100 mg k-1) were administered daily by oral gavage for 30 days after HE induction. Supplementation with THY significantly improved liver function, reduced serum ammonia level, and ameliorated the locomotor and cognitive deficits. THY effectively modulated the alteration in oxidative stress markers, neurotransmitters, and brain ATP content. Histopathology of liver and brain tissues showed that THY had ameliorated TAA-induced damage, astrocyte swelling and brain edema. Furthermore, THY downregulated NF-kB and upregulated GFAP protein expression. In addition, THY significantly promoted CREB and BDNF expression at both mRNA and protein levels, together with enhancing brain cAMP level. In conclusion, THY exerted hepato- and neuroprotective effects against HE by mitigating hepatotoxicity, hyperammonemia and brain ATP depletion via its antioxidant, anti-inflammatory effects in addition to activation of the CREB/BDNF signaling pathway.
Collapse
Affiliation(s)
- Hanan A Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia. .,Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Rehab F Abdel-Rahman
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Center, Dokki, Giza, Egypt
| | - Marawan Abd Elbaset Mohamed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Center, Dokki, Giza, Egypt
| | - Ahmed-Farid O A
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Reham M Abd-Elsalam
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
34
|
Wells C, Collins CMT. A rapid evidence assessment of the potential risk to the environment presented by active ingredients in the UK's most commonly sold companion animal parasiticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45070-45088. [PMID: 35461423 PMCID: PMC9209362 DOI: 10.1007/s11356-022-20204-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
A number of parasiticides are commercially available as companion animal treatments to protect against parasite infestation and are sold in large volumes. These treatments are not intended to enter the wider environment but may be washed off or excreted by treated animals and have ecotoxic impacts. A systematic literature review was conducted to identify the existing evidence for the toxicity of the six most used parasiticides in the UK: imidacloprid, fipronil, fluralaner, afoxolaner, selamectin, and flumethrin. A total of 17,207 published articles were screened, with 690 included in the final evidence synthesis. All parasiticides displayed higher toxicity towards invertebrates than vertebrates, enabling their use as companion animal treatments. Extensive evidence exists of ecotoxicity for imidacloprid and fipronil, but this focuses on exposure via agricultural use and is not representative of environmental exposure that results from use in companion animal treatments, especially in urban greenspace. Little to no evidence exists for the ecotoxicity of the remaining parasiticides. Despite heavy usage, there is currently insufficient evidence to understand the environmental risk posed by these veterinary treatments and further studies are urgently needed to quantify the levels and characterise the routes of environmental exposure, as well as identifying any resulting environmental harm.
Collapse
Affiliation(s)
- Clodagh Wells
- The Centre for Environmental Policy, Imperial College London, The Weeks Building, Princes Gardens, London, SW7 1NE UK
| | - C. M. Tilly Collins
- The Centre for Environmental Policy, Imperial College London, The Weeks Building, Princes Gardens, London, SW7 1NE UK
| |
Collapse
|
35
|
Sustained Functioning Impairments and Oxidative Stress with Neurobehavioral Dysfunction Associated with Oral Nicotine Exposure in the Brain of a Murine Model of Ehrlich Ascites Carcinoma: Modifying the Antioxidant Role of Chlorella vulgaris. BIOLOGY 2022; 11:biology11020279. [PMID: 35205143 PMCID: PMC8869302 DOI: 10.3390/biology11020279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 12/20/2022]
Abstract
Simple Summary Nicotine is the major psychoactive component considered to underlie tobacco’s addictive nature, and its dependence has been linked to several drawbacks on behavior and brain health. The purpose of this study was to investigate the mechanisms triggered by oral nicotine that cause brain tissue damage, as well as the supportive role of Chlorella vulgaris microalgae supplementation in Ehrlich ascites carcinoma in mice. The results revealed pronounced neurobehavioral alterations, increased mortality rate, oxidative stress, DNA damage, and augmented inflammatory response in the brain tissue alongside the microstructural alteration caused by nicotine. Chlorella vulgaris was quite successful in reducing the negative effects of nicotine. It acts as an antioxidant anti-inflammatory and restores nearly normal tissue architectures. As a result, we believe it should be supplemented to cancer patients consuming regular nicotine doses. Abstract Background: This study provides a model for studying the mechanism(s) responsible for the nervous tissue damage and misfunctioning that occurred due to oral nicotine exposure, considered a stress factor, during the presence of Ehrlich ascites carcinoma bearing in the mouse model (EAC). The mitigating role of Chlorella vulgaris (CV) against nicotine-induced brain damage was evaluated. Methods: Eighty Swiss female mice were classified into four groups, these were the control, the CV group, the nicotine group(100 µg/kg), and the combination group. Oxidant/antioxidant status, proinflammatory cytokines levels, DNA damage, quantitative microscopical lesions, and Caspase 3, Bcl-2 proteins were assessed in the current study. Levels of dopamine (DA) and gamma-aminobutyric acid (GABA) were also evaluated. Results: Nicotine was found to cause pronounced neurobehavioral alterations, increase the mortalities oxidative stress DNA damage, and augment the inflammatory response in brain tissue alongside the microstructural alteration. The administration of CV with nicotine in EAC-bearing mice rescued the detrimental effects of nicotine. Conclusions: CV aids in reducing the harmful effects of nicotine and returns the conditions caused by nicotine to near-control levels. Thus, we are in favor of giving it to cancer patients who are taking daily dosages of nicotine even by smoking cigarettes or being exposed to second-hand smoke.
Collapse
|
36
|
Temiz Ö. In vivo neurotoxic effects of emamectin benzoate in male mice: evaluation with enzymatic and biomolecular multi-biomarkers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8921-8932. [PMID: 34498180 DOI: 10.1007/s11356-021-16373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
The study of the toxic effects of emamectin benzoate (EMB) was conducted in male mice. Mice were randomly divided into 4 groups; control group, EMB25 group (1/30 LD50 = 25 mg/kg/day), EMB50 group (1/15 LD50 = 50 mg/kg/day), and EMB100 group (1/7.5 LD50 = 100 mg/kg/day). Control group received water (placebo), and EMB groups were administered by oral gavage for 14 days. The superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) enzyme activities, thiobarbituric acid reactive substance (TBARS) and protein carbonyl (PC) levels, and adenosine triphosphatase (ATPases) enzymes, which are ion transport enzymes (Na+/K+ ATPase, Ca+2 ATPase, Mg+2 ATPase), acetylcholinesterase (AChE, neurotoxicity biomarker), and myeloperoxidase (MPO) enzyme activities (inflammatory biomarker), were measured by spectrophotometric methods. 8-Hydroxy-2'-deoxyguanosine level (8-OHdG, DNA oxidation biomarker) was measured by enzyme-linked immunosorbent analysis (ELISA) technique. The results showed a decrease in SOD, CAT and GPx enzyme activities in the brain tissue and an increase in GST enzyme activity in the EMB groups compared to the control group. Meanwhile, the enzyme activities of the ion transport enzymes Na+/K+ ATPase, Ca+2 ATPase, and Mg+2 ATPase, and AChE enzyme activity showed significant inhibition. In addition, MPO enzyme activity, 8-OHdG, PC, and TBARS levels were increased. The results showed that dose-dependent EMB exposure induced different physiological processes with enzymatic and biomolecular multi-biomarkers in the brain tissue of male mice and caused neurotoxic effects.
Collapse
Affiliation(s)
- Özge Temiz
- Vocational School of Health Services, Osmaniye Korkut Ata University, 80000, Osmaniye, Turkey.
| |
Collapse
|
37
|
Huslystyi A, Nedzvetsky V, Yermolenko S, Gasso V, Petrushevskyi V, Sukharenko E. Low Doses of Imidacloprid Induce Oxidative Stress and Neural Cell Disruption in Earthworm <i>Eisenia fetida</i>. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2021. [DOI: 10.18052/www.scipress.com/ilns.84.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Imidacloprid is a widely used pesticide that belongs to the class of neonicotinoids. There is a piece of rising evidence that neonicotinoids exert cytotoxic effects in non-target organisms including vertebrate species such as mammals. Nevertheless, dose-limiting toxicity and molecular mechanisms of neonicotinoids' deleterious effects are still poorly understood. In accord to imidacloprid fate in the environment, the most of used pesticide is absorbed in the soil. Therefore, earthworms, which are prevailing soil organisms, could be considered as a target of neonicotinoids toxicity. The earthworm’s simple nervous system is a prospective model for neurotoxicological studies. We exposed earthworms to imidacloprid in a paper contact test with a doses range of 0.1‑0.4 µg/cm2 for 14 days. In the present work, we studied the imidacloprid effect on oxidative stress generation and neuronal marker neuron-specific enolase (NSE) expression. The exposure to imidacloprid induced a dose-dependent decrease in NSE. Both reactive oxygen species production and lipid peroxidation level were upregulated as well. Observed NSE decline suggests imidacloprid-caused disturbance in earthworm neuron cells. Obtained data have shown that relatively low doses of imidacloprid are potent to induce cytotoxicity in neurons. Furthermore, neurotoxicity could be recognized as one of an individual scenario of the general imidacloprid toxicity. Thus, presented results suggest the cytotoxicity of imidacloprid low doses in non-target organisms and hypothesize that NSE downregulation could be estimated as a biomarker of neonicotinoid cytotoxicity in a nervous system of non-insect species.
Collapse
|
38
|
Huslystyi A, Nedzvetsky V, Yermolenko S, Gasso V, Petrushevskyi V, Sukharenko E. Low Doses of Imidacloprid Induce Oxidative Stress and Neural Cell Disruption in Earthworm <i>Eisenia fetida</i>. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2021. [DOI: 10.56431/p-af973e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Imidacloprid is a widely used pesticide that belongs to the class of neonicotinoids. There is a piece of rising evidence that neonicotinoids exert cytotoxic effects in non-target organisms including vertebrate species such as mammals. Nevertheless, dose-limiting toxicity and molecular mechanisms of neonicotinoids' deleterious effects are still poorly understood. In accord to imidacloprid fate in the environment, the most of used pesticide is absorbed in the soil. Therefore, earthworms, which are prevailing soil organisms, could be considered as a target of neonicotinoids toxicity. The earthworm’s simple nervous system is a prospective model for neurotoxicological studies. We exposed earthworms to imidacloprid in a paper contact test with a doses range of 0.1‑0.4 µg/cm2 for 14 days. In the present work, we studied the imidacloprid effect on oxidative stress generation and neuronal marker neuron-specific enolase (NSE) expression. The exposure to imidacloprid induced a dose-dependent decrease in NSE. Both reactive oxygen species production and lipid peroxidation level were upregulated as well. Observed NSE decline suggests imidacloprid-caused disturbance in earthworm neuron cells. Obtained data have shown that relatively low doses of imidacloprid are potent to induce cytotoxicity in neurons. Furthermore, neurotoxicity could be recognized as one of an individual scenario of the general imidacloprid toxicity. Thus, presented results suggest the cytotoxicity of imidacloprid low doses in non-target organisms and hypothesize that NSE downregulation could be estimated as a biomarker of neonicotinoid cytotoxicity in a nervous system of non-insect species.
Collapse
|
39
|
Zhang JG, Ma DD, Xiong Q, Qiu SQ, Huang GY, Shi WJ, Ying GG. Imidacloprid and thiamethoxam affect synaptic transmission in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112917. [PMID: 34678628 DOI: 10.1016/j.ecoenv.2021.112917] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/10/2021] [Accepted: 10/16/2021] [Indexed: 05/21/2023]
Abstract
Imidacloprid (IMI) and thiamethoxam (THM) are two commonly applied neonicotinoid insecticides. IMI and THM could cause negative impacts on non-target organisms like bees. However, the information about neurotoxicity of IMI and THM in fish is still scarce. Here we investigated the effects of IMI and THM on locomotor behavior, AChE activity, and transcription of genes related to synaptic transmission in zebrafish exposed to IMI and THM with concentrations of 50 ng L-1 to 50,000 ng L-1 at 14 day post fertilization (dpf), 21 dpf, 28 dpf and 35 dpf. Our results showed that IMI and THM significantly influenced the locomotor activity in larvae at 28 dpf and 35 dpf. THM elevated AChE activity at 28 dpf. The qPCR data revealed that IMI and THM affected the transcription of marker genes belonging to the synapse from 14 dpf to 35 dpf. Furthermore, IMI and THM mainly affected transcription of key genes in γ-aminobutyric acid, dopamine and serotonin pathways in larvae at 28 dpf and 35 dpf. These results demonstrated the neurotoxicity of IMI and THM in zebrafish. The findings from this study suggested that IMI and THM in the aquatic environment may pose potential risks to fish fitness and survival.
Collapse
Affiliation(s)
- Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Qian Xiong
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Shu-Qing Qiu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
40
|
Guimarães ARDJS, Bizerra PFV, Miranda CA, Mingatto FE. Effects of imidacloprid on viability and increase of reactive oxygen and nitrogen species in HepG2 cell line. Toxicol Mech Methods 2021; 32:204-212. [PMID: 34635006 DOI: 10.1080/15376516.2021.1992553] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Imidacloprid (IMD) is a neonicotinoid insecticide used in large quantities worldwide in both veterinary and agronomic applications. Several studies have shown adverse effects of IMD on non-target organisms, with the liver being identified as the main affected organ. This study aimed to evaluate the effects of IMD on human hepatoblastoma (HepG2) cells. HepG2 were exposed to IMD (0.25-2.0 mM) for 24 and 48 h. IMD treatment resulted in cytotoxicity in the HepG2, inhibiting cell proliferation in a dose- and time-dependent manner, starting at concentrations of 0.5 mM (24 h) and 0.25 mM (48 h), and reducing cell viability from 0.5 mM onwards (24 and 48 h). IMD significantly decreased the mitochondrial membrane potential at both time points investigated (2.0 mM), and also induced damage to the cell membrane, demonstrated by significant dose and time-dependent increases in lactate dehydrogenase (LDH) release from concentrations of 1.0 mM (24 h) and 0.5 mM (48 h) upwards. IMD treatment also increased the production of reactive oxygen and nitrogen species (ROS/RNS) at rates above 50% following 0.5 mM (24 h) or 0.25 mM (48 h) concentrations, and caused a significant decrease in reduced/oxidized glutathione ratio (GSH/GSSG), indicating oxidative stress. Furthermore, the antioxidant dithiothreitol, which reacts with ROS/RNS and acts as a thiol reducing agent, inhibited the cytotoxic effect of IMD. In addition, the metabolite IMD-olefin was more toxic than IMD. Our results indicate that IMD induces cytotoxicity in HepG2 cells and that this effect may be associated with an increase in the generation of ROS/RNS.
Collapse
Affiliation(s)
| | - Paulo Francisco Veiga Bizerra
- Department of Animal Science, College of Agricultural and Technological Sciences, São Paulo State University (UNESP), Dracena, Brazil.,Department of Biochemistry, Maringá State University (UEM), Maringá, Brazil
| | - Camila Araújo Miranda
- Department of Animal Science, College of Agricultural and Technological Sciences, São Paulo State University (UNESP), Dracena, Brazil
| | - Fábio Erminio Mingatto
- Department of Animal Science, College of Agricultural and Technological Sciences, São Paulo State University (UNESP), Dracena, Brazil
| |
Collapse
|
41
|
Saber TM, Arisha AH, Abo-Elmaaty AMA, Abdelgawad FE, Metwally MMM, Saber T, Mansour MF. Thymol alleviates imidacloprid-induced testicular toxicity by modulating oxidative stress and expression of steroidogenesis and apoptosis-related genes in adult male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112435. [PMID: 34171690 DOI: 10.1016/j.ecoenv.2021.112435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The present work was designed to assess the potential ameliorative effect of thymol on the testicular toxicity caused by imidacloprid (IMI) in adult male rats. Forty adult male rats were allocated into four groups; control group was given corn oil, thymol-treated group (30 mg/kg b.wt), IMI-treated group (22.5 mg/kg b.wt), and IMI + thymol-treated group. All administrations were done by gavage every day for duration of 56 days. As a result, the IMI exposure caused a significant decline in the body weight change, reproductive organ weights, sperm functional parameters, and serum level of testosterone, widespread histological alterations, and apoptosis in the testis. Additionally, the IMI-treated rats exhibited a remarkable increment in the serum levels of follicle stimulating hormone and luteinizing hormone. Also, IMI induced testicular oxidative stress, as indicated by elevated malondialdehyde (MDA) levels and a marked decline in the activity of antioxidant enzymes and reduced glutathione (GSH), and total antioxidant capacity (TAC) levels. Moreover, IMI treatment significantly downregulated the mRNA expression of steroidogenic genes and proliferating cell nuclear antigen (PCNA) immunoexpression in the testicular tissue. However, thymol co-administration significantly mitigated the IMI-induced toxic effects. Our findings suggested that IMI acts as a male reproductive toxicant in rats and thymol could be a potential therapeutic option for IMI reprotoxic impacts.
Collapse
Affiliation(s)
- Taghred M Saber
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Azza M A Abo-Elmaaty
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Fathy Elsayed Abdelgawad
- Medical Biochemistry Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt; Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah, KSA
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Taisir Saber
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed Fouad Mansour
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
42
|
Nimako C, Ikenaka Y, Akoto O, Fujioka K, Taira K, Arizono K, Kato K, Takahashi K, Nakayama SMM, Ichise T, Ishizuka M. Simultaneous quantification of imidacloprid and its metabolites in tissues of mice upon chronic low-dose administration of imidacloprid. J Chromatogr A 2021; 1652:462350. [PMID: 34198103 DOI: 10.1016/j.chroma.2021.462350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 01/07/2023]
Abstract
This study aimed to (i) develop a sensitive method for simultaneous detection and quantification of imidacloprid (IMI) and seven of its metabolites in tissue specimens, and to (ii) determine the biodistribution of the IMI compounds in tissues of C57BL/6J male mice; after exposure to 0.6 mg/kg bw/day of IMI (10% of no observable adverse effect level of IMI) through a powdered diet for 24 weeks. We successfully developed a method which was accurate (recoveries were ≥ 70% for most compounds), sensitive (LODs ≤ 0.47 ng/mL and LOQs ≤ 1.43 ng/mL were recorded for all detected compounds, R2 ≥ 0.99) and precise (RSDs ≤ 20%) for routine analysis of IMI and seven of its metabolites in blood and various tissue matrices. After bio-distributional analysis, IMI and five of its metabolites were detected in mice. Brain, testis, lung, kidney, inguinal white adipose tissue and gonadal white adipose tissue mainly accumulated IMI, blood and mesenteric white adipose tissue mainly accumulated IMI-olefin; liver mainly accumulated desnitro-IMI; pancreas predominately accumulated 4-hydroxy-IMI. The desnitro-dehydro-IMI and the desnitro-IMI metabolites recorded tissue-blood concentration ratios ≥ 1.0 for testis, brain, lung and kidney. The cumulative levels of the six detected IMI compounds (Σ6 IMI compounds) were found in the decreasing order: blood > testis > brain > kidney > lung > iWAT > gWAT > mWAT > liver > pancreas. Altogether, this study provided essential data needed for effective mechanistic elucidation of compound-specific adverse outcomes associated with chronic exposures to IMI in mammalian species.
Collapse
Affiliation(s)
- Collins Nimako
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Japan; One Health Research Center, Hokkaido University, Japan.
| | - Osei Akoto
- Chemistry Department, Kwame Nkrumah University of Science and Technology, Ghana
| | - Kazutoshi Fujioka
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, United States
| | - Kumiko Taira
- Department of Anesthesiology, Tokyo Women's Medical University Center east, Tokyo, Japan
| | - Koji Arizono
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto, Japan
| | - Keisuke Kato
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Keisuke Takahashi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Japan
| | - Takahiro Ichise
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Japan
| |
Collapse
|
43
|
Neurotoxic Effects of Neonicotinoids on Mammals: What Is There beyond the Activation of Nicotinic Acetylcholine Receptors?-A Systematic Review. Int J Mol Sci 2021; 22:ijms22168413. [PMID: 34445117 PMCID: PMC8395098 DOI: 10.3390/ijms22168413] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Neonicotinoids are a class of insecticides that exert their effect through a specific action on neuronal nicotinic acetylcholine receptors (nAChRs). The success of these insecticides is due to this mechanism of action, since they act as potent agonists of insect nAChRs, presenting low affinity for vertebrate nAChRs, which reduces potential toxic risk and increases safety for non-target species. However, although neonicotinoids are considered safe, their presence in the environment could increase the risk of exposure and toxicity. On the other hand, although neonicotinoids have low affinity for mammalian nAChRs, the large quantity, variety, and ubiquity of these receptors, combined with its diversity of functions, raises the question of what effects these insecticides can produce in non-target species. In the present systematic review, we investigate the available evidence on the biochemical and behavioral effects of neonicotinoids on the mammalian nervous system. In general, exposure to neonicotinoids at an early age alters the correct neuronal development, with decreases in neurogenesis and alterations in migration, and induces neuroinflammation. In adulthood, neonicotinoids induce neurobehavioral toxicity, these effects being associated with their modulating action on nAChRs, with consequent neurochemical alterations. These alterations include decreased expression of nAChRs, modifications in acetylcholinesterase activity, and significant changes in the function of the nigrostriatal dopaminergic system. All these effects can lead to the activation of a series of intracellular signaling pathways that generate oxidative stress, neuroinflammation and, finally, neuronal death. Neonicotinoid-induced changes in nAChR function could be responsible for most of the effects observed in the different studies.
Collapse
|
44
|
Abu-Zeid EH, Khalifa BA, Elewa YHA, Arisha AH, Ismail TA, Hendam BM, Abdel-Hamid SE. Bee venom Apis mellifera lamarckii rescues blood brain barrier damage and neurobehavioral changes induced by methyl mercury via regulating tight junction proteins expression in rat cerebellum. Food Chem Toxicol 2021; 154:112309. [PMID: 34062221 DOI: 10.1016/j.fct.2021.112309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/22/2022]
Abstract
The objective of the current study is to investigate the protective effect of Egyptian bee venom (BV) against methyl mercury chloride (MMC) induced blood-brain barrier (BBB) damage and neurobehavioral changes. Eighty male Sprague-Dawley rats were randomly grouped into 1st control (C), 2nd BV (0.5 mg/kg S/C for14 days), 3rd MMC (6.7 mg/kg orally/14 days), and 4th MMC + BV group. MMC exposure significantly altered rat cognitive behavior, auditory startle habituation, and swimming performance, increased the exploratory, grooming, and stereotypic behavior. MMC significantly impaired BBB integrity via induction of inflammation, oxidative stress, and down-regulation of tight junction proteins genes (TJPs) mRNA expression levels: Occludin (OCC), Claudins-5 (CLDN5), Zonula occludens-1 (ZO-1), while up-regulated the transforming growth factor-beta (TGF-β) mRNA expression levels. MMC revealed a significantly higher percentage of IgG positive area ratio, a higher index ratio of Iba1, Sox10, and ss-DNA, while index ratio of CD31, neurofilament, and pan neuron showed a significant reduction. Administration of BV significantly regulates the MMC altered behavioral responses, TJPs relative mRNA expression, and the immune-expression markers for specific neural cell types. It could be concluded for the first time that BV retains a promising in vivo protection against MMC-induced BBB dysfunction and neurobehavioral toxicity.
Collapse
Affiliation(s)
- Ehsan H Abu-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| | - Bouthaina A Khalifa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Cairo, 12211, Egypt
| | - Yaser H A Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt; Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Tamer A Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Basma M Hendam
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shereen El Abdel-Hamid
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
45
|
Baysal M, Atlı-Eklioğlu Ö. Comparison of the toxicity of pure compounds and commercial formulations of imidacloprid and acetamiprid on HT-29 cells: Single and mixture exposure. Food Chem Toxicol 2021; 155:112430. [PMID: 34289392 DOI: 10.1016/j.fct.2021.112430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/28/2021] [Accepted: 07/17/2021] [Indexed: 01/06/2023]
Abstract
Neonicotinoids, which are widely used worldwide, including in Turkey, are an insecticide group that are synthetic derivatives of nicotine. Recently, they have attracted attention due to their toxic effects on non-target organisms, especially bees. Numerous studies have shown that neonicotinoids have been found in detectable levels in the environment and cause various undesirable effects on living organisms, including humans and other mammals. In this study, the possible toxic effects of imidacloprid and acetamiprid, commonly used neonicotinoids, are investigated by their pure forms and commercial formulations on HT-29 cells with individual and combined exposures. According to our results, imidacloprid and acetamiprid induced cytotoxicity by caspase-mediated apoptosis, mitochondrial membrane depolarization, DNA damage, and oxidative stress under these experimental conditions. It is worth mentioning low doses of DNA damage, mixture exposure causes toxic effects at lower concentrations than individual exposure, and formulation groups are at the forefront of toxicity formation, though this varies depending on the parameters.
Collapse
Affiliation(s)
- Merve Baysal
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| | - Özlem Atlı-Eklioğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey.
| |
Collapse
|
46
|
Katić A, Kašuba V, Kopjar N, Lovaković BT, Marjanović Čermak AM, Mendaš G, Micek V, Milić M, Pavičić I, Pizent A, Žunec S, Želježić D. Effects of low-level imidacloprid oral exposure on cholinesterase activity, oxidative stress responses, and primary DNA damage in the blood and brain of male Wistar rats. Chem Biol Interact 2021; 338:109287. [PMID: 33129804 DOI: 10.1016/j.cbi.2020.109287] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/11/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Imidacloprid is a neonicotinoid insecticide that acts selectively as an agonist on insect nicotinic acetylcholine receptors. It is used for crop protection worldwide, as well as for non-agricultural uses. Imidacloprid systemic accumulation in food is an important source of imidacloprid exposure. Due to the undisputable need for investigations of imidacloprid toxicity in non-target species, we evaluated the effects of a 28-day oral exposure to low doses of imidacloprid (0.06 mg/kg b. w./day, 0.8 mg/kg b. w./day and 2.25 mg/kg b. w./day) on cholinesterase activity, oxidative stress responses and primary DNA damage in the blood and brain tissue of male Wistar rats. Exposure to imidacloprid did not cause significant changes in total cholinesterase, acetylcholinesterase and butyrylcholinesterase activities in plasma and brain tissue. Reactive oxygen species levels and lipid peroxidation increased significantly in the plasma of rats treated with the lowest dose of imidacloprid. Activities of glutathione-peroxidase in plasma and brain and superoxide dismutase in erythrocytes increased significantly at the highest applied dose. High performance liquid chromatography with UV diode array detector revealed the presence of imidacloprid in the plasma of all the treated animals and in the brain of the animals treated with the two higher doses. The alkaline comet assay results showed significant peripheral blood leukocyte damage at the lowest dose of imidacloprid and dose-dependent brain cell DNA damage. Oral 28-day exposure to low doses of imidacloprid in rats resulted in detectable levels of imidacloprid in plasma and brain tissue that directly induced DNA damage, particularly in brain tissue, with slight changes in plasma oxidative stress parameters.
Collapse
Affiliation(s)
- Anja Katić
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia.
| | - Vilena Kašuba
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Nevenka Kopjar
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Blanka Tariba Lovaković
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Ana Marija Marjanović Čermak
- Radiation Dosimetry and Radiobiology Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Gordana Mendaš
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Vedran Micek
- Animal Breeding Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Ivan Pavičić
- Radiation Dosimetry and Radiobiology Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Alica Pizent
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Suzana Žunec
- Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Davor Želježić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| |
Collapse
|
47
|
Zhang N, Wang B, Zhang Z, Chen X, Huang Y, Liu Q, Zhang H. Occurrence of neonicotinoid insecticides and their metabolites in tooth samples collected from south China: Associations with periodontitis. CHEMOSPHERE 2021; 264:128498. [PMID: 33032210 DOI: 10.1016/j.chemosphere.2020.128498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Neonicotinoid insecticides (NEOs) are widely used in agricultural production processes in China and worldwide. NEOs have been an increasing concern because of their potential toxicity to nontarget organisms. However, studies that focused on human exposure to NEOs in China are limited. In this study, levels of six parent NEOs (p-NEOs), namely imidacloprid (IMI), acetamiprid (ACE), clothianidin (CLO), dinotefuran (DIN), thiamethoxam (THIX), and thiacloprid (THI), and three metabolites (m-NEOs), such as 5-hydroxy-imidacloprid (5-OH-IMI), 1-methyl-3-(tetrahydro-3-furyl methyl) urea (UF), and N-desmethyl-acetamiprid (N-dm-ACE) were measured in 127 tooth samples collected from South China. P-NEOs and m-NEOs are frequently detected (76%-93%) in tooth samples, with median levels of 0.03-1.20 ng/g. UF is the most abundant NEOs in tooth samples (36%). Females have higher NEO levels than males, and gender-related differences in NEO levels are found. Associations among most p-NEOs are also found (p < 0.05), indicating the source of human exposure to p-NEOs is related. However, no significant relationships (p > 0.05) between levels of m-NEOs and their corresponding p-NEOs are found, suggesting that exogenous m-NEOs contribute to exposure. We have also examined the associations between human NEOs exposure and periodontitis, and associations between NEO exposure and periodontitis are observed (OR = 2.63-7.33; 95% CI = 1.01-21.1, p-trend < 0.05). Our results suggest that NEO levels are associated with increased odds of prevalent periodontitis. This study is the first to report about p-NEOs and m-NEOs in tooth samples collected from South China.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Stomatology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China
| | - Bata Wang
- Department of Orthopedics, First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China
| | - Zhanpeng Zhang
- Department of Dermatology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China
| | - Xufeng Chen
- Department of Stomatology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China
| | - Yue Huang
- Department of Stomatology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China
| | - Qihui Liu
- The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, 510632, PR China.
| | - Hua Zhang
- The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
48
|
Abd-Elhakim YM, Abdel-Motal SM, Malhat SM, Mostafa HI, Moselhy AAA, Beheiry RR, Said EN. Curcumin mitigates neurotoxic and neurobehavioral changes of gentamicin and sodium salicylate in rats by adjusting oxidative stress and apoptosis. Life Sci 2020; 265:118824. [PMID: 33278387 DOI: 10.1016/j.lfs.2020.118824] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Currently, antibiotics and salicylates are the most highly consumed medications worldwide. The side effects of these pharmaceuticals on the nervous system have been little investigated. Thus, this study aimed to examine the influence of the gentamicin (GM) and sodium salicylates (SS) on neurobehavioral functions, including locomotors function, memory, and sensorimotor functions together with gamma-aminobutyric acid (GABA) neurotransmitter levels. Also, oxidative stress, lipid peroxidation, and apoptotic indicators of brain tissue were assessed. Additionally, the histopathological architecture of brain tissues was investigated. This study also evaluated the curcumin (CUR) efficacy to counteract the GM or SS induced neurotoxic impacts in rats. For this purpose, seven groups were administered physiological saline (1 ml/rat; orally), olive oil (1 ml/rat; orally), CUR (50 mg/kg bwt; orally), GM (120 mg/kg bwt; intraperitoneally), SS (300 mg /kg bwt; intraperitoneally), CUR + GM, or CUR + SS for consecutive 15 days. The results revealed that GM and SS exposure evoked impaired memory, sensorimotor deficit functions, and depressive-like behavior together with the depletion of GABA. GM and SS exposure elevated malondialdehyde and Caspase-3 levels, but total antioxidant capacity and Bcl-2 levels were reduced. Besides, GM and SS exposure induced distinct pathological perturbations in cerebral cortices and hippocampus tissues. CUR significantly reversed the GM and SS harmful impacts. In conclusion, these findings verified that CUR could be a biologically efficient protective intervention against GM and SS induced neurotoxic impacts and neurobehavioral aberrations.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Sabry M Abdel-Motal
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Hend I Mostafa
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Attia A A Moselhy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Rasha R Beheiry
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Enas N Said
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
49
|
Ongono JS, Béranger R, Baghdadli A, Mortamais M. Pesticides used in Europe and autism spectrum disorder risk: can novel exposure hypotheses be formulated beyond organophosphates, organochlorines, pyrethroids and carbamates? - A systematic review. ENVIRONMENTAL RESEARCH 2020; 187:109646. [PMID: 32460093 DOI: 10.1016/j.envres.2020.109646] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND A growing body of evidences suggests an association between early exposure to organophosphates (OPs), organochlorines (OCs), pyrethroids or carbamates and autism spectrum disorder (ASD). However, there are limited data about the other pesticide groups, especially in Europe. OBJECTIVES Based on a systematic review, we aimed to assess the influence of neuro- and thyrotoxic agricultural and domestic pesticides (other than OPs, OCs, pyrethroids and carbamates) authorized in Europe on risk of ASD in children or ASD behavioral phenotypes in rodents. METHODS Pesticides were initially identified in the Hazardous Substances Data Bank. 20 currently used (10 pesticide groups) were retained based on the higher exposure potential. Epidemiological (children) and in vivo (rodents) studies were identified through PubMed, Web of Science and TOXLINE, without restriction of publication date or country (last update: November 2019). The risk of bias and level of evidence were also assessed. This systematic review is registered at the International Prospective Register of Systematic Reviews (PROSPERO, registration number CRD42019145384). RESULTS In total, two epidemiological and 15 in vivo studies were retained, focusing on the azole, neonicotinoid, phenylpyrazole and phosphonoglycine pesticide groups. No study was conducted in Europe. Glyphosate, imidacloprid, clothianidin, myclobutanil, acetamiprid, tebuconazole, thiabendazole and fipronil, globally reported an association with an increased risk of ASD in children and/or ASD behavioral phenotypes in rodents. In children, glyphosate and myclobutanil showed a "moderate level of evidence" in their association with ASD, whereas imidacloprid showed an "inadequate level of evidence". In rodents, clothianidin, imidacloprid and glyphosate showed a "high level of evidence" in their association with altered behavioral, learning and memory skills. CONCLUSION In the framework of environmental risk factors of ASD, novel hypotheses can be formulated about early exposure to eight pesticides. Glyphosate presented the most salient level of evidence. Given their neuro- and thyrotoxic properties, additional studies are needed for the 12 other pesticides not yet studied as potential ASD risk factors according to our inclusion criteria.
Collapse
Affiliation(s)
- Jeanne Sandrine Ongono
- Université Paris-Saclay, UVSQ, Inserm, CESP, DevPsy, 94807, Villejuif, France; Department of Psychiatry and Autism Resources Center, University Research and Hospital Center (CHU) of Montpellier, 34000, France.
| | - Remi Béranger
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR S 1085, 35000, Rennes, France.
| | - Amaria Baghdadli
- Université Paris-Saclay, UVSQ, Inserm, CESP, DevPsy, 94807, Villejuif, France; Department of Psychiatry and Autism Resources Center, University Research and Hospital Center (CHU) of Montpellier, 34000, France; School of Medicine, Univ. Montpellier, France.
| | - Marion Mortamais
- INSERM, Univ Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France.
| |
Collapse
|
50
|
El Euony OI, Elblehi SS, Abdel-Latif HM, Abdel-Daim MM, El-Sayed YS. Modulatory role of dietary Thymus vulgaris essential oil and Bacillus subtilis against thiamethoxam-induced hepatorenal damage, oxidative stress, and immunotoxicity in African catfish (Clarias garipenus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23108-23128. [PMID: 32333347 DOI: 10.1007/s11356-020-08588-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Thiamethoxam (TMX) is a widely used neonicotinoid insecticide for its effective potential for controlling insects from the agricultural field, which might induce toxicity to the aquatic biota. In this study, the role of the probiotic Bacillus subtilis (BS) and a phytogenic oil extract of Thymus vulgaris essential oil (TVEO) in the modulation of thiamethoxam (TMX)-induced hepatorenal damage, oxidative stress, and immunotoxicity in African catfish (Clarias garipenus) has been evaluated. Fish were subjected to TMX (5 mg L-1) and fed with a diet either supplemented with BS (1000 ppm) or TVEO (500 ppm). The experiment lasted for 1 month. By the end of the experiment, blood was sampled for biochemical analysis and fish organs and tissues were collected for histopathological and immunohistochemical examinations. Results showed a substantial increase of serum markers of hepatorenal damage such as the activities of aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP) and levels of blood urea nitrogen (BUN) and creatinine with an obvious decrease of serum protein levels in the TMX-intoxicated group. Also, there was a considerable increase in malondialdehyde (MDA) levels and glutathione-S-transferase (GST) activity. TMX remarkably suppressed serum lysozyme activity, respiratory burst activity, and phagocytosis with a conspicuous elevation of the levels of interleukins (interleukin-1 beta (IL-1β) and interleukin-6 IL-6). The histopathological findings showed that TMX induced degenerative changes and necrosis in the gills, liver, head kidneys, and spleen of the intoxicated fish. Significant alterations of frequency, size, and area percentage of melanomacrophage centers (MMCs), decreased splenocyte proliferation, and increased number of caspase-3 immunopositive cells were also observed. Contrariwise, the concurrent supplementation of either BS or TVEO in the diets of catfish partially mitigated both the histopathological and histomorphometric lesions of the examined tissues. Correspondingly, they improved the counts of proliferating cell nuclear antigen (PCNA) and caspase-3 immunopositive splenocytes. In conclusion, the co-administration of either BS or TVEO in catfish diets partially diminished the toxic impacts of TMX. Nonetheless, the inclusion of TVEO in the diets of catfish elicited better protection than BS against TMX-induced toxicity in response to its potential anti-inflammatory, antioxidant, anti-apoptotic, and immune-stimulant effects.
Collapse
Affiliation(s)
- Omnia I El Euony
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Beheira, 22758, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Beheira, 22758, Egypt
| | - Hany M Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, Beheira, 22758, Egypt
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Yasser S El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|