1
|
Du S, Guo Y, Li Q, Hu X, Tian Y, Cheng B, Wang S, Wang Z, Ren R, Wang Z. Transcriptome analysis of the genes and regulators involving in vitamin E biosynthesis in Elaeagnus mollis diels. PLANT MOLECULAR BIOLOGY 2024; 114:112. [PMID: 39414639 DOI: 10.1007/s11103-024-01507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/22/2024] [Indexed: 10/18/2024]
Abstract
Elaeagnus mollis is an important newly developing woody oil plant species and the vitamin E (VitE) content in its kernel oil is relatively high. In the present study, the VitE component content and functional genes involving in VitE biosynthesis in E. mollis kernel at different developmental stage were investigated. The VitE content increased with kernel development, reaching up to ~ 7.96 mg/g oil in kernel mature stage. The content of tocopherol was much higher than that of tocotrienol and γ-tocopherol became the dominant component. E. mollis kernel extracts had relatively strong antioxidant capacity. We identified 17 genes (16 VTEs and 1 homogentisic acid geranylgeranyl transferase (HGGT)) directly involving in VitE biosynthesis in RNA-Seq data. Phylogenetic and qRT-PCR results indicated that the annotation and reliability of the RNA-Seq were accurate. Transient overexpression of EmVTE3 and EmWRKY13 in tobacoo leaves increased and decreased the VitE content to 192.18 and 118.29 µg/g, respectively. Weighted gene co-expression analysis elucidated that the blue module showed significant correlation with tocopherol content. Co-expression network analysis revealed that 2-methyl-6-phytobenzoquinone methyltransferase (MPBQ-MT/VTE3) played a vital role and EmWRKY13 may be a key negative regulator in E. mollis VitE biosynthesis. This study not only revealed the traditional VitE biosynthesis pathway in E. mollis, but also set a solid foundation for future genetic breeding of this species.
Collapse
Affiliation(s)
- Shuhui Du
- College of Forestry, Shanxi Agricultural University, Jinzhong, China.
| | - Yuanting Guo
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
| | - Qianqian Li
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
| | - Xiaoyan Hu
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
| | - Yang Tian
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Baochang Cheng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Shengji Wang
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
| | - Zhiling Wang
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
| | - Ruifen Ren
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
| | - Zhaoshan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.
| |
Collapse
|
2
|
Lou H, Zheng S, Chen W, Yu W, Jiang H, Farag MA, Xiao J, Wu J, Song L. Transcriptome-referenced association study provides insights into the regulation of oil and fatty acid biosynthesis in Torreya grandis kernel. J Adv Res 2024; 62:1-14. [PMID: 36639025 PMCID: PMC11331172 DOI: 10.1016/j.jare.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/21/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Torreya grandis is a gymnosperm belonging to Taxodiaceae. As an economically important tree, its kernels are edible and rich in oil with high unsaturated fatty acids, such as sciadonic acid. However, the kernels from different T. grandis landraces exhibit fatty acid and oil content variations. OBJECTIVES As a gymnosperm, does T. grandis have special regulation mechanisms for oil biosynthesis? The aim of this study was to dissect the genetic architecture of fatty acid and oil content and the underlying mechanism in T. grandis. METHODS We constructed a high integrity reference sequence of expressed regions of the genome in T. grandis and performed transcriptome-referenced association study (TRAS) for 10 fatty acid and oil traits of kernels in the 170 diverse T. grandis landraces. To confirm the TRAS result, we performed functional validation and molecular biology experiments for oil significantly associated genes. RESULTS We identified 41 SNPs from 34 transcripts significantly associated with 7 traits by TRAS (-log10 (P) greater than 6.0). Results showed that LOB domain-containing protein 40 (LBD40) and surfeit locus protein 1 (SURF1) may be indirectly involved in the regulation of oil and sciadonic acid biosynthesis, respectively. Moreover, overexpression of TgLBD40 significantly increased seed oil content. The nonsynonymous variant in the TgLBD40 coding region discovered by TRAS could alter the oil content in plants. Pearson's correlation analysis and dual-luciferase assay indicated that TgLBD40 positively enhanced oil accumulation by affecting oil biosynthesis pathway genes, such as TgDGAT1. CONCLUSION Our study provides new insights into the genetic basis of oil biosynthesis in T. grandis and demonstrates that integrating RNA sequencing and TRAS is a powerful strategy to perform association study independent of a reference genome for dissecting important traits in T. grandis.
Collapse
Affiliation(s)
- Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou 311300, China
| | - Shan Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenchao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., Cairo P.B. 11562, Egypt
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou 311300, China.
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
3
|
Liao T, Zhang L, Wang Y, Guo L, Cao J, Liu G. Full-length transcriptome characterization of Platycladus orientalis based on the PacBio platform. Front Genet 2024; 15:1345039. [PMID: 38304337 PMCID: PMC10830785 DOI: 10.3389/fgene.2024.1345039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
As a unique and native conifer in China, Platycladus orientalis is widely used in soil erosion control, garden landscapes, timber, and traditional Chinese medicine. However, due to the lack of reference genome and transcriptome, it is limited to the further molecular mechanism research and gene function mining. To develop a full-length reference transcriptome, tissues from five different parts of P. orientalis and four cone developmental stages were sequenced and analyzed by single-molecule real-time (SMRT) sequencing through the PacBio platform in this study. Overall, 37,111 isoforms were detected by PacBio with an N50 length of 2,317 nt, an average length of 1,999 bp, and the GC content of 41.81%. Meanwhile, 36,120 coding sequences, 5,645 simple sequence repeats (SSRs), 1,201 non-coding RNAs (lncRNAs), and 182 alternative splicing (AS) events with five types were identified using the results obtained from the PacBio transcript isoforms. Furthermore, 1,659 transcription factors (TFs) were detected and belonged to 51 TF families. A total of 35,689 transcripts (96.17%) were annotated through the NCBI nr, KOG, Swiss-Prot and KEGG databases, and 385 transcript isoforms related to 8 types of hormones were identified incorporated into plant hormone signal transduction pathways. The assembly and revelation of the full-length transcriptome of P. orientalis offer a pioneering insight for future investigations into gene function and genetic breeding within Platycladus species.
Collapse
Affiliation(s)
| | | | | | | | | | - Guobin Liu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
4
|
Liu Z, Yan J, Wang T, Chen W, Suo J, Yan J, Wu J. TgLCYB1 regulated by TgWRKY22 enhances the tolerance of Torreya grandis to waterlogging stress. Int J Biol Macromol 2023; 253:126702. [PMID: 37673161 DOI: 10.1016/j.ijbiomac.2023.126702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
β-Carotene functions in plant growth and development and plays an important role in resisting abiotic stress, such as drought and salt stress. The specific function and mechanism by which β-carotene responds to waterlogging stress, however, remain elusive. In this study, we found that β-carotene content and lycopene cyclase (TgLCYB1) expression, both in leaves and roots of Torreya grandis, were increased under waterlogging treatment. Subcellular localization assays indicated that TgLCYB1 was localized in the chloroplasts. Phenotypic, physiological, and metabolome analysis showed that overexpression of TgLCYB1 enhanced the tolerance of tomato plants to waterlogging stress. Furthermore, application of a LCYB enzyme inhibitor, 2-(4-chlorophenylthio)-triethylamine hydrochloride, markedly enhanced the sensitivity of T. grandis to waterlogging stress. In addition, yeast one-hybrid assay, the dual luciferase assay system, and real-time quantitative PCR indicated that waterlogging stress induced TgWRKY22 to increase TgLCYB1 expression by binding to the TgLCYB1 promoter. Collectively, our results indicated that TgWRKY22 positively regulated TgLCYB1 expression to improve the activities of antioxidant enzyme and increase the levels of some key metabolites, thereby relieving waterlogging-induced oxidative damage, and consequently modulating the waterlogging stress response. This study contributes to a more comprehensive understanding of carotenoid functions and the role LCYB genes play in plant stress response.
Collapse
Affiliation(s)
- Zhihui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jiawen Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Tongtong Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Weijie Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jinwei Suo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Jingwei Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
5
|
Chen W, Yan J, Zheng S, Suo J, Lou H, Song L, Wu J. Integrated Metabolomics, Transcriptome and Functional Analysis Reveal Key Genes Are Involved in Tree Age-Induced Amino Acid Accumulation in Torreya grandis Nuts. Int J Mol Sci 2023; 24:17025. [PMID: 38069348 PMCID: PMC10706915 DOI: 10.3390/ijms242317025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Torreya grandis is native Chinese tree species of economic significance, renowned for its long lifespan and the rich nutritional value of its nuts. In this study, we analyzed the morphological characteristics, metabolites, associated gene expressions, and regulatory mechanism in nuts from young (10 years old) and old (1000 years old) T. grandis trees. We observed that the length, width, and weight of nuts from older trees were considerably greater than those from younger trees. Metabolomic analysis revealed that the concentrations of 18 amino acids and derivatives (including histidine and serine) in nuts from older trees were markedly higher than those in nuts from younger trees. Transcriptome and metabolomic correlation analysis identified 16 genes, including TgPK (pyruvate kinase), TgGAPDH (glyceraldehyde 3-phosphate dehydrogenase), and others, which exhibit higher expression levels in older trees compared to younger trees, as confirmed by qRT-PCR. These genes are associated with the biosynthesis of histidine, glutamic acid, tryptophan, and serine. Transient expression of TgPK in tobacco led to increased pyruvate kinase activity and amino acid content (histidine, tryptophan, and serine). Additionally, dual-luciferase assays and yeast one-hybrid results demonstrated that TgWRKY21 positively regulates TgPK expression by directly binding to the TgPK promoter. These findings not only demonstrate the nutritional differences between nuts from young and old trees but also offer fresh insights into the development of nutritional sources and functional components based on nuts from old trees, enriching our understanding of the potential benefits of utilizing nuts from older trees.
Collapse
Affiliation(s)
| | | | | | | | | | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (W.C.); (J.Y.); (H.L.)
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (W.C.); (J.Y.); (H.L.)
| |
Collapse
|
6
|
Zhang F, Kong C, Ma Z, Chen W, Li Y, Lou H, Wu J. Molecular characterization and transcriptional regulation analysis of the Torreya grandis squalene synthase gene involved in sitosterol biosynthesis and drought response. FRONTIERS IN PLANT SCIENCE 2023; 14:1136643. [PMID: 37409301 PMCID: PMC10318344 DOI: 10.3389/fpls.2023.1136643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/04/2023] [Indexed: 07/07/2023]
Abstract
The kernel of Torreya grandis cv. 'Merrillii' (Cephalotaxaceae) is a rare nut with a variety of bioactive compounds and a high economic value. β-sitosterol is not only the most abundant plant sterol but also has various biological effects, such as antimicrobial, anticancer, anti-inflammatory, lipid-lowering, antioxidant, and antidiabetic activities. In this study, a squalene synthase gene from T. grandis, TgSQS, was identified and functionally characterized. TgSQS encodes a deduced protein of 410 amino acids. Prokaryotic expression of the TgSQS protein could catalyze farnesyl diphosphate to produce squalene. Transgenic Arabidopsis plants overexpressing TgSQS showed a significant increase in the content of both squalene and β-sitosterol; moreover, their drought tolerance was also stronger than that of the wild type. Transcriptome data from T. grandis seedlings showed that the expression levels of sterol biosynthesis pathway-related genes, such as HMGS, HMGR, MK, DXS, IPPI, FPPS, SQS, and DWF1, increased significantly after drought treatment. We also demonstrated that TgWRKY3 directly bound to the TgSQS promoter region and regulated its expression through a yeast one-hybrid experiment and a dual luciferase experiment. Together, these findings demonstrate that TgSQS has a positive role in β-sitosterol biosynthesis and in protecting against drought stress, emphasizing its importance as a metabolic engineering tool for the simultaneous improvement of β-sitosterol biosynthesis and drought tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | - Heqiang Lou
- *Correspondence: Heqiang Lou, ; Jiasheng Wu,
| | - Jiasheng Wu
- *Correspondence: Heqiang Lou, ; Jiasheng Wu,
| |
Collapse
|
7
|
Suo J, Ma Z, Zhao B, Ma S, Zhang Z, Hu Y, Yang B, Yu W, Wu J, Song L. Metabolomics reveal changes in flavor quality and bioactive components in post-ripening Torreya grandis nuts and the underlying mechanism. Food Chem 2023; 406:134987. [PMID: 36446278 DOI: 10.1016/j.foodchem.2022.134987] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Secondary metabolites are a group of small molecules with critical roles in plants fitness in addition to their potential bioactivities in humans. Most of these compounds are associated with the flavor and quality formation of fruits or nuts during the development or the postharvest stages. Change in metabolic profiles and shifts underpinning the post-ripening process in T. grandis nuts are not yet reported. In this study, a large scale untargeted metabolomics approach was employed in T. grandis nuts, revealing for a total of 140 differential accumulated metabolites. Among them, nearly 60% of metabolites belonging to terpenoids, coumarins and phenolic acids, and phytohormones were showed a gradual accumulation pattern, while most of compounds in flavonoids were decreased during post-ripening. An in-depth analysis of changes in these metabolite classes suggest a framework for post-ripening process effect associated with the postharvest quality of T. grandis nuts for the first time.
Collapse
Affiliation(s)
- Jinwei Suo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Zhenmin Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Shuang Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Zuying Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yuanyuan Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
8
|
Yan J, Kong N, Liu Q, Wang M, Lv K, Zeng H, Chen W, Luo J, Lou H, Song L, Wu J. Ti 3C 2Tx MXene nanosheets enhance the tolerance of Torreya grandis to Pb stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130647. [PMID: 37056011 DOI: 10.1016/j.jhazmat.2022.130647] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 06/19/2023]
Abstract
As a 2D nanomaterial, MXene (Ti3C2Tx) has shown enormous potential for use in fields such as biomedical and environmental pollution. However, the utilization of MXene materials in plants has received little attention thus far. The efficient use of MXene materials in agriculture and forestry is first highlighted in this study. Phenotypic and physiological analyses indicated that MXene application significantly enhanced the tolerance of Torreya grandis to Pb stress by reducing Pb accumulation. Furthermore, we illustrated two independent mechanisms of MXene material in reducing Pb accumulation in T. grandis: 1) MXene converted the available form of Pb into stable forms via its strong Pb adsorption ability, resulting in a decrease of the available form of Pb in soils, and 2) MXene application obviously increased the cell wall pectin content to restrict more Pb in the cell wall by regulating the expression of pectin synthesis/metabolism-related genes (TgPLL2, TgPLL11, TgPG5, TgPG30, TgGAUT3 and TgGAUT12) in T. grandis roots. Overall, this finding provides insight into the application of MXene material in modern agriculture and forestry, which will facilitate the rapid development of nanotechnology in sustainable agriculture and forestry.
Collapse
Affiliation(s)
- Jingwei Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Na Kong
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Qiumei Liu
- Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Mengmeng Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Ke Lv
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Hao Zeng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Weijie Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jiali Luo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
9
|
Yan J, Zeng H, Chen W, Zheng S, Luo J, Jiang H, Yang B, Farag MA, Lou H, Song L, Wu J. Effects of tree age on flavonoids and antioxidant activity in
Torreya grandis
nuts via integrated metabolome and transcriptome analyses. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Jingwei Yan
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Hao Zeng
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Weijie Chen
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Shan Zheng
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Jiali Luo
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin China
- National Center of Technology Innovation for Synthetic Biology Tianjin China
| | - Baoru Yang
- Food Sciences, Department of Life Technologies University of Turku Turku Finland
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy Cairo University Cairo P.B Egypt
| | - Heqiang Lou
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| |
Collapse
|
10
|
Unraveling the malate biosynthesis during development of Torreya grandis nuts. Curr Res Food Sci 2022; 5:2309-2315. [DOI: 10.1016/j.crfs.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022] Open
|
11
|
Song L, Meng X, Yang L, Ma Z, Zhou M, Yu C, Zhang Z, Yu W, Wu J, Lou H. Identification of key genes and enzymes contributing to nutrition conversion of Torreya grandis nuts during post-ripening process. Food Chem 2022; 384:132454. [DOI: 10.1016/j.foodchem.2022.132454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/29/2022]
|
12
|
Full-Length Transcriptome Characterization and Comparative Analysis of Chosenia arbutifolia. FORESTS 2022. [DOI: 10.3390/f13040543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
As a unique tree species in the Salicaceae family, Chosenia arbutifolia is used primarily for construction materials and landscape planting in China. Compared with other Salicaceae species members, the genomic resources of C. arbutifolia are extremely scarce. Thus, in the present study, the full-length transcriptome of C. arbutifolia was sequenced by single-molecular real-time sequencing (SMRT) technology based on the PacBio platform. Then, it was compared against those of other Salicaceae species. We generated 17,397,064 subreads and 95,940 polished reads with an average length of 1812 bp, which were acquired through calibration, clustering, and polishing. In total, 50,073 genes were reconstructed, of which 48,174 open reading frames, 4281 long non-coding RNAs, and 3121 transcription factors were discovered. Functional annotation revealed that 47,717 genes had a hit in at least one of five reference databases. Moreover, a set of 12,332 putative SSR markers were screened among the reconstructed genes. Single-copy and special orthogroups, and divergent and conserved genes, were identified and analyzed to find divergence among C. arbutifolia and the five Salicaceae species. To reveal genes involved in a specific function and pathway, enrichment analyses for GO and KEGG were also performed. In conclusion, the present study empirically confirmed that SMRT sequencing realistically depicted the C. arbutifolia transcriptome and provided a comprehensive reference for functional genomic research on Salicaceae species.
Collapse
|
13
|
Sun M, Sun S, Mao C, Zhang H, Ou C, Jia Z, Wang Y, Ma W, Li M, Jia S, Mao P. Dynamic Responses of Antioxidant and Glyoxalase Systems to Seed Aging Based on Full-Length Transcriptome in Oat (Avena sativa L.). Antioxidants (Basel) 2022; 11:antiox11020395. [PMID: 35204277 PMCID: PMC8869221 DOI: 10.3390/antiox11020395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/20/2022] Open
Abstract
Seed aging is a major challenge for food security, agronomic production, and germplasm conservation, and reactive oxygen species (ROS) and methylglyoxal (MG) are highly involved in the aging process. However, the regulatory mechanisms controlling the abundance of ROS and MG are not well characterized. To characterize dynamic response of antioxidant and glyoxalase systems during seed aging, oat (Avena sativa L.) aged seeds with a range of germination percentages were used to explore physiological parameters, biochemical parameters and relevant gene expression. A reference transcriptome based on PacBio sequencing generated 67,184 non-redundant full-length transcripts, with 59,050 annotated. Subsequently, eleven seed samples were used to investigate the dynamic response of respiration, ROS and MG accumulation, antioxidant enzymes and glyoxalase activity, and associated genes expression. The 48 indicators with high correlation coefficients were divided into six major response patterns, and were used for placing eleven seed samples into four groups, i.e., non-aged (Group N), higher vigor (Group H), medium vigor (Group M), and lower vigor (Group L). Finally, we proposed a putative model for aging response and self-detoxification mechanisms based on the four groups representing different aging levels. In addition, the outcomes of the study suggested the dysfunction of antioxidant and glyoxalase system, and the accumulation of ROS and MG definitely contribute to oat seed aging.
Collapse
|
14
|
Hu Y, Suo J, Jiang G, Shen J, Cheng H, Lou H, Yu W, Wu J, Song L. The effect of ethylene on squalene and β-sitosterol biosynthesis and its key gene network analysis in Torreya grandis nuts during post-ripening process. Food Chem 2022; 368:130819. [PMID: 34411865 DOI: 10.1016/j.foodchem.2021.130819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022]
Abstract
Squalene and β-sitosterol are health-benefit compounds due to their nutritional and medicinal properties. It has been reported that the content of these bioactive compounds is relatively high in Torreya grandis nuts. However, it is not yet known what changes in squalene and β-sitosterol accumulation occur during the special post-ripening process of T. grandis nuts and the effect of the well-known ripening hormone ethylene on the regulatory mechanism of their biosynthetic pathways. Thus, we performed transcriptome and metabolite analyses. The results showed that ethylene not only promoted the post-ripening process but also enhanced the accumulation of squalene by inducing gene expression in the mevalonate pathway. At the same time, ethylene treatment also promoted the accumulation of other sterols but inhibited gene expression in the β-sitosterol biosynthesis pathway. In addition, co-expression and correlation analysis suggested a framework for the transcriptional regulation of squalene and β-sitosterol biosynthesis genes under ethylene treatment.
Collapse
Affiliation(s)
- Yuanyuan Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jinwei Suo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Guoxiang Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jiayi Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Hao Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
15
|
Hu Y, Zhang Z, Hua B, Tao L, Chen W, Gao Y, Suo J, Yu W, Wu J, Song L. The interaction of temperature and relative humidity affects the main aromatic components in postharvest Torreya grandis nuts. Food Chem 2022; 368:130836. [PMID: 34411862 DOI: 10.1016/j.foodchem.2021.130836] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/29/2022]
Abstract
The postharvest ripening stage is necessary for Torreya grandis (T. grandis) nuts to complete aromatic synthesis, which requires appropriate temperature and relative humidity (RH). Currently, scarce information is available regarding the changes in aroma profiles in T. grandis nuts and the relationship with their response to different environmental conditions. Therefore, the interaction of temperature (20 °C or 30 °C) and relative humidity (70% RH or 90% RH) was investigated on aromatic substances after harvest. The results showed that 56 aromatic components were detected by a gas chromatography-mass spectrometer (GC-MS) and mainly divided into five categories, among which terpenes were the most abundant (56.2-86.7%). Principal component analysis (PCA) showed that both temperature and humidity can affect the aroma composition, and terpenes were mainly influenced by humidity. Specifically, d-limonene occupied the largest proportion of terpenes (63.0-90.8%) and was significantly upregulated by high humidity.
Collapse
Affiliation(s)
- Yuanyuan Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| | - Zuying Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| | - Bin Hua
- Forestry Station of Agricultural Technology Extension Center in Hangzhou Fuyang District, Hangzhou 311400, Zhejiang, China
| | - Liu Tao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| | - Wenchao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| | - Yadi Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| | - Jinwei Suo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China.
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China; Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China.
| |
Collapse
|
16
|
Zhang F, Ma Z, Qiao Y, Wang Z, Chen W, Zheng S, Yu C, Song L, Lou H, Wu J. Transcriptome sequencing and metabolomics analyses provide insights into the flavonoid biosynthesis in Torreya grandis kernels. Food Chem 2021; 374:131558. [PMID: 34794838 DOI: 10.1016/j.foodchem.2021.131558] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022]
Abstract
The kernel of Torreya grandis (T. grandis) is a rare nut with a variety of bioactive compounds. Flavonoids are a very important class of bioactive compounds with high antioxidant activity in T. grandis kernels. However, the flavonoid compositions which mainly contribute to antioxidant capacity and the molecular basis of flavonoid biosynthesis in T. grandis remain unclear. Here, transcriptome sequencing and metabolomics analysis for kernels were performed. In total, 124 flavonoids were identified. Among them, 9 flavonoids were highly correlated with antioxidant activity. Furthermore, unigenes encoding CHS, DFR and ANS showed significant correlation with the 9 flavonoids. Transient overexpression of TgDFR1 in tobacco leaves resulted in increased antioxidant activity. Moreover, several transcription factors from MYB, bHLH and bZIP families were identified by co-expression assay, suggesting that they may regulate flavonoid biosynthesis. Our findings provide a molecular basis and new insights into the flavonoid biosynthesis in T. grandis kernels.
Collapse
Affiliation(s)
- Feicui Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Zhenmin Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yan Qiao
- College of Agriculture and Forestry, Longdong University, Qingyang 745000, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Wenchao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Shan Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Chenliang Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
17
|
Gao Y, Hu Y, Shen J, Meng X, Suo J, Zhang Z, Song L, Wu J. Acceleration of Aril Cracking by Ethylene in Torreya grandis During Nut Maturation. FRONTIERS IN PLANT SCIENCE 2021; 12:761139. [PMID: 34745193 PMCID: PMC8565854 DOI: 10.3389/fpls.2021.761139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Torreya grandis 'Merrillii' is a famous nut with great nutritional value and high medicinal value. Aril cracking is an important process for seed dispersal, which is also an indicator of seed maturation. However, the cracking mechanism of T. grandis aril during the maturation stage remains largely unknown. Here, we provided a comprehensive view of the physiological and molecular levels of aril cracking in T. grandis by systematically analyzing its anatomical structure, physiological parameters, and transcriptomic response during the cracking process. These results showed that the length of both epidermal and parenchymatous cell layers significantly increased from 133 to 144 days after seed protrusion (DASP), followed by a clear separation between parenchymatous cell layers and kernel, which was accompanied by a breakage between epidermal and parenchymatous cell layers. Moreover, analyses of cell wall composition showed that a significant degradation of cellular wall polysaccharides occurred during aril cracking. To examine the global gene expression changes in arils during the cracking process, the transcriptomes (96 and 141 DASP) were analyzed. KEGG pathway analysis of DEGs revealed that 4 of the top 10 enriched pathways were involved in cell wall modification and 2 pathways were related to ethylene biosynthesis and ethylene signal transduction. Furthermore, combining the analysis results of co-expression networks between different transcription factors, cell wall modification genes, and exogenous ethylene treatments suggested that the ethylene signal transcription factors (ERF11 and ERF1A) were involved in aril cracking of T. grandis by regulation of EXP and PME. Our findings provided new insights into the aril cracking trait in T. grandis.
Collapse
Affiliation(s)
- Yadi Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Yuanyuan Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Jiayi Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Xuecheng Meng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Jinwei Suo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Zuying Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| |
Collapse
|
18
|
Suo J, Gao Y, Zhang H, Wang G, Cheng H, Hu Y, Lou H, Yu W, Dai W, Song L, Wu J. New insights into the accumulation of vitamin B 3 in Torreya grandis nuts via ethylene induced key gene expression. Food Chem 2021; 371:131050. [PMID: 34537615 DOI: 10.1016/j.foodchem.2021.131050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022]
Abstract
Vitamin B3, derived primarily from plant sources, is an essential nutrient for humans. Torreya grandis is rich in vitamin B3, however, the mechanism underlying the biosynthesis and regulation of vitamin B3 in T. grandis remains unclear. A systematic transcriptomic investigation was thus conducted to identify the gene expression pattern of vitamin B3 biosynthesis in 10 T. grandis cultivars. The findings suggest that biosynthesis occurs mainly via the aspartate pathway. Expression and correlation analyses indicate that aspartate oxidase (AOX) and quinolinate synthase (QS) may play important roles in vitamin B3 accumulation. Furthermore, co-expression network and ethephon treatments indicate that the ethylene response factor (ERF) may be involved in the regulation of vitamin B3 biosynthesis in T. grandis nuts. Our findings not only help to elucidate the biosynthesis of vitamin B3, but also provide valuable resource material for future genomic research and molecular-assisted breeding to develop genotypes with higher vitamin B3 levels.
Collapse
Affiliation(s)
- Jinwei Suo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yadi Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Haizhen Zhang
- Hangzhou West Lake Landscape Science Research Institute, Hangzhou, Zhejiang 310013, China
| | - Guifang Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Hao Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yuanyuan Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Wensheng Dai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
19
|
Sun S, Lin M, Qi X, Chen J, Gu H, Zhong Y, Sun L, Muhammad A, Bai D, Hu C, Fang J. Full-length transcriptome profiling reveals insight into the cold response of two kiwifruit genotypes (A. arguta) with contrasting freezing tolerances. BMC PLANT BIOLOGY 2021; 21:365. [PMID: 34380415 PMCID: PMC8356467 DOI: 10.1186/s12870-021-03152-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/02/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Kiwifruit (Actinidia Lindl.) is considered an important fruit species worldwide. Due to its temperate origin, this species is highly vulnerable to freezing injury while under low-temperature stress. To obtain further knowledge of the mechanism underlying freezing tolerance, we carried out a hybrid transcriptome analysis of two A. arguta (Actinidi arguta) genotypes, KL and RB, whose freezing tolerance is high and low, respectively. Both genotypes were subjected to - 25 °C for 0 h, 1 h, and 4 h. RESULTS SMRT (single-molecule real-time) RNA-seq data were assembled using the de novo method, producing 24,306 unigenes with an N50 value of 1834 bp. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs showed that they were involved in the 'starch and sucrose metabolism', the 'mitogen-activated protein kinase (MAPK) signaling pathway', the 'phosphatidylinositol signaling system', the 'inositol phosphate metabolism', and the 'plant hormone signal transduction'. In particular, for 'starch and sucrose metabolism', we identified 3 key genes involved in cellulose degradation, trehalose synthesis, and starch degradation processes. Moreover, the activities of beta-GC (beta-glucosidase), TPS (trehalose-6-phosphate synthase), and BAM (beta-amylase), encoded by the abovementioned 3 key genes, were enhanced by cold stress. Three transcription factors (TFs) belonging to the AP2/ERF, bHLH (basic helix-loop-helix), and MYB families were involved in the low-temperature response. Furthermore, weighted gene coexpression network analysis (WGCNA) indicated that beta-GC, TPS5, and BAM3.1 were the key genes involved in the cold response and were highly coexpressed together with the CBF3, MYC2, and MYB44 genes. CONCLUSIONS Cold stress led various changes in kiwifruit, the 'phosphatidylinositol signaling system', 'inositol phosphate metabolism', 'MAPK signaling pathway', 'plant hormone signal transduction', and 'starch and sucrose metabolism' processes were significantly affected by low temperature. Moreover, starch and sucrose metabolism may be the key pathway for tolerant kiwifruit to resist low temperature damages. These results increase our understanding of the complex mechanisms involved in the freezing tolerance of kiwifruit under cold stress and reveal a series of candidate genes for use in breeding new cultivars with enhanced freezing tolerance.
Collapse
Affiliation(s)
- Shihang Sun
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Miaomiao Lin
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Xiujuan Qi
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jinyong Chen
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Hong Gu
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Yunpeng Zhong
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Leiming Sun
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Abid Muhammad
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Danfeng Bai
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Chungen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jinbao Fang
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| |
Collapse
|
20
|
Jiang L, Strobbe S, Van Der Straeten D, Zhang C. Regulation of plant vitamin metabolism: backbone of biofortification for the alleviation of hidden hunger. MOLECULAR PLANT 2021; 14:40-60. [PMID: 33545049 DOI: 10.1016/j.molp.2020.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 05/04/2023]
|
21
|
Gong W, Song Q, Ji K, Gong S, Wang L, Chen L, Zhang J, Yuan D. Full-Length Transcriptome from Camellia oleifera Seed Provides Insight into the Transcript Variants Involved in Oil Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14670-14683. [PMID: 33249832 DOI: 10.1021/acs.jafc.0c05381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Camellia oleifera Abel., belonging to the genus Camellia of Theaceae, has been widely used as a cooking oil, lubricant, and in cosmetics. Because of complicated polyploidization and large genomes, reference genome information is still lacking. Systematic characterization of gene models based on transcriptome data is a fast and economical approach for C. oleifera. Pacific Biosciences single-molecule long-read isoform sequencing (Iso-Seq) and Illumina RNA-Seq combined with gas chromatography were performed for exploration of oil biosynthesis, accumulation, and comprehensive transcriptome analysis in C. oleifera seeds at five different developmental stages. We report the first full-length transcriptome data set of C. oleifera seeds comprising 40,143 deredundant high-quality isoforms. Among these isoforms, 37,982 were functionally annotated, and 271 (2.43%) belonged to fatty acid metabolism. A total of 8,344 full-length unique transcript models were obtained, and 8,151 (97.69%) of them produced more than two isoforms, suggesting a high degree of transcriptome complexity in C. oleifera seeds. A total of 783 alternative splicing (AS) events were identified, among which the retained intron was the most abundant. We also obtained 1,910 long noncoding RNAs (lncRNAs) and found that AS events occurred in these lncRNAs. Potential transcript variants of genes involved in oil biosynthesis were also investigated. After performing weighted correlation network analysis, we found seven "gene modules" and hub genes for each module showing a significant association with oil content. The series test of clusters classified these modules into four significant profiles based on gene expression patterns. Protein-protein interaction network analysis showed that upregulated WRI1 interacted with 17 genes encoding the enzymes playing key roles in oil synthesis. MYB and ZIP transcriptional factors also showed significant interactions with key genes involved in oil synthesis. Collectively, our data advance the knowledge of RNA isoform diversity in seeds at different developmental stages and provide a rich resource for functional studies on oil synthesis in C. oleifera.
Collapse
Affiliation(s)
- Wenfang Gong
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qiling Song
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ke Ji
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - ShouFu Gong
- Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, China
| | - Lingkai Wang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Le Chen
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Jian Zhang
- Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, China
| | - Deyi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
22
|
Yang Z, Li C, Jia Q, Zhao C, Taylor DC, Li D, Zhang M. Transcriptome Analysis Reveals Candidate Genes for Petroselinic Acid Biosynthesis in Fruits of Coriandrum sativum L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5507-5520. [PMID: 32320606 DOI: 10.1021/acs.jafc.0c01487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Petroselinic acid (18:1Δ6), a monounsaturated cis Δ-6 fatty acid, has many prospective applications in functional foods and for the nutraceutical and pharmaceutical industries. Up to 80% of petroselinic acid has been found in the oil from fruits of coriander (Coriandrum sativum L.), which make it an ideal source for investigating the biosynthesis of petroselinic acid. A coriander acyl-acyl carrier protein desaturase was identified to be involved in its biosynthesis more than two decades ago, but since then little further progress in this area has been reported. In this study, the fatty acid profiles of coriander fruits at six developmental stages were analyzed. Fruit samples from three developmental stages with rapid accumulation of petroselinic acid were used for RNA sequencing using the Illumina Hiseq4000 platform. The transcriptome analysis presented 93 323 nonredundant unigenes and 8545 differentially expressed genes. Functional annotation and combined gene expression data revealed candidate genes potentially involved in petroselinic acid biosynthesis and its incorporation into triacylglycerols. Tissue-specific examination of q-PCR validation further suggested that ACPD1/3, KAS I-1, FATB-1/3, and DGAT2 may be highly involved. Bioinformatic analysis of CsFATB and CsDGAT2 identified their putative key amino acids or functional motifs. These results provide a molecular foundation for petroselinic acid biosynthesis in coriander fruit and facilitate its genetic engineering in other hosts.
Collapse
Affiliation(s)
- Zheng Yang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Changsheng Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingli Jia
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cuizhu Zhao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - David C Taylor
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dawei Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
23
|
Rao S, Tian Y, Xia X, Li Y, Chen J. Chromosome doubling mediates superior drought tolerance in Lycium ruthenicum via abscisic acid signaling. HORTICULTURE RESEARCH 2020; 7:40. [PMID: 32257226 PMCID: PMC7109118 DOI: 10.1038/s41438-020-0260-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/19/2020] [Accepted: 01/26/2020] [Indexed: 05/05/2023]
Abstract
Plants are continuously affected by unfavorable external stimuli, which influences their productivity and growth. Differences in gene composition and expression patterns lead homologous polyploid plants to exhibit different physiological phenomena, among which enhanced environmental adaptability is a powerful phenotype conferred by polyploidization. The mechanisms underlying the differences in stress tolerance between diploids and autotetraploids at the molecular level remain unclear. In this research, a full-length transcription profile obtained via the single-molecule real-time (SMRT) sequencing of high-quality single RNA molecules for use as background was combined with next-generation transcriptome and proteome technologies to probe the variation in the molecular mechanisms of autotetraploids. Tetraploids exhibited an increase in ABA content of 78.4% under natural conditions and a superior stress-resistance phenotype under severe drought stress compared with diploids. The substantial differences in the transcriptome profiles observed between diploids and autotetraploids under normal growth conditions were mainly related to ABA biosynthesis and signal transduction pathways, and 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and NCED2, which encode key synthetic enzymes, were significantly upregulated. The increased expression of the ABRE-binding factor 5-like (ABF5-like) gene was a pivotal factor in promoting the activation of the ABA signaling pathway and downstream target genes. In addition, ABA strongly induced the expression of osmotic proteins to increase the stress tolerance of the plants at the translational level. We consider the intrinsic mechanisms by which ABA affects drought resistance in tetraploids and diploids to understand the physiological and molecular mechanisms that enhance abiotic stress tolerance in polyploid plants.
Collapse
Affiliation(s)
- Shupei Rao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083 Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083 Beijing, China
| | - Yuru Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083 Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083 Beijing, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083 Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083 Beijing, China
| | - Yue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083 Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083 Beijing, China
| | - Jinhuan Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083 Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083 Beijing, China
| |
Collapse
|
24
|
Tian R, Suo H, Zhang S, Sun B. Separation of a family of antioxidants flavan-3-ol thio-conjugates from procyanidins by high-speed counter-current chromatography. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03465-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Zhong F, Huang L, Qi L, Ma Y, Yan Z. Full-length transcriptome analysis of Coptis deltoidea and identification of putative genes involved in benzylisoquinoline alkaloids biosynthesis based on combined sequencing platforms. PLANT MOLECULAR BIOLOGY 2020; 102:477-499. [PMID: 31902069 DOI: 10.1007/s11103-019-00959-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/30/2019] [Indexed: 05/20/2023]
Abstract
The study carry out comprehensive transcriptome analysis of C. deltoidea and exploration of BIAs biosynthesis and accumulation based on UHPLC-MS/MS and combined sequencing platforms. Coptis deltoidea is an important medicinal plant with a long history of medicinal use, which is rich in benzylisoquinoline alkaloids (BIAs). In this study, Ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) and combined sequencing platforms were performed for exploration of BIAs biosynthesis, accumulation and comprehensive transcriptome analysis of C. deltoidea. By metabolism profiling, the accumulation of ten BIAs was analyzed using UHPLC-MS/MS and different contents were observed in different organs. From transcriptome sequencing result, we applied single-molecule real-time (SMRT) sequencing to C. deltoidea and generated a total of 75,438 full-length transcripts. We proposed the candidate biosynthetic pathway of tyrosine, precursor of BIAs, and identified 64 full length-transcripts encoding enzymes putatively involved in BIAs biosynthesis. RNA-Seq data indicated that the majority of genes exhibited relatively high expression level in roots. Transport of BIAs was also important for their accumulation. Here, 9 ABC transporters and 2 MATE transporters highly homologous to known alkaloid transporters related with BIAs transport in roots and rhizomes were identified. These findings based on the combined sequencing platforms provide valuable genetic information for C. deltoidea and the results of transcriptome combined with metabolome analysis can help us better understand BIAs biosynthesis and transport in this medicinal plant. The information will be critical for further characterization of C. deltoidea transcriptome and molecular-assisted breeding for this medicinal plant with scarce resources.
Collapse
Affiliation(s)
- Furong Zhong
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ling Huang
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Luming Qi
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuntong Ma
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhuyun Yan
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|