1
|
Mariam I, Bettiga M, Rova U, Christakopoulos P, Matsakas L, Patel A. Ameliorating microalgal OMEGA production using omics platforms. TRENDS IN PLANT SCIENCE 2024; 29:799-813. [PMID: 38350829 DOI: 10.1016/j.tplants.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024]
Abstract
Over the past decade, the focus on omega (ω)-3 fatty acids from microalgae has intensified due to their diverse health benefits. Bioprocess optimization has notably increased ω-3 fatty acid yields, yet understanding of the genetic architecture and metabolic pathways of high-yielding strains remains limited. Leveraging genomics, transcriptomics, proteomics, and metabolomics tools can provide vital system-level insights into native ω-3 fatty acid-producing microalgae, further boosting production. In this review, we explore 'omics' studies uncovering alternative pathways for ω-3 fatty acid synthesis and genome-wide regulation in response to cultivation parameters. We also emphasize potential targets to fine-tune in order to enhance yield. Despite progress, an integrated omics platform is essential to overcome current bottlenecks in optimizing the process for ω-3 fatty acid production from microalgae, advancing this crucial field.
Collapse
Affiliation(s)
- Iqra Mariam
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Maurizio Bettiga
- Department of Life Sciences - LIFE, Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Innovation Unit, Italbiotec Srl Società Benefit, Milan, Italy
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| |
Collapse
|
2
|
Luo Y, Ding Y, Jiang X, Zeng G, Peng R, Han Q, Jiang M. Effects of low temperature and highlight stress on lipid accumulation and cell structure of Tropidoneis maxima. J Basic Microbiol 2023; 63:1139-1152. [PMID: 37339809 DOI: 10.1002/jobm.202300092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023]
Abstract
Tropidoneis maxima is a marine diatom with a rapid growth rate that produces high levels of lipids. To explore whether the lipid content could be further enhanced, cultures were first incubated under optimal conditions and then stressed under low temperature (10°C), a high light intensity level (80 μmol/m2 ·s), and the two factors together (interaction treatment). The results indicated that high light intensity and the temperature-light interaction exhibited greater impacts on lipid synthesis of T. maxima than low temperature. The two stress treatments increased lipid content by 17.16% and 16.6% compared to the control. In particular, higher biomass concentration was obtained with high light intensity (1.082 g L-1 ) and low temperature (1.026 g L-1 ). Moreover, high light intensity (9.06%) and interaction (10.3%) treatments yielded lower starch content compared to low temperature (14.27%) at the end of the stress culture. After 3 days of stress culture, the high light intensity treatment resulted in a 97.01% increase in cell wall thickness and an 18.46% decrease in cell diameter. The results suggest that high light intensity stress on T. maxima would open a new approach to cost-effective biolipid production.
Collapse
Affiliation(s)
- Yuanyuan Luo
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yuhui Ding
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiamin Jiang
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Guoquan Zeng
- Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Ruibing Peng
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Qingxi Han
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Maowang Jiang
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Azizan A, Venter L, Jansen van Rensburg PJ, Ericson JA, Ragg NLC, Alfaro AC. Metabolite Changes of Perna canaliculus Following a Laboratory Marine Heatwave Exposure: Insights from Metabolomic Analyses. Metabolites 2023; 13:815. [PMID: 37512522 PMCID: PMC10385441 DOI: 10.3390/metabo13070815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Temperature is considered to be a major abiotic factor influencing aquatic life. Marine heatwaves are emerging as threats to sustainable shellfish aquaculture, affecting the farming of New Zealand's green-lipped mussel [Perna canaliculus (Gmelin, 1791)]. In this study, P. canaliculus were gradually exposed to high-temperature stress, mimicking a five-day marine heatwave event, to better understand the effects of heat stress on the metabolome of mussels. Following liquid chromatography-tandem mass spectrometry analyses of haemolymph samples, key sugar-based metabolites supported energy production via the glycolysis pathway and TCA cycle by 24 h and 48 h of heat stress. Anaerobic metabolism also fulfilled the role of energy production. Antioxidant molecules acted within thermally stressed mussels to mitigate oxidative stress. Purine metabolism supported tissue protection and energy replenishment. Pyrimidine metabolism supported the protection of nucleic acids and protein synthesis. Amino acids ensured balanced intracellular osmolality at 24 h and ammonia detoxification at 48 h. Altogether, this work provides evidence that P. canaliculus has the potential to adapt to heat stress up to 24 °C by regulating its energy metabolism, balancing nucleotide production, and implementing oxidative stress mechanisms over time. The data reported herein can also be used to evaluate the risks of heatwaves and improve mitigation strategies for aquaculture.
Collapse
Affiliation(s)
- Awanis Azizan
- Aquaculture Biotechnology Research Group, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Leonie Venter
- Aquaculture Biotechnology Research Group, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | | | | | | | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| |
Collapse
|
4
|
González-Cardoso MA, Cerón-García MC, Navarro-López E, Molina-Miras A, Sánchez-Mirón A, Contreras-Gómez A, García-Camacho F. Alternatives to classic solvents for the isolation of bioactive compounds from Chrysochromulina rotalis. BIORESOURCE TECHNOLOGY 2023; 379:129057. [PMID: 37059341 DOI: 10.1016/j.biortech.2023.129057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
This paper demonstrates a sequential partitioning method for isolating bioactive compounds from Chrysochromulina rotalis using a polarity gradient, replacing classic and hazardous solvents with greener alternatives. Seventeen solvents were evaluated based on their Hansen solubility parameters and for having a similar polarity to the solvents they would replace, four of which were selected as substitutes in the classic fractionation process. Considering the fatty acid and carotenoid recovery yields obtained for each of the solvents, it has been proposed to replace hexane (HEX), toluene (TOL), dichloromethane (DCM) and n-butanol (BUT) with cyclohexane, chlorobenzene, isobutyl acetate and isoamyl alcohol, respectively. In addition, cytotoxic activity was observed when the TOL and DCM solvent extracts were tested against tumour cell lines, demonstrating the antiproliferative potential of compounds containing, for example, fucoxanthin, fatty acids, peptides, isoflavonoids or terpenes, among others.
Collapse
Affiliation(s)
| | - M C Cerón-García
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Research Center in Agrifood Biotechnology (CIAMBITAL) University of Almería, Spain.
| | - E Navarro-López
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Research Center in Agrifood Biotechnology (CIAMBITAL) University of Almería, Spain
| | - A Molina-Miras
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Research Center in Agrifood Biotechnology (CIAMBITAL) University of Almería, Spain
| | - A Sánchez-Mirón
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Research Center in Agrifood Biotechnology (CIAMBITAL) University of Almería, Spain
| | - A Contreras-Gómez
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Research Center in Agrifood Biotechnology (CIAMBITAL) University of Almería, Spain
| | - F García-Camacho
- Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Research Center in Agrifood Biotechnology (CIAMBITAL) University of Almería, Spain
| |
Collapse
|
5
|
Garcia-Perez P, Cassani L, Garcia-Oliveira P, Xiao J, Simal-Gandara J, Prieto MA, Lucini L. Algal nutraceuticals: A perspective on metabolic diversity, current food applications, and prospects in the field of metabolomics. Food Chem 2023; 409:135295. [PMID: 36603477 DOI: 10.1016/j.foodchem.2022.135295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/16/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The current consumers' demand for food naturalness is urging the search for new functional foods of natural origin with enhanced health-promoting properties. In this sense, algae constitute an underexplored biological source of nutraceuticals that can be used to fortify food products. Both marine macroalgae (or seaweeds) and microalgae exhibit a myriad of chemical constituents with associated features as a result of their primary and secondary metabolism. Thus, primary metabolites, especially polysaccharides and phycobiliproteins, present interesting properties to improve the rheological and nutritional properties of food matrices, whereas secondary metabolites, such as polyphenols and xanthophylls, may provide interesting bioactivities, including antioxidant or cytotoxic effects. Due to the interest in algae as a source of nutraceuticals by the food and related industries, novel strategies should be undertaken to add value to their derived functional components. As a result, metabolomics is considered a high throughput technology to get insight into the full metabolic profile of biological samples, and it opens a wide perspective in the study of algae metabolism, whose knowledge is still little explored. This review focuses on algae metabolism and its applications in the food industry, paying attention to the promising metabolomic approaches to be developed aiming at the functional characterization of these organisms.
Collapse
Affiliation(s)
- Pascual Garcia-Perez
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E32004 Ourense, Spain; Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Lucia Cassani
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E32004 Ourense, Spain; Centro de Investigação de Montanha (CIMO-IPB), Campus de Santa Apolónia, Bragança, Portugal
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E32004 Ourense, Spain; Centro de Investigação de Montanha (CIMO-IPB), Campus de Santa Apolónia, Bragança, Portugal
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E32004 Ourense, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E32004 Ourense, Spain
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E32004 Ourense, Spain; Centro de Investigação de Montanha (CIMO-IPB), Campus de Santa Apolónia, Bragança, Portugal
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
6
|
Macías-de la Rosa A, González-Cardoso MÁ, Cerón-García MDC, López-Rosales L, Gallardo-Rodríguez JJ, Seoane S, Sánchez-Mirón A, García-Camacho F. Bioactives Overproduction through Operational Strategies in the Ichthyotoxic Microalga Heterosigma akashiwo Culture. Toxins (Basel) 2023; 15:toxins15050349. [PMID: 37235383 DOI: 10.3390/toxins15050349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The red tide-forming microalga Heterosigma akashiwo has been associated with massive events of fish deaths, both wild and cultured. Culture conditions are responsible for the synthesis or accumulation of some metabolites with different interesting bioactivities. H. akashiwo LC269919 strain was grown in a 10 L bubble column photobioreactor artificially illuminated with multi-coloured LED lights. Growth and production of exopolysaccharides, polyunsaturated fatty acids (PUFAs), and carotenoids were evaluated under different culture modes (batch, fed-batch, semicontinuous, and continuous) at two irradiance levels (300 and 700 µE·s-1·m-2). Continuous mode at the dilution rate of 0.2·day-1 and 700 µE·s-1·m-2 provided the highest production of biomass, PUFAs (132.6 and 2.3 mg·L-1·day-1), and maximum fucoxanthin productivity (0.16 mg·L-1·day-1). The fed-batch mode accumulated exopolysaccharides in a concentration (1.02 g·L-1) 10-fold over the batch mode. An extraction process based on a sequential gradient partition with water and four water-immiscible organic solvents allowed the isolation of bioactive fucoxanthin from methanolic extracts of H. akashiwo. Metabolites present in H. akashiwo, fucoxanthin and polar lipids (i.e., eicosapentaenoic acid (EPA)), or probably such as phytosterol (β-Sitosterol) from other microalgae, were responsible for the antitumor activity obtained.
Collapse
Affiliation(s)
| | | | - María Del Carmen Cerón-García
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain
- Research Centre Ciambital, University of Almeria, 04120 Almeria, Spain
| | - Lorenzo López-Rosales
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain
- Research Centre Ciambital, University of Almeria, 04120 Almeria, Spain
| | - Juan José Gallardo-Rodríguez
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain
- Research Centre Ciambital, University of Almeria, 04120 Almeria, Spain
| | - Sergio Seoane
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
- Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), 48013 Bilbao, Spain
| | - Asterio Sánchez-Mirón
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain
- Research Centre Ciambital, University of Almeria, 04120 Almeria, Spain
| | - Francisco García-Camacho
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain
- Research Centre Ciambital, University of Almeria, 04120 Almeria, Spain
| |
Collapse
|
7
|
Iglesias MJ, Soengas R, López-Ortiz F, Biondi N, Tredici MR, Gutiérrez-Del-Río I, López-Ibáñez S, Villar CJ, Lombó F, López Y, Gabasa Y, Soto S. Effect of culture conditions at lab-scale on metabolite composition and antibacterial and antibiofilm activities of Dunaliella tertiolecta. JOURNAL OF PHYCOLOGY 2023; 59:356-369. [PMID: 36690599 DOI: 10.1111/jpy.13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 05/28/2023]
Abstract
Dunaliella tertiolecta RCC6 was cultivated indoors in glass bubble column photobioreactors operated under batch and semi-continuous regimens and using two different conditions of light and temperature. Biomass was harvested by centrifugation, frozen, and then lyophilized. The soluble material was obtained by sequential extraction of the lyophilized biomass with solvents with a gradient of polarity (hexane, ethyl acetate, and methanol) and its metabolic composition was investigated through nuclear magnetic resonance (NMR) spectroscopy. The effect of light on chlorophyll biosynthesis was clearly shown through the relative intensities of the 1 H NMR signals due to pheophytins. The highest signal intensity was observed for the biomasses obtained at lower light intensity, resulting in a lower light availability per cell. Under high temperature and light conditions, the 1 H NMR spectra of the hexane extracts showed an incipient accumulation of triacylglycerols. In these conditions and under semi-continuous regimen, an enhancement of β-carotene and sterols production was observed. The antibacterial and antibiofilm activities of the extracts were also tested. Antibacterial activity was not detected, regardless of culture conditions. In contrast, the minimal biofilm inhibitory concentrations (MBICs) against Escherichia coli for the hexane extract obtained under semi-continuous regimen using high temperature and irradiance conditions was promising.
Collapse
Affiliation(s)
- María José Iglesias
- Área de Química Orgánica, Research Centre CIAIMBITAL, Universidad de Almería, Almería, Spain
| | - Raquel Soengas
- Área de Química Orgánica, Research Centre CIAIMBITAL, Universidad de Almería, Almería, Spain
| | - Fernando López-Ortiz
- Área de Química Orgánica, Research Centre CIAIMBITAL, Universidad de Almería, Almería, Spain
| | - Natascia Biondi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Mario R Tredici
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Ignacio Gutiérrez-Del-Río
- Área de Microbiología, Research Group BIONUC, Universidad de Oviedo, IUOPA (Instituto Universitario de Oncología del Principado de Asturias), ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | - Sara López-Ibáñez
- Área de Microbiología, Research Group BIONUC, Universidad de Oviedo, IUOPA (Instituto Universitario de Oncología del Principado de Asturias), ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | - Claudio J Villar
- Área de Microbiología, Research Group BIONUC, Universidad de Oviedo, IUOPA (Instituto Universitario de Oncología del Principado de Asturias), ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | - Felipe Lombó
- Área de Microbiología, Research Group BIONUC, Universidad de Oviedo, IUOPA (Instituto Universitario de Oncología del Principado de Asturias), ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | - Yuly López
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Yaiza Gabasa
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Sara Soto
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Hussein HA, Kassim MNI, Maulidiani M, Abas F, Abdullah MA. Cytotoxicity and 1H NMR metabolomics analyses of microalgal extracts for synergistic application with Tamoxifen on breast cancer cells with reduced toxicity against Vero cells. Heliyon 2022; 8:e09192. [PMID: 35846482 PMCID: PMC9280575 DOI: 10.1016/j.heliyon.2022.e09192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/22/2022] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
This study evaluated the cytotoxic activity of Tamoxifen (TMX), an anti-estrogen drug, with microalgal crude extracts (MCEs) in single and synergistic application (TMX-MCEs) on MCF-7 and 4T1 breast cancer cells, and non-cancerous Vero cells. The MCEs of Nannochloropsis oculata, Tetraselmis suecica and Chlorella sp. from five different solvents (methanol, MET; ethanol, ETH; water, W; chloroform, CHL; and hexane, HEX) were developed. The TMX-MCEs-ETH and W at the 1:2 and 1:3 ratios, attained IC50 of 15.84-29.51 μg/mL against MCF-7; 13.8-31.62 μg/mL against 4T1; and 24.54-85.11 μg/mL against Vero cells. Higher late apoptosis was exhibited against MCF-7 by the TMX-N. oculata-ETH (41.15 %); and by the TMX-T. suecica-ETH (65.69 %) against 4T1 cells. The TMX-T. suecica-ETH also showed higher ADP/ATP ratios, but comparable Caspase activities to control. For Vero cells, overall apoptotic effects were lowered with synergistic application, and only early apoptosis was higher with TMX-T. suecica-ETH but at lower levels (29.84 %). The MCEs-W showed the presence of alanine, oleic acid, linoleic acid, lactic acid, and fumaric acid. Based on Principal Component Analysis (PCA), the spectral signals for polar solvents such as MET and ETH, were found in the same cluster, while the non-polar solvent CHL was with HEX, suggesting similar chemical profiles clustered for the same polarity. The CHL and HEX were more effective with N. oculata and T. suecica which were of the marine origin, while the ETH and MET were more effective with Chlorella sp., which was of the freshwater origin. The synergistic application of microalgal bioactive compounds with TMX can maintain the cytotoxicity against breast cancer cells whilst reducing the toxicity against non-cancerous Vero cells. These findings will benefit the biopharmaceutical, and functional and healthy food industries.
Collapse
Affiliation(s)
- Hanaa Ali Hussein
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- College of Dentistry, University of Basrah, Basrah, Iraq
| | - Murni Nur Islamiah Kassim
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - M. Maulidiani
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Azmuddin Abdullah
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- SIBCo Medical and Pharmaceuticals Sdn. Bhd., No. 2, Level 5, Jalan Tengku Ampuan Zabedah, D9/D, Seksyen 9, 40000 Shah Alam, Selangor, Malaysia
| |
Collapse
|
9
|
Kato Y, Inabe K, Hidese R, Kondo A, Hasunuma T. Metabolomics-based engineering for biofuel and bio-based chemical production in microalgae and cyanobacteria: A review. BIORESOURCE TECHNOLOGY 2022; 344:126196. [PMID: 34710610 DOI: 10.1016/j.biortech.2021.126196] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Metabolomics, an essential tool in modern synthetic biology based on the design-build-test-learn platform, is useful for obtaining a detailed understanding of cellular metabolic mechanisms through comprehensive analyses of the metabolite pool size and its dynamic changes. Metabolomics is critical to the design of a rational metabolic engineering strategy by determining the rate-limiting reaction and assimilated carbon distribution in a biosynthetic pathway of interest. Microalgae and cyanobacteria are promising photosynthetic producers of biofuels and bio-based chemicals, with high potential for developing a bioeconomic society through bio-based carbon neutral manufacturing. Metabolomics technologies optimized for photosynthetic organisms have been developed and utilized in various microalgal and cyanobacterial species. This review provides a concise overview of recent achievements in photosynthetic metabolomics, emphasizing the importance of microalgal and cyanobacterial cell factories that satisfy industrial requirements.
Collapse
Affiliation(s)
- Yuichi Kato
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kosuke Inabe
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ryota Hidese
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
10
|
Arora N, Philippidis GP. Unraveling metabolic alterations in Chlorella vulgaris cultivated on renewable sugars using time resolved multi-omics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149504. [PMID: 34426316 DOI: 10.1016/j.scitotenv.2021.149504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The inherent metabolic versatility of Chlorella vulgaris that enables it to metabolize both inorganic and organic carbon under various trophic modes of cultivation makes it a promising candidate for industrial applications. To shed light on the metabolic flexibility of this microalga, time resolved proteomic and metabolomic studies were conducted in three distinct trophic modes (autotrophic, heterotrophic, mixotrophic) at two growth stages (end of linear growth at 6 days and during nutrient deprivation at 10 days). Sweet sorghum bagasse (SSB) hydrolysate was supplied to the cultivation medium as a renewable source of organic carbon mainly in the form of glucose. Integrated multi-omics data showed improved nitrogen assimilation, re-allocation, and recycling and increased levels of photosystem II (PS II) proteins indicating effective cellular quenching of excess electrons during mixotrophy. As external addition of organic carbon (glucose) to the cultivation medium decreases the cell's dependence on photosynthesis, an upregulation in the mitochondrial electron transport chain was recorded that led to increased cellular energy generation and hence higher growth rates under mixotrophy. Moreover, upregulation of the lipid-packaging proteins caleosin and 14_3_3 domain-containing protein resulted in maximum expression during mixotrophy suggesting a strong correlation between lipid synthesis, stabilization, and assembly. Overall, cells cultivated under mixotrophy showed better nutrient stress tolerance and redox balancing leading to higher biomass and lipid production. The study offers a panoramic view of the microalga's metabolic flexibility and contributes to a deeper understanding of the altered biochemical pathways that can be exploited to enhance algal productivity and commercial potential.
Collapse
Affiliation(s)
- Neha Arora
- Patel College of Global Sustainability, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.
| | - George P Philippidis
- Patel College of Global Sustainability, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.
| |
Collapse
|
11
|
Coordinating Carbon Metabolism and Cell Cycle of Chlamydomonasreinhardtii with Light Strategies under Nitrogen Recovery. Microorganisms 2021; 9:microorganisms9122480. [PMID: 34946081 PMCID: PMC8707240 DOI: 10.3390/microorganisms9122480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Nutrient supplementation is common in microalgae cultivation to enhance the accumulation of biomass and biofunctional products, while the recovery mechanism from nutrient starvation is less investigated. In this study, the influence of remodeled carbon metabolism on cell cycle progression was explored by using different light wavelengths under N-repletion and N-recovery. The results suggested that blue light enhanced cell enlargement and red light promoted cell division under N-repletion. On the contrary, blue light promoted cell division by stimulating cell cycle progression under N-recovery. This interesting phenomenon was ascribed to different carbon metabolisms under N-repletion and N-recovery. Blue light promoted the recovery of photosystem II and redirected carbon skeletons into proteins under N-recovery, which potentially accelerated cell recovery and cell cycle progression. Although red light also facilitated the recovery of photosystem II, it mitigated the degradation of polysaccharide and then arrested almost all the cells in the G1 phase. By converting light wavelengths at the 12 h of N-recovery with blue light, red and white lights were proved to increase biomass concentration better than continuous blue light. These results revealed different mechanisms of cell metabolism of Chlamydomonas reinhardtii during N-recovery and could be applied to enhance cell vitality of microalgae from nutrient starvation and boost biomass production.
Collapse
|
12
|
González-Olalla JM, Medina-Sánchez JM, Norici A, Carrillo P. Regulation of Phagotrophy by Prey, Low Nutrients, and Low Light in the Mixotrophic Haptophyte Isochrysis galbana. MICROBIAL ECOLOGY 2021; 82:981-993. [PMID: 33661311 DOI: 10.1007/s00248-021-01723-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Mixotrophy combines autotrophy and phagotrophy in the same cell. However, it is not known to what extent the phagotrophy influences metabolism, cell composition, and growth. In this work, we assess, on the one hand (first test), the role of phagotrophy on the elemental and biochemical composition, cell metabolism, and enzymes related to C, N, and S metabolism of Isochrysis galbana Parke, 1949. On the other hand, we study how a predicted increase of phagotrophy under environmental conditions of low nutrients (second test) and low light (third test) can affect its metabolism and growth. Our results for the first test revealed that bacterivory increased the phosphorous and iron content per cell, accelerating cell division and improving the cell fitness; in addition, the stimulation of some C and N enzymatic routes help to maintain, to some degree, compositional homeostasis. Under nutrient or light scarcity, I. galbana grew more slowly despite greater bacterial consumption, and the activities of key enzymes involved in C, N, and S metabolism changed according to a predominantly phototrophic strategy of nutrition in this alga. Contrary to recent studies, the stimulation of phagotrophy under low nutrient and low irradiance did not imply greater and more efficient C flux.
Collapse
Affiliation(s)
- Juan Manuel González-Olalla
- Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy.
- University Institute of Water research, University of Granada, C/Ramón y Cajal, 4, 18071, Granada, Spain.
| | - Juan Manuel Medina-Sánchez
- University Institute of Water research, University of Granada, C/Ramón y Cajal, 4, 18071, Granada, Spain
- Department of Ecology, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - Alessandra Norici
- Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Presentación Carrillo
- University Institute of Water research, University of Granada, C/Ramón y Cajal, 4, 18071, Granada, Spain
- Department of Ecology, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| |
Collapse
|
13
|
Fernandes T, Cordeiro N. Microalgae as Sustainable Biofactories to Produce High-Value Lipids: Biodiversity, Exploitation, and Biotechnological Applications. Mar Drugs 2021; 19:md19100573. [PMID: 34677472 PMCID: PMC8540142 DOI: 10.3390/md19100573] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/04/2022] Open
Abstract
Microalgae are often called “sustainable biofactories” due to their dual potential to mitigate atmospheric carbon dioxide and produce a great diversity of high-value compounds. Nevertheless, the successful exploitation of microalgae as biofactories for industrial scale is dependent on choosing the right microalga and optimum growth conditions. Due to the rich biodiversity of microalgae, a screening pipeline should be developed to perform microalgal strain selection exploring their growth, robustness, and metabolite production. Current prospects in microalgal biotechnology are turning their focus to high-value lipids for pharmaceutic, nutraceutic, and cosmetic products. Within microalgal lipid fraction, polyunsaturated fatty acids and carotenoids are broadly recognized for their vital functions in human organisms. Microalgal-derived phytosterols are still an underexploited lipid resource despite presenting promising biological activities, including neuroprotective, anti-inflammatory, anti-cancer, neuromodulatory, immunomodulatory, and apoptosis inductive effects. To modulate microalgal biochemical composition, according to the intended field of application, it is important to know the contribution of each cultivation factor, or their combined effects, for the wanted product accumulation. Microalgae have a vital role to play in future low-carbon economy. Since microalgal biodiesel is still costly, it is desirable to explore the potential of oleaginous species for its high-value lipids which present great global market prospects.
Collapse
Affiliation(s)
- Tomásia Fernandes
- Laboratory of Bioanalysis, Biomaterials, and Biotechnology (LB3), Faculty of Exact Sciences and Engineering, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal
| | - Nereida Cordeiro
- Laboratory of Bioanalysis, Biomaterials, and Biotechnology (LB3), Faculty of Exact Sciences and Engineering, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal
- Correspondence:
| |
Collapse
|
14
|
Gémin MP, Bertrand S, Séchet V, Amzil Z, Réveillon D. Combined effects of temperature and light intensity on growth, metabolome and ovatoxin content of a Mediterranean Ostreopsis cf. ovata strain. HARMFUL ALGAE 2021; 106:102060. [PMID: 34154782 DOI: 10.1016/j.hal.2021.102060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Abstract
Ostreopsis cf. ovata is a benthic and ovatoxin-producing dinoflagellate proliferating yearly along the Mediterranean coasts where blooms have been related to human illness and unusual mortality of marine organisms. The spreading of O. cf. ovata in this temperate area has been linked to global changes and its consequences such as the increase of temperature or light intensities. In the present study, an experimental design using batch cultures of pre-acclimated cells of a strain of O. cf. ovata isolated from Villefranche-sur-Mer (NW Mediterranean Sea, France), was implemented to investigate the combined effect of temperature (23, 27 and 30 °C) and light intensity (200, 400 and 600 µmol m-2s-1) on the growth, metabolome and OVTX content. Both light intensity and temperature affected the growth as significantly higher growth rates were obtained under 400 and 600 µmol m-2s-1 while the maximum values were obtained at 27 °C (0.48 d-1). Metabolomic analyses highlighted a clear effect only for temperature that may correspond to two different strategies of acclimation to suboptimal temperatures. Significant features (such as carotenoid and lipids) modified by the temperature and/or light conditions were annotated. Only temperature induced a significant change of OVTX content with higher values measured at the lowest temperature of 23 °C (29 - 36 pg cell-1). In a context of global changes, these results obtained after acclimation suggest that the increase of temperature might favor the proliferation of less toxic cells. However, in the light of the intraspecific variability of O. cf. ovata, further studies will be necessary to test this hypothesis. This study also highlighted the lack of knowledge about the metabolome composition of such non-model organisms that impairs data interpretation. There is a need to study more deeply the metabolome of toxic dinoflagellates to better understand how they can acclimate to a changing environment.
Collapse
Affiliation(s)
| | - Samuel Bertrand
- Faculté de Pharmacie, Université de Nantes, EA 2160-Mer Molécules Santé, F-44035 Nantes, France; ThalassOMICS Metabolomics Facility, Plateforme Corsaire, Biogenouest, 44035 Nantes, France.
| | - Véronique Séchet
- IFREMER, DYNECO, Phycotoxins Laboratory, F-44000 Nantes, France.
| | - Zouher Amzil
- IFREMER, DYNECO, Phycotoxins Laboratory, F-44000 Nantes, France.
| | - Damien Réveillon
- IFREMER, DYNECO, Phycotoxins Laboratory, F-44000 Nantes, France.
| |
Collapse
|
15
|
Perera IA, Abinandan S, R Subashchandrabose S, Venkateswarlu K, Naidu R, Megharaj M. Microalgal-bacterial consortia unveil distinct physiological changes to facilitate growth of microalgae. FEMS Microbiol Ecol 2021; 97:6105210. [PMID: 33476378 DOI: 10.1093/femsec/fiab012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/19/2021] [Indexed: 01/05/2023] Open
Abstract
Physiological changes that drive the microalgal-bacterial consortia are poorly understood so far. In the present novel study, we initially assessed five morphologically distinct microalgae for their ability in establishing consortia in Bold's basal medium with a bacterial strain, Variovorax paradoxus IS1, all isolated from wastewaters. Tetradesmus obliquus IS2 and Coelastrella sp. IS3 were further selected for gaining insights into physiological changes, including those of metabolomes in consortia involving V. paradoxus IS1. The distinct parameters investigated were pigments (chlorophyll a, b, and carotenoids), reactive oxygen species (ROS), lipids and metabolites that are implicated in major metabolic pathways. There was a significant increase (>1.2-fold) in pigments, viz., chlorophyll a, b and carotenoids, decrease in ROS and an enhanced lipid yield (>2-fold) in consortia than in individual cultures. In addition, the differential regulation of cellular metabolites such as sugars, amino acids, organic acids and phytohormones was distinct among the two microalgal-bacterial consortia. Our results thus indicate that the selected microalgal strains, T. obliquus IS2 and Coelastrella sp. IS3, developed efficient consortia with V. paradoxus IS1 by effecting the required physiological changes, including metabolomics. Such microalgal-bacterial consortia could largely be used in wastewater treatment and for production of value-added metabolites.
Collapse
Affiliation(s)
- Isiri Adhiwarie Perera
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia
| | - Sudharsanam Abinandan
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia
| | - Suresh R Subashchandrabose
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia
| | - Kadiyala Venkateswarlu
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu 515003, Andhra Pradesh, India
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia
| |
Collapse
|
16
|
Bustamam MSA, Pantami HA, Azizan A, Shaari K, Min CC, Abas F, Nagao N, Maulidiani M, Banerjee S, Sulaiman F, Ismail IS. Complementary Analytical Platforms of NMR Spectroscopy and LCMS Analysis in the Metabolite Profiling of Isochrysis galbana. Mar Drugs 2021; 19:md19030139. [PMID: 33801258 PMCID: PMC7998644 DOI: 10.3390/md19030139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/24/2022] Open
Abstract
This study was designed to profile the metabolites of Isochrysis galbana, an indigenous and less explored microalgae species. 1H Nuclear Magnetic Resonance (NMR) spectroscopy and Liquid Chromatography-Mass Spectrometry (LCMS) were used to establish the metabolite profiles of five different extracts of this microalga, which are hexane (Hex), ethyl acetate (EtOAc), absolute ethanol (EtOH), EtOH:water 1:1 (AqE), and 100% water (Aq). Partial least square discriminant analysis (PLS–DA) of the generated profiles revealed that EtOAc and Aq extracts contain a diverse range of metabolites as compared to the other extracts with a total of twenty-one metabolites, comprising carotenoids, polyunsaturated fatty acids, and amino acids, that were putatively identified from the NMR spectra. Meanwhile, thirty-two metabolites were successfully annotated from the LCMS/MS data, ten of which (palmitic acid, oleic acid, α-linolenic acid, arachidic acid, cholesterol, DHA, DPA, fucoxanthin, astaxanthin, and pheophytin) were similar to those present in the NMR profile. Another eleven glycerophospholipids were discovered using MS/MS-based molecular network (MN) platform. The results of this study, besides providing a better understanding of I.galbana’s chemical make-up, will be of importance in exploring this species potential as a feed ingredient in the aquaculture industry.
Collapse
Affiliation(s)
- Muhammad Safwan Ahamad Bustamam
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
| | - Hamza Ahmed Pantami
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Awanis Azizan
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
| | - Khozirah Shaari
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Chong Chou Min
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (C.C.M.); (N.N.)
| | - Faridah Abas
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
| | - Norio Nagao
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (C.C.M.); (N.N.)
| | - Maulidiani Maulidiani
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Sanjoy Banerjee
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
| | - Fadzil Sulaiman
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
| | - Intan Safinar Ismail
- Natural Medicine and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.A.B.); (A.A.); (K.S.); (F.A.); (S.B.); (F.S.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence: ; Tel.: +60-3-9769-7492
| |
Collapse
|
17
|
Value-added co-products from biomass of the diatoms Staurosirella pinnata and Phaeodactylum tricornutum. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
In situ and real-time authentication of Thunnus species by iKnife rapid evaporative ionization mass spectrometry based lipidomics without sample pretreatment. Food Chem 2020; 318:126504. [PMID: 32146310 DOI: 10.1016/j.foodchem.2020.126504] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/08/2020] [Accepted: 02/25/2020] [Indexed: 12/30/2022]
Abstract
Tuna adulteration and mislabeling are serious problem worldwide and have caused economic loss and consumer rights violation. In this study, an electrometric knife (iKnife) coupling rapid evaporative ionization mass spectrometry (REIMS) and a multivariate recognition model were developed and employed for in situ and real-time authentication of four tuna species without sample preparation. The results showed that the lipidomic profiles were successfully acquired and the differences in fatty acids and phospholipids were statistically analyzed to be significant (p < 0.05). The model displayed the superb classification accuracy (>93%) and validation (R2(Y) = 0.992, Q2 = 0.986), and the main contributors of m/z 817.64, m/z 809.68, etc. were screened out to be used as potential biomarkers. Based on this technique, the identity of blind tuna samples could be unambiguously authenticated with the results displayed on a monitor screen directly. This study provided a front-line rapid detection method to prove the authenticity of tuna species.
Collapse
|
19
|
Song G, Li L, Wang H, Zhang M, Yu X, Wang J, Shen Q. Electric Soldering Iron Ionization Mass Spectrometry Based Lipidomics for in Situ Monitoring Fish Oil Oxidation Characteristics during Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2240-2248. [PMID: 31975589 DOI: 10.1021/acs.jafc.9b06406] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An electric soldering iron ion source (ESII) coupling with rapid evaporative ionization mass spectrometry (REIMS) was developed and used for in situ monitoring the dynamic variation trend in oxidation characteristics of fish oil during storage. The lipidomics profiles of fish oil stored at various days were acquired by ESII-REIMS. The fatty acid and triacylglycerol species were structurally identified, and their abundances were analyzed according to multivariate statistical models mainly including principle component analysis as well as orthogonal partial least-squares analysis. On the shared and unique structure plot, the ions of m/z 255.23, 281.24, 877.72, and 901.72 displayed the most significant variation among the oxidized fish oil samples. Based on receiver operating characteristic curve analysis with an optimal Youden index of 0.91, these markers were further verified. The variation of viscosity and volatiles were also evaluated to further verify the oxidation characteristics of fish oil. The study demonstrated that ESII-REIMS technology used as an advanced detection method could ensure fish oil quality during storage.
Collapse
Affiliation(s)
- Gongshuai Song
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou , 310018 China
| | - Linqiu Li
- School of Public Health , Guangdong Medical University , Dongguan , 523000 China
| | - Haixing Wang
- Zhejiang Province Key Lab of Anesthesiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325035 , China
| | - Mengna Zhang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou , 310018 China
| | - Xina Yu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou , 310018 China
| | - Jie Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou , 310018 China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou , 310018 China
| |
Collapse
|
20
|
Abreu AC, Marín P, Aguilera-Sáez LM, Tristán AI, Peña A, Oliveira I, Simões M, Valera D, Fernández I. Effect of a Shading Mesh on the Metabolic, Nutritional, and Defense Profiles of Harvested Greenhouse-Grown Organic Tomato Fruits and Leaves Revealed by NMR Metabolomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12972-12985. [PMID: 31709797 DOI: 10.1021/acs.jafc.9b05657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Controlling the temperature inside a greenhouse during the summer is a problem of increasing importance in the Mediterranean countries, especially in the Spanish southeast. The metabolic profile of greenhouse tomatoes and leaves grown under conventional conditions and within the presence of a shade mesh (∼50% reduction of sunlight radiation) has been monitored. Tomatoes were weekly harvested from May to July 2017 and analyzed by NMR spectroscopy coupled to multivariate data analysis techniques, together with oxygen radical absorbance capacity (ORAC) assays (for antioxidant activity). Fatty acids and carotenoids profiles were unraveled by GC-FID and HPLC-DAD, respectively. To verify whether it would be possible to take advantage of different light growing conditions to potentiate a plant's defense system, leaves of the corresponding plants were collected and their methanolic extracts were analyzed by NMR toward deciphering new biomarkers, which were used to assess their antibacterial and antibiofilm activities. The presence of a shading mesh resulted in a reduction in tomato production and in smaller fruits with lower contents of sugars (glucose and fructose) and carotenoids (lycopene and β-carotene) and higher contents of organic acids, amino acids, and polyunsaturated fatty acids (linoleic and oleic acids) and of phenylpropanoids and flavonoids (which contributed to an increased antioxidant activity). Methanolic extracts of leaves of nonshaded plants showed a higher antibiofilm activity than that from shaded plants. This activity was well-correlated with an increase of phenolic compounds, together with some specific amino acids and organic acids from tomato leaves.
Collapse
Affiliation(s)
| | | | | | | | | | - Isabel Oliveira
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Chemical Engineering, Faculty of Engineering , University of Porto , 4099-002 Porto , Portugal
| | - Manuel Simões
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Chemical Engineering, Faculty of Engineering , University of Porto , 4099-002 Porto , Portugal
| | | | | |
Collapse
|
21
|
Abreu AC, Molina-Miras A, Aguilera-Sáez LM, López-Rosales L, Cerón-García MDC, Sánchez-Mirón A, Olmo-García L, Carrasco-Pancorbo A, García-Camacho F, Molina-Grima E, Fernández I. Production of Amphidinols and Other Bioproducts of Interest by the Marine Microalga Amphidinium carterae Unraveled by Nuclear Magnetic Resonance Metabolomics Approach Coupled to Multivariate Data Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9667-9682. [PMID: 31415166 DOI: 10.1021/acs.jafc.9b02821] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study assessed the feasibility of an NMR metabolomics approach coupled to multivariate data analysis to monitor the naturally present or stresses-elicited metabolites from a long-term (>170 days) culture of the dinoflagellate marine microalgae Amphidinium carterae grown in a fiberglass paddlewheel-driven raceway photobioreactor. Metabolic contents, in particular, in two members of the amphidinol family, amphidinol A and its 7-sulfate derivative amphidinol B (referred as APDs), and other compounds of interest (fatty acids, carotenoids, oxylipins, etc.) were evaluated by altering concentration levels of the f/2 medium nutrients and daily mean irradiance. Operating with a 24 h sinusoidal light cycle allowed a 3-fold increase in APD production, which was also detected by an increase in hemolytic activity of the methanolic extract of A. carterae biomass. The presence of APDs was consistent with the antitumoral activity measured in the methanolic extracts of the biomass. Increased daily irradiance was accompanied by a general decrease in pigments and an increase in SFAs (saturated fatty acids), MUFAs (monounsaturated fatty acids), and DHA (docosahexaenoic acid), while increased nutrient availability lead to an increase in sugar, amino acid, and PUFA ω-3 contents and pigments and a decrease in SFAs and MUFAs. NMR-based metabolomics is shown to be a fast and suitable method to accompany the production of APD and bioactive compounds without the need of tedious isolation methods and bioassays. The two APD compounds were chemically identified by spectroscopic NMR and spectrometric ESI-IT MS (electrospray ionization ion trap mass spectrometry) and ESI-TOF MS (ESI time-of-flight mass spectrometry) methods.
Collapse
Affiliation(s)
- Ana Cristina Abreu
- Department of Chemistry and Physics, Research Centre CIAIMBITAL , University of Almería , Ctra. Sacramento, s/n , 04120 Almería , Spain
| | - Alejandro Molina-Miras
- Department of Chemical Engineering, Research Centre CIAIMBITAL , University of Almería , 04120 Almería , Spain
| | - Luis M Aguilera-Sáez
- Department of Chemistry and Physics, Research Centre CIAIMBITAL , University of Almería , Ctra. Sacramento, s/n , 04120 Almería , Spain
| | - Lorenzo López-Rosales
- Department of Chemical Engineering, Research Centre CIAIMBITAL , University of Almería , 04120 Almería , Spain
| | | | - Asterio Sánchez-Mirón
- Department of Chemical Engineering, Research Centre CIAIMBITAL , University of Almería , 04120 Almería , Spain
| | - Lucía Olmo-García
- Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Ave. Fuentenueva s/n , 18071 Granada , Spain
| | - Alegría Carrasco-Pancorbo
- Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Ave. Fuentenueva s/n , 18071 Granada , Spain
| | - Francisco García-Camacho
- Department of Chemical Engineering, Research Centre CIAIMBITAL , University of Almería , 04120 Almería , Spain
| | - Emilio Molina-Grima
- Department of Chemical Engineering, Research Centre CIAIMBITAL , University of Almería , 04120 Almería , Spain
| | - Ignacio Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL , University of Almería , Ctra. Sacramento, s/n , 04120 Almería , Spain
| |
Collapse
|