1
|
Hubert B, Leprince O, Buitink J. Sleeping but not defenceless: seed dormancy and protection. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6110-6124. [PMID: 38758708 PMCID: PMC11480657 DOI: 10.1093/jxb/erae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/16/2024] [Indexed: 05/19/2024]
Abstract
To ensure their vital role in disseminating the species, dormant seeds have developed adaptive strategies to protect themselves against pathogens and predators. This is orchestrated through the synthesis of an array of constitutive defences that are put in place in a developmentally regulated manner, which are the focus of this review. We summarize the defence activity and the nature of the molecules coming from the exudate of imbibing seeds that leak into their vicinity, also referred to as the spermosphere. As a second layer of protection, the dual role of the seed coat will be discussed; as a physical barrier and a multi-layered reservoir of defence compounds that are synthesized during seed development. Since imbibed dormant seeds can persist in the soil for extensive periods, we address the question of whether during this time a constitutively regulated defence programme is switched on to provide further protection, via the well-defined pathogenesis-related (PR) protein family. In addition, we review the hormonal and signalling pathways that might be involved in the interplay between dormancy and defence and point out questions that need further attention.
Collapse
Affiliation(s)
- Benjamin Hubert
- INRAE, Institut Agro, Université d'Angers, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Olivier Leprince
- INRAE, Institut Agro, Université d'Angers, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Julia Buitink
- INRAE, Institut Agro, Université d'Angers, IRHS, SFR QUASAV, F‐49000 Angers, France
| |
Collapse
|
2
|
Zou Y, Tang W, Li B. Exploring natural product biosynthesis in plants with mass spectrometry imaging. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00231-0. [PMID: 39341734 DOI: 10.1016/j.tplants.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/03/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
The biosynthesis of natural products (NPs) is a complex dynamic spatial and temporal process that requires the collaboration of multiple disciplines to explore the underlying mechanisms. Mass spectrometry imaging (MSI) is a powerful technique for studying NPs due to its high molecular coverage and sensitivity without the need for labeling. To date, many analysts still use MSI primarily for visualizing the distribution of NPs in heterogeneous tissues, although studies have proved that it can provide crucial insights into the specialized spatial metabolic process of NPs. In this review we strive to bring awareness of the importance of MSI, and we advocate further exploitation of the spatial information obtained from MSI to establish metabolite-gene expression relationships.
Collapse
Affiliation(s)
- Yuchen Zou
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Weiwei Tang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Lucier R, Kamileen MO, Nakamura Y, Serediuk S, Barbole R, Wurlitzer J, Kunert M, Heinicke S, O'Connor SE, Sonawane PD. Steroidal scaffold decorations in Solanum alkaloid biosynthesis. MOLECULAR PLANT 2024; 17:1236-1254. [PMID: 38937971 DOI: 10.1016/j.molp.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024]
Abstract
Steroidal glycoalkaloids (SGAs) are specialized metabolites produced by hundreds of Solanum species, including important vegetable crops such as tomato, potato, and eggplant. Although it has been known that SGAs play important roles in defense in plants and "anti-nutritional" effects (e.g., toxicity and bitterness) to humans, many of these molecules have documented anti-cancer, anti-microbial, anti-inflammatory, anti-viral, and anti-pyretic activities. Among these, α-solasonine and α-solamargine isolated from black nightshade (Solanum nigrum) are reported to have potent anti-tumor, anti-proliferative, and anti-inflammatory activities. Notably, α-solasonine and α-solamargine, along with the core steroidal aglycone solasodine, are the most widespread SGAs produced among the Solanum plants. However, it is still unknown how plants synthesize these bioactive steroidal molecules. Through comparative metabolomic-transcriptome-guided approach, biosynthetic logic, combinatorial expression in Nicotiana benthamiana, and functional recombinant enzyme assays, here we report the discovery of 12 enzymes from S. nigrum that converts the starting cholesterol precursor to solasodine aglycone, and the downstream α-solasonine, α-solamargine, and malonyl-solamargine SGA products. We further identified six enzymes from cultivated eggplant that catalyze the production of α-solasonine, α-solamargine, and malonyl-solamargine SGAs from solasodine aglycone via glycosylation and atypical malonylation decorations. Our work provides the gene tool box and platform for engineering the production of high-value, steroidal bioactive molecules in heterologous hosts using synthetic biology.
Collapse
Affiliation(s)
- Rosalind Lucier
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Mohamed O Kamileen
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Yoko Nakamura
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; Research Group Biosynthesis and NMR, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sofiia Serediuk
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ranjit Barbole
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Jens Wurlitzer
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Maritta Kunert
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sarah Heinicke
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| | - Prashant D Sonawane
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| |
Collapse
|
4
|
Shen Q, Wang S, Wang H, Liang J, Zhao Q, Cheng K, Imran M, Xue J, Mao Z. Revolutionizing food science with mass spectrometry imaging: A comprehensive review of applications and challenges. Compr Rev Food Sci Food Saf 2024; 23:e13398. [PMID: 38925595 DOI: 10.1111/1541-4337.13398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Food science encounters increasing complexity and challenges, necessitating more efficient, accurate, and sensitive analytical techniques. Mass spectrometry imaging (MSI) emerges as a revolutionary tool, offering more molecular-level insights. This review delves into MSI's applications and challenges in food science. It introduces MSI principles and instruments such as matrix-assisted laser desorption/ionization, desorption electrospray ionization, secondary ion mass spectrometry, and laser ablation inductively coupled plasma mass spectrometry, highlighting their application in chemical composition analysis, variety identification, authenticity assessment, endogenous substance, exogenous contaminant and residue analysis, quality control, and process monitoring in food processing and food storage. Despite its potential, MSI faces hurdles such as the complexity and cost of instrumentation, complexity in sample preparation, limited analytical capabilities, and lack of standardization of MSI for food samples. While MSI has a wide range of applications in food analysis and can provide more comprehensive and accurate analytical results, challenges persist, demanding further research and solutions. The future development directions include miniaturization of imaging devices, high-resolution and high-speed MSI, multiomics and multimodal data fusion, as well as the application of data analysis and artificial intelligence. These findings and conclusions provide valuable references and insights for the field of food science and offer theoretical and methodological support for further research and practice in food science.
Collapse
Affiliation(s)
- Qing Shen
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Shitong Wang
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Honghai Wang
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Jingjing Liang
- Zhejiang Provincial Institute for Food and Drug Control, Hangzhou, China
| | - Qiaoling Zhao
- Zhoushan Institute of Food & Drug Control, Zhoushan, China
| | - Keyun Cheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Muhammad Imran
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Jing Xue
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Zhujun Mao
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
5
|
Eljounaidi K, Radzikowska BA, Whitehead CB, Taylor DJ, Conde S, Davis W, Dowle AA, Langer S, James S, Unsworth WP, Ezer D, Larson TR, Lichman BR. Variation of terpene alkaloids in Daphniphyllum macropodum across plants and tissues. THE NEW PHYTOLOGIST 2024; 243:299-313. [PMID: 38757546 DOI: 10.1111/nph.19814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024]
Abstract
Daphniphyllum macropodum produces alkaloids that are structurally complex with polycyclic, stereochemically rich carbon skeletons. Understanding how these compounds are formed by the plant may enable exploration of their biological function and bioactivities. We employed multiple metabolomics techniques, including a workflow to annotate compounds in the absence of standards, to compare alkaloid content across plants and tissues. Different alkaloid structural types were found to have distinct distributions between genotypes, between tissues and within tissues. Alkaloid structural types also showed different isotope labelling enrichments that matched their biosynthetic relationships. The work suggests that mevalonate derived 30-carbon alkaloids are formed in the phloem region before their conversion to 22-carbon alkaloids which accumulate in the epidermis. This sets the stage for further investigation into the biosynthetic pathway.
Collapse
Affiliation(s)
- Kaouthar Eljounaidi
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Barbara A Radzikowska
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Caragh B Whitehead
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Danielle J Taylor
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Susana Conde
- Department of Biology, University of York, York, YO10 5DD, UK
| | - William Davis
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Adam A Dowle
- Biosciences Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | - Swen Langer
- Biosciences Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | - Sally James
- Biosciences Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | | | - Daphne Ezer
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Tony R Larson
- Biosciences Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| |
Collapse
|
6
|
Horn PJ, Chapman KD. Imaging plant metabolism in situ. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1654-1670. [PMID: 37889862 PMCID: PMC10938046 DOI: 10.1093/jxb/erad423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023]
Abstract
Mass spectrometry imaging (MSI) has emerged as an invaluable analytical technique for investigating the spatial distribution of molecules within biological systems. In the realm of plant science, MSI is increasingly employed to explore metabolic processes across a wide array of plant tissues, including those in leaves, fruits, stems, roots, and seeds, spanning various plant systems such as model species, staple and energy crops, and medicinal plants. By generating spatial maps of metabolites, MSI has elucidated the distribution patterns of diverse metabolites and phytochemicals, encompassing lipids, carbohydrates, amino acids, organic acids, phenolics, terpenes, alkaloids, vitamins, pigments, and others, thereby providing insights into their metabolic pathways and functional roles. In this review, we present recent MSI studies that demonstrate the advances made in visualizing the plant spatial metabolome. Moreover, we emphasize the technical progress that enhances the identification and interpretation of spatial metabolite maps. Within a mere decade since the inception of plant MSI studies, this robust technology is poised to continue as a vital tool for tackling complex challenges in plant metabolism.
Collapse
Affiliation(s)
- Patrick J Horn
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton TX 76203, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton TX 76203, USA
| |
Collapse
|
7
|
Díaz-Galiano FJ, Murcia-Morales M, Fernández-Alba AR. From sound check to encore: A journey through high-resolution mass spectrometry-based food analyses and metabolomics. Compr Rev Food Sci Food Saf 2024; 23:e13325. [PMID: 38532695 DOI: 10.1111/1541-4337.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
This manuscript presents a comprehensive review of high-resolution mass spectrometry in the field of food analysis and metabolomics. We have followed the historical evolution of metabolomics, its associated techniques and technologies, and its increasing role in food science and research. The review provides a critical comparison and synthesis of tentative identification guidelines proposed for over 15 years, offering a condensed resource for researchers in the field. We have also examined a wide range of recent metabolomics studies, showcasing various methodologies and highlighting key findings as a testimony of the versatility of the field and the possibilities it offers. In doing so, we have also carefully provided a compilation of the software tools that may be employed in this type of studies. The manuscript also explores the prospects of high-resolution mass spectrometry and metabolomics in food science. By covering the history, guidelines, applications, and tools of metabolomics, this review attempts to become a comprehensive guide for researchers in a rapidly evolving field.
Collapse
Affiliation(s)
- Francisco José Díaz-Galiano
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), University of Almería, Almería, Spain
| | - María Murcia-Morales
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), University of Almería, Almería, Spain
| | - Amadeo Rodríguez Fernández-Alba
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), University of Almería, Almería, Spain
| |
Collapse
|
8
|
Hubert B, Marchi M, Ly Vu J, Tranchant C, Tarkowski ŁP, Leprince O, Buitink J. A method to determine antifungal activity in seed exudates by nephelometry. PLANT METHODS 2024; 20:16. [PMID: 38287427 PMCID: PMC10826049 DOI: 10.1186/s13007-024-01144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND One of the levers towards alternative solutions to pesticides is to improve seed defenses against pathogens, but a better understanding is needed on the type and regulation of existing pathways during germination. Dormant seeds are able to defend themselves against microorganisms during cycles of rehydration and dehydration in the soil. During imbibition, seeds leak copious amounts of exudates. Here, we developed a nephelometry method to assay antimicrobial activity (AA) in tomato seed exudates as a proxy to assess level of defenses. RESULTS A protocol is described to determine the level of AA against the nonhost filamentous fungus Alternaria brassicicola in the exudates of tomato seeds and seedlings. The fungal and exudate concentrations can be adjusted to modulate the assay sensitivity, thereby providing a large window of AA detection. We established that AA in dormant seeds depends on the genotype. It ranged from very strong AA to complete absence of AA, even after prolonged imbibition. AA depends also on the stages of germination and seedling emergence. Exudates from germinated seeds and seedlings showed very strong AA, while those from dormant seeds exhibited less activity for the same imbibition time. The exudate AA did not impact the growth of a pathogenic fungus host of tomato, Alternaria alternata, illustrating the adaptation of this fungus to its host. CONCLUSIONS We demonstrate that our nephelometry method is a simple yet powerful bioassay to quantify AA in seed exudates. Different developmental stages from dormant seed to seedlings show different levels of AA in the exudate that vary between genotypes, highlighting a genetic diversity x developmental stage interaction in defense. These findings will be important to identify molecules in the exudates conferring antifungal properties and obtain a better understanding of the regulatory and biosynthetic pathways through the lifecycle of seeds, from dormant seeds until seedling emergence.
Collapse
Affiliation(s)
- Benjamin Hubert
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Muriel Marchi
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Joseph Ly Vu
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Camille Tranchant
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Łukasz P Tarkowski
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
- INRAE, Université de Strasbourg, UMR SVQV, Colmar, France
| | - Olivier Leprince
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Julia Buitink
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France.
| |
Collapse
|
9
|
Wittek O, Jahreis B, Römpp A. MALDI MS Imaging of Chickpea Seeds ( Cicer arietinum) and Crab's Eye Vine ( Abrus precatorius) after Tryptic Digestion Allows Spatially Resolved Identification of Plant Proteins. Anal Chem 2023; 95:14972-14980. [PMID: 37749896 PMCID: PMC10568532 DOI: 10.1021/acs.analchem.3c02428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/05/2023] [Indexed: 09/27/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) imaging following in situ enzymatic digestion is a versatile analytical method for the untargeted investigation of protein distributions, which has rarely been used for plants so far. The present study describes a workflow for in situ tryptic digestion of plant seed tissue for MALDI MS imaging. Substantial modifications to the sample preparation procedure for mammalian tissues were necessary to cater to the specific properties of plant materials. For the first time, distributions of tryptic peptides were successfully visualized in plant tissue using MS imaging with accurate mass detection. Sixteen proteins were visualized and identified in chickpea seeds showing different distribution patterns, e.g., in the cotyledons, radicle, or testa. All tryptic peptides were detected with a mass resolution higher than 60,000 as well as a mass accuracy better than 1.5 ppm root-mean-square error and were matched to results from complementary liquid chromatography-MS/MS (LC-MS/MS) data. The developed method was also applied to crab's eye vine seeds for targeted MS imaging of the toxic protein abrin, showing the presence of abrin-a in all compartments. Abrin (59 kDa), as well as the majority of proteins visualized in chickpeas, was larger than 50 kDa and would thus not be readily accessible by top-down MS imaging. Since antibodies for plant proteins are often not readily available, in situ digestion MS imaging provides unique information, as it makes the distribution and identification of larger proteins in plant tissues accessible in an untargeted manner. This opens up new possibilities in the field of plant science as well as to assess the nutritional quality and/or safety of crops.
Collapse
Affiliation(s)
| | - Bastian Jahreis
- Bioanalytical Sciences and
Food Analysis, University of Bayreuth, Universitaetsstrasse 30, D-95447 Bayreuth, Germany
| | - Andreas Römpp
- Bioanalytical Sciences and
Food Analysis, University of Bayreuth, Universitaetsstrasse 30, D-95447 Bayreuth, Germany
| |
Collapse
|
10
|
Delbrouck JA, Desgagné M, Comeau C, Bouarab K, Malouin F, Boudreault PL. The Therapeutic Value of Solanum Steroidal (Glyco)Alkaloids: A 10-Year Comprehensive Review. Molecules 2023; 28:4957. [PMID: 37446619 DOI: 10.3390/molecules28134957] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Steroidal (glycol)alkaloids S(G)As are secondary metabolites made of a nitrogen-containing steroidal skeleton linked to a (poly)saccharide, naturally occurring in the members of the Solanaceae and Liliaceae plant families. The genus Solanum is familiar to all of us as a food source (tomato, potato, eggplant), but a few populations have also made it part of their ethnobotany for their medicinal properties. The recent development of the isolation, purification and analysis techniques have shed light on the structural diversity among the SGAs family, thus attracting scientists to investigate their various pharmacological properties. This review aims to overview the recent literature (2012-2022) on the pharmacological benefits displayed by the SGAs family. Over 17 different potential therapeutic applications (antibiotic, antiviral, anti-inflammatory, etc.) were reported over the past ten years, and this unique review analyzes each pharmacological effect independently without discrimination of either the SGA's chemical identity or their sources. A strong emphasis is placed on the discovery of their biological targets and the subsequent cellular mechanisms, discussing in vitro to in vivo biological data. The therapeutic value and the challenges of the solanum steroidal glycoalkaloid family is debated to provide new insights for future research towards clinical development.
Collapse
Affiliation(s)
- Julien A Delbrouck
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Michael Desgagné
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Christian Comeau
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Kamal Bouarab
- Centre SEVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Pierre-Luc Boudreault
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
11
|
Yu X, Liu Z, Sun X. Single-cell and spatial multi-omics in the plant sciences: Technical advances, applications, and perspectives. PLANT COMMUNICATIONS 2023; 4:100508. [PMID: 36540021 DOI: 10.1016/j.xplc.2022.100508] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 05/11/2023]
Abstract
Plants contain a large number of cell types and exhibit complex regulatory mechanisms. Studies at the single-cell level have gradually become more common in plant science. Single-cell transcriptomics, spatial transcriptomics, and spatial metabolomics techniques have been combined to analyze plant development. These techniques have been used to study the transcriptomes and metabolomes of plant tissues at the single-cell level, enabling the systematic investigation of gene expression and metabolism in specific tissues and cell types during defined developmental stages. In this review, we present an overview of significant breakthroughs in spatial multi-omics in plants, and we discuss how these approaches may soon play essential roles in plant research.
Collapse
Affiliation(s)
- Xiaole Yu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, P.R. China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, P.R. China
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, P.R. China.
| |
Collapse
|
12
|
Solanum dulcamara L. Berries: A Convenient Model System to Study Redox Processes in Relation to Fruit Ripening. Antioxidants (Basel) 2023; 12:antiox12020346. [PMID: 36829905 PMCID: PMC9952312 DOI: 10.3390/antiox12020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
The present study provides, for the first time, a physicochemical and biochemical characterization of the redox processes associated with the ripening of Solanum dulcamara L. (bittersweet) berries. Electron Paramagnetic Resonance Spectroscopy (EPRS) and Imaging (EPRI) measurements of reactive oxygen species (ROS) were performed in parallel with the tissue-specific metabolic profiling of major antioxidants and assessment of antioxidant enzymes activity. Fruit transition from the mature green (MG) to ripe red (RR) stage involved changes in the qualitative and quantitative content of antioxidants and the associated cellular oxidation and peroxidation processes. The skin of bittersweet berries, which was the major source of antioxidants, exhibited the highest antioxidant potential against DPPH radicals and nitroxyl spin probe 3CP. The efficient enzymatic antioxidant system played a critical protective role against the deleterious effects of progressive oxidative stress during ripening. Here, we present the EPRI methodology to assess the redox status of fruits and to discriminate between the redox states of different tissues. Interestingly, the intracellular reoxidation of cell-permeable nitroxide probe 3CP was observed for the first time in fruits or any other plant tissue, and its intensity is herein proposed as a reliable indicator of oxidative stress during ripening. The described noninvasive EPRI technique has the potential to have broader application in the study of redox processes associated with the development, senescence, and postharvest storage of fruits, as well as other circumstances in which oxidative stress is implicated.
Collapse
|
13
|
Golpelichi F, Parastar H. Quantitative Mass Spectrometry Imaging Using Multivariate Curve Resolution and Deep Learning: A Case Study. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:236-244. [PMID: 36594891 DOI: 10.1021/jasms.2c00268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the present contribution, a novel approach based on multivariate curve resolution and deep learning (DL) is proposed for quantitative mass spectrometry imaging (MSI) as a potent technique for identifying different compounds and creating their distribution maps in biological tissues without need for sample preparation. As a case study, chlordecone as a carcinogenic pesticide was quantitatively determined in mouse liver using matrix-assisted laser desorption ionization-MSI (MALDI-MSI). For this purpose, data from seven standard spots containing 0 to 20 picomoles of chlordecone and four unknown tissues from the mouse livers infected with chlordecone for 1, 5, and 10 days were analyzed using a convolutional neural network (CNN). To solve the lack of sufficient data for CNN model training, each pixel was considered as a sample, the designed CNN models were trained by pixels in training sets, and their corresponding amounts of chlordecone were obtained by multivariate curve resolution-alternating least-squares (MCR-ALS). The trained models were then externally evaluated using calibration pixels in test sets for 1, 5, and 10 days of exposure, respectively. Prediction R2 for all three data sets ranged from 0.93 to 0.96, which was superior to support vector machine (SVM) and partial least-squares (PLS). The trained CNN models were finally used to predict the amount of chlordecone in mouse liver tissues, and their results were compared with MALDI-MSI and GC-MS methods, which were comparable. Inspection of the results confirmed the validity of the proposed method.
Collapse
Affiliation(s)
- Fatemeh Golpelichi
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-9516, 1458889694Tehran, Iran
| | - Hadi Parastar
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-9516, 1458889694Tehran, Iran
| |
Collapse
|
14
|
Chiocchio I, Andrés NP, Anaia RA, van Dam NM, Vergara F. Steroidal glycoside profile differences among primary roots system and adventitious roots in Solanum dulcamara. PLANTA 2023; 257:37. [PMID: 36645517 PMCID: PMC9842586 DOI: 10.1007/s00425-023-04072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Solanum dulcamara primary and adventitious roots showed qualitative and quantitative differences in their steroidal glycosides profile. This opened new venues to evaluate the bioactivity of these molecules in belowground ecosystems. The Solanum genus is characterized by the presence of steroidal glycosides (SGs) that confer herbivore resistance and serve as drug precursors in the pharmaceutical industry. Solanum dulcamara is a self-compatible, sexually reproducing species that produces seeds after buzz-pollination. In addition, primordia on the stem facilitate clonal propagation via adventitious root (AR) formation. ARs contain aerenchyma being developmentally and morphologically different from primary roots (PRs). Therefore, we hypothesized that ARs and PRs have different SG profiles. Aiming to assess differences in SGs profiles in S. dulcamara roots in relation to their origins and morphologies, we used liquid chromatography coupled to electron spray ionization quadruple time of flight mass spectrometry (LC-ESI-qToF-MS) to profile SGs from PRs and ARs of seven S. dulcamara individuals. Mass fragmentation pattern analysis indicated the presence of 31 SG-type structures, including those with spirostans and furostans moieties. We assigned the 31 structures to 9 classes of steroidal aglycons (SAgls) that differ in hydroxylation and degree of unsaturation. We found that SAgls were conjugated with di-, tri- and tetra saccharides whereby one compound contained a malonylated sugar. Principle component analysis showed that SG profiles of PRs and ARs separated on the first principal component, supporting our hypothesis. Specifically, PRs contain higher number of SGs than ARs with some compounds exclusively present in PRs. Our results reveal a high level of novel chemodiversity in PRs and ARs of Solanum dulcamara. The knowledge gained will deepen our understanding of SGs biosynthesis and their functional role in plant-environment interactions.
Collapse
Affiliation(s)
- Ilaria Chiocchio
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany.
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| | - Nerea Pérez Andrés
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Redouan Adam Anaia
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Dornburger-Str. 159, 07743, Jena, Germany
| | - Nicole M van Dam
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Dornburger-Str. 159, 07743, Jena, Germany
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Fredd Vergara
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Dornburger-Str. 159, 07743, Jena, Germany
| |
Collapse
|
15
|
Aramaki S, Tsuge S, Islam A, Eto F, Sakamoto T, Oyama S, Li W, Zhang C, Yamaguchi S, Takatsuka D, Hosokawa Y, Waliullah ASM, Takahashi Y, Kikushima K, Sato T, Koizumi K, Ogura H, Kahyo T, Baba S, Shiiya N, Sugimura H, Nakamura K, Setou M. Lipidomics-based tissue heterogeneity in specimens of luminal breast cancer revealed by clustering analysis of mass spectrometry imaging: A preliminary study. PLoS One 2023; 18:e0283155. [PMID: 37163537 PMCID: PMC10171676 DOI: 10.1371/journal.pone.0283155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/02/2023] [Indexed: 05/12/2023] Open
Abstract
Cancer tissues reflect a greater number of pathological characteristics of cancer compared to cancer cells, so the evaluation of cancer tissues can be effective in determining cancer treatment strategies. Mass spectrometry imaging (MSI) can evaluate cancer tissues and even identify molecules while preserving spatial information. Cluster analysis of cancer tissues' MSI data is currently used to evaluate the phenotype heterogeneity of the tissues. Interestingly, it has been reported that phenotype heterogeneity does not always coincide with genotype heterogeneity in HER2-positive breast cancer. We thus investigated the phenotype heterogeneity of luminal breast cancer, which is generally known to have few gene mutations. As a result, we identified phenotype heterogeneity based on lipidomics in luminal breast cancer tissues. Clusters were composed of phosphatidylcholine (PC), triglycerides (TG), phosphatidylethanolamine, sphingomyelin, and ceramide. It was found that mainly the proportion of PC and TG correlated with the proportion of cancer and stroma on HE images. Furthermore, the number of carbons in these lipid class varied from cluster to cluster. This was consistent with the fact that enzymes that synthesize long-chain fatty acids are increased through cancer metabolism. It was then thought that clusters containing PCs with high carbon counts might reflect high malignancy. These results indicate that lipidomics-based phenotype heterogeneity could potentially be used to classify cancer for which genetic analysis alone is insufficient for classification.
Collapse
Affiliation(s)
- Shuhei Aramaki
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- Department of Radiation Oncology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- First Department of Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shogo Tsuge
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Ariful Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Fumihiro Eto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takumi Sakamoto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Soho Oyama
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Wenxin Li
- Department of Radiation Oncology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Chi Zhang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shinichi Yamaguchi
- Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Daiki Takatsuka
- 1st Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yuko Hosokawa
- 1st Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - A S M Waliullah
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yutaka Takahashi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kenji Kikushima
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- 1st Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kei Koizumi
- 1st Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hiroyuki Ogura
- 1st Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Satoshi Baba
- Department of Diagnostic Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Norihiko Shiiya
- 1st Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Haruhiko Sugimura
- First Department of Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Katsumasa Nakamura
- Department of Radiation Oncology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
16
|
Zhang YX, Zhang YD, Shi YP. A reliable and effective sample preparation protocol of MALDI-TOF-MSI for lipids imaging analysis in hard and dry cereals. Food Chem 2023; 398:133911. [DOI: 10.1016/j.foodchem.2022.133911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/18/2022] [Accepted: 08/07/2022] [Indexed: 11/27/2022]
|
17
|
Vincent D, Bui A, Ezernieks V, Shahinfar S, Luke T, Ram D, Rigas N, Panozzo J, Rochfort S, Daetwyler H, Hayden M. A community resource to mass explore the wheat grain proteome and its application to the late-maturity alpha-amylase (LMA) problem. Gigascience 2022; 12:giad084. [PMID: 37919977 PMCID: PMC10627334 DOI: 10.1093/gigascience/giad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/02/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Late-maturity alpha-amylase (LMA) is a wheat genetic defect causing the synthesis of high isoelectric point alpha-amylase following a temperature shock during mid-grain development or prolonged cold throughout grain development, both leading to starch degradation. While the physiology is well understood, the biochemical mechanisms involved in grain LMA response remain unclear. We have applied high-throughput proteomics to 4,061 wheat flours displaying a range of LMA activities. Using an array of statistical analyses to select LMA-responsive biomarkers, we have mined them using a suite of tools applicable to wheat proteins. RESULTS We observed that LMA-affected grains activated their primary metabolisms such as glycolysis and gluconeogenesis; TCA cycle, along with DNA- and RNA- binding mechanisms; and protein translation. This logically transitioned to protein folding activities driven by chaperones and protein disulfide isomerase, as well as protein assembly via dimerisation and complexing. The secondary metabolism was also mobilized with the upregulation of phytohormones and chemical and defence responses. LMA further invoked cellular structures, including ribosomes, microtubules, and chromatin. Finally, and unsurprisingly, LMA expression greatly impacted grain storage proteins, as well as starch and other carbohydrates, with the upregulation of alpha-gliadins and starch metabolism, whereas LMW glutenin, stachyose, sucrose, UDP-galactose, and UDP-glucose were downregulated. CONCLUSIONS To our knowledge, this is not only the first proteomics study tackling the wheat LMA issue but also the largest plant-based proteomics study published to date. Logistics, technicalities, requirements, and bottlenecks of such an ambitious large-scale high-throughput proteomics experiment along with the challenges associated with big data analyses are discussed.
Collapse
Affiliation(s)
- Delphine Vincent
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - AnhDuyen Bui
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Vilnis Ezernieks
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Saleh Shahinfar
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Timothy Luke
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Doris Ram
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Nicholas Rigas
- Agriculture Victoria Research, Grains Innovation Park, Horsham, VIC 3400, Australia
| | - Joe Panozzo
- Agriculture Victoria Research, Grains Innovation Park, Horsham, VIC 3400, Australia
- Centre for Agricultural Innovation, University of Melbourne, Parkville, VIC 3010, Australia
| | - Simone Rochfort
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Hans Daetwyler
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Matthew Hayden
- Agriculture Victoria Research, AgriBio, Center Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| |
Collapse
|
18
|
Kokesch-Himmelreich J, Wittek O, Race AM, Rakete S, Schlicht C, Busch U, Römpp A. MALDI mass spectrometry imaging: From constituents in fresh food to ingredients, contaminants and additives in processed food. Food Chem 2022; 385:132529. [PMID: 35279497 DOI: 10.1016/j.foodchem.2022.132529] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/20/2022] [Accepted: 02/19/2022] [Indexed: 11/15/2022]
Abstract
Mass Spectrometry imaging (MS imaging) provides spatial information for a wide range of compound classes in different sample matrices. We used MS imaging to investigate the distribution of components in fresh and processed food, including meat, dairy and bakery products. The MS imaging workflow was optimized to cater to the specific properties and challenges of the individual samples. We successfully detected highly nonpolar and polar constituents such as beta-carotene and anthocyanins, respectively. For the first time, the distributions of a contaminant and a food additive were visualized in processed food. We detected acrylamide in German gingerbread and investigated the penetration of the preservative natamycin into cheese. For this purpose, a new data analysis tool was developed to study the penetration of analytes from uneven surfaces. Our results show that MS imaging has great potential in food analysis to provide relevant information about components' distributions, particularly those underlying official regulations.
Collapse
Affiliation(s)
| | - Oliver Wittek
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany.
| | - Alan M Race
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany.
| | - Sophie Rakete
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany.
| | - Claus Schlicht
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany.
| | - Ulrich Busch
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany.
| | - Andreas Römpp
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
19
|
Xiang ML, Hu BY, Qi ZH, Wang XN, Xie TZ, Wang ZJ, Ma DY, Zeng Q, Luo XD. Chemistry and bioactivities of natural steroidal alkaloids. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:23. [PMID: 35701630 PMCID: PMC9198197 DOI: 10.1007/s13659-022-00345-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 05/11/2023]
Abstract
Steroidal alkaloids possess the basic steroidal skeleton with a nitrogen atom in rings or side chains incorporated as an integral part of the molecule. They have demonstrated a wide range of biological activities, and some of them have even been developed as therapeutic drugs, such as abiraterone acetate (Zytiga®), a blockbuster drug, which has been used for the treatment of prostate cancer. Structurally diverse natural steroidal alkaloids present a wide spectrum of biological activities, which are attractive for natural product chemistry and medicinal chemistry communities. This review comprehensively covers the structural classification, isolation and various biological activities of 697 natural steroidal alkaloids discovered from 1926 to October 2021, with 363 references being cited.
Collapse
Affiliation(s)
- Mei-Ling Xiang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Bin-Yuan Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Zi-Heng Qi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Xiao-Na Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Tian-Zhen Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Zhao-Jie Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Dan-Yu Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Qi Zeng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Xiao-Dong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| |
Collapse
|
20
|
Dzakovich MP, Francis DM, Cooperstone JL. Steroidal alkaloid biosynthesis is coordinately regulated and differs among tomatoes in the red-fruited clade. THE PLANT GENOME 2022; 15:e20192. [PMID: 35184399 DOI: 10.1002/tpg2.20192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The tomato (Solanum spp.) clade of Solanaceae features a unique assortment of cholesterol-derived steroidal alkaloids. However, little quantitative data exists reporting the profile and concentration of these alkaloids across diverse fruit germplasm. To address the lack of knowledge regarding the chemical diversity, concentration, and genetic architecture controlling tomato steroidal alkaloids, we quantitatively profiled and genotyped two tomato populations representing diversity in the red-fruited clade. We grew 107 genetically diverse fresh market, processing, landrace, and wild tomato in multiple environments. Nine steroidal alkaloid groups were quantified using ultra-high performance liquid chromatography tandem mass spectrometry. The diversity panel and a biparental population segregating for high alpha-tomatine were genotyped to identify and validate quantitative trait loci (QTL) associated with steroidal alkaloids. Landraces and wild material exhibited higher alkaloid concentrations and more chemical diversity. Average total content of steroidal alkaloids, often dominated by lycoperoside F/G/esculeoside A, ranged from 1.9 to 23.3 mg 100 g-1 fresh wt. across accessions. Landrace and wild cherry accessions distinctly clustered based on elevated concentrations of early or late-pathway steroidal alkaloids. Significant correlations were observed among alkaloids from the early and late parts of the biosynthetic pathway in a species-dependent manner. A QTL controlling multiple, early steroidal alkaloid pathway intermediates on chromosome 3 was identified by genome-wide association studies (GWAS) and validated in a backcross population. Overall, tomato steroidal alkaloids are diverse in the red-fruited clade and their biosynthesis is regulated in a coordinated manner.
Collapse
Affiliation(s)
- Michael P Dzakovich
- Dep. of Horticulture and Crop Science, The Ohio State Univ., 2001 Fyffe Court, Columbus, OH, 43210, USA
- USDA-ARS Children's Nutrition Research Center, Dep. of Pediatrics, Baylor College of Medicine, 1100 Bates Ave., Houston, TX, 77030, USA
| | - David M Francis
- Dep. of Horticulture and Crop Science, The Ohio State Univ./Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH, 44691, USA
| | - Jessica L Cooperstone
- Dep. of Horticulture and Crop Science, The Ohio State Univ., 2001 Fyffe Court, Columbus, OH, 43210, USA
- Dep. of Food Science and Technology, The Ohio State Univ., 2015 Fyffe Court., Columbus, OH, 43210, USA
| |
Collapse
|
21
|
Liu QB, Lu JG, Jiang ZH, Zhang W, Li WJ, Qian ZM, Bai LP. In situ Chemical Profiling and Imaging of Cultured and Natural Cordyceps sinensis by TOF-SIMS. Front Chem 2022; 10:862007. [PMID: 35402389 PMCID: PMC8987775 DOI: 10.3389/fchem.2022.862007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/25/2022] [Indexed: 12/26/2022] Open
Abstract
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a sensitive surface analytical technology, which can simultaneously acquire diverse chemical components and their precise locations on the surfaces of samples without any requirements for chemical damage pretreatments or additional matrices. Commonly, the quality control of TCMs (traditional Chinese medicines) is limited by the qualitative and quantitative evaluations of the specifically extractive constituents. In this study, a practical sample preparation strategy named two-layered media embedding sample preparation was developed to obtain ideal freezing sections of dried materials of Cordyceps sinensis. Meanwhile, the well-established sample preparation method was applied for in situ chemical profiling and imaging of natural (NCS) and cultured Cordyceps sinensis (CCS) by using TOF-SIMS. More than 200 components were tentatively identified and imaged in NCS and CCS at the same time. Mass spectrometry imaging revealed that most components have even distributions in caterpillars of Cordyceps sinensis, while TAGs, DAGs, MAGs, and FAs only have distributions outside caterpillars’ digestive chambers. This is the first time that components were in situ imaged for Cordyceps sinensis to exhibit the chemical distributions which have never been achieved by other analytical techniques so far. In addition, chemometrics was used to simplify and explain the massive TOF-SIMS mass data sets, which revealed the high chemical similarity between CCS and NCS. Furthermore, the relative quantification of TOF-SIMS data showed that CCS has comparable proportions of amino acids, nucleosides, monosaccharides, sphingolipids, sterols and other principles to NCS except for fatty acids, glycerides and glycerophospholipids. The higher amounts of TAGs and DAGs in CCS were confirmed by quantitative 1H-NMR, indicating reliable relative quantification of TOF-SIMS. In general, our research developed a novel approach of TOF-SIMS for in situ chemical analysis of TCMs, and its successful application in comparative study of CCS and NCS suggested that TOF-SIMS is an advanced and promising analytical technology for the research of TCMs.
Collapse
Affiliation(s)
- Qian-Bao Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Jing-Guang Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
- *Correspondence: Zhi-Hong Jiang, ; Li-Ping Bai,
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Wen-Jia Li
- Dongguan HEC Cordyceps R and D Co., Ltd., Dongguan, China
| | | | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
- *Correspondence: Zhi-Hong Jiang, ; Li-Ping Bai,
| |
Collapse
|
22
|
Tang X, Zhao M, Chen Z, Huang J, Chen Y, Wang F, Wan K. Visualizing the spatial distribution of metabolites in Clausena lansium (Lour.) skeels using matrix-assisted laser desorption/ionization mass spectrometry imaging. PHYTOCHEMISTRY 2021; 192:112930. [PMID: 34481177 DOI: 10.1016/j.phytochem.2021.112930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Clausena lansium (Lour.) Skeels (Rutaceae) is a natural bioactive plant. Its roots, stems, leaves, and seeds are widely used in Chinese traditional and folk medicine. Although the characterization and functional analysis of bioactive components in Clausena lansium (Lour.) Skeels has been widely reported, the spatial distribution of these compounds within the main plant tissues remains undefined. Here, we adopted matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to reveal the spatial distribution of active alkaloids, coumarins, sugars and organic acids in C. lansium. Using a combined wet and dry matrix covering method to enhance sensitivity, we detected alkaloids throughout the fruit including 3-methylcarbazole and murrastinine which were especially rich in the kernel tissues but were restricted to the stem xylem and medulla and in the leaf epidermal region. Interestingly, murrayanine and heptaphylline were mainly found in pulp tissues with very low content in the stems and leaves while girinimbine was only distributed within the outer kernel skin. Coumarins were mainly distributed in the fruit pericarp and leaf vein tissues but with no clear spatial specificity in stems. Lastly, hexoses were mainly evident in the fruit pulp, although sucrose was also found in the pericarp, pulp, and pulp fibers with citric acid being distributed throughout the fruit. The accurate spatial and chemical information obtained provides new insights into the specific accumulation of metabolites in individual tissues.
Collapse
Affiliation(s)
- Xuemei Tang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China
| | - Meiyan Zhao
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhiting Chen
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jianxiang Huang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China
| | - Yan Chen
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Fuhua Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China
| | - Kai Wan
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
23
|
Unravel the Local Complexity of Biological Environments by MALDI Mass Spectrometry Imaging. Int J Mol Sci 2021; 22:ijms222212393. [PMID: 34830273 PMCID: PMC8623934 DOI: 10.3390/ijms222212393] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/07/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022] Open
Abstract
Classic metabolomic methods have proven to be very useful to study functional biology and variation in the chemical composition of different tissues. However, they do not provide any information in terms of spatial localization within fine structures. Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) does and reaches at best a spatial resolution of 0.25 μm depending on the laser setup, making it a very powerful tool to analyze the local complexity of biological samples at the cellular level. Here, we intend to give an overview of the diversity of the molecules and localizations analyzed using this method as well as to update on the latest adaptations made to circumvent the complexity of samples. MALDI MSI has been widely used in medical sciences and is now developing in research areas as diverse as entomology, microbiology, plant biology, and plant–microbe interactions, the rhizobia symbiosis being the most exhaustively described so far. Those are the fields of interest on which we will focus to demonstrate MALDI MSI strengths in characterizing the spatial distributions of metabolites, lipids, and peptides in relation to biological questions.
Collapse
|
24
|
Hu W, Han Y, Sheng Y, Wang Y, Pan Q, Nie H. Mass spectrometry imaging for direct visualization of components in plants tissues. J Sep Sci 2021; 44:3462-3476. [PMID: 34245221 DOI: 10.1002/jssc.202100138] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Mass spectrometry is considered the most informative technique for components identification and has been widely adopted in plant sciences. However, the spatial distribution of compounds in the plant, which is vital for the exploration of plant physiological mechanisms, is missed in MS analysis. In recent years, mass spectrometry imaging has brought a great breakthrough in plant analysis because it can determine both the molecular compositions and spatial distributions, which is conducive to understand functions and regulation pathways of specific components in plants. Mass spectrometry imaging analysis of plant tissue is toward high sensitivity, high spatial resolution, and even single-cell analysis. Despite many challenges and technical barriers, such as difficulties of sample pretreatment caused by morphological diversity of plant tissues, obstacles for high spatial resolution imaging, and so on, lots of researches have contributed to remarkable progress, including improvement in tissue preparation, matrix innovation, and ionization mode development. This review focuses on the advances of mass spectrometry imaging analysis of plants in the last 5 years, including commonly used ionization techniques, technical advances, and recent applications of mass spectrometry imaging in plants.
Collapse
Affiliation(s)
- Wenya Hu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yiqi Sheng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yinghao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Qiong Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| |
Collapse
|
25
|
Cao G, Hong Y, Wu H, Chen Z, Lu M, Cai Z. Visual authentication of edible vegetable oil and used cooking oil using MALDI imaging mass spectrometry. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Li JH, Li SY, Shen MX, Qiu RZ, Fan HW, Li YB. Anti-tumor effects of Solanum nigrum L. extraction on C6 high-grade glioma. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114034. [PMID: 33746002 DOI: 10.1016/j.jep.2021.114034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/07/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Solanum nigrum L. (SN) is a traditional Chinese medicine with anti-tumor effects, has been used in cancer for centuries, but the role on high-grade gliomas (HGG) is not clear. AIM OF THE STUDY This work was to investigate the anti-tumor effects of SN extract on rat C6 glioma in vitro and in vivo, providing a new medium for the treatment of HGG. MATERIALS AND METHODS After identification and quality inspection of SN medicinal materials by HPLC-MS/MS and HPLC, CCK8 and colony formation assay were conducted to study the effects of SN on vitality and proliferation of C6 cells. Cell morphology was evaluated by HE staining, and flow cytometry was used for apoptosis analysis. The effects on cell migration and invasion were determined by transwell and wound healing assay. Western blot was used to further investigate the influence of SN on migration, invasion and apoptosis of tumor cells. In addition, the rat intracranial transplanted tumor model was used to evaluate the effects of SN on growth and infiltration of tumor and proliferation of transplanted tumor cells. RESULTS SN extract suppressed the viability of C6 cells in a dose-dependent manner. The extract attenuated cell cloning, migration and invasion, and induced cell Annexin V+ PI+ late-stage apoptosis. Besides, SN induced the expression of apoptotic proteins including Bax and Cleaved Caspase-3, downregulated anti-apoptotic protein Bcl-2, and decreased the level of migratory proteins MMP-2 and MMP-9. Moreover, SN reduced the growth and infiltration of C6 glioma tissue and suppressed the proliferation of tumor cells in rat brain. CONCLUSIONS SN extract has significant inhibitory activity on the growth and invasion of C6 HGG in vivo and in vitro.
Collapse
Affiliation(s)
- Jia-Hui Li
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Song-Ya Li
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Ming-Xue Shen
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Run-Ze Qiu
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Hong-Wei Fan
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China.
| | - Ying-Bin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China.
| |
Collapse
|
27
|
Zhang YX, Zhao XB, Ha W, Zhang YD, Shi YP. Spatial distribution analysis of phospholipids in rice by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging. J Chromatogr A 2021; 1651:462302. [PMID: 34119720 DOI: 10.1016/j.chroma.2021.462302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 01/15/2023]
Abstract
Phospholipids are one of the main nutrients in rice, which have a positive effect on cancer, coronary heart disease and inflammation. However, phospholipids will become small molecular volatile substances during the aging process of rice, resulting in change the flavor of rice. Therefore, mapping the concentration and the spatial distribution of phospholipids in rice are of tremendous significance in its function research. In this work, we established a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) imaging method for the spatial distribution analysis of phospholipids in rice. A total of 12 phospholipid compounds were found in the range of m/z 500-1000 through a series of conditions optimization. According to the results, lysophosphatidylcholine (LPC) species spread throughout the rice tissue sections and phosphatidylcholine (PC) species distributed in the bran and embryo (particularly in the scutellum). We also compared the signal intensities of phospholipids in different parts of white rice and brown rice by region of interest (ROI) analysis, which showed the relative content of PC species was higher in the embryo and gradually decreased until disappeared with the increase of processing degree during the processing of brown rice to white rice. The PC species on the surface of rice could be used as an important indicator to identify the processing degree of rice. Our work not only establish a MALDI-TOF-MS imaging method for spatial distribution analysis of rice, but also provide the necessary reference for ensuring food security, improving the eating quality of rice and the health benefits of consumers.
Collapse
Affiliation(s)
- Yan-Xia Zhang
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Bo Zhao
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Ha
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yi-Da Zhang
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yan-Ping Shi
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
28
|
Chiocchio I, Mandrone M, Tomasi P, Marincich L, Poli F. Plant Secondary Metabolites: An Opportunity for Circular Economy. Molecules 2021; 26:495. [PMID: 33477709 PMCID: PMC7831927 DOI: 10.3390/molecules26020495] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/20/2022] Open
Abstract
Moving toward a more sustainable development, a pivotal role is played by circular economy and a smarter waste management. Industrial wastes from plants offer a wide spectrum of possibilities for their valorization, still being enriched in high added-value molecules, such as secondary metabolites (SMs). The current review provides an overview of the most common SM classes (chemical structures, classification, biological activities) present in different plant waste/by-products and their potential use in various fields. A bibliographic survey was carried out, taking into account 99 research articles (from 2006 to 2020), summarizing all the information about waste type, its plant source, industrial sector of provenience, contained SMs, reported bioactivities, and proposals for its valorization. This survey highlighted that a great deal of the current publications are focused on the exploitation of plant wastes in human healthcare and food (including cosmetic, pharmaceutical, nutraceutical and food additives). However, as summarized in this review, plant SMs also possess an enormous potential for further uses. Accordingly, an increasing number of investigations on neglected plant matrices and their use in areas such as veterinary science or agriculture are expected, considering also the need to implement "greener" practices in the latter sector.
Collapse
Affiliation(s)
| | - Manuela Mandrone
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (I.C.); (P.T.); (L.M.); (F.P.)
| | | | | | | |
Collapse
|
29
|
Zhao DK, Zhao Y, Chen SY, Kennelly EJ. Solanum steroidal glycoalkaloids: structural diversity, biological activities, and biosynthesis. Nat Prod Rep 2021; 38:1423-1444. [DOI: 10.1039/d1np00001b] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chemical structures of typical Solanum steroidal glycoalkaloids from eggplant, tomato, and potato.
Collapse
Affiliation(s)
- Da-Ke Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environment, Yunnan University, Kunming, 650504, P. R. China
| | - Yi Zhao
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, New York, 10468, USA
- PhD Program in Biology, The Graduate Center, City University of New York, New York, 10016, USA
| | - Sui-Yun Chen
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environment, Yunnan University, Kunming, 650504, P. R. China
| | - Edward J. Kennelly
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, New York, 10468, USA
- PhD Program in Biology, The Graduate Center, City University of New York, New York, 10016, USA
| |
Collapse
|
30
|
Shi Y, Shu H, Wang X, Zhao H, Lu C, Lu A, He X. Potential Advantages of Bioactive Compounds Extracted From Traditional Chinese Medicine to Inhibit Bone Destructions in Rheumatoid Arthritis. Front Pharmacol 2020; 11:561962. [PMID: 33117162 PMCID: PMC7577042 DOI: 10.3389/fphar.2020.561962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Bone destruction is an important pathological feature of rheumatoid arthritis (RA), which finally leads to the serious decline of life quality in RA patients. Bone metabolism imbalance is the principal factor of bone destruction in RA, which is manifested by excessive osteoclast-mediated bone resorption and inadequate osteoblast-mediated bone formation. Although current drugs alleviate the process of bone destruction to a certain extent, there are still many deficiencies. Recent studies have shown that traditional Chinese medicine (TCM) could effectively suppress bone destruction of RA. Some bioactive compounds from TCM have shown good effect on inhibiting osteoclast differentiation and promoting osteoblast proliferation. This article reviews the research progress of bioactive compounds exacted from TCM in inhibiting bone destruction of RA, so as to provide references for further clinical and scientific research.
Collapse
Affiliation(s)
- Yingjie Shi
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyang Shu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyu Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hanxiao Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Chinese Medicine, Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Schrader J, Zorn H, von Wallbrunn C. Bioflavour Conference 2018-Biotechnology for Flavors, Fragrances, and Functional Ingredients. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13363-13366. [PMID: 31558026 DOI: 10.1021/acs.jafc.9b05192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The "Bioflavour 2018-Biotechnology of Flavors, Fragrances, and Functional Ingredients" conference was held from September 18th to 21st, 2018 at the DECHEMA house in Frankfurt, Germany. The conference attracted more than 190 participants from over 25 countries, with about 40% share from industry. Particular sessions of Bioflavour 2018 focused on "flavor perception and biotechnology", "microbial cell factories", "novel pathways, enzymes, and biocatalysts", "technological and regulatory aspects of flavor and fragrance biotechnology", "advanced analytics and novel compounds", "plant biosynthesis and plant enzymes", "modern biotechnology in the world of wine", "receptors, flavors, and bioactives", and "bioprocess development and downstream processing". At Bioflavour 2018, both cutting-edge science from renowned academic research groups and current innovation from this modern biotechnology industry were presented and discussed. This special issue highlights a selection of 12 manuscripts from oral presentations and poster contributions.
Collapse
Affiliation(s)
- Jens Schrader
- Industrial Biotechnology , DECHEMA Research Institute , Theodor-Heuss-Allee 25 , 60486 Frankfurt am Main , Germany
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology , Justus Liebig University Giessen , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology , Winchesterstraße 2 , 35394 Gießen , Germany
| | - Christian von Wallbrunn
- Institute for Microbiology and Biochemistry , Hochschule Geisenheim University , Von-Lade-Straße 1 , 65366 Geisenheim , Germany
| |
Collapse
|
32
|
Application of Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging for Food Analysis. Foods 2019; 8:foods8120633. [PMID: 31810360 PMCID: PMC6963588 DOI: 10.3390/foods8120633] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023] Open
Abstract
Food contains various compounds, and there are many methods available to analyze each of these components. However, the large amounts of low-molecular-weight metabolites in food, such as amino acids, organic acids, vitamins, lipids, and toxins, make it difficult to analyze the spatial distribution of these molecules. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging is a two-dimensional ionization technology that allows the detection of small metabolites in tissue sections without requiring purification, extraction, separation, or labeling. The application of MALDI-MS imaging in food analysis improves the visualization of these compounds to identify not only the nutritional content but also the geographical origin of the food. In this review, we provide an overview of some recent applications of MALDI-MS imaging, demonstrating the advantages and prospects of this technology compared to conventional approaches. Further development and enhancement of MALDI-MS imaging is expected to offer great benefits to consumers, researchers, and food producers with respect to breeding improvement, traceability, the development of value-added foods, and improved safety assessments.
Collapse
|