1
|
Ma SL, Sun S, Li TZ, Yan YJ, Wang ZK. Application research and progress of microalgae as a novel protein resource in the future. Crit Rev Food Sci Nutr 2024:1-24. [PMID: 39600179 DOI: 10.1080/10408398.2024.2431208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Economic growth and health awareness spotlight opportunities and challenges in the food industry, particularly with decreasing arable land, climate change, dwindling freshwater resources, and pollution affecting traditional protein sources. Microalgae have emerged as a promising alternative, with higher protein content, better nutritional quality, and greater environmental resilience compared to conventional crops. They offer a protein balance comparable to meat, making them a sustainable protein source with health benefits like antioxidants, cardiovascular support, and anti-inflammatory properties. Improving the protein content of microalgae through optimized cultivation techniques is crucial to fully realize its potential as a novel food source. While there are already microalgae-based food products in the market, challenges remain in utilizing microalgal protein for widespread food production, emphasizing the need for further research. This review article explores the impact of microalgae culture conditions on protein content, the physicochemical and nutritional characteristics of microalgal protein, the health advantages of microalgal proteins and their derivatives, as well as research on separating and purifying microalgal proteins and their derivatives. It also delves into the current opportunities and obstacles of microalgal proteins and their derivatives as food, highlighting the potential for investigating the link between microalgal protein food and human health.
Collapse
Affiliation(s)
- S L Ma
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - S Sun
- Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai, China
| | - T Z Li
- Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai, China
- Amway (China) Botanical R&D Center, Wuxi, China
| | - Y J Yan
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Z K Wang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
2
|
Suo Q, Wang J, Wu N, Geng L, Zhang Q, Yue Y. Discovery of a novel nanomolar angiotensin-I converting enzyme inhibitory peptide with unusual binding mechanisms derived from Chlorella pyrenoidosa. Int J Biol Macromol 2024; 280:135873. [PMID: 39307496 DOI: 10.1016/j.ijbiomac.2024.135873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Chlorella pyrenoidosa (C. pyrenoidosa) has been cultivated in large quantities and proven to be antihypertensive when consumed orally. However, the antihypertensive peptides derived from C. pyrenoidosa remains scarce. In this study, trypsin was chosen to prepare the hydrolysate of C. pyrenoidosa, which was then fractionated by column chromatography. And ninety-nine peptides were identified by LC-MS/MS, after which 10 peptides were chosen by docking-based virtual screening and demonstrated their ability to inhibit ACE. Among them, LVAKA (LV-5) had the lowest IC50 (26.66 μM). LV-5, LKKAP, and PGLRP were identified as non-competitive ACE inhibitory peptides with significant stability under extreme pH and high temperatures conditions. Both in silico and in-vitro simulated gastrointestinal digestion revealed that these three peptides could release ACE inhibitory peptide fragments upon digestion. Sequence optimization of LV-5 led to the discovery of LRAKA (LR-5), which was identified as a novel nanomolar ACE peptide with an IC50 of 350 nM in-vitro and a potent antihypertensive peptide in-vivo. Moreover, molecular dynamic simulation indicated that LR-5 interacted with an unconventional binding site on ACE. These findings underscore the potential of Chlorella as a source of antihypertensive peptides and suggest a promising future for the use of Chlorella-derived peptides in hypertension management.
Collapse
Affiliation(s)
- Qishan Suo
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, China.
| |
Collapse
|
3
|
Lemus-Conejo A, Villanueva-Lazo A, Martin ME, Millan F, Millan-Linares MC. Sacha Inchi ( Plukenetia volubilis L.) Protein Hydrolysate as a New Ingredient of Functional Foods. Foods 2024; 13:2045. [PMID: 38998552 PMCID: PMC11241537 DOI: 10.3390/foods13132045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Sacha inchi (Plukenetia volubilis L.) is an under-exploited crop with great potential due to its nutritional and medicinal characteristics. A Sacha inchi protein isolate (SII), obtained from defatted Sacha inchi flour (SIF), was hydrolyzed by Bioprotease LA 660 under specific conditions. The hydrolysates were characterized chemically, and their digestibility and antioxidant capacity were evaluated by in vitro cell-free experiments to select the hydrolysate with major antioxidant activity. Sacha inchi protein hydrolysate at 20 min (SIH20B) was selected, and the anti-inflammatory capacity was evaluated by RT-qPCR and ELISA techniques, using two different doses in monocytes THP-1 stimulated with lipopolysaccharide (LPS). The results obtained showed that the in vitro administration of SIH20B down-regulated the TNF-α gene and reduced the release of this cytokine, whereas the anti-inflammatory cytokines IL-10 and IL-4 were up-regulated in LPS-stimulated monocytes and co-administrated with SIH20B. The peptides contained in SIH20B were identified, and the 20 more relatively abundant peptides with a mass by 1 kDa were subjected to in silico analysis to hypothesize those that could be responsible for the bioactivity reported in the hydrolysate. From the identified peptides, the peptides AAGALKKFL and LGVKFKGGL, among others, are proposed as the most biologically actives. In conclusion, SIH20B is a novel, natural source of high-value-added biopeptides that could be used as an ingredient in formulations of food or nutraceutical compounds.
Collapse
Affiliation(s)
- Ana Lemus-Conejo
- Foundation Centre for Research and Development of Functional Food-CIDAF, Avda del Conocimiento 37, 18100 Granade, Spain
| | - Alvaro Villanueva-Lazo
- Food Protein and Immunonutrition Group, Department of Food and Health, Instituto de la Grasa, CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, Km. 1, 41013 Seville, Spain
| | - Maria E Martin
- Department of Cell Biology, Faculty of Biology, University of Seville, Av. Reina Mercedes s/n, 41012 Seville, Spain
| | - Francisco Millan
- Food Protein and Immunonutrition Group, Department of Food and Health, Instituto de la Grasa, CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, Km. 1, 41013 Seville, Spain
| | - Maria C Millan-Linares
- Food Protein and Immunonutrition Group, Department of Food and Health, Instituto de la Grasa, CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, Km. 1, 41013 Seville, Spain
| |
Collapse
|
4
|
Azizi R, Baggio A, Capuano E, Pellegrini N. Protein transition: focus on protein quality in sustainable alternative sources. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38907600 DOI: 10.1080/10408398.2024.2365339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The current consumption trends, combined with the expected demographic growth in the coming years, call for a protein transition, i.e., the partial substitution of animal protein-rich foods with foods rich in proteins produced in a more sustainable way. Here, we have discussed some of the most common and promising protein sources alternative to animal proteins, namely: legumes, insects, and microorganisms (including microalgae and fungi). The primary objective was to assess their nutritional quality through the collection of digestible indispensable amino acid score (DIAAS) values available in the scientific literature. Protein digestibility corrected amino acid score (PDCAAS) values have been used where DIAAS values were not available. The ecological impact of each protein source, its nutritional quality and the potential applications in traditional foods or novel food concepts like meat analogues are also discussed. The data collected show that DIAAS values for animal proteins are higher than all the other protein sources. Soybean proteins, mycoproteins and proteins of some insects present relatively high DIAAS (or PDCAAS) values and must be considered proteins of good quality. This review also highlights the lack of DIAAS values for many potentially promising protein sources and the variability induced by the way the proteins are processed.
Collapse
Affiliation(s)
- Rezvan Azizi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Anna Baggio
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, Udine, Italy
| | - Edoardo Capuano
- Food Quality and Design Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, Udine, Italy
- Food Quality and Design Group, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
5
|
Liu Y, Lin L, Zheng H, Huang H, Qian ZJ. Microalgae Octapeptide IIAVEAGC Alleviates Oxidative Stress and Neurotoxicity in 6-OHDA-Induced SH-SY5Y Cells by Regulating the Nrf2/HO-1and Jak2/Stat3 Pathways. Chem Biodivers 2024; 21:e202301509. [PMID: 38594219 DOI: 10.1002/cbdv.202301509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Neurodegenerative diseases are characterized by the progressive loss of selectively vulnerable populations of neurons, and many factors are involved in its causes. Neurotoxicity and oxidative stress, are the main related factors. The octapeptide Ile-Ile-Ala-Val-Glu-Ala-Gly-Cys (IEC) was identified from the microalgae Isochrysis zhanjiangensis and exhibited potential anti-oxidative stress activity. In this study, the stability of α-synaptic protein binding to IEC was modeled using molecular dynamics, and the results indicated binding stabilization within 60 ns. Oxidative stress in neurons is the major cause of α-synaptic protein congestion. Therefore, we next evaluated the protective effects of IEC against oxidative stress and neurotoxicity in 6-ohdainduced Parkinson's disease (PD) model SH-SY5Y cells in vitro. In oxidative stress, IEC appeared to increase the expression of the antioxidant enzymes HO-1 and GPX through the antioxidant pathway of Nrf2, and molecular docking of IEC with Nrf2 and GPX could generate hydrogen bonds. Regarding apoptosis, IEC protected cells by increasing the Bcl-2/Bax ratio, inhibiting the caspase cascade, acting on p53, and modulating the Jak2/Stat3 pathway. The results indicated that IEC exerted neuroprotective effects through the inhibition of α-synaptic protein aggregation and antioxidant activity. Therefore, microalgal peptides have promising applications in the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi Liu
- School of Chemistry and Environment, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Liyuan Lin
- School of Chemistry and Environment, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Haiyan Zheng
- School of Chemistry and Environment, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Huixue Huang
- School of Chemistry and Environment, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhong-Ji Qian
- School of Chemistry and Environment, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
6
|
Yurika N, Montuori E, Lauritano C. Marine Microalgal Products with Activities against Age-Related Cardiovascular Diseases. Mar Drugs 2024; 22:229. [PMID: 38786620 PMCID: PMC11122832 DOI: 10.3390/md22050229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Heart disease is one of the leading causes of death worldwide, and it is estimated that 17.9 million people die of it each year. The risk factors for cardiovascular diseases are attributable to an unhealthy and sedentary lifestyle, poor nutrition, stress, genetic predisposition, diabetes, obesity, and aging. Marine microalgae have been the subject of numerous studies for their potential activity against several human diseases. They produce a plethora of primary and secondary metabolites such as essential nutrients, vitamins, pigments, and omega-3 fatty acid. Many of these molecules have antioxidant properties and have been shown to play a role in the prevention of heart diseases. The aim of this review is to summarize recent studies on the discovery of marine microalgal compounds and bioactivities for cardiovascular diseases, including in vitro and in vivo studies, showing and discussing recent discoveries and trends. The most promising results were found for microalgal polysaccharides, peptides and carotenoids. In conclusion, the overall data summarized here show that microalgae-based supplementation has the potential to improve age-related cardiovascular diseases and we expect more clinical studies in the future.
Collapse
Affiliation(s)
- Nova Yurika
- Marine Biology Research Group, Ghent University, Krijgslaan 281, B-9000 Gent, Belgium;
- Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy;
| | - Eleonora Montuori
- Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy;
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Chiara Lauritano
- Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy;
| |
Collapse
|
7
|
Liu S, Wu Z, Min X, Liu H, Nian N, Zhang P, Li X. Synergism Variation between intracellular Glutathione, phycocyanin and SOD in microalgae by carbon quantum dot fluorescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123833. [PMID: 38237498 DOI: 10.1016/j.saa.2023.123833] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 02/15/2024]
Abstract
Based on the use of CQDs as fluorescent probe and covalent coupling method to detect biological molecules with amino groups, to deeply analysis and detect the metabolism of Microcystis aeruginosa. The metabolic changes of carboxyl biomolecules in Microcystis aeruginosa were analyzed by covalent coupling method, including GSH, phycocyanin and SOD enzyme. The changes of GSH content and its correlation between phycocyanin, SOD were analyzed. The content of phycocyanin and SOD reached the maximum on the 65th day, and GSH was more sensitive to the growth and metabolism of microalgae. GSH plays an important role in reducing the external oxidative damage of microalgae cells. The synthesis of glutathione (GSH), GSH/GSSG mutual transformation, the production of phytochelating peptide (PC), the ASA-GSH cycle, and other physiological processes are interconnected. These interactions are crucial for preserving the antioxidant properties of microalgae and regulating redox-sensitive signal transduction.
Collapse
Affiliation(s)
- Shuyu Liu
- School of Environment and Chemical Engineering, Shanghai University, Shanghai 201800, PR China; Shanghai Zhixi Technology Co., Ltd, Shanghai 201815, PR China; Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, ShaanXi Xi'an 710054, PR China.
| | - Zitong Wu
- School of Environment and Chemical Engineering, Shanghai University, Shanghai 201800, PR China
| | - Xin Min
- School of Environment and Chemical Engineering, Shanghai University, Shanghai 201800, PR China
| | - Hong Liu
- School of Environment and Chemical Engineering, Shanghai University, Shanghai 201800, PR China.
| | - Nijuan Nian
- Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, ShaanXi Xi'an 710054, PR China.
| | - Pei Zhang
- Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, ShaanXi Xi'an 710054, PR China
| | - Xiaoyu Li
- School of Environment and Chemical Engineering, Shanghai University, Shanghai 201800, PR China
| |
Collapse
|
8
|
Liu J, Wu H, Zhang Y, Hu C, Zhen D, Fu P, He Y. Phycobiliprotein Peptide Extracts from Arthrospira platensis Ameliorate Nonalcoholic Fatty Liver Disease by Modulating Hepatic Lipid Profile and Strengthening Fat Mobilization. Nutrients 2023; 15:4573. [PMID: 37960226 PMCID: PMC10648092 DOI: 10.3390/nu15214573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Arthrospira platensis phycobiliprotein peptide extracts (PPEs) exhibit potential mitigative effects on hepatic steatosis. However, the precise role of PPEs in addressing high-fat-induced nonalcoholic fatty liver disease (NAFLD), as well as the underlying mechanism, remains to be elucidated. In this study, NAFLD was induced in rats through a high-fat diet (HFD), and the rats were subsequently treated with PPEs for a duration of 10 weeks. The outcomes of this investigation demonstrate that PPE supplementation leads to a reduction in body weight gain, a decrease in the accumulation of lipid droplets within the liver tissues, alterations in hepatic lipid profile, regulation of lipolysis-related gene expression within white adipose tissues and modulation of intestinal metabolites. Notably, PPE supplementation exhibits a potential to alleviate liver damage by manipulating neutral lipid metabolism and phospholipid metabolism. Additionally, PPEs appear to enhance fat mobilization by up-regulating the gene expression levels of key factors such as HSL, TGL, UCP1 and UCP2. Furthermore, PPEs impact intestinal metabolites by reducing the levels of long-chain fatty acids while concurrently increasing the levels of short-chain fatty acids. The findings from this study unveil the potential of PPE intervention in ameliorating NAFLD through the modulation of hepatic lipid profile and the reinforcement of the fat mobilization of intestinal metabolites. Thus, PPEs exhibit noteworthy therapeutic effects in the context of NAFLD.
Collapse
Affiliation(s)
- Jing Liu
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, China;
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.W.); (Y.Z.)
| | - Huan Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.W.); (Y.Z.)
| | - Yan Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.W.); (Y.Z.)
| | - Changbao Hu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.H.); (D.Z.)
| | - Dongyu Zhen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.H.); (D.Z.)
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.W.); (Y.Z.)
| | - Yanfu He
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (C.H.); (D.Z.)
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Hainan University, Haikou 570228, China
| |
Collapse
|
9
|
Ejike CECC, Ezeorba TPC, Ajah O, Udenigwe CC. Big Things, Small Packages: An Update on Microalgae as Sustainable Sources of Nutraceutical Peptides for Promoting Cardiovascular Health. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200162. [PMID: 37205928 PMCID: PMC10190598 DOI: 10.1002/gch2.202200162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/09/2023] [Indexed: 05/21/2023]
Abstract
In 2017, a review of microalgae protein-derived bioactive peptides relevant in cardiovascular disease (CVD) management was published. Given the rapid evolution of the field, an update is needed to illumininate recent developments and proffer future suggestions. In this review, the scientific literature (2018-2022) is mined for that purpose and the relevant properties of the identified peptides related to CVD are discussed. The challenges and prospects for microalgae peptides are similarly discussed. Since 2018, several publications have independently confirmed the potential to produce microalgae protein-derived nutraceutical peptides. Peptides that reduce hypertension (by inhibiting angiotensin converting enzyme and endothelial nitric oxide synthase), modulate dyslipidemia and have antioxidant and anti-inflammatory properties have been reported, and characterized. Taken together, future research and development investments in nutraceutical peptides from microalgae proteins need to focus on the challenges of large-scale biomass production, improvement in techniques for protein extraction, peptide release and processing, and the need for clinical trials to validate the claimed health benefits as well as formulation of various consumer products with the novel bioactive ingredients.
Collapse
Affiliation(s)
- Chukwunonso E. C. C. Ejike
- Department of Medical BiochemistryFaculty of Basic Medical SciencesAlex Ekwueme Federal UniversityNdufu‐AlikeEbonyi State482131Nigeria
| | - Timothy P. C. Ezeorba
- Department of BiochemistryFaculty of Biological SciencesUniversity of NigeriaNsukkaEnugu State410001Nigeria
| | - Obinna Ajah
- Department of BiochemistryCollege of Natural SciencesMichael Okpara University of AgricultureUmudikeAbia State440101Nigeria
| | - Chibuike C. Udenigwe
- School of Nutrition SciencesFaculty of Health SciencesUniversity of OttawaOttawaOntarioK1H 8M5Canada
- Department of Chemistry and Biomolecular SciencesFaculty of ScienceUniversity of OttawaOttawaOntarioK1N 6N5Canada
| |
Collapse
|
10
|
Silva MRL, Alves JPM, Fernandes CCL, Cavalcanti CM, Conde AJH, Bezerra AF, Soares ACS, Teixeira DÍA, do Rego AC, Rondina D. Effect of short-term nutritional supplementation of green microalgae on some reproductive indicators of Anglo-Nubian crossbred goats. Vet World 2023. [DOI: 10.14202/10.14202/vetworld.2023.464-473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Background and Aim: Despite the wide spectrum of uses, one of the chief drawbacks to expanding microalgae as a food supplement in livestock is the lack of a regimen protocol with established dosage and time length of supplementation. Therefore, this study aimed to investigate the effect of short-term supplementation with increasing doses of microalgae on ovarian response in goats reared in northeast Brazil.
Materials and Methods: Twenty-eight goats had their follicular waves synchronized using three injections of a prostaglandin analog at 7-day intervals. Goats were allocated to groups that received daily oral Chlorella supplementation for 7 days, respectively: 5 g, GMA5 group (n = 7), 10 g (GMA10; n = 7), and 20 g (GMA20; n = 7). The control group (GMA 0; n = 7) received a drench of water.
Results: The groups showed a quadratic increase (p = 0.0156) in kidney fat thickness but there was a significant reduction in dry matter intake in the GMA20 group. The GMA20 group showed higher glucose levels and glutathione peroxidase (p < 0.05). There was a decrease in plasma cholesterol (p < 0.05) in the 10 and 20 g treatments. The number of total follicles increased quadratically. Follicles <3 mm increased linearly (p = 0.0113) for microalgal supply. The GMA10 and GMA20 groups had the highest values (p < 0.05) among the treatments. After inducing ovulation, there was a significant increase in follicles >3 mm in the GMA10 group, which also showed a greater (p < 0.05) area of intraovarian blood perfusion and pulsatility index of the ovarian artery.
Conclusion: We conclude that for 7 days of supplementation, the administration of 10 g of microalgae appears to be the most efficient dosage for stimulating the ovarian response in tropical goats.
Keywords: Doppler, follicles, goat, microalga, ovarian blood flow, ovarian response.
Collapse
Affiliation(s)
- Maria Raquel Lopes Silva
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza, Ceará, 60714-903, Brazil
| | | | | | - Camila Muniz Cavalcanti
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza, CearCeará, 60714-903, Brazil
| | | | | | | | | | - Anibal Coutinho do Rego
- Department of Animal Science, Federal University of Ceará (UFC), Fortaleza, Ceará, 60021-970 Brazil
| | - Davide Rondina
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza, Ceará, 60714-903, Brazil
| |
Collapse
|
11
|
Silva MRL, Alves JPM, Fernandes CCL, Cavalcanti CM, Conde AJH, Bezerra AF, Soares ACS, Teixeira DÍA, do Rego AC, Rondina D. Effect of short-term nutritional supplementation of green microalgae on some reproductive indicators of Anglo-Nubian crossbred goats. Vet World 2023; 16:464-473. [PMID: 37041830 PMCID: PMC10082726 DOI: 10.14202/vetworld.2023.464-473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/30/2023] [Indexed: 04/13/2023] Open
Abstract
Background and Aim Despite the wide spectrum of uses, one of the chief drawbacks to expanding microalgae as a food supplement in livestock is the lack of a regimen protocol with established dosage and time length of supplementation. Therefore, this study aimed to investigate the effect of short-term supplementation with increasing doses of microalgae on ovarian response in goats reared in northeast Brazil. Materials and Methods Twenty-eight goats had their follicular waves synchronized using three injections of a prostaglandin analog at 7-day intervals. Goats were allocated to groups that received daily oral Chlorella supplementation for 7 days, respectively: 5 g, GMA5 group (n = 7), 10 g (GMA10; n = 7), and 20 g (GMA20; n = 7). The control group (GMA 0; n = 7) received a drench of water. Results The groups showed a quadratic increase (p = 0.0156) in kidney fat thickness but there was a significant reduction in dry matter intake in the GMA20 group. The GMA20 group showed higher glucose levels and glutathione peroxidase (p < 0.05). There was a decrease in plasma cholesterol (p < 0.05) in the 10 and 20 g treatments. The number of total follicles increased quadratically. Follicles <3 mm increased linearly (p = 0.0113) for microalgal supply. The GMA10 and GMA20 groups had the highest values (p < 0.05) among the treatments. After inducing ovulation, there was a significant increase in follicles >3 mm in the GMA10 group, which also showed a greater (p < 0.05) area of intraovarian blood perfusion and pulsatility index of the ovarian artery. Conclusion We conclude that for 7 days of supplementation, the administration of 10 g of microalgae appears to be the most efficient dosage for stimulating the ovarian response in tropical goats.
Collapse
Affiliation(s)
- Maria Raquel Lopes Silva
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza, Ceará, 60714-903, Brazil
| | | | | | - Camila Muniz Cavalcanti
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza, Ceará, 60714-903, Brazil
| | | | | | | | | | - Anibal Coutinho do Rego
- Department of Animal Science, Federal University of Ceará (UFC), Fortaleza, Ceará, 60021-970 Brazil
| | - Davide Rondina
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza, Ceará, 60714-903, Brazil
- Corresponding author: Davide Rondina, e-mail: Co-authors: MRLS: , JPMA: , CCLF: , CMC: , AJHC: , AFB: , ACSS: , DIAT: , ACR:
| |
Collapse
|
12
|
Kaur M, Bhatia S, Gupta U, Decker E, Tak Y, Bali M, Gupta VK, Dar RA, Bala S. Microalgal bioactive metabolites as promising implements in nutraceuticals and pharmaceuticals: inspiring therapy for health benefits. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023; 22:1-31. [PMID: 36686403 PMCID: PMC9840174 DOI: 10.1007/s11101-022-09848-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
The rapid increase in global population and shrinkage of agricultural land necessitates the use of cost-effective renewable sources as alternative to excessive resource-demanding agricultural crops. Microalgae seem to be a potential substitute as it rapidly produces large biomass that can serve as a good source of various functional ingredients that are not produced/synthesized inside the human body and high-value nonessential bioactive compounds. Microalgae-derived bioactive metabolites possess various bioactivities including antioxidant, anti-inflammatory, antimicrobial, anti-carcinogenic, anti-hypertensive, anti-lipidemic, and anti-diabetic activities, thereof rapidly elevating their demand as interesting option in pharmaceuticals, nutraceuticals and functional foods industries for developing new products. However, their utilization in these sectors has been limited. This demands more research to explore the functionality of microalgae derived functional ingredients. Therefore, in this review, we intended to furnish up-to-date knowledge on prospects of bioactive metabolites from microalgae, their bioactivities related to health, the process of microalgae cultivation and harvesting, extraction and purification of bioactive metabolites, role as dietary supplements or functional food, their commercial applications in nutritional and pharmaceutical industries and the challenges in this area of research. Graphical abstract
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Surekha Bhatia
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Urmila Gupta
- Department of Renewable Energy Engineering, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Eric Decker
- Department of Food Science, University of Massachusetts, Amherst, MA USA
| | - Yamini Tak
- Agricultural Research Station, Agricultural University, Ummedganj, Kota India
| | - Manoj Bali
- Research & Development, Chemical Resources (CHERESO), Panchkula, Haryana India
| | - Vijai Kumar Gupta
- Center for Safe and Improved Food & Biorefining and Advanced Materials Research Center, SRUC Barony Campus, Dumfries, Scotland, UK
| | - Rouf Ahmad Dar
- Sam Hiiginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh 211007 India
| | - Saroj Bala
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| |
Collapse
|
13
|
Asterarcys quadricellulare (Chlorophyceae) protects H9c2 cardiomyoblasts from H 2O 2-induced oxidative stress. Mol Cell Biochem 2022:10.1007/s11010-022-04626-7. [PMID: 36583795 PMCID: PMC10359365 DOI: 10.1007/s11010-022-04626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 11/28/2022] [Indexed: 12/31/2022]
Abstract
Oxidative stress has recently been identified as an important mediator of cardiovascular diseases. The need to find efficient antioxidant molecules is essential in the disease's prevention. Therefore, the present study aimed to evaluate the potential of microalgae bioactive in protecting H9c2 cardiomyoblasts from H2O2-induced oxidative stress. Four microalgal species were investigated for their antioxidant capacity. A qualitative assessment of oxidative stress in H9c2 cardiomyoblasts stained with DCFH-DA, treated with the highly active microalgae extracts, was performed. The protein expression of total caspase-3 was also examined to investigate whether the extract protects H9c2 cardimyoblasts from H2O2-induced apoptosis. High antioxidant activity was observed for the hexanoic extracts after 10 days of cultivation. Asterarcys quadricellulare exhibited the highest antioxidant capacity of 110.59 ± 1.75 mg TE g-1 dry weight and was tested against H9c2 cardiomyoblasts, which were initially subjected to H2O2-induced oxidative stress. This hexanoic extract protected against H2O2 induced oxidative stress with a similar scavenging capacity as N-Acetylcysteine. Furthermore, total caspase-3 was increased following treatment with the hexanoic extract, suggesting that A. quadricellulare also had anti-apoptotic properties. The outcome of our study highlighted the possible use of the local A. quadricellulare strain QUCCCM10 as a natural, safe, and efficient antioxidant to prevent cardiovascular diseases.
Collapse
|
14
|
Göksu AG, Çakır B, Gülseren İ. Hazelnut peptide fractions preserve their bioactivities beyond industrial manufacture and simulated digestion of hazelnut cocoa cream. Food Res Int 2022; 161:111865. [DOI: 10.1016/j.foodres.2022.111865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/02/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022]
|
15
|
Reconfiguration of Gut Microbiota and Reprogramming of Liver Metabolism with Phycobiliproteins Bioactive Peptides to Rehabilitate Obese Rats. Nutrients 2022; 14:nu14173635. [PMID: 36079890 PMCID: PMC9460120 DOI: 10.3390/nu14173635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Phycobiliproteins (derived from Arthrospira platensis) bioactive peptide extracts (PPE) possess multiple pharmacological effects in the mitigation of human metabolic disorders. The role of PPE in the treatment of diet-induced obesity and the understanding of the underlying mechanism between the gut microbiome and metabolic blood circulation for obese patients remains poorly understood. In this study, we showed that PPE attenuated obesity by reducing body weight, and ameliorated glucose and lipid indexes in serum. In particular, PPE is postulated to mitigate liver steatosis and insulin resistance. On the other hand, dietary treatment with PPE was found to “reconfigure” the gut microbiota in the way that the abundances were elevated for Akkermansia_muciniphila, beneficial Lactobacillus and Romboutsia, SCFA-producing species Faecalibacterium prausnitzii, Lachnospiraceae_bacterium, Clostridiales_bacterium, probiotics Clostridium sp., Enterococcus faecium, and Lactobacillus_johnsonii, while the abundance of Firmicutes was reduced and that of Bacteroidetes was increased to reverse the imbalance of Firmicutes/Bacteroidetes ratio. Finally, the metabolomics of circulating serum using UHPLC-MS/MS illustrated that PPE supplementation indeed promoted lipid metabolism in obese rats. As summary, it was seen that PPE reprogrammed the cell metabolism to prevent the aggravation of obesity. Our findings strongly support that PPE can be regarded as a potential therapeutic dietary supplement for obesity.
Collapse
|
16
|
Hosseinkhani N, McCauley JI, Ralph PJ. Key challenges for the commercial expansion of ingredients from algae into human food products. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Roques S, Koopmans SJ, Mens A, van Harn J, van Krimpen M, Kar SK. Effect of Feeding 0.8% Dried Powdered Chlorella vulgaris Biomass on Growth Performance, Immune Response, and Intestinal Morphology during Grower Phase in Broiler Chickens. Animals (Basel) 2022; 12:ani12091114. [PMID: 35565541 PMCID: PMC9102271 DOI: 10.3390/ani12091114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
An experiment was performed to study the effects of a low inclusion level of Chlorella vulgaris (CV) biomass in broiler diets on performance, immune response related to inflammatory status, and the intestinal histomorphology. The study was performed with 120 Ross 308 male broiler chickens from 0−35 days of age. The broilers were housed in 12 floor pens (1.5 m2) bedded with wood shavings. The broilers received a three phase diet program, either with 0.8% CV biomass (CV) or without CV (CON). Each diet program was replicated in six pens. The final body weight increased (p = 0.053), and the feed conversion ratio (FCR), corrected for body weight, was reduced (p = 0.02) in birds fed CV compared to birds fed CON. In addition, decreased haptoglobins (p = 0.02) and interleukin-13 (p < 0.01) responses were observed during the grower phase of birds fed CV compared to the birds fed CON. A strong correlation (r = 0.82, p < 0.01) was observed between haptoglobin response and FCR. Histomorphology parameters of the jejunum were not different between the groups. It was concluded that the inclusion of 0.8% CV biomass in broiler diets is effective in influencing immune responses related to inflammatory status and promoting broiler growth.
Collapse
|
18
|
Cunha SA, Coscueta ER, Nova P, Silva JL, Pintado MM. Bioactive Hydrolysates from Chlorella vulgaris: Optimal Process and Bioactive Properties. Molecules 2022; 27:2505. [PMID: 35458702 PMCID: PMC9026812 DOI: 10.3390/molecules27082505] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
Microalgae have been described as a source of bioactive compounds, such as peptides. Microalgae are easy to produce, making them a sustainable resource for extracting active ingredients for industrial applications. Several microalgae species have interesting protein content, such as Chlorella vulgaris with around 52.2% of protein, making it promising for peptide hydrolysate production. Therefore, this work focused on the production of water-soluble hydrolysates rich in proteins/peptides from the microalgae C. vulgaris and studied bioactive properties. For that, a design of experiments (DOE) was performed to establish the optimal conditions to produce hydrolysates with higher levels of protein, as well as antioxidant and antihypertensive properties. Four experimental factors were considered (cellulase percentage, protease percentage, hydrolysis temperature, and hydrolysis duration) for three responses (protein content, antioxidant activity, and antihypertensive activity). The optimal conditions determined by the DOE allowed producing a scaled-up hydrolysate with 45% protein, with antioxidant activity, measured by oxygen radical absorbance capacity assay, of 1035 µmol TE/g protein, IC50 for angiotensin-converting enzyme inhibition activity of 286 µg protein/mL, and α-glucosidase inhibition of 31% (30 mg hydrolysate/mL). The obtained hydrolysates can be used as functional ingredients for food and nutraceuticals due to their antioxidant, antihypertensive, and antidiabetic potential. Moreover, the antioxidant potential of the extracts may be relevant for the cosmetic industry, especially in antiaging formulations.
Collapse
Affiliation(s)
- Sara A. Cunha
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.A.C.); (E.R.C.); (P.N.)
| | - Ezequiel R. Coscueta
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.A.C.); (E.R.C.); (P.N.)
| | - Paulo Nova
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.A.C.); (E.R.C.); (P.N.)
| | - Joana Laranjeira Silva
- Allmicroalgae—Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal;
| | - Maria Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.A.C.); (E.R.C.); (P.N.)
| |
Collapse
|
19
|
Zhuang D, He N, Khoo KS, Ng EP, Chew KW, Ling TC. Application progress of bioactive compounds in microalgae on pharmaceutical and cosmetics. CHEMOSPHERE 2022; 291:132932. [PMID: 34798100 DOI: 10.1016/j.chemosphere.2021.132932] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/31/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Microalgae is an autotrophic organism with fast growth, short reproduction cycle, and strong environmental adaptability. In recent years, microalgae and the bioactive ingredients extracted from microalgae are regarded as potential substitutes for raw materials in the pharmaceutical and the cosmetics industry. In this review, the characteristics and efficacy of the high-value components of microalgae are discussed in detail, along with the sources and extraction technologies of algae used to obtain high-value ingredients are reviewed. Moreover, the latest trends in biotherapy based on high-value algae extracts as materials are discussed. The excellent antioxidant properties of microalgae derivatives are regarded as an attractive replacement for safe and environmentally friendly cosmetics formulation and production. Through further studies, the mechanism of microalgae bioactive compounds can be understood better and reasonable clinical trials conducted can safely conclude the compliance of microalgae-derived drugs or cosmetics to be necessary standards to be marketed.
Collapse
Affiliation(s)
- Dingling Zhuang
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ning He
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Kuan Shiong Khoo
- Faculty of Applied Sciences, UCSI University. No. 1, Jalan Menara Gading, UCSI Heights, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Eng-Poh Ng
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Kit Wayne Chew
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China; School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia.
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
20
|
Wan Afifudeen CL, Teh KY, Cha TS. Bioprospecting of microalgae metabolites against cytokine storm syndrome during COVID-19. Mol Biol Rep 2022; 49:1475-1490. [PMID: 34751914 PMCID: PMC8576090 DOI: 10.1007/s11033-021-06903-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 10/29/2021] [Indexed: 01/18/2023]
Abstract
In viral respiratory infections, disrupted pathophysiological outcomes have been attributed to hyper-activated and unresolved inflammation responses of the immune system. Integration between available drugs and natural therapeutics have reported benefits in relieving inflammation-related physiological outcomes and microalgae may be a feasible source from which to draw from against future coronavirus-infections. Microalgae represent a large and diverse source of chemically functional compounds such as carotenoids and lipids that possess various bioactivities, including anti-inflammatory properties. Therefore in this paper, some implicated pathways causing inflammation in viral respiratory infections are discussed and juxtaposed along with available research done on several microalgal metabolites. Additionally, the therapeutic properties of some known anti-inflammatory, antioxidant and immunomodulating compounds sourced from microalgae are reported for added clarity.
Collapse
Affiliation(s)
- Che Lah Wan Afifudeen
- Satreps-Cosmos Laboratory, Central Laboratory Complex, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
| | - Kit Yinn Teh
- Satreps-Cosmos Laboratory, Central Laboratory Complex, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
| | - Thye San Cha
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
- Satreps-Cosmos Laboratory, Central Laboratory Complex, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
| |
Collapse
|
21
|
Zhang N, Li F, Zhang T, Li CY, Zhu L, Yan S. Isolation, identification, and molecular docking analysis of novel ACE inhibitory peptides from Spirulina platensis. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03949-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Geada P, Moreira C, Silva M, Nunes R, Madureira L, Rocha CMR, Pereira RN, Vicente AA, Teixeira JA. Algal proteins: Production strategies and nutritional and functional properties. BIORESOURCE TECHNOLOGY 2021; 332:125125. [PMID: 33865652 DOI: 10.1016/j.biortech.2021.125125] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Animal-based proteins are the most consumed worldwide given their well-balanced nutritional composition. However, the growing demand for animal proteins will not be sustainable due to their low conversion efficiency and high environmental footprint. Specific consumers' dietary restrictions and modern trends emphasize the importance of finding alternative sustainable non-animal sources to meet future food (and, in particular, protein) global needs. Algal biomass is considered a relevant alternative, presenting advantages over terrestrial biomass such as higher growth rate, low water consumption, no competition for arable land, carbon-neutral emissions, and production of numerous bioactive compounds. This review provides an overview of recent research advances on algae as source of proteins, including production strategies from relevant protein-producing species. Particular emphasis will be given to algae protein current applications and forthcoming challenges of their use. Nutritional and functional aspects of algae biomass or its protein-enriched fractions will be overviewed.
Collapse
Affiliation(s)
- Pedro Geada
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Catarina Moreira
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Maria Silva
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Rafaela Nunes
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Leandro Madureira
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Cristina M R Rocha
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Ricardo N Pereira
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - António A Vicente
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - José A Teixeira
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
23
|
Recent developments on production, purification and biological activity of marine peptides. Food Res Int 2021; 147:110468. [PMID: 34399466 DOI: 10.1016/j.foodres.2021.110468] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 12/11/2022]
Abstract
Marine peptides are one of the richest sources of structurally diverse bioactive compounds and a considerable attention has been drawn towards their production and bioactivity. However, there is a paucity in consolidation of emerging trends encompassing both production techniques and biological application. Herein, we intend to review the recent advancements on different production, purification and identification technologies used for marine peptides along with presenting their potential health benefits. Bibliometric analysis revealed a growing number of scientific publications on marine peptides (268 documents per year) with both Asia (37.2%) and Europe (33.1%) being the major contributors. Extraction and purification by ultrafiltration and enzymatic hydrolysis, followed by identification by chromatographic techniques coupled with an appropriate detector could yield a high content of peptides with improved bioactivity. Moreover, the multifunctional health benefits exerted by marine peptides including anti-microbial, antioxidant, anti-hypertension, anti-diabetes and anti-cancer along with their structure-activity relationship were presented. The future perspective on marine peptide research should focus on finding improved separation and purification technologies with enhanced selectivity and resolution for obtaining more novel peptides with high yield and low cost. In addition, by employing encapsulation strategies such as nanoemulsion and nanoliposome, oral bioavailability and bioactivity of peptides can be greatly enhanced. Also, the potential health benefits that are demonstrated by in vitro and in vivo models should be validated by conducting human clinical trials for a technology transfer from bench to bedside.
Collapse
|
24
|
Investigation of Chlorella pyrenoidosa Protein as a Source of Novel Angiotensin I-Converting Enzyme (ACE) and Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Peptides. Nutrients 2021; 13:nu13051624. [PMID: 34066103 PMCID: PMC8151766 DOI: 10.3390/nu13051624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022] Open
Abstract
Chlorella pyrenoidosa (C. pyrenoidosa) is a microalgae species with a remarkably high protein content that may potentially become a source of hypotensive and hypoglycemic peptides. In this study, C. pyrenoidosa proteins were extracted and hydrolyzed overnight with pepsin and trypsin with final degrees of hydrolysis of 18.7% and 35.5%, respectively. By LC-MS/MS, 47 valid peptides were identified in the peptic hydrolysate (CP) and 66 in the tryptic one (CT). At the concentration of 1.0 mg/mL, CP and CT hydrolysates inhibit in vitro the angiotensin-converting enzyme (ACE) activity by 84.2 ± 0.37% and 78.6 ± 1.7%, respectively, whereas, tested at cellular level at the concentration of 5.0 mg/mL, they reduce the ACE activity by 61.5 ± 7.7% and 69.9 ± 0.8%, respectively. At the concentration of 5.0 mg/mL, they decrease in vitro the DPP-IV activity by 63.7% and 69.6% and in Caco-2 cells by 38.4% and 42.5%, respectively. Short peptides (≤10 amino acids) were selected for investigating the potential interaction with ACE and DPP-IV by using molecular modeling approaches and four peptides were predicted to block both enzymes. Finally, the stability of these peptides was investigated against gastrointestinal digestion.
Collapse
|
25
|
Jiang Q, Chen Q, Zhang T, Liu M, Duan S, Sun X. The Antihypertensive Effects and Potential Molecular Mechanism of Microalgal Angiotensin I-Converting Enzyme Inhibitor-Like Peptides: A Mini Review. Int J Mol Sci 2021; 22:ijms22084068. [PMID: 33920763 PMCID: PMC8071128 DOI: 10.3390/ijms22084068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/14/2021] [Accepted: 03/22/2021] [Indexed: 12/27/2022] Open
Abstract
Hypertension causes many deaths worldwide and has shown an increasing trend as a severe non-communicable disease. Conventional antihypertensive drugs inevitably cause side effects, and great efforts have been made to exploit healthier and more-available substitutes. Microalgae have shown great potential in this regard and have been applied in the food and pharmaceutical industries. Some compounds in microalgae have been proven to have antihypertensive effects. Among these natural compounds, peptides from microalgae are promising angiotensin-converting enzyme (ACE) inhibitors because an increasing number of peptides show hypertensive effects and ACE inhibitory-like activity. In addition to acting as ACE inhibitors for the treatment of hypertension, these peptides have other probiotic properties, such as antioxidant and anti-inflammatory properties, that are important for the prevention and treatment of hypertension. Numerous studies have revealed the important bioactivities of ACE inhibitors and their mechanisms. This review discusses the antihypertensive effects, structure-activity relationships, molecular docking studies, interaction mechanisms, and other probiotic properties of microalgal ACE inhibitory peptides according to the current research related to microalgae as potential antihypertensive drugs. Possible research directions are proposed. This review contributes to a more comprehensive understanding of microalgal antihypertensive peptides.
Collapse
Affiliation(s)
- Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China; (Q.J.); (T.Z.)
| | - Qi Chen
- Department of Ecology, Jinan University, Guangzhou 510632, China; (Q.C.); (S.D.)
- Guangdong Center for Marine Development Research, Guangzhou 510220, China
| | - Tongqing Zhang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China; (Q.J.); (T.Z.)
| | - Meng Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
| | - Shunshan Duan
- Department of Ecology, Jinan University, Guangzhou 510632, China; (Q.C.); (S.D.)
| | - Xian Sun
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Correspondence: ; Tel.: +86-(75)-67626350
| |
Collapse
|
26
|
Wang K, Luo Q, Hong H, Liu H, Luo Y. Novel antioxidant and ACE inhibitory peptide identified from Arthrospira platensis protein and stability against thermal/pH treatments and simulated gastrointestinal digestion. Food Res Int 2020; 139:109908. [PMID: 33509476 DOI: 10.1016/j.foodres.2020.109908] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/21/2020] [Accepted: 11/12/2020] [Indexed: 01/13/2023]
Abstract
In current study, novel antioxidant and ACE inhibitory peptides were screened from Arthrospira platensis protein hydrolysates (APH) generated by six different proteases, respectively. The purification steps including ultrafiltration membrane and chromatography were guided by ABTS radical scavenging activity (ARSA), hydroxyl radical scavenging activity (HRSA), ferrous ion chelation activity (FICA) and ACE inhibitory activity. A novel antioxidant peptide VTAGLVGGGAGK, which exhibited highest ARSA, HRSA and FICA with EC50 value of 1.08 mg/mL 1.35 mg/mL and 1.24 mg/mL, respectively, was identified from alcalase-APH. Meanwhile, a novel ACE inhibitory peptide PTGNPLSP with the highest ACE inhibitory activity (IC50 = 1.54 mg/mL) was identified from trypsin-APH. Both VTAGLVGGGAGK and PTGNPLSP had strong stability under thermal processing (25-100 °C) and diverse pH conditions (pH 3-11). In addition, the PTGNPLSP was more stable than VTAGLVGGGAGK during in vitro gastrointestinal digestion. Our findings will provide new knowledge for the development of novel natural antioxidants and ACE inhibitors as well as the high-value utilization of Arthrospira platensis protein.
Collapse
Affiliation(s)
- Kai Wang
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qinwen Luo
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hui Hong
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huaigao Liu
- Anhui Guotai Biotechnology Co., Ltd., Xuancheng, Anhui, China
| | - Yongkang Luo
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
27
|
Subcritical Water for the Extraction and Hydrolysis of Protein and Other Fractions in Biorefineries from Agro-food Wastes and Algae: a Review. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02536-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Nguyen TT, Heimann K, Zhang W. Protein Recovery from Underutilised Marine Bioresources for Product Development with Nutraceutical and Pharmaceutical Bioactivities. Mar Drugs 2020; 18:E391. [PMID: 32727001 PMCID: PMC7460389 DOI: 10.3390/md18080391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 01/07/2023] Open
Abstract
The global demand for dietary proteins and protein-derived products are projected to dramatically increase which cannot be met using traditional protein sources. Seafood processing by-products (SPBs) and microalgae are promising resources that can fill the demand gap for proteins and protein derivatives. Globally, 32 million tonnes of SPBs are estimated to be produced annually which represents an inexpensive resource for protein recovery while technical advantages in microalgal biomass production would yield secure protein supplies with minimal competition for arable land and freshwater resources. Moreover, these biomaterials are a rich source of proteins with high nutritional quality while protein hydrolysates and biopeptides derived from these marine proteins possess several useful bioactivities for commercial applications in multiple industries. Efficient utilisation of these marine biomaterials for protein recovery would not only supplement global demand and save natural bioresources but would also successfully address the financial and environmental burdens of biowaste, paving the way for greener production and a circular economy. This comprehensive review analyses the potential of using SPBs and microalgae for protein recovery and production critically assessing the feasibility of current and emerging technologies used for the process development. Nutritional quality, functionalities, and bioactivities of the extracted proteins and derived products together with their potential applications for commercial product development are also systematically summarised and discussed.
Collapse
Affiliation(s)
| | - Kirsten Heimann
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Health Science Building, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia;
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Health Science Building, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia;
| |
Collapse
|