1
|
Guo Y, Zhang Y, Dong F, Wu X, Pan X, Zheng Y, Xu J. Pesticide thiamethoxam in seed treatment: Uptake, metabolic transformation and associated synergistic effects against wheat aphids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174955. [PMID: 39069177 DOI: 10.1016/j.scitotenv.2024.174955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Precise, effective and green control plays an essential role in reducing environmental and ecosystem damage. Seed treatment has proven effective and long-lasting for target organisms, and exploring the reasons for long-term protection is important for sustainable agricultural development. This study examined the uptake and metabolism behaviour of thiamethoxam under seed treatment in wheat samples throughout the whole growth cycle, as well as the associated synergistic effects of thiamethoxam and its metabolites during the most severe period of aphid occurrence. Uptake and metabolism results showed that 41 % of thiamethoxam and its active metabolites (clothianidin and demethyl-clothianidin) accumulated mainly in flag leaves of wheat, severely harming aphids, which was significant in controlling leaf-feeding pests. Combined activity results showed that thiamethoxam, clothianidin and demethyl-clothianidin produced synergistic efficacy in controlling aphids, with cotoxicity coefficients ranging from 179.34 to 452.07. Compared with the control, thiamethoxam seed treatments at a rate of 1.5 a.i. g/kg seeds and 3.0 a.i. g/kg seeds can significantly enhance salicylic acid (55 % and 41 %) and jasmonic acid (168 % and 125 %) concentrations and invoke changes in the concentrations of plant secondary substances, which promoted wheat resistance to aphids. Future studies cannot ignore the synergistic effects of metabolites and plant secondary substances in pest control. These results provided data support for reducing pesticide use, increasing efficiency and making more rational use of neonicotinoid insecticides.
Collapse
Affiliation(s)
- Yage Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunhui Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Oliveira GR, Gallas-Lopes M, Chitolina R, Bastos LM, Portela SM, Stahlhofer-Buss T, Gusso D, Gomez R, Wyse ATS, Herrmann AP, Piato A. Evaluation of behavioral and neurochemical changes induced by carbofuran in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109969. [PMID: 38925284 DOI: 10.1016/j.cbpc.2024.109969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Carbofuran (CF) is a carbamate class pesticide, widely used in agriculture for pest control in crops. This pesticide has high toxicity in non-target organisms, and its presence in the environment poses a threat to the ecosystem. Research has revealed that this pesticide acts as an inhibitor of acetylcholinesterase (AChE), inducing an accumulation of acetylcholine in the brain. Nonetheless, our understanding of CF impact on the central nervous system remains elusive. Therefore, this study explored how CF influences behavioral and neurochemical outcomes in adult zebrafish. The animals underwent a 96-hour exposure protocol to different concentrations of CF (5, 50, and 500 μg/L) and were subjected to the novel tank (NTT) and social preference tests (SPT). Subsequently, they were euthanized, and their brains were extracted to evaluate neurochemical markers associated with oxidative stress and AChE levels. In the NTT and SPT, CF did not alter the evaluated behavioral parameters. Furthermore, CF did not affect the levels of AChE, non-protein sulfhydryl groups, and thiobarbituric acid reactive species in the zebrafish brain. Nevertheless, further investigation is required to explore the effects of environmental exposure to this compound on non-target organisms.
Collapse
Affiliation(s)
- Giovana R Oliveira
- Programa de Pós-graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Matheus Gallas-Lopes
- Programa de Pós-graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rafael Chitolina
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Leonardo M Bastos
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Stefani M Portela
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Thailana Stahlhofer-Buss
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Darlan Gusso
- Programa de Pós-graduação em Ciências Biológicas, Bioquímica, Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rosane Gomez
- Programa de Pós-graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Programa de Pós-graduação em Ciências Biológicas, Bioquímica, Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana P Herrmann
- Programa de Pós-graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Angelo Piato
- Programa de Pós-graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Moreira Morais J, da Silva Brito R, Saiki P, Cirqueira Dias F, de Oliveira Neto JR, da Cunha LC, Lopes Rocha T, Bailão EFLC. Ecotoxicological assessment of UV filters benzophenone-3 and TiO 2 nanoparticles, isolated and in a mixture, in developing zebrafish ( Danio rerio). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:687-700. [PMID: 38836411 DOI: 10.1080/15287394.2024.2362809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The increasing use of UV filters, such as benzophenone-3 (BP-3) and titanium dioxide nanoparticles (TiO2 NPs), has raised concerns regarding their ecotoxicological effects on the aquatic environment. The aim of the present study was to examine the embryo-larval toxicity attributed to BP-3 or TiO2 NPs, either alone or in a mixture, utilizing zebrafish (Danio rerio) as a model after exposure to environmentally relevant concentrations of these compounds. Zebrafish embryos were exposed to BP-3 (10, 100, or 1000 ng/L) or TiO2 NPs (1000 ng/L) alone or in a mixture (BP-3 10, 100, or 1000 ng/L plus 1000 ng/L of TiO2 NPs) under static conditions for 144 hr. After exposure, BP-3 levels were determined by high-performance liquid chromatography (HPLC). BP-3 levels increased in the presence of TiO2 NPs, indicating that the BP-3 degradation decreased in the presence of the NPs. In addition, in the presence of zebrafish, BP-3 levels in water decreased, indicating that zebrafish embryos and larvae might absorb BP-3. Data demonstrated that, in general, environmentally relevant concentrations of BP-3 and TiO2 NPs, either alone or in a mixture, did not significantly induce changes in heart and spontaneous contractions frequencies, levels of reactive oxygen species (ROS), morphological and morphometric parameters as well as mortality rates during 144 hr exposure. However, the groups exposed to TiO2 NPs alone and in a mixture with BP-3 at 10 ng/L exhibited an earlier significant hatching rate than the controls. Altogether, the data indicates that a potential ecotoxicological impact on the aquatic environment exists.
Collapse
Affiliation(s)
- Jéssyca Moreira Morais
- Laboratory of Biotechnology, Central Campus, State University of Goiás, Anápolis, Goiás, Brazil
| | - Rafaella da Silva Brito
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Patrícia Saiki
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
- Federal Institute of Education, Science and Technology of Goiás (IFG), Goiânia, Goiás, Brazil
| | - Felipe Cirqueira Dias
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - Luiz Carlos da Cunha
- Center for Toxic-Pharmacological Studies and Research, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | |
Collapse
|
4
|
Shen C, Pan X, Wu X, Xu J, Zheng Y, Dong F. Prediction of Potential Risk for Flupyradifurone and Its Transformation Products to Hydrobionts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15151-15163. [PMID: 38941616 DOI: 10.1021/acs.jafc.4c03004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Flupyradifurone (FPF) is considered the latest generation of neonicotinoid insecticides. Here, we investigated the toxicity and ecological risk of FPF and its aerobic transformation products (TPs) to aquatic species using the method of prediction. We found that FPF exhibited moderate or high toxicity to some aquatic species. The 5% hazardous concentration of FPF was 3.84 μg/L for aquatic organisms. We obtained 91 aerobic TPs for FPF, and almost half of FPF TPs exhibited toxicity to fish or Daphnia. Eleven of the TPs of FPF exhibited a high or moderate risk to aquatic ecosystems. All FPF TPs with high and moderate risks contained a 6-chloropyridine ring structure, indicating that the derivant of a pyridine ring exhibits potential risks to aquatic ecosystems. Our results provide insight into the potential risk of FPF to aquatic ecosystems and could be used to help set criteria to control pollution caused by FPF.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- East China Branch of the National Center for Agricultural Biosafety Sciences/Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
5
|
Chang J, Gao K, Li R, Dong F, Zheng Y, Zhang Q, Li Y. Comparative uptake, translocation and metabolism of phenamacril in crops under hydroponic and soil cultivation conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171670. [PMID: 38485020 DOI: 10.1016/j.scitotenv.2024.171670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Many studies investigate the plant uptake and metabolism of xenobiotics by hydroponic experiments, however, plants grown in different conditions (hydroponic vs. soil) may result in different behaviors. To explore the potential differences, a comparative study on the uptake, translocation and metabolism of the fungicide phenamacril in crops (wheat/rice) under hydroponic and soil cultivation conditions was conducted. During 7-14 days of exposure, the translocation factors (TFs) of phenamacril were greatly overestimated in hydroponic-wheat (3.6-5.2) than those in soil-wheat systems (1.1-2.0), with up to 3.3 times of difference between the two cultivation systems, implying it should be cautious to extrapolate the results obtained from hydroponic to field conditions. M-144 was formed in soil pore water (19.1-29.9 μg/L) in soil-wheat systems but not in the hydroponic solution in hydroponics; M-232 was only formed in wheat shoots (89.7-103.0 μg/kg) under soil cultivation conditions, however, it was detected in hydroponic solution (20.1-21.2 μg/L), wheat roots (146.8-166.0 μg/kg), and shoots (239.2-348.1 μg/kg) under hydroponic conditions. The root concentration factors (RCFs) and TFs of phenamacril in rice were up to 2.4 and 3.6 times higher than that in wheat for 28 days of the hydroponic exposure, respectively. These results highlighted that cultivation conditions and plant species could influence the fate of pesticides in crops, which should be considered to better assess the potential accumulation and transformation of pesticides in crops.
Collapse
Affiliation(s)
- Jinhe Chang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Kang Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Runan Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, XinXiang 453500, China.
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingming Zhang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuanbo Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, XinXiang 453500, China
| |
Collapse
|
6
|
Durante LDS, Hollmann G, Nazari EM. Impact of exposure to glyphosate-based herbicide on morphological and physiological parameters in embryonic and larval development of zebrafish. ENVIRONMENTAL TOXICOLOGY 2024; 39:1822-1835. [PMID: 38083805 DOI: 10.1002/tox.24024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 07/20/2023] [Accepted: 10/31/2023] [Indexed: 02/08/2024]
Abstract
Glyphosate-based herbicides (GBH) have been commonly used in agriculture to inhibit weed growth and increase yields. However, due to the high solubility of these herbicides in water, they can reach aquatic environments, by infiltration, erosion, and/or lixiviation, affecting non target organisms. Thus, this study aimed to characterize the toxicity of GBH Roundup WG® (RWG®) during the embryonic and larval development of Danio rerio. Embryos (3 hours post fertilization, hpf-until hatching) and larvae (3 days post fertilization, dpf to 6 dpf) were exposed to concentrations of 0.065 and 6.5 mg L-1 . They were evaluated for survival, hatching, spontaneous movements, heartbeat, morphology, and morphometry by in vivo photographs in microscope, cell proliferation and apoptosis by immunohistochemistry, and exploratory behavior and phototropism by video recording. Our results showed an increase in embryo and larvae mortality in those exposed to 0.065 mg L-1 , as well as a reduction in spontaneous embryo movements. The larval heartbeats showed a decrease at 4 dpf in the group exposed to 0.065 mg L-1 and an increase at 5 and 6 dpf in both exposed groups. Cell proliferation was reduced in both groups exposed in embryos and only in the 0.065 mg L-1 group in larvae, while cell death increased in embryos exposed to 6.5 mg L-1 . These results demonstrated the toxic effect of low concentrations of the herbicide RWG® during embryonic and larval development of non target organisms, as well as the importance of constantly reviewing acceptable limits for exposure in natural environments.
Collapse
Affiliation(s)
- Laíse da Silva Durante
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Gabriela Hollmann
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Evelise Maria Nazari
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| |
Collapse
|
7
|
Cao N, Zong X, Guo X, Chen X, Nie D, Huang L, Li L, Ma Y, Wang C, Pang S. The adsorption effects of biochar on carbofuran in water and the mixture toxicity of biochar-carbofuran in rats. CHEMOSPHERE 2024; 350:140992. [PMID: 38141676 DOI: 10.1016/j.chemosphere.2023.140992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/11/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Carbofuran, a widely used carbamate insecticide, is frequently detected in water. In this study, a high-performance adsorbent (WAB4) for carbofuran was obtained from laboratory-synthesized biochars. The maximum adsorption of carbofuran by WAB4 reaches 113.7 mg/g approximately. The adsorption of carbofuran by biochar was a multi-molecular layer and the adsorption process conforms to the pseudo-second-order kinetic model (R2 = 0.9984) and Freundlich isotherm model (R2 = 0.99). Importantly, an in vivo rat model was used to assess the combined toxicological effects of biochar-carbofuran complexes. The toxicity of the complexes (LD50 > 12 mg/kg) is lower than that of carbofuran (LD50 = 7.9 mg/kg) alone. The damage of biochar-carbofuran complex on rat liver and lung is significantly less than that of carbofuran. The Cmax and bioavailability of carbofuran were found to be reduced by 64% and 68%, respectively, when biochar was present, by UPLC-MS/MS analysis of carbofuran in rat plasma. Furthermore, it was confirmed that the biochar-carbofuran complex is relatively stable in the gastrointestinal tract, by performing a carbofuran release assay in artificial gastrointestinal fluids in vitro. Collectively, biochar is a bio-friendly material for the removal of carbofuran from water.
Collapse
Affiliation(s)
- Niannian Cao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China
| | - Xingxing Zong
- State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China
| | - Xuanjun Guo
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China
| | - Dongxing Nie
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100125, China
| | - Lan Huang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100125, China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China
| | - Yongqiang Ma
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Chen Wang
- State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China.
| | - Sen Pang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Veras JPC, França VLB, Carvalho HF, Freire VN. Noncovalent binding of carbofuran to acetylcholinesterase from Homo sapiens, Danio rerio, Apis mellifera and Caenorhabditis elegans: Homology modelling, molecular docking and dynamics, and quantum biochemistry description. Chem Biol Interact 2024; 388:110826. [PMID: 38101596 DOI: 10.1016/j.cbi.2023.110826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Although various regulatory agencies have banned or severely restricted the use of carbofuran (CAR), recent reports indicate the presence of CAR residues in both cultivated and wild areas. This pesticide is a potent inhibitor of acetylcholinesterase (AChE), which acts by preventing the hydrolysis of acetylcholine (ACh). Given the critical role of AChE::ACh in the proper functioning of the nervous system, we thought it appropriate to investigate the binding of CAR to AChEs from Homo sapiens, Danio rerio, Apis mellifera, and Caenorhabditis elegans using homology modelling, molecular docking, molecular dynamics, and quantum biochemistry. Molecular docking and dynamics results indicated peculiar structural behavior in each AChE::CAR system. Quantum biochemistry results showed similar affinities for all complexes, confirming the description of carbofuran as a broad-spectrum pesticide, and have a limited correlation with IC50 values. We found the following decreasing affinity order of AChE species: H. sapiens > A. mellifera > C. elegans > D. rerio. The computational results suggest that CAR occupies different pockets in the AChEs studied. In addition, our results showed that CAR binds to hsAChE and ceAChE in a very similar manner: it has high affinities for the same subsites in both species and forms hydrogen bonds with residues (hsTYR124 and ceTRP107) occupying homologous positions in the peripheral site. This suggests that this nematode is a potential model to evaluate the toxicity of carbamates, even though the sequence identity between them is only 41 %. Interestingly, we also observed that the catalytic histidines of drAChE and amAChE exhibited favorable contacts with carbofuran, suggesting that the non-covalent binding of carbofuran to these proteins may promote faster carbamylation rates than the binding modes to human and worm acetylcholinesterases. Our computational results provide a better understanding of the binding mechanisms in these complexes, as well as new insights into the mechanism of carbamylation.
Collapse
Affiliation(s)
- João P C Veras
- Department of Physics, Federal University of Ceará, Campus of Pici, 60440-554, Fortaleza, Ceará, Brazil
| | - Victor L B França
- Department of Physics, Federal University of Ceará, Campus of Pici, 60440-554, Fortaleza, Ceará, Brazil; Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, 60430-275, Brazil.
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, 13083-864, Campinas, São Paulo, Brazil
| | - Valder N Freire
- Department of Physics, Federal University of Ceará, Campus of Pici, 60440-554, Fortaleza, Ceará, Brazil
| |
Collapse
|
9
|
Sarker A, Shin WS, Masud MAA, Nandi R, Islam T. A critical review of sustainable pesticide remediation in contaminated sites: Research challenges and mechanistic insights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122940. [PMID: 37984475 DOI: 10.1016/j.envpol.2023.122940] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Incidental pesticide application on farmlands can result in contamination of off-target biota, soil, groundwater, and surrounding ecosystems. To manage these pesticide contaminations sustainably, it is important to utilize advanced approaches to pesticide decontamination. This review assesses various innovative strategies applied for remediating pesticide-contaminated sites, including physical, chemical, biological, and nanoremediation. Integrated remediation approaches appear to be more effective than singular technologies. Bioremediation and chemical remediation are considered suitable and sustainable strategies for decontaminating contaminated soils. Furthermore, this study highlights key mechanisms underlying advanced pesticide remediation that have not been systematically studied. The transformation of applied pesticides into metabolites through various biotic and chemical triggering factors is well documented. Ex-situ and in-situ technologies are the two main categories employed for pesticide remediation. However, when selecting a remediation technique, it is important to consider factors such as application sites, cost-effectiveness, and specific purpose. In this review, the sustainability of existing pesticide remediation strategies is thoroughly analyzed as a pioneering effort. Additionally, the study summarizes research uncertainties and technical challenges associated with different remediation approaches. Lastly, specific recommendations and policy advocacy are suggested to enhance contemporary remediation approaches for cleaning up pesticide-contaminated sites.
Collapse
Affiliation(s)
- Aniruddha Sarker
- Residual Chemical Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 55356, Republic of Korea.
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Rakhi Nandi
- Bangladesh Academy for Rural Development (BARD), Kotbari, Cumilla, Bangladesh.
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| |
Collapse
|
10
|
Zhu D, Li N, Zhang M, Wang Y, Li F, Hou T. Hydrolysis enabled specific colorimetric assay of carbosulfan with sensitivity manipulation via metal-doped or metal-free carbon nanozyme. Biosens Bioelectron 2024; 243:115786. [PMID: 37883845 DOI: 10.1016/j.bios.2023.115786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Precise determination of the carbamate pesticide carbosulfan is crucial for assessing the associated risks in food and environment. Due to the strong interaction between carbosulfan and target enzyme, current methods primarily depend on the acetylcholinesterase (AChE) inhibition strategy, which generally lacks selectivity. In this study, we propose a nanozyme colorimetric sensor for the specific carbosulfan detection, based on its distinctive hydrolysis property. In contrast to other pesticides, carbosulfan can be hydrolyzed to produce the reductive sulfide compound by the cleavage of N-S bond under acidic condition, thereby significantly hindering the nanozyme-mediated chromogenic reaction. Consequently, the absorbance is significantly correlated with carbosulfan concentration. Furthermore, the influence of nanozyme type is disclosed, and two oxidase-like carbon nanozymes were formulated, namely metal-free NC and metal-based CeO2@NC. However, the distinct active sites significantly impact the proposed sensor. For CeO2@NC-based sensor, the produced sulfide compounds not only poison Ce active site, but also consume the reactive oxygen species, thereby, exhibiting high sensitivity with low detection limit of 3.3 nM. By contrast, the metal-free nature of NC allows the assay to remain unaffected by coordination effects, exhibiting superior anti-interference capability. This work not only offers an efficient alternative to the conventional method for detecting carbosulfan specifically, but also shed light on the role of metal-based or metal-free nanozyme among analytical applications.
Collapse
Affiliation(s)
- Dangqiang Zhu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Na Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China; College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Mengli Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China; College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Yuqing Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China; College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, PR China.
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China.
| |
Collapse
|
11
|
da Luz DS, Guimarães PS, Castro MS, Primel EG, Giroldo D, Martins CDMG. Effects of the Pesticide Carbofuran on Two Species of Chlorophyceae (Desmodesmus communis and Pseudopediastrum boryanum) and Their Pesticide Bioremediation Ability. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023. [PMID: 38153230 DOI: 10.1002/etc.5818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 12/26/2023] [Indexed: 12/29/2023]
Abstract
Carbofuran is one of the most toxic broad-spectrum pesticides. We evaluated the effects of carbofuran on two species of microalgae, Pseudopediastrum boryanum and Desmodesmus communis, through measurements of cell viability, biomass, chlorophyll content, and the production of reactive oxygen species (ROS). The ability of these algae to remove carbofuran dissolved in the media was also determined. For the evaluations, both microalgae species were exposed to carbofuran (FURADAN 350 SC®) at concentrations of 100, 1000, and 10,000 µg L-1 for 7 days. Algae cell viability and chlorophyll-a concentration were not affected by the presence of carbofuran. Both species grew when exposed to the pesticide; however, the microalgae D. communis grew less than its respective control when exposed to the highest concentration (10,000 µg L-1 of carbofuran), indicating an adverse effect of the pesticide on this species. A significant increase in ROS production was observed in D. communis and P. boryanum when exposed to the highest concentration tested. The microalgae P. boryanum completely removed carbofuran in the media within 2 days, regardless of the concentration, whereas D. communis achieved the same result only after 5 days of exposure. Growth inhibition was observed only until the disappearance of carbofuran from the media. The present study suggests the use of microalgae, mainly P. boryanum, as potential tools for the remediation of environments contaminated by carbofuran because of their resistance to the insecticide and their ability to remove it rapidly from water. Environ Toxicol Chem 2024;00:1-12. © 2023 SETAC.
Collapse
Affiliation(s)
- Daniéli Saul da Luz
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Pablo Santos Guimarães
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Muryllo Santos Castro
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Ednei Giberto Primel
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Danilo Giroldo
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Camila de Martinez Gaspar Martins
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| |
Collapse
|
12
|
Shi L, Lang H, Shen J, Shen F, Song J, Zhang L, Fang H, Yu Y. Absorption, metabolism and distribution of carbosulfan in maize plants (Zea mays L.). PEST MANAGEMENT SCIENCE 2023; 79:3926-3933. [PMID: 37245216 DOI: 10.1002/ps.7586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/02/2023] [Accepted: 05/28/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND The insecticide carbosulfan is usually applied as a soil treatment or seed-coating agent, and so may be absorbed by crops and pose dietary risks. Understanding the uptake, metabolism and translocation of carbosulfan in crops is conducive to its safe application. In this study, we investigated the distribution of carbosulfan and its toxic metabolites in maize plants at both the tissue and subcellular levels, and explored the uptake and translocation mechanism of carbosulfan. RESULTS Carbosulfan was mainly taken up by maize roots via the apoplast pathway, was preferentially distributed in cell walls (51.2%-57.0%) and most (85.0%) accumulated in roots with only weak upward translocation. Carbofuran, the main metabolite of carbosulfan in maize plants, was primarily stored in roots. However, carbofuran could be upwardly translocated to shoots and leaves because of its greater distribution in root-soluble components (24.4%-28.5%) compared with carbosulfan (9.7%-14.5%). This resulted from its greater solubility compared with its parent compound. The metabolite 3-hydroxycarbofuran was found in shoots and leaves. CONCLUSION Carbosulfan could be passively absorbed by maize roots, mainly via the apoplastic pathway, and transformed into carbofuran and 3-hydroxycarbofuran. Although carbosulfan mostly accumulated in roots, its toxic metabolites carbofuran and 3-hydroxycarbofuran could be detected in shoots and leaves. This implies that there is a risk in the use of carbosulfan as a soil treatment or seed coating. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lihong Shi
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hongbin Lang
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiatao Shen
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fan Shen
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jialu Song
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Luqing Zhang
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Yao J, Zhi H, Shi Q, Zhang Y, Feng J, Liu J, Huang H, Xie X. Tannic Acid Interfacial Modification of Prochloraz Ethyl Cellulose Nanoparticles for Enhancing the Antimicrobial Effect and Biosafety of Fungicides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41324-41336. [PMID: 37602737 DOI: 10.1021/acsami.3c07761] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
With the poorly soluble and intrinsically unstable feature, prochloraz (Pro) was confronted with lower bioavailability in the crop defense against fungal erosion. Therefore, it was a challenging project to explore the innovative antifungal compound delivery system for improving bioavailability. The superior adhesive fungicide formulation was supposed to be an efficient pathway to enhance transmembrane permeability and biological activity. According to abundant phenolic hydroxyl groups, tannic acid (TA) was an ideal modified adhesive biomaterial to improve interfacial interactions. The fundamental purpose of this research was focused on the synergistic mechanism of TA-interfacial-modified Pro-ethyl cellulose (EC) nanoparticles for improving bioavailability and biosafety. In the stability test, TA-modified Pro-EC nanoparticles had the capacity to reduce Pro initial release burst, extending a persistent validity and improving anti-photodegradation property. The toxicity index of Pro-EC and Pro-EC-TA was approximately 2.93-fold and 4.96-fold that of Pro technical against Fusarium graminearum (F. graminearum), respectively. Compared with nonmodified EC nanoparticles, TA-modified EC nanoparticles obtained eminent transmembrane permeability and superior adherence ability to F. graminearum, for hydroxyl and carboxyl groups of TA to enhance interaction with target cell membranes. The contents of cellular reactive oxygen species induced by Pro-EC and Pro-EC-TA nanoparticles were about 2.31 times and 3.00 times that of the control check (CK), respectively. Compared to the CK group, the membrane potential and ergosterol values of F. graminearum treated with Pro-EC-TA nanoparticles were drastically reduced by 74.91 and 56.20%, respectively. In the biosafety assay, the maximum half-lethal concentration value of the TA-modified Pro-EC nanoparticles indicated that the acute toxicity of the Pro-EC-TA nanoparticles to adult zebrafish was approximately 8.34-fold reduced compared to that of the Pro technical. These findings demonstrated that the successful interfacial modification of Pro-EC nanoparticles with TA was a highly efficient, environmentally safe, and promising alternative for sustainable agricultural application, thus making the fungicide formulation process more simplified, easier fabrication, and lower cost.
Collapse
Affiliation(s)
- Junwei Yao
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Heng Zhi
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qingshan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Jin Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Jingxia Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Hui Huang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Xiaobao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| |
Collapse
|
14
|
Jiang X, Xiao L, Chen Y, Huang C, Wang J, Tang X, Wan K, Xu H. Degradation of the Novel Heterocyclic Insecticide Pyraquinil in Water: Kinetics, Degradation Pathways, Transformation Products Identification, and Toxicity Assessment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37378629 DOI: 10.1021/acs.jafc.3c01971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
As new pesticides are continuously introduced into agricultural systems, it is essential to investigate their environmental behavior and toxicity effects to better evaluate their potential risks. In this study, the degradation kinetics, pathways, and aquatic toxicity of the new fused heterocyclic insecticide pyraquinil in water under different conditions were investigated for the first time. Pyraquinil was classified as an easily degradable pesticide in natural water, and hydrolyzes faster in alkaline conditions and at higher temperatures. The formation trends of the main transformation products (TPs) of pyraquinil were also quantified. Fifteen TPs were identified in water using ultrahigh-performance liquid chromatography coupled to quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-Orbitrap-HRMS) and Compound Discoverer software, which adopted suspect and nontarget screening strategies. Among them, twelve TPs were reported for the first time and 11 TPs were confirmed by synthesis of their standards. The proposed degradation pathways have demonstrated that the 4,5-dihydropyrazolo[1,5-a]quinazoline skeleton of pyraquinil is stable enough to retain in its TPs. ECOSAR prediction and laboratory tests showed that pyraquinil was "very toxic" or "toxic" to aquatic organisms, while the toxicities of all of the TPs are substantially lower than that of pyraquinil except for TP484, which was predicted to pose a higher toxicity. The results are important for elucidating the fate and assessing the environmental risks of pyraquinil, and provide guidance for scientific and reasonable use.
Collapse
Affiliation(s)
- Xunyuan Jiang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Lu Xiao
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Yan Chen
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Congling Huang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Jiale Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Xuemei Tang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Kai Wan
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
15
|
Zhang M, Wang C, Wang Y, Li F, Zhu D. Visual evaluation of acetylcholinesterase inhibition by an easy-to-operate assay based on N-doped carbon nanozyme with high stability and oxidase-like activity. J Mater Chem B 2023; 11:4014-4019. [PMID: 37067450 DOI: 10.1039/d3tb00238a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Acetylcholinesterase (AChE) is the key enzyme associated with neurotransmission, and thus many drugs have been explored for their inhibitory effect on AChE, such as donepezil for Alzheimer's disease and organophosphorus pesticides (OPs). Compared with clinical trials, in vitro screening bioassays for AChE inhibitors are preferable in terms of operability and cost. Herein, we developed an easy-to-operate nanozyme-based colorimetric assay for the evaluation of AChE inhibitory strength with excellent anti-interference ability and low dependence on professional equipment. The metal-free carbon nanozyme NC900 played an important role in the signal output due to its features of efficient oxidase-like activity, excellent water dispersibility, high stability and low color interference. Employing various AChE-targeted or non-targeted pesticides as examples, the as-proposed assay exhibited excellent distinguishing ability for different chemicals. The higher absorption intensity at 652 nm represents a stronger inhibitory effect, as well as blue color. In addition, this method was used to study the influence of pH on the degradation of prodrugs, and the efficiency of mixed pesticides. This work provides a simple and reliable assay to screen AChE inhibitors, which is promising for the preliminary evaluation of a large number of potential candidates.
Collapse
Affiliation(s)
- Mengli Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Cui Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| | - Yongqi Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Dangqiang Zhu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| |
Collapse
|
16
|
Cui J, Wei Y, Jiang J, Xiao S, Liu X, Zhou Z, Liu D, Wang P. Bioaccumulation, metabolism and toxicological effects of chiral insecticide malathion and its metabolites in zebrafish (Danio rerio). CHEMOSPHERE 2023; 318:137898. [PMID: 36702415 DOI: 10.1016/j.chemosphere.2023.137898] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
The bioaccumulation, metabolism, tissue-specific distribution and toxicity of the widely used organophosphorous pesticide malathion to zebrafish were investigated on an enantiomeric level for evaluating the environmental risks. The metabolites were also monitored and evaluated. Malathion was metabolized by zebrafish very fast with the half-life of 0.12 d and showed a middle accumulation capacity in zebrafish with bioaccumulation factor (BCF) of 12.9 after a 15-d exposure. Brain could enrich higher concentration of malathion than other tissues. The metabolites malaoxon, malathion/malaoxon monocarboxylic acid (DMA), malathion/malaoxon dicarboxylic acid (DCA), dimethylthiophosphate (DMTP) and dimethyldithiophosphate (DMDTP) were found, in which DMTP and DCA were in higher level, indicating the metabolism was mainly induced by carboxylesterase degradation. The accumulation of malathion and malaoxon was stereoselective in zebrafish tissues, exhibiting S-enantiomer preferentially enriched. The acute toxicity test showed rac-malathion was low toxic to zebrafish, which was 1.2 and 1.6 folds more toxic than S-malathion and R-malathion respectively. Malaoxon was highly toxic to zebrafish and approximately 32 times more toxic than malathion. The toxicity of other metabolites was lower than malathion. Malathion could cause an apparent developmental toxicity to zebrafish embryo, including bradycardia, hatchability reduction and deformity, and abnormal movement patterns in zebrafish larva. Chronic toxicity indicated that malathion and malaoxon induced oxidative damage and neurotoxicity in the liver, brain and gill of zebrafish, and malaoxon exhibited a relatively high injury to the zebrafish brain. The results can provide information for the comprehensive assessment of the potential risk of malathion to aquatic organisms and highlight the necessity of consideration of stereoselectivity and metabolites when systemically evaluating pesticides.
Collapse
Affiliation(s)
- Jingna Cui
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Yimu Wei
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Jiangong Jiang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Shouchun Xiao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Xueke Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China.
| |
Collapse
|
17
|
Evaluation of acute toxicity of carbosulfan and its sub-lethal effects on protein patterns of Cyprinus carpio (L.) using SDS-PAGE. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Li R, Wang S, Chang J, Pan X, Dong F, Li Z, Zheng Y, Li Y. Insight into the uptake and metabolism of a new insecticide cyetpyrafen in plants. ENVIRONMENT INTERNATIONAL 2022; 169:107522. [PMID: 36137426 DOI: 10.1016/j.envint.2022.107522] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
As new agrochemicals are continuously introduced into agricultural systems, it is essential to investigate their uptake and metabolism by plants to better evaluate their fate and accumulation in crops and the subsequent risks to human exposure. In this study, the uptake and elimination kinetics and transformation of a novel insecticide, cyetpyrafen, in two model crops (lettuce and rice) were first evaluated by hydroponic experiments. Cyetpyrafen was rapidly taken up by plant roots and reached a steady state within 24 h, and it was preferentially accumulated in root parts with root concentration factors up to 2670 mL/g. An uptake mechanism study suggested that root uptake of cyetpyrafen was likely to be dominated by passive diffusion and was difficult to transport via xylem and phloem. Ten phase I and three phase II metabolites of cyetpyrafen were tentatively identified in the hydroponic-plant system through a nontarget screening strategy. The structures of two main metabolites (M-309 and M-391) were confirmed by synthesized standards. The metabolic pathways were proposed including hydroxylation, hydrolysis, dehydrogenation, dehydration and conjugation, which were assumed to be regulated by cytochrome P450, carboxylesterase, glycosyltransferase, glutathione S-transferases and peroxidase. Cyetpyrafen and its main metabolites (M-409, M-309 and M-391) were estimated to be harmful/toxic toward nontarget organisms by theoretical calculation. The high bioaccumulation and extensive transformation of cyetpyrafen highlighted the necessity for systematically assessing the crop uptake and metabolism of new agrochemicals.
Collapse
Affiliation(s)
- Runan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Sijia Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jinhe Chang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Zhiyuan Li
- Shanghai AB Sciex Analytical Instrument Trading Co, Ltd, Beijing 100015, PR China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yuanbo Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
19
|
Wang Y, Weng Y, Lv L, Wang D, Yang G, Jin Y, Wang Q. Transgenerational effects of co-exposure to cadmium and carbofuran on zebrafish based on biochemical and transcriptomic analyses. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129644. [PMID: 35882171 DOI: 10.1016/j.jhazmat.2022.129644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/02/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The combined toxicity of heavy metals and pesticides to aquatic organisms is still largely unexplored. In this study, we investigated the combined impacts of cadmium (Cd) and carbofuran (CAR) on female zebrafish (F0 generation) and their following F1 generation. Results showed that mixtures of Cd and CAR induced acute synergistic effects on both zebrafish adults of the F0 generation and embryos of the F1 generation. Combined exposure to Cd and CAR could obviously alter the hepatic VTG level of females, and the individual exposures increased the relative mRNA levels of vtg1 and vtg2. Through maternal transmission, co-exposure of Cd and CAR caused toxicity to 4-day-old larvae of the F1 generation, evidenced by the significant changes in T4 and VTG levels, CYP450 activity, and the relative transcriptional levels of genes related to the hormone, oxidative stress, and apoptosis. These effects were also reflected by the global gene expression pattern to 7-day-old larvae of F1 generation using the transcriptomic analysis, and they could also affect energy metabolism. Our results provided a more comprehensive insight into the transgenerational toxic impacts of heavy metal and pesticide mixtures. These findings highlighted that it was highly necessary to consider transgenerational exposures in the ecological risk assessment of chemical mixtures.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China.
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| |
Collapse
|
20
|
Du Z, Hou K, Zhou T, Shi B, Zhang C, Zhu L, Li B, Wang J, Wang J. Polyhalogenated carbazoles (PHCZs) induce cardiotoxicity and behavioral changes in zebrafish at early developmental stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156738. [PMID: 35716752 DOI: 10.1016/j.scitotenv.2022.156738] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Polyhalogenated carbazoles (PHCZs) are widely present in the environment, and their health risks are of increasing concern. Available studies primarily confirm their dioxin-like toxicity mechanism based on biomarkers, such as aryl hydrocarbon receptor (AHR) and CYP1A1, while few studies have investigated their actual toxic effects at the level of individual organisms. In the present study, the developmental toxicity of two typical PHCZs with a high detection rate and high concentration in the environment (3,6-dichlorocarbazol (3,6-DCCZ) and 3,6-dibromocarbazole (3,6-DBCZ)) was investigated based on a fish embryo acute toxicity test (FET, zebrafish) and transcriptomics analysis. The 96 h LC50 values of 3,6-DCCZ and 3,6-DBCZ were 0.636 mg/L and 1.167 mg/L, respectively. Both tested PHCZs reduced the zebrafish heart rate and blocked heart looping at concentrations of 0.5 mg/L or higher. The swimming/escaping behavior of zebrafish larvae was more vulnerable to 3,6-DBCZ than 3,6-DCCZ. Transcriptomics assays showed that multiple pathways linked to organ development, immunization, metabolism and protein synthesis were disturbed in PHCZ-exposed fish, which might be the internal mechanism of the adverse effects. The present study provides evidence that PHCZs cause cardiac developmental toxicity and behavioral changes and improves our understanding of their health risks.
Collapse
Affiliation(s)
- Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China.
| | - Kaixuan Hou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China.
| | - Tongtong Zhou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China
| | - Baihui Shi
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China.
| | - Cheng Zhang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, PR China.
| |
Collapse
|
21
|
Yi X, Wei Y, Zhai W, Wang P, Liu D, Zhou Z. Effects of three surfactants on the degradation and environmental risk of metolachlor in aquatic environment. CHEMOSPHERE 2022; 300:134295. [PMID: 35283146 DOI: 10.1016/j.chemosphere.2022.134295] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Surfactants and pesticides can be simultaneously detected in the environment by the reason of their widespread use and large amounts of emissions. Due to the special amphipathicity of surfactants, it may have special effects on the environmental behaviors and toxic effects of other substances in the environment. There are few relevant studies at present. In this study, the effects of three surfactants on the degradation of the amide pesticide metolachlor in water-sediment system were investigated. The study found that the three surfactants had no significant effect on the degradation of metolachlor in the system at environmental concentrations. However, at critical micelle concentration, cationic surfactant octadecyl trimethyl ammonium bromide and nonionic surfactant nonylphenol polyoxyethylene ether promoted the degradation of metolachlor in water-sediment system. Anionic surfactant odium dodecylbenzene sulfonate (SDBS) prolonged the degradation half-life of metolachlor. The presence of surfactants not only affected the environmental behavior of pesticides. When they coexisted with pesticides, the joint toxicity to aquatic organisms cannot be ignored. This study found that the combined effects of three surfactants and metolachlor on the acute developmental toxicity of zebrafish embryos were all synergistic effects. The combined effects of two ionic surfactants and metolachlor on the acute toxicity of adult zebrafish were synergistic effects. Further study showed that co-exposure of SDBS and metolachlor increased the absorption of metolachlor by zebrafish. Combined exposure of SDBS and metolachlor caused oxidative stress in brain, gill and liver of zebrafish. The results showed that the simultaneous presence of anionic surfactants and pesticides in the environment may increase the environmental risk of pesticides.
Collapse
Affiliation(s)
- Xiaotong Yi
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Yimu Wei
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Wangjing Zhai
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Peng Wang
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Donghui Liu
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
22
|
Ascoli-Morrete T, Bandeira NMG, Signor E, Gazola HA, Homrich IS, Biondo R, Rossato-Grando LG, Zanella N. Bioaccumulation of pesticides and genotoxicity in anurans from southern Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45549-45559. [PMID: 35147872 DOI: 10.1007/s11356-022-19042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The expansion of agricultural activities causes habitat loss and fragmentation and the pollution of natural ecosystems through the intense use of pesticides, which may affect the populations of amphibian anurans that inhabit agricultural areas. The present study evaluated the in situ bioaccumulation of pesticides in a population of Leptodactylus luctator that occupies farmland in southern Brazil. We also compared the genotoxicity of L. luctator populations from farmland and forested areas in the same region. We analyzed the micronuclei and nuclear abnormalities of 34 adult anurans, 19 from farmland, and 15 from the forested area. We also assessed the presence of 32 pesticides in liver samples obtained from 18 farmland-dwelling anurans, using chromatographic analysis. We recorded significantly higher rates of nuclear abnormalities in the individuals from the farmland, in comparison with the forest. We detected nine pesticides in the liver samples, of which, deltamethrin was the most common and carbosulfan was recorded at the highest concentrations. The bioaccumulation of pesticides and the higher levels of genotoxic damage found in the anurans from agricultural areas, as observed in the present study, represent a major potential problem for the conservation of these vertebrates, including the decline of their populations and the extinction of species.
Collapse
Affiliation(s)
- Thaís Ascoli-Morrete
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil.
- Instituto de Ciências Biológicas (ICB), Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil.
| | - Nelson M G Bandeira
- Centro de Pesquisa em Alimentação (CEPA), Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Elias Signor
- Centro de Pesquisa em Alimentação (CEPA), Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Humberto A Gazola
- Instituto de Ciências Biológicas (ICB), Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Isis S Homrich
- Programa de Pós-Graduação em Biologia Animal, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rhaíssa Biondo
- Instituto de Ciências Biológicas (ICB), Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Luciana G Rossato-Grando
- Instituto de Ciências Biológicas (ICB), Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Noeli Zanella
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
- Instituto de Ciências Biológicas (ICB), Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| |
Collapse
|
23
|
Guo S, Wu Y, Xiao P, Li W. Benfuracarb inhibits body growth and causes oxidative stress in zebrafish (Danio rerio). CHEMOSPHERE 2022; 291:132955. [PMID: 34801571 DOI: 10.1016/j.chemosphere.2021.132955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Benfuracarb (BEN), a broad-spectrum carbamate insecticide used for crop protection, is considered toxic to humans and aquatic organisms. However, the potential risk level of BEN to aquatic organisms is still unclear. In this study, we exposed zebrafish embryos to BEN (0.08, 0.49, and 0.90 mg/L) from 3 to 96 hours post-fertilization (hpf). The results showed that BEN caused shorter body length in zebrafish larvae. The activity of superoxide dismutase (SOD) was significantly increased after BEN exposure. Furthermore, the transcription levels of marker genes associated with early embryonic development (myoD, nkx2.4b, myh6, and gh) were disrupted after BEN treatment. Taken together, the data indicate that BEN possesses developmental toxicity to zebrafish. The results provide a valuable reference for assessing BEN's potentially harmful effects on aquatic ecosystems.
Collapse
Affiliation(s)
- Shanshan Guo
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China
| | - Yaqing Wu
- Instrumental Analysis Center of Huaqiao University, Xiamen, 361021, PR China
| | - Peng Xiao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China
| | - Wenhua Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China.
| |
Collapse
|
24
|
Zhang C, Wang Z, Liu S, Tan H, Zeng D, Li X. Analytical method for sequential determination of persistent herbicides and their metabolites in fish tissues by UPLC-MS/MS. CHEMOSPHERE 2022; 288:132591. [PMID: 34662632 DOI: 10.1016/j.chemosphere.2021.132591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
A novel and accurate liquid chromatography-tandem mass spectrometry method was developed to sequentially determine three persistent herbicides (atrazine (ATZ), acetochlor (ACE), and metolachlor (MET)) and seven characteristic metabolites (desethylatrazine (DEA), deisopropylatrazine (DIA), diaminochlorotriazine (DACT), MET-oxanilic acid (MET-OA), MET-ethanesulfonic acid (MET-ESA), ACE-ESA, and ACE-OA) in fresh fish tissues from six fish species. A modified QuEChERS method was conducted to extract the target compounds from fish tissues. Matrix-matched calibrations of the target analytes were carried out at spiking levels of 1, 10, 100, and 1000 ng g-1. The method was validated in accordance with Codex guidelines (CAC/GL 71-2009). Recoveries for the target analytes were 67-120% with relative standard deviations below 20%, and the matrix effects ranged from -58.7% to 59.3%. The limits of detection and quantitation were 0.01-1.90 and 0.02-6.35 ng g-1, respectively. Moreover, the method was successfully applied to analyze the concentrations of the target chemicals in fresh tissue samples of six fish species (n = 67) collected from four markets in Nanning City, Guangxi Province, China. The concentrations in all samples were 1.1-140.5 ng g-1. Interestingly, this study was the first to measure DEA and DIA in fish liver, and their highest concentrations were 10.7 and 14.2 ng g-1, respectively. This method provides a basis for studying the pathways of biotransformation, bioaccumulation, detoxification, and exposure patterns of ACE, ATZ, MET, and their metabolites in aquatic environments.
Collapse
Affiliation(s)
- Cuifang Zhang
- Institute of Pesticide & Environmental Toxicology, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, 530005, China
| | - Zhuang Wang
- Institute of Pesticide & Environmental Toxicology, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, 530005, China
| | - Sheng Liu
- Institute of Pesticide & Environmental Toxicology, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, 530005, China
| | - Huihua Tan
- Institute of Pesticide & Environmental Toxicology, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, 530005, China
| | - Dongqiang Zeng
- Institute of Pesticide & Environmental Toxicology, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, 530005, China
| | - Xuesheng Li
- Institute of Pesticide & Environmental Toxicology, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
25
|
Wang Y, Chen C, Yang G, Wang X, Wang Q, Weng H, Zhang Z, Qian Y. Combined lethal toxicity, biochemical responses, and gene expression variations induced by tebuconazole, bifenthrin and their mixture in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113116. [PMID: 34979316 DOI: 10.1016/j.ecoenv.2021.113116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Pesticides commonly occur as mixtures in an aqueous environment, causing deleterious effects on human health and the environment. However, the mechanism underlying the combined effects on aqueous organisms remains largely unknown, especially at low concentrations. In the current study, we inspected the interactive toxicity of tebuconazole (TEB), a triazole fungicide, and bifenthrin (BIF), a pyrethroid insecticide, to zebrafish (Danio rerio) using various toxicological assays. Our data revealed that the 96 h-LC50 (lethal concentration 50) values of BIF to fish at different life periods (embryonic, larval, juvenile, and adult periods) ranged from 0.013 (0.011-0.016) to 0.41 (0.35-0.48) mg a.i. L-1, which were lower than that of TEB ranging from 1.1 (0.88-1.3) to 4.8 (4.1-5.7) mg a.i. L-1. Combination of TEB and BIF induced synergetic acute toxicity to embryonic fish. Activities of T-SOD, POD, and GST were distinctly altered in most individual and joint administrations. Expressions of 16 genes associated with oxidative stress, cellular apoptosis, immune system, and endocrine system at the mRNA level were evaluated, and the information revealed that embryonic zebrafish were impacted by both individual compounds and their combinations. Six genes (cas9, P53, gr, TRα, IL-8, and cxcl-clc) exhibited greater changes when exposed to pesticide mixtures. Therefore, the joint effects induced by the pesticides at low concentrations should be considered in the risk assessment of mixtures and regulated as priorities for mixture risk management in the aqueous ecosystem. More research is needed to identify the threshold concentrations of the realistic pesticide mixtures above which synergistic interactions occur.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Chen Chen
- School of Public Health, Shandong University, Jinan 250012, Shandong, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Zhiheng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Yongzhong Qian
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
26
|
Wu S, Li H, You J. Identification of Cytochrome P450 Isozymes Involved in Enantioselective Metabolism of Fipronil in Fish Liver: In Vitro Metabolic Kinetics and Molecular Modeling. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:230-239. [PMID: 34714951 DOI: 10.1002/etc.5241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Fipronil has been frequently detected in waterways worldwide at concentrations that threaten aquatic organisms, yet the metabolic behavior of fipronil enantiomers in aquatic organisms is largely unknown, which is of significance in enantioselective toxicity evaluation. We quantitatively identified the specific cytochrome P450 (CYP) isozymes involved in metabolizing fipronil enantiomers in tilapia by combining in vitro metabolic kinetic assays and molecular docking. Inhibition studies suggested that CYP1A enzyme was the main isoform catalyzing metabolism of fipronil and that CYP3A contributed in a limited way to the metabolism in fish liver S9. Both the dissipation rate constant and the maximum metabolic velocity of R-(-)-fipronil were greater than those of S-(+)-fipronil in tilapia liver S9, suggesting that tilapia selectively metabolized R-(-)-fipronil. The CYP1A1 isozyme exhibited the highest binding capacity to R-(-)-fipronil and S-(+)-fipronil (binding energy -9.39 and -9.17 kcal/mol, respectively), followed by CYP1A2 (-7.30 and -6.94 kcal/mol, respectively) and CYP3A4 (-7.16 and -6.91 kcal/mol, respectively). The results of in vitro metabolic assays and molecular docking were consistent, that is, CYP1A, specifically CYP1A1, exhibited a higher metabolic capacity to fipronil than CYP3A, and fish liver S9 selectively metabolized R-(-)-fipronil. The present study provides insight into the enantioselective metabolic behavior and toxicological implications of the in vitro metabolic kinetics of fipronil in fish. Environ Toxicol Chem 2022;41:230-239. © 2021 SETAC.
Collapse
Affiliation(s)
- Siqi Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| |
Collapse
|
27
|
Bioaccumulation of Pyraoxystrobin and Its Predictive Evaluation in Zebrafish. TOXICS 2021; 10:toxics10010005. [PMID: 35051047 PMCID: PMC8780168 DOI: 10.3390/toxics10010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
This paper aims to understand the bioaccumulation of pyraoxystrobin in fish. Using a flow-through bioconcentration method, the bioconcentration factor (BCF) and clearance rate of pyraoxystrobin in zebrafish were measured. The measured BCF values were then compared to those estimated from three commonly used predication models. At the exposure concentrations of 0.1 μg/L and 1.0 μg/L, the maximum BCF values for pyraoxystrobin in fish were 820.8 and 265.9, and the absorption rate constants (K1) were 391.0 d−1 and 153.2 d−1, respectively. The maximum enrichment occurred at 12 d of exposure. At the two test concentrations, the clearance rate constant (K2) in zebrafish was 0.5795 and 0.4721, and the half-life (t1/2) was 3.84 d and 3.33 d, respectively. The measured BCF values were close to those estimated from bioconcentration predication models.
Collapse
|
28
|
Álvarez-Ruiz R, Picó Y, Campo J. Bioaccumulation of emerging contaminants in mussel (Mytilus galloprovincialis): Influence of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:149006. [PMID: 34328891 DOI: 10.1016/j.scitotenv.2021.149006] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Coastal environments are heavily influenced by human activities. Chemical substances considered as emerging contaminants (ECs) are one of the most important indicators of the anthropic influence on the environment, and they have recently shown to interact with microplastics (MPs). Mussels are suitable for in-lab bioacumulation studies providing insight about the occurrence and fate of contaminants in the organisms. In this study, bioacummulation of 20 chemical substances catalogued as ECs, including pharmaceuticals and personal care products (PPCPs), pesticides, and perfluoroalkyl substances (PFASs) in Mytilus galloprovincialis was assessed, with or without the influence of the presence of MPs. Mussels were distributed in three groups: control (B), exposed to ECs (C) and exposed to ECs and polyethylene MPs (C+M). The study was carried out for 58 days separated in two stages (i) exposure during days 0-28, and (ii) depuration during days 29-58. Visceral mass and haemolymph of the mussels were extracted separately, using QuEChERS and solid phase extraction (SPE), respectively. Then, extracts were analysed via UHPLC-MS/MS. Results showed that 3 PPCPs, 4 pesticides and 3 PFASs accumulated in visceral mass with bioconcentration factors (BCFs) ranging 6.7-15000 L/kg/d. In addition, 2 PPCPs, 2 pesticides and PFPeA were detected in haemolymph showing BCFs ranging 0.9-3.3 L/kg/d. When comparing C and C+M, MPs worked as a vector for the accumulation of the PFASs: PFOA, PFOS, PFDA and PFPeA; showing higher BCFs in the presence of MPs. Furthermore, the elimination of PFDA and PFOS was slower in the mussels exposed to MPs. On the other hand, the pesticides terbuthylazine and chlorpyrifos showed lower BCFs and more rapid elimination in the mussels exposed to MPs.
Collapse
Affiliation(s)
- Rodrigo Álvarez-Ruiz
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre (CIDE), Universitat de València-CSIC-GV, Moncada-Náquera Road km 4.5, 46113 Moncada, Valencia, Spain.
| | - Yolanda Picó
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre (CIDE), Universitat de València-CSIC-GV, Moncada-Náquera Road km 4.5, 46113 Moncada, Valencia, Spain
| | - Julián Campo
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre (CIDE), Universitat de València-CSIC-GV, Moncada-Náquera Road km 4.5, 46113 Moncada, Valencia, Spain
| |
Collapse
|
29
|
Li D, Li Z, Qiu C, Peng B, Zhang Y, Sun H, Wang S. 2-Amino-3-methylimidazo[4,5-f]quinoline induced oxidative stress and inflammation via TLR4/MAPK and TLR4/NF-κB signaling pathway in zebrafish (Danio rerio) livers. Food Chem Toxicol 2021; 157:112583. [PMID: 34563632 DOI: 10.1016/j.fct.2021.112583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/05/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
2-Amino-3-methylimidazole[4,5-f]quinoline (IQ) is a harmful substance, mainly existing in protein-abundant thermally processed foods and polluted environments. This study investigated the hepatotoxicity of IQ by exposing zebrafish model organisms at 0, 8, 80, and 800 ng/mL concentrations for 35 days and was supposed to reveal the mechanism of IQ-induced oxidative stress and inflammation in the liver. The results showed that, after IQ exposure, alanine aminotransferase (ALT), aspartate aminotransferase (AST), reactive oxygen species (ROS), and malondialdehyde (MDA) levels in zebrafish liver increased significantly; meanwhile, significantly increased tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and interleukin-12 (IL-12) levels induced severe oxidative stress and inflammation; however, glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione s-transferase (GST) and glutathione peroxidase (GSH-Px) levels significantly decreased. The results indicated that the increased IQ exposure gradually aggravated pathological changes of zebrafish liver tissue (irregular cell morphology, cytoplasmic vacuolation, and inflammatory cell infiltration) and induced significant liver damage at last. Alterations in the expressions of genes and proteins involved in the IQ-induced TLR4/MAPK and TLR4/NF-κB pathways can elucidate the mechanism of its hepatotoxicity. The study provides evidence of IQ-induced hepatotoxicity and helps to draw attention to the health risks of dietary and environmental exposure to IQ.
Collapse
Affiliation(s)
- Dan Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhi Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Caiyi Qiu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Bo Peng
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
30
|
Jiang W, Yao G, Jing X, Liu X, Liu D, Zhou Z. Effects of Cd 2+ and Pb 2+ on enantioselective degradation behavior of α-cypermethrin in soils and their combined effect on activities of soil enzymes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47099-47106. [PMID: 33884551 DOI: 10.1007/s11356-021-13929-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Heavy metals may coexist with pesticides in farmland through wastewater irrigation, application of pesticides and chemical fertilizers, or unappropriated waste disposal. Heavy metals are toxic to soil microorganism, which may influence the environmental behavior of pesticides subsequently. In this study, the influence of Cd2+ and Pb2+ on the degradation of α-cypermethrin and its metabolites, 3-phenoxphenoxybenzoic acid (3-PBA) and 3-(2',2'-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (DCCA), were investigated through soil incubation experiment. It was found heavy metals like Cd2+ and Pb2+ will inhibit the degradation of α-cypermethrin, especially at high concentrations. Pb2+ has a stronger inhibitory effect on the degradation of α-cypermethrin than Cd2+ in the same concentration. With the presence of 10 mg/kg Pb2+, the half-life of α-cypermethrin increased from 41.1 to 99.9 days, even the half-life was 129.3 days with 50 mg/kg of Pb2+. Besides, heavy metals influenced the chiral selective degradation of α-cypermethrin. The enantiomer fraction was near 0.5 when 10 mg/kg of heavy metals existed. Furthermore, the adverse effects of heavy metals on soil urease, catalase, and sucrase activity were assayed. In tested concentrations (10 and 50 mg kg-1), the heavy metals result in strong inhibition of the activity of the enzymes present on soil, jeopardizing the biodegradation by the microbiome and which may inhibit the degradation of α-cypermethrin.
Collapse
Affiliation(s)
- Wenqi Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Guojun Yao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xu Jing
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xueke Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
31
|
Saputra F, Uapipatanakul B, Lee JS, Hung SM, Huang JC, Pang YC, Muñoz JER, Macabeo APG, Chen KHC, Hsiao CD. Co-Treatment of Copper Oxide Nanoparticle and Carbofuran Enhances Cardiotoxicity in Zebrafish Embryos. Int J Mol Sci 2021; 22:ijms22158259. [PMID: 34361024 PMCID: PMC8435221 DOI: 10.3390/ijms22158259] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022] Open
Abstract
The use of chemicals to boost food production increases as human consumption also increases. The insectidal, nematicidal and acaricidal chemical carbofuran (CAF), is among the highly toxic carbamate pesticide used today. Alongside, copper oxide nanoparticles (CuO) are also used as pesticides due to their broad-spectrum antimicrobial activity. The overuse of these pesticides may lead to leaching into the aquatic environments and could potentially cause adverse effects to aquatic animals. The aim of this study is to assess the effects of carbofuran and copper oxide nanoparticles into the cardiovascular system of zebrafish and unveil the mechanism behind them. We found that a combination of copper oxide nanoparticle and carbofuran increases cardiac edema in zebrafish larvae and disturbs cardiac rhythm of zebrafish. Furthermore, molecular docking data show that carbofuran inhibits acetylcholinesterase (AChE) activity in silico, thus leading to impair cardiac rhythms. Overall, our data suggest that copper oxide nanoparticle and carbofuran combinations work synergistically to enhance toxicity on the cardiovascular performance of zebrafish larvae.
Collapse
Affiliation(s)
- Ferry Saputra
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
| | - Boontida Uapipatanakul
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi 12110, Thailand;
| | - Jiann-Shing Lee
- Department of Applied Physics, National Pingtung University, Pingtung 900391, Taiwan; (J.-S.L.); (S.-M.H.)
| | - Shih-Min Hung
- Department of Applied Physics, National Pingtung University, Pingtung 900391, Taiwan; (J.-S.L.); (S.-M.H.)
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan; (J.-C.H.); (Y.-C.P.)
| | - Yun-Chieh Pang
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan; (J.-C.H.); (Y.-C.P.)
| | - John Emmanuel R. Muñoz
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1008, Philippines;
| | - Allan Patrick G. Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1008, Philippines;
- Correspondence: (A.P.G.M.); (K.H.-C.C.); (C.-D.H.)
| | - Kelvin H.-C. Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan; (J.-C.H.); (Y.-C.P.)
- Correspondence: (A.P.G.M.); (K.H.-C.C.); (C.-D.H.)
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Correspondence: (A.P.G.M.); (K.H.-C.C.); (C.-D.H.)
| |
Collapse
|
32
|
Wei Y, Cui J, Zhai W, Liu X, Zhou Z, Wang P, Liu D. Toxicity and fate of chiral insecticide pyriproxyfen and its metabolites in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116894. [PMID: 33774544 DOI: 10.1016/j.envpol.2021.116894] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Pyriproxyfen is a juvenile hormone analogue insecticide used worldwide. At present, the potential threat of pyriproxyfen to aquatic organism has not been well explored. In this work, the bioaccumulation, metabolic profile and toxicity of pyriproxyfen and its metabolites to zebrafish were studied, and the enantioselectivity of pyriproxyfen and the major chiral metabolites were also determined. Sixteen metabolites of pyriproxyfen in zebrafish were identified. Hydroxylation, ether linkage cleavage and oxidation in phase I metabolism, followed by sulfate and glucuronic acid conjugation. The bioconcentration factors ranged from 1175 to 1246. Hydroxylation metabolites of pyriproxyfen showed enantioselective behavior in zebrafish with enantiomer fractions (EFs) of 4'-OH- pyriproxyfen and 5″-OH- pyriproxyfen ranged from 0.50 to 0.71. Toxicological indexes including acute toxicity, joint toxicity and oxidative stress were tested. Among all the metabolites, 4'-OH- pyriproxyfen was found 2 folds more toxic to zebrafish than pyriproxyfen. (-)-Pyriproxyfen was found 2 folds more toxic than rac- and (+)-pyriproxyfen. Antagonistic effects were found in binary joint toxicity of pyriproxyfen and its hydroxylated metabolites. Pyriproxyfen and its metabolites also showed oxidative stress damage by inhibiting the activity of CAT and SOD and increasing MDA. This work provided deep insight into the metabolism and the potential risks of pyriproxyfen to aquatic organisms.
Collapse
Affiliation(s)
- Yimu Wei
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Jingna Cui
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Wangjing Zhai
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Xueke Liu
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Zhiqiang Zhou
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Peng Wang
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Donghui Liu
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
33
|
Kalyabina VP, Esimbekova EN, Kopylova KV, Kratasyuk VA. Pesticides: formulants, distribution pathways and effects on human health - a review. Toxicol Rep 2021; 8:1179-1192. [PMID: 34150527 PMCID: PMC8193068 DOI: 10.1016/j.toxrep.2021.06.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Pesticides are commonly used in agriculture to enhance crop production and control pests. Therefore, pesticide residues can persist in the environment and agricultural crops. Although modern formulations are relatively safe to non-target species, numerous theoretical and experimental data demonstrate that pesticide residues can produce long-term negative effects on the health of humans and animals and stability of ecosystems. Of particular interest are molecular mechanisms that mediate the start of a cascade of adverse effects. This is a review of the latest literature data on the effects and consequences of contamination of agricultural crops by pesticide residues. In addition, we address the issue of implicit risks associated with pesticide formulations. The effects of pesticides are considered in the context of the Adverse Outcome Pathway concept.
Collapse
Affiliation(s)
- Valeriya P. Kalyabina
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Elena N. Esimbekova
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Kseniya V. Kopylova
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
| | - Valentina A. Kratasyuk
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| |
Collapse
|
34
|
Li C, Xie Y, Guo Y, Cheng Y, Yu H, Qian H, Yao W. Effects of ozone-microbubble treatment on the removal of residual pesticides and the adsorption mechanism of pesticides onto the apple matrix. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
35
|
Gao J, Wang F, Jiang W, Miao J, Wang P, Zhou Z, Liu D. A full evaluation of chiral phenylpyrazole pesticide flufiprole and the metabolites to non-target organism in paddy field. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114808. [PMID: 32434115 DOI: 10.1016/j.envpol.2020.114808] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 05/27/2023]
Abstract
Pesticides applied to paddy fields may pose considerable danger to non-target aquatic organisms and further threaten human health. Flufiprole is a pesticide used in rice fields; considering the widespread existence of rice-fish-farming ecosystems, the acute toxicities of flufiprole enantiomers and its six metabolites (fipronil, flufiprole sulfide, flufiprole sulfone, detrifluoromethylsulfinyl flufiprole, desulfinyl flufiprole, and flufiprole amide) to four common aquatic organisms in rice fields including Misgurnus anguillicaudatus (pond loach), Carassius gibelio (Prussian carp), Pelophylax nigromaculatus (black-spotted frog), and Daphnia magna (water flea) were investigated. Genotoxicity, pathological changes and the effects on the antioxidant system of M. anguillicaudatus were also evaluated after exposure. The LC50 (EC50) values showed that fipronil and desulfinyl flufiprole were the most toxic compounds and were approximately about six times as toxic as flufiprole. No enantioselective toxicity was observed between the two enantiomers. The activity of antioxidant defense enzymes and the content of malondialdehyde (MDA) in the liver and gills of M. anguillicaudatus were significantly increased by the chemicals in most cases. In addition, fipronil and desulfinyl flufiprole were found to induce an increase in the micronucleus rate in M. anguillicaudatus. Histopathological analysis showed that the liver of M. anguillicaudatus was not significantly affected by flufiprole. Our study demonstrated a potential negative effect on flufiprole-treated aquatic organisms. As an alternative to fipronil, the environmental risk of flufiprole and its metabolites to non-target organisms in rice fields cannot be ignored.
Collapse
Affiliation(s)
- Jing Gao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Fang Wang
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Wenqi Jiang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Jingwen Miao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing, 100193, PR China.
| |
Collapse
|
36
|
Yang X, Liu H, Jia M, Wang J, Wu J, Song J, Liu Y. Evaluation of pyraoxystrobin bioconcentration in zebrafish ( Danio rerio) using modified QuEChERS extraction. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:477-483. [PMID: 32449480 DOI: 10.1080/03601234.2020.1722558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pyraoxystrobin is a novel strobilurin fungicide that is widely used on many crops. The high log Kow of pyraoxystrobin implies that it tends to accumulate in aquatic organisms. This study optimized the sorbents of QuEChERS (quick, easy, cheap, effective, rugged, and safe) using 13C-labelled pyraoxystrobin as the internal standard (IS). It has been established a QuEChERS-LC-MS/MS IS method to study the bioconcentration and elimination of pyraoxystrobin in zebrafish (Danio rerio). The results indicated that the method had satisfactory linearity between 0.234 and 15 μg L-1 (R2 = 0.9996). The limits of detection (LOD) and quantification (LOQ) for pyraoxystrobin were 0.01 and 0.03 μg L-1, respectively. The LOQs of the method for water and zebrafish were 0.05 μg L-1 and 0.01 mg/kg, respectively. The mean recovery of pyraoxystrobin in zebrafish and water at fortification levels of 0.01-0.3 mg kg-1 and 0.05-1.5 μg L-1 ranged from 98.31 to 105.61% and 101.87 to 108.48%, respectively, with a % RSD (relative standard deviation) of 0.94-3.57%. The bioconcentration has been evaluated. The bioconcentration factors for pyraoxystrobin in zebrafish were 1,792 and 3,505 after exposure to 0.5 μg L-1 for 168 h and 0.05 μg L-1 for 216 h, respectively. The half-life of pyraoxystrobin in zebrafish was 9.0-9.5 d.
Collapse
Affiliation(s)
- Xiaohong Yang
- Food Science and Engineering College, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides, Beijing University of Agriculture, Beijing, China
| | - Huijun Liu
- Food Science and Engineering College, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides, Beijing University of Agriculture, Beijing, China
| | - Minghong Jia
- Food Science and Engineering College, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides, Beijing University of Agriculture, Beijing, China
| | - Jiangfei Wang
- Beijing Yunong High Quality Cultivation of Agricultural Products Company, Beijing, China
| | - Jinlong Wu
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| | - Junhua Song
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| | - Yixuan Liu
- Tianjin Jiantong Biotechnology Inc., Tianjin, China
| |
Collapse
|