1
|
Li W, Chen W, Wang J, Zhang Z, Wu D, Liu P, Li Z, Ma H, Yang Y. Revealing the ACE receptor binding properties and interaction mechanisms of salty oligopeptides from Stropharia rugosoannulata mushroom by molecular simulation and antihypertensive evaluation. Food Funct 2024; 15:5527-5538. [PMID: 38700280 DOI: 10.1039/d4fo00596a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The salty oligopeptides from Stropharia rugosoannulata have been proven to be potential ACE inhibitors. To investigate the ACE receptor binding properties and interaction mechanisms of salty oligopeptides, the molecular interaction, dynamics simulation, and antihypertensive evaluation cross-validation strategy were employed to reveal the oligopeptides' binding reactions and modes with the ACE receptor. Single oligopeptide (ESPERPFL, KSWDDFFTR) had exothermic and specific binding reactions with the ACE receptor, driven by hydrogen bonds and van der Waals forces. The coexistence of the multiple oligopeptide molecules did not produce the apparent ACE receptor competition binding reactions. The molecular dynamics simulation verified that the two oligopeptides disturbed the ACE receptor's different residue regions. Both oligopeptides could form stable complexes with the ACE receptor. Based on the classification of 50 oligopeptides' binding modes, ESPERPFL and KSWDDFFTR belonged to different classes, and their receptor binding modes and sites complemented, resulting in a potential synergistic effect on ACE inhibition. The antihypertensive effect of KSWDDFFTR and its distribution in the body were evaluated using SHR rats orally and ICR mice by tail vein injection, and KSWDDFFTR had antihypertensive effects within 8 h. The study provides a theoretical basis for understanding salty oligopeptides' ACE receptor binding mechanism and their antihypertensive effects.
Collapse
Affiliation(s)
- Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, People's Republic of China.
- Shanghai Guosen Bio-tech Co. Ltd, Shanghai 201403, China
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, People's Republic of China.
- Shanghai Guosen Bio-tech Co. Ltd, Shanghai 201403, China
| | - Jinbin Wang
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, People's Republic of China.
- Shanghai Guosen Bio-tech Co. Ltd, Shanghai 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, People's Republic of China.
- Shanghai Guosen Bio-tech Co. Ltd, Shanghai 201403, China
| | - Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, People's Republic of China.
- Shanghai Guosen Bio-tech Co. Ltd, Shanghai 201403, China
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, People's Republic of China.
- Shanghai Guosen Bio-tech Co. Ltd, Shanghai 201403, China
| | - Haile Ma
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, People's Republic of China.
- Shanghai Guosen Bio-tech Co. Ltd, Shanghai 201403, China
| |
Collapse
|
2
|
Liu J, Song W, Gao X, Sun J, Liu C, Fang L, Wang J, Shi J, Leng Y, Liu X, Min W. A combined in vitro and in silico study of the inhibitory mechanism of angiotensin-converting enzyme with peanut peptides. Int J Biol Macromol 2024; 268:131901. [PMID: 38677685 DOI: 10.1016/j.ijbiomac.2024.131901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/06/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Food-derived peptides with low molecular weight, high bioavailability, and good absorptivity have been exploited as angiotensin-converting enzyme (ACE) inhibitors. In the present study, in-vitro inhibition kinetics of peanut peptides, in silico screening, validation of ACE inhibitory activity, molecular dynamics (MD) simulations, and HUVEC cells were performed to systematically identify the inhibitory mechanism of ACE interacting with peanut peptides. The results indicate that FPHPP, FPHY, and FPHFD peptides have good thermal, pH, and digestive stability. MD trajectories elucidate the dynamic correlation between peptides and ACE and verify the specific binding interaction. Noteworthily, FPHPP is the best inhibitor with a strongest binding affinity and significantly increases NO, SOD production, and AT2R expression, and decreases ROS, MDA, ET-1 levels, ACE, and AT1R accumulation in Ang II-injury HUVEC cells.
Collapse
Affiliation(s)
- Jiale Liu
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Wentian Song
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Xue Gao
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jiaoyan Sun
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Chunlei Liu
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Li Fang
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Ji Wang
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Junhua Shi
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yue Leng
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Xiaoting Liu
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China.
| | - Weihong Min
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, China; College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
3
|
Zhu F, Cao J, Song Y, Yu P, Su E. Plant Protein-Derived Active Peptides: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20479-20499. [PMID: 38109192 DOI: 10.1021/acs.jafc.3c06882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Active peptides are a class of physiologically active protein fragments, which can be prepared from different sources. In the past few decades, the production of peptides with various effects from different plant proteins continues to receive academic attention. With advances in extraction, purification, and characterization techniques, plant protein-derived active peptides continue to be discovered. They have been proven to have various functional activities such as antioxidant, antihypertensive, immunomodulatory, antimicrobial, anti-inflammatory, antidiabetic, antithrombotic, and so on. In this review, we searched Web of Science and China National Knowledge Infrastructure for relevant articles published in recent years. There are 184 articles included in this manuscript. The current status of plant protein-derived active peptides is systematically introduced, including their sources, preparation, purification and identification methods, physiological activities, and applications in the food industry. Special emphasis has been placed on the problems of active peptide exploration and the future trend. Based on these, it is expected to provide theoretical reference for the further exploitation of plant protein-derived active peptides, and promote the healthy and rapid development of active peptide industry.
Collapse
Affiliation(s)
- Feng Zhu
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jiarui Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yiting Song
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Pengfei Yu
- Suining County Runqi Investment Company, Limited, Xuzhou 221225, P. R. China
| | - Erzheng Su
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, P. R. China
- Bai Ma Future Food Research Institute, Nanjing 211225, P. R. China
| |
Collapse
|
4
|
Zhu Y, Chen G, Diao J, Wang C. Recent advances in exploring and exploiting soybean functional peptides-a review. Front Nutr 2023; 10:1185047. [PMID: 37396130 PMCID: PMC10310054 DOI: 10.3389/fnut.2023.1185047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/09/2023] [Indexed: 07/04/2023] Open
Abstract
Soybeans are rich in proteins and phytochemicals such as isoflavones and phenolic compounds. It is an excellent source of peptides with numerous biological functions, including anti-inflammatory, anticancer, and antidiabetic activities. Soy bioactive peptides are small building blocks of proteins that are released after fermentation or gastrointestinal digestion as well as by food processing through enzymatic hydrolysis, often in combination with novel food processing techniques (i.e., microwave, ultrasound, and high-pressure homogenization), which are associated with numerous health benefits. Various studies have reported the potential health benefits of soybean-derived functional peptides, which have made them a great substitute for many chemical-based functional elements in foods and pharmaceutical products for a healthy lifestyle. This review provides unprecedented and up-to-date insights into the role of soybean peptides in various diseases and metabolic disorders, ranging from diabetes and hypertension to neurodegenerative disorders and viral infections with mechanisms were discussed. In addition, we discuss all the known techniques, including conventional and emerging approaches, for the prediction of active soybean peptides. Finally, real-life applications of soybean peptides as functional entities in food and pharmaceutical products are discussed.
Collapse
Affiliation(s)
- Yongsheng Zhu
- Hangzhou Joyoung Soymilk & Food Co., Ltd., Hangzhou, China
| | - Gang Chen
- Hangzhou Joyoung Soymilk & Food Co., Ltd., Hangzhou, China
| | - Jingjing Diao
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
5
|
Lesmes U. In vitro digestion models for the design of safe and nutritious foods. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 104:179-203. [PMID: 37236731 DOI: 10.1016/bs.afnr.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Responsible development of future foods requires in depth understanding of food digestion in the human body based on robust research models, ranging from in vitro models to randomized controlled human trials. This chapter overviews fundamental aspects of food digestion, namely bioaccessibility and bioavailability, and models mirroring gastric, intestinal, and colonic conditions. Second, the chapter demonstrates the potential of in vitro digestion models to help screen adverse effects of food additives, such as Titanium dioxide or carrageenan, or underpin the determinants of macro- and micronutrient digestion in different strata of the population, for example digestion of emulsions. Such efforts support rationalized design of functional foods, such as infant formulae, cheese, cereals and biscuits which are validated in vivo or in randomized controlled trials.
Collapse
Affiliation(s)
- Uri Lesmes
- Faculty of Biotechnology and Food Engineering, Technion, Israel.
| |
Collapse
|
6
|
Cruz-Chamorro I, Santos-Sánchez G, Álvarez-López AI, Pedroche J, Lardone PJ, Arnoldi A, Lammi C, Carrillo-Vico A. Pleiotropic biological effects of Lupinus spp. protein hydrolysates. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
7
|
Lammi C, Boschin G, Bartolomei M, Arnoldi A, Galaverna G, Dellafiora L. Mechanistic Insights into Angiotensin I-Converting Enzyme Inhibitory Tripeptides to Decipher the Chemical Basis of Their Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11572-11578. [PMID: 36074807 PMCID: PMC9501895 DOI: 10.1021/acs.jafc.2c04755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Food proteins are an important source of bioactive peptides, and the angiotensin I-converting enzyme (ACE) inhibitors are worthy of attention for their possible beneficial effects in subjects with mild hypertension. However, the chemical basis underpinning their activity is not well-understood, hampering the discovery of novel inhibitory sequences from the plethora of peptides encrypted in food proteins. This work combined computational and in vitro investigations to describe precisely the chemical basis of potent inhibitory tripeptides. A substantial set of previously uncharacterized tripeptides have been investigated in silico and in vitro, and LCP was described for the first time as a potent ACE inhibitory peptide with IC50 values of 8.25 and 6.95 μM in cell-free and cell-based assays, respectively. The outcomes presented could serve to better understand the chemical basis of already characterized potent inhibitory tripeptides or as a blueprint to design novel and potent inhibitory peptides and peptide-like molecules.
Collapse
Affiliation(s)
- Carmen Lammi
- Department
of Pharmaceutical Sciences, University of
Milan, Via Mangiagalli 25, Milan 20133, Italy
| | - Giovanna Boschin
- Department
of Pharmaceutical Sciences, University of
Milan, Via Mangiagalli 25, Milan 20133, Italy
| | - Martina Bartolomei
- Department
of Pharmaceutical Sciences, University of
Milan, Via Mangiagalli 25, Milan 20133, Italy
| | - Anna Arnoldi
- Department
of Pharmaceutical Sciences, University of
Milan, Via Mangiagalli 25, Milan 20133, Italy
| | - Gianni Galaverna
- Department
of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Luca Dellafiora
- Department
of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| |
Collapse
|
8
|
Nath A, Ahmad AS, Amankwaa A, Csehi B, Mednyánszky Z, Szerdahelyi E, Tóth A, Tormási J, Truong DH, Abrankó L, Koris A. Hydrolysis of Soybean Milk Protein by Papain: Antioxidant, Anti-Angiotensin, Antigenic and Digestibility Perspectives. Bioengineering (Basel) 2022; 9:bioengineering9090418. [PMID: 36134964 PMCID: PMC9495856 DOI: 10.3390/bioengineering9090418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 12/03/2022] Open
Abstract
The objective of the investigation was to understand the biochemical activities of hydrolysate of soybean milk protein (SMP). Hydrolysis was carried out by different concentrations of papain (0.008 g·L−1, 0.016 g·L−1, 0.032 g·L−1 and 0.064 g·L−1). The antioxidant capacity was measured by the ferric-reducing ability of plasma (FRAP) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assays. The anti-angiotensin activity of hydrolysate was measured by the recombinant angiotensin converting enzyme and substrate Abz-FRK(Dnp)-P. The contributions of the Kunitz trypsin inhibitor (KTI) and Bowman–Birk inhibitor (BBI) on antigenicity, and the in vitro digestion of papain-hydrolyzed SMP were studied. Rabbit polyclonal anti-KTI and anti-BBI antibodies together with peroxidase-labelled goat anti-Rb IgG secondary antibody were used to identify the antigenicity of KTI and BBI in unhydrolyzed and papain-hydrolyzed SMP. The antioxidant capacity and anti-angiotensin activity of SMP were increased after the papain hydrolysis of SMP. The KTI- and BBI-specific antigenicity were reduced in SMP by increasing the concentration of papain. However, there was interaction between papain-hydrolyzed SMP and trypsin in native gel, while interaction with chymotrypsin was absent. The interaction between trypsin and SMP was reduced due to the hydrolysis of papain in a concentration-dependent manner. According to the in vitro gastrointestinal digestion simulation protocol (Infogest), the digestibility of SMP was not statistically increased.
Collapse
Affiliation(s)
- Arijit Nath
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi St 44, HU-1118 Budapest, Hungary
| | - Abubakar Saleh Ahmad
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi St 44, HU-1118 Budapest, Hungary
| | - Abraham Amankwaa
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi St 44, HU-1118 Budapest, Hungary
| | - Barbara Csehi
- Department of Refrigeration and Livestock Products Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 43-45, HU-1118 Budapest, Hungary
| | - Zsuzsanna Mednyánszky
- Department of Nutrition, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói St 14-16, HU-1118 Budapest, Hungary
| | - Emőke Szerdahelyi
- Department of Nutrition, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói St 14-16, HU-1118 Budapest, Hungary
| | - Attila Tóth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Móricz Zsigmond Str 22, HU-4032 Debrecen, Hungary
| | - Judit Tormási
- Department of Food Chemistry and Analytical Chemistry, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 35-43, HU-1118 Budapest, Hungary
| | - Duy Hoàng Truong
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ward 4, Go Vap District, Ho Chi Minh City 727000, Vietnam
| | - László Abrankó
- Department of Food Chemistry and Analytical Chemistry, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 35-43, HU-1118 Budapest, Hungary
| | - András Koris
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi St 44, HU-1118 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-3057228
| |
Collapse
|
9
|
Li T, Zhang X, Ren Y, Zeng Y, Huang Q, Wang C. Antihypertensive effect of soybean bioactive peptides: A review. Curr Opin Pharmacol 2022; 62:74-81. [PMID: 34929528 DOI: 10.1016/j.coph.2021.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/18/2023]
Abstract
Hypertension is a global disease that is extremely harmful to humans. Timely lowering of blood pressure is necessary in order to avoid the occurrence of corresponding complications. This review shows that soy peptides are beneficial in resisting hypertension. One of the advantages is the abundance of raw materials for producing soybean peptides. Secondly, there are no reports of adverse reactions due to soy peptides. Moreover, they exert protective effect against hypertension-induced complications such as long-term memory impairment and kidney damage. However, there are still some obstacles associated with the development of soybean peptides. Therefore, this review is focused on statistical analysis of peptide sequences, amino acid residues, and possible targets of anti-hypertensive soybean peptides. Eventually, it proposes that application of genetic engineering technology to specifically modify the N- and C-terminal of the soybean peptides, and possible targets in identifying the likely drug targets involved in the antihypertensive effects of these peptides.
Collapse
Affiliation(s)
- Tingna Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, China
| | - Xiaorui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, China
| | - Yuanyuan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, China
| | - Yijia Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, China
| | - Qinwan Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, China.
| | - Chao Wang
- Sichuan Integrated Traditional Chinese and Western Medicine Hospital, China.
| |
Collapse
|
10
|
Pugliese R, Bartolomei M, Bollati C, Boschin G, Arnoldi A, Lammi C. Gel-Forming of Self-Assembling Peptides Functionalized with Food Bioactive Motifs Modulate DPP-IV and ACE Inhibitory Activity in Human Intestinal Caco-2 Cells. Biomedicines 2022; 10:biomedicines10020330. [PMID: 35203539 PMCID: PMC8869507 DOI: 10.3390/biomedicines10020330] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Food bioactive peptides are increasingly used for formulating food products, nutraceuticals, and functional food, since they are generally considered safe for human consumption and metabolic syndrome prevention. They are also becoming popular as sustainable sources of novel functional biomaterials such as hydrogels, edible nanonutraceuticals, delivery systems, and packing materials. However, such food peptides are mostly unstable, and degrade during food processing, or in a gastrointestinal environment, thus resulting in low bioavailability precluding their practical applications. Here, we decided to functionalize the well-known and characterized self-assembling peptide RADA16 with two synthetic analogues of food bioactive peptides deriving from the hydrolysis of soybean glycinin and lupin β-conglutin (namely IAVPTGVA and LTFPGSAED) for control of and improvement in their gel-forming nanostructures, biomechanics, and biological features. Extensive characterization was performed via Circular Dichroism (CD) spectroscopy, Fourier Transform Infrared spectroscopy (FT-IR), Thioflavin T (ThT) binding assay, rheological measurements, and Atomic Force Microscopy (AFM) analysis. Lastly, since self-assembling peptides (SAPs) can be co-assembled with diluent SAPs (without a bioactive epitope) as an approach to control the density of biological signals and therefore attain enhanced bioactivity, we investigated the effect of the co-assembly of RADA16 and functionalized food bioactive SAPs (dubbed cAP-Soy1 and cAP-Lup1) for the growth of Caco-2 human intestinal cells and contextually we characterized their biological activities as DPP-IV and ACE inhibitors, in order to demonstrate their potential use for the prevention of metabolic syndrome.
Collapse
Affiliation(s)
- Raffaele Pugliese
- NeMO Lab, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
- Correspondence: (R.P.); (C.L.)
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (M.B.); (C.B.); (G.B.); (A.A.)
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (M.B.); (C.B.); (G.B.); (A.A.)
| | - Giovanna Boschin
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (M.B.); (C.B.); (G.B.); (A.A.)
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (M.B.); (C.B.); (G.B.); (A.A.)
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (M.B.); (C.B.); (G.B.); (A.A.)
- Correspondence: (R.P.); (C.L.)
| |
Collapse
|
11
|
Lammi C, Boschin G, Bollati C, Arnoldi A, Galaverna G, Dellafiora L. A heuristic, computer-driven and top-down approach to identify novel bioactive peptides: A proof-of-principle on angiotensin I converting enzyme inhibitory peptides. Food Res Int 2021; 150:110753. [PMID: 34865771 DOI: 10.1016/j.foodres.2021.110753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/08/2021] [Accepted: 10/09/2021] [Indexed: 11/26/2022]
Abstract
Bioactive peptides are short peptides (3-20 amino acid residues in length) endowed of specific biological activities. The identification and characterization of bioactive peptides of food origin are crucial to better understand the physiological consequences of food, as well as to design novel foods, ingredients, supplements, and diets to counteract mild metabolic disorders. For this reason, the identification of bioactive peptides is also relevant from a pharmaceutical standpoint. Nevertheless, the systematic identification of bioactive sequences of food origin is still challenging and relies mainly on the so defined "bottom-up" approaches, which rarely results in the total identification of most active sequences. Conversely, "top-down" approaches aim at identifying bioactive sequences with certain features and may be more suitable for the precise identification of very potent bioactive peptides. In this context, this work presents a top-down, computer-assisted and hypothesis-driven identification of potent angiotensin I converting enzyme inhibitory tripeptides, as a proof of principle. A virtual library of 6840 tripeptides was screened in silico to identify potential highly potent inhibitory peptides. Then, computational results were confirmed experimentally and a very potent novel sequence, LMP was identified. LMP showed an IC50 of 15.8 and 6.8 µM in cell-free and cell-based assays, respectively. In addition, a bioinformatics approach was used to search potential food sources of LMP. Yolk proteins were identified as a possible relevant source to analyze in further experiments. Overall, the method presented may represent a powerful and versatile framework for a systematic, high-throughput and top-down identification of bioactive peptides.
Collapse
Affiliation(s)
- Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giovanna Boschin
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Gianni Galaverna
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
12
|
Pugliese R, Arnoldi A, Lammi C. Nanostructure, Self-Assembly, Mechanical Properties, and Antioxidant Activity of a Lupin-Derived Peptide Hydrogel. Biomedicines 2021; 9:biomedicines9030294. [PMID: 33805635 PMCID: PMC8000348 DOI: 10.3390/biomedicines9030294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Naturally occurring food peptides are frequently used in the life sciences due to their beneficial effects through their impact on specific biochemical pathways. Furthermore, they are often leveraged for applications in areas as diverse as bioengineering, medicine, agriculture, and even fashion. However, progress toward understanding their self-assembling properties as functional materials are often hindered by their long aromatic and charged residue-enriched sequences encrypted in the parent protein sequence. In this study, we elucidate the nanostructure and the hierarchical self-assembly propensity of a lupin-derived peptide which belongs to the α-conglutin (11S globulin, legumin-like protein), with a straightforward N-terminal biotinylated oligoglycine tag-based methodology for controlling the nanostructures, biomechanics, and biological features. Extensive characterization was performed via Circular Dichroism (CD) spectroscopy, Fourier Transform Infrared spectroscopy (FT-IR), rheological measurements, and Atomic Force Microscopy (AFM) analyses. By using the biotin tag, we obtained a thixotropic lupin-derived peptide hydrogel (named BT13) with tunable mechanical properties (from 2 to 11 kPa), without impairing its spontaneous formation of β-sheet secondary structures. Lastly, we demonstrated that this hydrogel has antioxidant activity. Altogether, our findings address multiple challenges associated with the development of naturally occurring food peptide-based hydrogels, offering a new tool to both fine tune the mechanical properties and tailor the antioxidant activities, providing new research directions across food chemistry, biochemistry, and bioengineering.
Collapse
Affiliation(s)
- Raffaele Pugliese
- NeMO Lab, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
- Correspondence: (R.P.); (C.L.)
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy;
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy;
- Correspondence: (R.P.); (C.L.)
| |
Collapse
|