1
|
Xie F, Hao Y, Liu Y, Bao J, Wang R, Chi X, Wang T, Yu S, Jin Y, Li L, Jiang Y, Zhang D, Yan L, Ni T. From Synergy to Monotherapy: Discovery of Novel 2,4,6-Trisubstituted Triazine Hydrazone Derivatives with Potent Antifungal Potency In Vitro and In Vivo. J Med Chem 2024; 67:4007-4025. [PMID: 38381075 DOI: 10.1021/acs.jmedchem.3c02292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Invasive fungal infections pose a serious threat to public health and are associated with high mortality and incidence rates. The development of novel antifungal agents is urgently needed. Based on hit-to-lead optimization, a series of 2,4,6-trisubstituted triazine hydrazone compounds were designed, synthesized, and biological evaluation was performed, leading to the identification of compound 28 with excellent in vitro synergy (FICI range: 0.094-0.38) and improved monotherapy potency against fluconazole-resistant Candida albicans and Candida auris (MIC range: 1.0-16.0 μg/mL). Moreover, 28 exhibited broad-spectrum antifungal activity against multiple pathogenic strains. Furthermore, 28 could inhibit hyphal and biofilm formation, which may be related to its ability to disrupt the fungal cell wall. Additionally, 28 significantly reduced the CFU in a mouse model of disseminated infection with candidiasis at a dose of 10 mg/kg. Overall, the triazine-based hydrazone compound 28 with low cytotoxicity, hemolysis, and favorable ADME/T characteristics represents a promising lead to further investigation.
Collapse
Affiliation(s)
- Fei Xie
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Yumeng Hao
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Yu Liu
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Junhe Bao
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Ruina Wang
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Xiaochen Chi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang 110016, China
| | - Ting Wang
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Shichong Yu
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Yongsheng Jin
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Liping Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai 200072, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai 200072, China
| | - Dazhi Zhang
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai 200072, China
| | - Lan Yan
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai 200072, China
| |
Collapse
|
2
|
Höglsperger F, Larik FA, Bai C, Seyfried MD, Daniliuc C, Klaasen H, Thordarson P, Beves JE, Ravoo BJ. Water-Soluble Arylazoisoxazole Photoswitches. Chemistry 2023; 29:e202302069. [PMID: 37578089 DOI: 10.1002/chem.202302069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023]
Abstract
Azoheteroarenes are emerging as powerful alternatives to azobenzene molecular photoswitches. In this study, water-soluble arylazoisoxazole photoswitches are introduced. UV/vis and NMR spectroscopy revealed moderate to very good photostationary states and reversible photoisomerization between the E- and Z-isomers over multiple cycles with minimal photobleaching. Several arylazoisoxazoles form host-guest complexes with β- and γ-cyclodextrin with significant differences in binding constants for each photoisomer as shown by isothermal titration calorimetry and NMR experiments, indicating their potential for photoresponsive host-guest chemistry in water. One carboxylic acid functionalized arylazoisoxazole can act as a hydrogelator, allowing gel properties to be manipulated reversibly with light. The hydrogel was characterized by rheological experiments, atom force microscopy and transmission electron microscopy. These results demonstrate that arylazoisoxazoles can find applications as molecular photoswitches in aqueous media.
Collapse
Affiliation(s)
- Fabian Höglsperger
- Organisch-Chemisches Institut and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Fayaz Ali Larik
- School of Chemistry, The University of New South Wales, Sydney, NSW-2052, Australia
| | - Changzhuang Bai
- School of Chemistry, The University of New South Wales, Sydney, NSW-2052, Australia
- UNSW RNA Institute, The University of New South Wales, Sydney, NSW-2052, Australia
| | - Maximilian D Seyfried
- Organisch-Chemisches Institut and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Constantin Daniliuc
- Organisch-Chemisches Institut and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Henning Klaasen
- Organisch-Chemisches Institut and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Pall Thordarson
- School of Chemistry, The University of New South Wales, Sydney, NSW-2052, Australia
- UNSW RNA Institute, The University of New South Wales, Sydney, NSW-2052, Australia
| | - Jonathon E Beves
- School of Chemistry, The University of New South Wales, Sydney, NSW-2052, Australia
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| |
Collapse
|
3
|
Liu W, Li E, Liu L, Tian F, Luo X, Cai Y, Wang J, Jin X. Antifungal activity of compounds from Gordonia sp. WA8-44 isolated from the gut of Periplaneta americana and molecular docking studies. Heliyon 2023; 9:e17777. [PMID: 37539250 PMCID: PMC10395128 DOI: 10.1016/j.heliyon.2023.e17777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023] Open
Abstract
Invasive fungal infections are on the rise, leading to a continuous demand for antifungal antibiotics. Rare actinomycetes have been shown to contain a variety of interesting compounds worth exploring. In this study, 15 strains of rare actinobacterium Gordonia were isolated from the gut of Periplaneta americana and screened for their anti-fungal activity against four human pathogenic fungi. Strain WA8-44 was found to exhibit significant anti-fungal activity and was selected for bioactive compound production, separation, purification, and characterization. Three anti-fungal compounds, Collismycin A, Actinomycin D, and Actinomycin X2, were isolated from the fermentation broth of Gordonia strain WA8-44. Of these, Collismycin A was isolated and purified from the secondary metabolites of Gordonia for the first time, and its anti-filamentous fungi activity was firstly identified in this study. Molecular docking was carried out to determine their hypothetical binding affinities against nine target proteins of Candida albicans. Chitin Synthase 2 was found to be the most preferred antimicrobial protein target for Collismycin A, while 1,3-Beta-Glucanase was the most preferred anti-fungal protein target for Actinomycin D and Actinomycin X2. ADMET prediction revealed that Collismycin A has favorable oral bioavailability and little toxicity, making it a potential candidate for development as an orally active medication.
Collapse
Affiliation(s)
- Wenbin Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ertong Li
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lingyan Liu
- School of Pharmacy, Xi'an Medical College, Xi'an 710300, PR China
| | - Fangyuan Tian
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiongming Luo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yanqu Cai
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| |
Collapse
|
4
|
Sharma AD, Kaur I, Chauhan A. Essential Oil Derived from Underutilized Plants Cymbopogon khasianus Poses Diverse Biological Activities against " Aspergillosis" and " Mucormycosis". RUSSIAN AGRICULTURAL SCIENCES 2023; 49:172-183. [PMID: 37220552 PMCID: PMC10191406 DOI: 10.3103/s106836742302012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/11/2022] [Accepted: 11/22/2022] [Indexed: 05/25/2023]
Abstract
Palmrosa essential oil (PEO) from Cymbopogon khasianus, is used as complementary and traditional medicine worldwide. The present study aimed at compositional profiling of PEO and molecular docking of PEO bioactive compound geraniol against fungal enzymes chitin synthase (CS), UDP-glycosyltransferase (UDPG) and glucosamine-6-phosphate synthase (GPS), as apposite sites for drug designing against "Aspergillosis" and "Mucormycosis" and in vitro confirmation. Compositional profile of PEO was completed by GC-FID analysis. For molecular docking, Patch-dock tool was conducted. Ligand-enzyme 3D interactions were also calculated. ADMET properties (absorption, distribution, metabolism, excretion and toxicity) were also calculated. GC-FID discovered the occurrence of geraniol as a major component in PEO, thus nominated for docking analysis. Docking analysis specified active binding of geraniol to GPS, CS and UDPG fungal enzymes. Wet-lab authentication was achieved by three fungal strains Aspergillus niger, A. oryzae and Mucor sp. Docking studies revealed that ligand geraniol exhibited intercations with GPS, CS and UDPG fungal enzymes by H-bond and hydrophobic interactions. Geraniol obeyed LIPINSKY rule, and exhibited adequate bioactivity. Wet lab results indicated that PEO was able to inhibit fungal growth against "Aspergillosis" and "Mucormycosis".
Collapse
Affiliation(s)
- Arun Dev Sharma
- Post Graduate department of Biotechnology, Lyallpur Khalsa College Jalandhar, Punjab, India
| | - Inderjeet Kaur
- Post Graduate department of Biotechnology, Lyallpur Khalsa College Jalandhar, Punjab, India
| | - Amrita Chauhan
- Post Graduate department of Biotechnology, Lyallpur Khalsa College Jalandhar, Punjab, India
| |
Collapse
|
5
|
Dhawale S, Pandit M, Thete K, Ighe D, Gawale S, Bhosle P, Lokwani DK. In silico approach towards polyphenols as targeting glucosamine-6-phosphate synthase for Candida albicans. J Biomol Struct Dyn 2023; 41:12038-12054. [PMID: 36629053 DOI: 10.1080/07391102.2022.2164797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023]
Abstract
Candida albicans is one of the most common species of fungus with life-threatening systemic infections and a high mortality rate. The outer cell wall layer of C. albicans is packed with mannoproteins and glycosylated polysaccharide moieties that play an essential role in the interaction with host cells and tissues. The glucosamine-6-phosphate synthase enzyme produces N-acetylglucosamine, which is a crucial chemical component of the cell wall of Candida albicans. Collectively, these components are essential to maintain the cell shape and for infection. So, its disruption can have serious effects on cell growth and morphology, resulting in cell death. Hence, it is considered a good antifungal target. In this study, we have performed an in silico approach to analyze the inhibitory potential of some polyphenols obtained from plants. Those can be considered important in targeting against the enzyme glucosamine-6-phosphate synthase (PDB-2VF5). The results of the study revealed that the binding affinity of complexes theaflavin and 3-o-malonylglucoside have significant docking scores and binding free energy followed by significant ADMET parameters that predict the drug-likeness property and toxicity of polyphenols as potential ligands. A molecular dynamic simulation was used to test the validity of the docking scores, and it showed that the complex remained stable during the period of the simulation, which ranged from 0 to 100 ns. Theaflavins and 3-o-malonylglucoside may be effective against Candida albicans using a computer-aided drug design methodology that will further enable researchers for future in vitro and in vivo studies, according to our in silico study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sachin Dhawale
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical education and research, Aurangabad, Maharashtra, India
| | - Madhuri Pandit
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical education and research, Aurangabad, Maharashtra, India
| | - Kanchan Thete
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical education and research, Aurangabad, Maharashtra, India
| | - Dnyaneshwari Ighe
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical education and research, Aurangabad, Maharashtra, India
| | - Sachin Gawale
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical education and research, Aurangabad, Maharashtra, India
| | - Pallavi Bhosle
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical education and research, Aurangabad, Maharashtra, India
| | | |
Collapse
|
6
|
Sharma H, Raju B, Narendra G, Motiwale M, Sharma B, Verma H, Silakari O. QM/MM Studies on Enzyme Catalysis and Insight into Designing of New Inhibitors by ONIOM Approach: Recent Update. ChemistrySelect 2023. [DOI: 10.1002/slct.202203319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Himani Sharma
- Molecular Modeling Lab (MML) Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab 147002 India
| | - Baddipadige Raju
- Molecular Modeling Lab (MML) Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab 147002 India
| | - Gera Narendra
- Molecular Modeling Lab (MML) Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab 147002 India
| | - Mohit Motiwale
- Molecular Modeling Lab (MML) Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab 147002 India
| | - Bhavna Sharma
- Molecular Modeling Lab (MML) Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab 147002 India
| | - Himanshu Verma
- Molecular Modeling Lab (MML) Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab 147002 India
| | - Om Silakari
- Molecular Modeling Lab (MML) Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab 147002 India
| |
Collapse
|
7
|
2′-Hydroxy-4′,5′-dimethoxyacetophenone Exhibit Collagenase, Aldose Reductase Inhibition, and Anticancer Activity Against Human Leukemic Cells: An In Vitro, and In Silico Study. Mol Biotechnol 2022; 65:881-890. [DOI: 10.1007/s12033-022-00588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
8
|
Basharat Z, Khan K, Jalal K, Alnasser SM, Majeed S, Zehra M. Inferring Therapeutic Targets in Candida albicans and Possible Inhibition through Natural Products: A Binding and Physiological Based Pharmacokinetics Snapshot. Life (Basel) 2022; 12:1743. [PMID: 36362898 PMCID: PMC9692583 DOI: 10.3390/life12111743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 09/10/2024] Open
Abstract
Despite being responsible for invasive infections, fungal pathogens have been underrepresented in computer aided therapeutic target mining and drug design. Excess of Candida albicans causes candidiasis, causative of thrush and vaginal infection due to off-balance. In this study, we attempted to mine drug targets (n = 46) using a subtractive proteomic approach in this pathogenic yeast and screen natural products with inhibition potential against fructose-bisphosphate aldolase (FBA) of the C. albicans. The top compound selected on the basis of best docking score from traditional Indian medicine/Ayurvedic library was (4-Hydroxybenzyl)thiocarbamic acid, from the ZINC FBA inhibitor library was ZINC13507461 (IUPAC name: [(2R)-2-hydroxy-3-phosphonooxypropyl] (9E,12E)-octadeca-9,12-dienoate), and from traditional Tibetan medicine/Sowa rigpa was Chelerythrine (IUPAC name: 1,2-Dimethoxy-12-methyl-9H-[1,3]benzodioxolo[5,6-c]phenanthridin-12-ium), compared to the control (2E)-1-(4-nitrophenyl)-2-[(4-nitrophenyl)methylidene]hydrazine. No Ames toxicity was predicted for prioritized compounds while control depicted this toxicity. (4-Hydroxybenzyl)thiocarbamic acid showed hepatotoxicity, while Chelerythrine depicted hERG inhibition, which can lead to QT syndrome, so we recommend ZINC13507461 for further testing in lab. Pharmacological based pharmacokinetic modeling revealed that it has low bioavailability and hence, absorption in healthy state. In cirrhosis and renal impairment, absorption and plasma accumulation increased so we recommend further investigation into this occurrence and recommend high dosage in further tests to increase bioavailability.
Collapse
Affiliation(s)
- Zarrin Basharat
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia
| | - Sania Majeed
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Marium Zehra
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
9
|
Xu QY, Pan Q, Wu Q, Xin JQ. Mycoplasma Bovis adhesins and their target proteins. Front Immunol 2022; 13:1016641. [PMID: 36341375 PMCID: PMC9630594 DOI: 10.3389/fimmu.2022.1016641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine mycoplasmosis is an important infectious disease of cattle caused by Mycoplasma bovis (M. bovis) which poses a serious threat to the breeding industry. Adhesin is involved in the initial process of M. bovis colonization, which is closely related to the infection, cell invasion, immune escape and virulence of this pathogenic microorganism. For the reason that M. bovis lacks a cell wall, its adhesin is predominantly located on the surface of the cell membrane. The adhesins of M. bovis are usually identified by adhesion and adhesion inhibition analysis, and more than 10 adhesins have been identified so far. These adhesins primarily bind to plasminogen, fibronectin, heparin and amyloid precursor-like protein-2 of host cells. This review aims to concisely summarize the current knowledge regarding the adhesins of M. bovis and their target proteins of the host cell. Additionally, the biological characteristics of the adhesin will be briefly analyzed.
Collapse
|
10
|
Ivanov M, Ćirić A, Stojković D. Emerging Antifungal Targets and Strategies. Int J Mol Sci 2022; 23:2756. [PMID: 35269898 PMCID: PMC8911111 DOI: 10.3390/ijms23052756] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 12/14/2022] Open
Abstract
Despite abundant research in the field of antifungal drug discovery, fungal infections remain a significant healthcare burden. There is an emerging need for the development of novel antifungals since those currently available are limited and do not completely provide safe and secure protection. Since the current knowledge regarding the physiology of fungal cells and the infection mechanisms is greater than ever, we have the opportunity to use this for the development of novel generations of antifungals. In this review, we selected and summarized recent studies describing agents employing different antifungal mechanisms. These mechanisms include interference with fungal resistance, including impact on the efflux pumps and heat shock protein 90. Additionally, interference with virulence factors, such as biofilms and hyphae; the impact on fungal enzymes, metabolism, mitochondria, and cell wall; and antifungal vaccines are explored. The agents investigated belong to different classes of natural or synthetic molecules with significant attention given also to plant extracts. The efficacy of these antifungals has been studied mainly in vitro with some in vivo, and clinical studies are needed. Nevertheless, there is a large quantity of products employing novel antifungal mechanisms that can be further explored for the development of new generation of antifungals.
Collapse
Affiliation(s)
- Marija Ivanov
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (A.Ć.); (D.S.)
| | | | | |
Collapse
|
11
|
Sharma AD, Kaur I. Targeting UDP-Glycosyltransferase, Glucosamine-6-Phosphate Synthase and Chitin Synthase by Using Bioactive 1,8 Cineole for “Aspergillosis” Fungal Disease Mutilating COVID-19 Patients: Insights from Molecular Docking, Pharmacokinetics and In-vitro Studies. CHEMISTRY AFRICA 2022. [PMCID: PMC8739004 DOI: 10.1007/s42250-021-00302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SARS-CoV-2 (COVID-19)-associated co-infections like “Aspergillosis”, has recently baffled the world. Due to its key role in cell wall synthesis, in the present study UDP-glycosyltransferase, glucosamine-6-phosphate synthase and chitin synthase have been chosen as appropriate targets for molecular docking. The objective of the present study was molecular docking of eucalyptus essential oil component 1,8 cineole against cell wall enzymes followed by in vitro validation. For molecular docking, patch-dock web based online tool was used. Ligand–Protein 2D and 3D Interactions were also studied. Drug likeliness, toxicity profile and cancer cell line toxicity were also studied. Molecular docking results indicated that 1,8 cineole form hydrogen bonding and hydrophobic interactions with UDP-glycosyltransferase, glucosamine-6-phosphate synthase and chitin synthase enzymes. 1,8 cineole also depicted drug likeliness by showing compliance with the LIPINSKY rule, sufficient level of bioactivity and cancer cell line toxicity thus signifying its role as a potent anti-fungal drug.
Collapse
Affiliation(s)
- Arun Dev Sharma
- Post Graduate Department of Biotechnology, Lyallpur Khalsa College Jalandhar, Jalandhar, India
| | - Inderjeet Kaur
- Post Graduate Department of Biotechnology, Lyallpur Khalsa College Jalandhar, Jalandhar, India
| |
Collapse
|
12
|
Wen W, Cao H, Huang Y, Tu J, Wan C, Wan J, Han X, Chen H, Liu J, Rao L, Su C, Peng C, Sheng C, Ren Y. Structure-Guided Discovery of the Novel Covalent Allosteric Site and Covalent Inhibitors of Fructose-1,6-Bisphosphate Aldolase to Overcome the Azole Resistance of Candidiasis. J Med Chem 2022; 65:2656-2674. [PMID: 35099959 DOI: 10.1021/acs.jmedchem.1c02102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fructose-1,6-bisphosphate aldolase (FBA) represents an attractive new antifungal target. Here, we employed a structure-based optimization strategy to discover a novel covalent binding site (C292 site) and the first-in-class covalent allosteric inhibitors of FBA from Candida albicans (CaFBA). Site-directed mutagenesis, liquid chromatography-mass spectrometry, and the crystallographic structures of APO-CaFBA, CaFBA-G3P, and C157S-2a4 revealed that S268 is an essential pharmacophore for the catalytic activity of CaFBA, and L288 is an allosteric regulation switch for CaFBA. Furthermore, most of the CaFBA covalent inhibitors exhibited good inhibitory activity against azole-resistant C. albicans, and compound 2a11 can inhibit the growth of azole-resistant strains 103 with the MIC80 of 1 μg/mL. Collectively, this work identifies a new covalent allosteric site of CaFBA and discovers the first generation of covalent inhibitors for fungal FBA with potent inhibitory activity against resistant fungi, establishing a structural foundation and providing a promising strategy for the design of potent antifungal drugs.
Collapse
Affiliation(s)
- Wuqiang Wen
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hongxuan Cao
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yunyuan Huang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jie Tu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chen Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jian Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xinya Han
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Han Chen
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jiaqi Liu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Li Rao
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chen Su
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yanliang Ren
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
13
|
Sharma AD, Kaur I. Essential oil from Cymbopogon citratus exhibits "anti-aspergillosis" potential: in-silico molecular docking and in vitro studies. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:23. [PMID: 35125860 PMCID: PMC8800409 DOI: 10.1186/s42269-022-00711-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Aspergillosis, has recently confounded some states of India. Due to major role in fungal cell wall synthesis, in the present study UDP-glycosyltransferase, Glucosamine-6-phosphate synthase and chitin synthase were chosen as an appropriate sites to design drug. The objective of present study was molecular docking of lemon grass essential oil component citral and in vitro validation. GC-FID analysis was used to find out aromatic profile. For docking, Patch-dock analysis was used. Ligand Protein 2D and 3D Interactions were also studied. Drug likeliness, and toxicity profile were also studied. Docking analysis indicated effective binding of citral to UDP-glycosyltransferase, Glucosamine-6-phosphate synthase and chitin synthase. In vitro validation was performed by fungal strain Aspergillus fumigatum. RESULTS GC-FID profiling revealed the presence of citral as major bioactive compound. Interactions results indicated that, UDP-glycosyltransferase, Glucosamine-6-phosphate synthase and chitin synthase enzymes and citral complexes forms hydrogen and hydrophobic interactions. Citral also depicted drug likeliness by LIPINSKY rule, sufficient level of bioactivity, drug likeliness and toxicity. CONCLUSION In vitro results revealed that lemon grass oil was able to inhibit growth of fungal strains toxicity thus signifying its role as potent anti-fungal drug. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s42269-022-00711-5.
Collapse
Affiliation(s)
- Arun Dev Sharma
- Department of Biotechnology, Lyallpur Khalsa College Jalandhar, Jalandhar, India
| | - Inderjeet Kaur
- Department of Biotechnology, Lyallpur Khalsa College Jalandhar, Jalandhar, India
| |
Collapse
|
14
|
Yamasaki M, Matsuda N, Matoba K, Kondo S, Kanegae Y, Saito I, Nomoto A. Acetophenone 4-nitrophenylhydrazone inhibits Hepatitis B virus replication by modulating capsid assembly. Virus Res 2021; 306:198565. [PMID: 34555437 DOI: 10.1016/j.virusres.2021.198565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) is the causative agent of chronic liver disease and is correlated with the development of subsequent hepatic cirrhosis and hepatocellular carcinoma. Current antiviral therapy using nucleos(t)ide analogs is effective in suppressing viral replication and interrupting disease progression, but HBV is rarely cured completely. Thus, there remains an unmet need for the development of novel anti-HBV drugs. Here, we report the identification of N-(4-Nitrophenyl)-1-phenylethanone hydrazone (ANPH) as a novel structural class of selective inhibitors targeting the replication of the HBV genome using adenovirus vector-mediated HBV genome transduction. ANPH inhibited viral genome replication in HepG2.2.15 cells by inducing the formation of empty capsids devoid of pregenomic RNA without affecting its transcription and translation. Biochemical assays using a truncated core protein consisting of the assembly domain showed that ANPH accelerates the formation of morphologically intact capsids. Taken together, we propose that ANPH might provide a new structural scaffold to design a new anti-HBV drug in medicinal chemistry as well as chemical probes for HBV core protein functions in the future.
Collapse
Affiliation(s)
- Manabu Yamasaki
- Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo, Japan.
| | - Norie Matsuda
- Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo, Japan
| | - Kazuaki Matoba
- Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo, Japan
| | - Saki Kondo
- Laboratory of Molecular Genetics, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yumi Kanegae
- Laboratory of Molecular Genetics, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan; Core Research Facilities of Basic Science (Molecular Genetics), Research Center for Medical Science, Jikei University School of Medicine
| | - Izumu Saito
- Laboratory of Molecular Genetics, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Akio Nomoto
- Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
15
|
Chen X, Zhang Z, Chen Z, Li Y, Su S, Sun S. Potential Antifungal Targets Based on Glucose Metabolism Pathways of Candida albicans. Front Microbiol 2020; 11:296. [PMID: 32256459 PMCID: PMC7093590 DOI: 10.3389/fmicb.2020.00296] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/10/2020] [Indexed: 01/04/2023] Open
Abstract
In recent years, fungal infections have become a serious health problem. Candida albicans are considered as the fourth most common isolates associated with approximately 40% mortality in bloodstream infections among hospitalized patients. Due to various limitations of classical antifungals used currently, such as limited kinds of drugs, inevitable toxicities, and high price, there is an urgent need to explore new antifungal agents based on novel targets. Generally, nutrient metabolism is involved with fungal virulence, and glucose is one of the important nutrients in C. albicans. C. albicans can obtain and metabolize glucose through a variety of pathways; in theory, many enzymes in these pathways can be potential targets for developing new antifungal agents, and several studies have confirmed that compounds which interfere with alpha-glucosidase, acid trehalase, trehalose-6-phosphate synthase, class II fructose bisphosphate aldolases, and glucosamine-6-phosphate synthase in these pathways do have antifungal activities. In this review, the glucose metabolism pathways in C. albicans, the potential antifungal targets based on these pathways, and some compounds which have antifungal activities by inhibiting several enzymes in these pathways are summarized. We believe that our review will be helpful to the exploration of new antifungal drugs with novel antifungal targets.
Collapse
Affiliation(s)
- Xueqi Chen
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zewen Zhang
- Department of Imaging Medicine and Nuclear Medicine, Qilu Medical College, Shandong University, Jinan, China
| | - Zuozhong Chen
- Department of Pharmacy, Zibo Central Hospital, Zibo, China
| | - Yiman Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shan Su
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shujuan Sun
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
16
|
Ayna A, Moody PCE. Activity of fructose-1,6-bisphosphatase from Campylobacter jejuni. Biochem Cell Biol 2020; 98:518-524. [PMID: 32125881 DOI: 10.1139/bcb-2020-0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The glycolytic pathway of the enteric pathogen Campylobacter jejuni is incomplete; the absence of phosphofructokinase means that the suppression of futile cycling at this point in the glycolytic-gluconeogenic pathway might not be required, and therefore the mechanism for controlling pathway flux is likely to be quite different or absent. In this study, the characteristics of fructose-1,6-bisphosphatase (FBPase) of C. jejuni are described and the regulation of this enzyme is compared with the equivalent enzymes from organisms capable of glycolysis. The enzyme is insensitive to AMP inhibition, unlike other type I FBPases. Campylobacter jejuni FBPase also shows limited sensitivity to other glycolytic and gluconeogenic intermediates. The allosteric cooperative control of the enzyme's activity found in type I FBPases appears to have been lost.
Collapse
Affiliation(s)
- Adnan Ayna
- Department of Chemistry, Faculty of Sciences and Arts, Bingol University, 12000 Bingol, Turkey
| | - Peter C E Moody
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, UK
| |
Collapse
|
17
|
Li Z, Xiao X, Su C, Hu N, Nie C, Liu Y, Zhang D, Wang Z, Liao L. Synthesis of bipolar tetradentate ligand and determination of fructose 1,6-diphosphate by resonance light scattering of its supramolecular polymer. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-019-06947-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Méndez ST, Castillo-Villanueva A, Martínez-Mayorga K, Reyes-Vivas H, Oria-Hernández J. Structure-based identification of a potential non-catalytic binding site for rational drug design in the fructose 1,6-biphosphate aldolase from Giardia lamblia. Sci Rep 2019; 9:11779. [PMID: 31409864 PMCID: PMC6692403 DOI: 10.1038/s41598-019-48192-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Giardia lamblia is the causal agent of giardiasis, one of the most prevalent parasitosis in the world. Even though effective pharmacotherapies against this parasite are available, the disadvantages associated with its use call for the development of new antigiardial compounds. Based on the Giardia dependence on glycolysis as a main energy source, glycolytic enzymes appear to be attractive targets with antiparasitic potential. Among these, fructose 1,6-biphosphate aldolase (GlFBPA) has been highlighted as a promising target for drug design. Current efforts are based on the design of competitive inhibitors of GlFBPA; however, in the kinetic context of metabolic pathways, competitive inhibitors seem to have low potential as therapeutic agents. In this work, we performed an experimental and in silico structure-based approach to propose a non-catalytic binding site which could be used as a hot spot for antigardial drug design. The druggability of the selected binding site was experimentally tested; the alteration of the selected region by site directed mutagenesis disturbs the catalytic properties and the stability of the enzyme. A computational automated search of binding sites supported the potential of this region as functionally relevant. A preliminary docking study was performed, in order to explore the feasibility and type of molecules to be able to accommodate in the proposed binding region. Altogether, the results validate the proposed region as a specific molecular binding site with pharmacological potential.
Collapse
Affiliation(s)
- Sara-Teresa Méndez
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Alcaldía Coyoacán, CP 04530, Ciudad de México, Mexico
| | - Adriana Castillo-Villanueva
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Alcaldía Coyoacán, CP 04530, Ciudad de México, Mexico
| | - Karina Martínez-Mayorga
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Alcaldía Coyoacán, C.P. 04510, Ciudad de México, Mexico
| | - Horacio Reyes-Vivas
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Alcaldía Coyoacán, CP 04530, Ciudad de México, Mexico.
| | - Jesús Oria-Hernández
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Alcaldía Coyoacán, CP 04530, Ciudad de México, Mexico.
| |
Collapse
|
19
|
Qi R, Walker B, Jing Z, Yu M, Stancu G, Edupuganti R, Dalby KN, Ren P. Computational and Experimental Studies of Inhibitor Design for Aldolase A. J Phys Chem B 2019; 123:6034-6041. [PMID: 31268712 DOI: 10.1021/acs.jpcb.9b04551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glycolytic enzyme fructose-bisphosphate aldolase A is an emerging therapeutic target in cancer. Recently, we have solved the crystal structure of murine aldolase in complex with naphthalene-2,6-diyl bisphosphate (ND1) that served as a template of the design of bisphosphate-based inhibitors. In this work, a series of ND1 analogues containing difluoromethylene (-CF2), methylene (-CH2), or aldehyde substitutions were designed. All designed compounds were studied using molecular dynamics (MD) simulations with the AMOEBA force field. Both energetics and structural analyses have been done to understand the calculated binding free energies. The average distances between ligand and protein atoms for ND1 were very similar to those for the ND1 crystal structure, which indicates that our MD simulation is sampling the correct conformation well. CF2 insertion lowers the binding free energy by 10-15 kcal/mol, while CF2 substitution slightly increases the binding free energy, which matches the experimental measurement. In addition, we found that NDB with two CF2 insertions, the strongest binder, is entropically driven, while others including NDA with one CF2 insertion are all enthalpically driven. This work provides insights into the mechanisms underlying protein-phosphate binding and enhances the capability of applying computational and theoretical frameworks to model, predict, and design diagnostic strategies targeting cancer.
Collapse
Affiliation(s)
| | | | | | - Maiya Yu
- Department of Biochemistry and Mathematics , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | | | | | | | | |
Collapse
|
20
|
Fabino Carr A, Patel DC, Lopez D, Armstrong DW, Ryzhov V. Comparison of reversed-phase, anion-exchange, and hydrophilic interaction HPLC for the analysis of nucleotides involved in biological enzymatic pathways. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1587622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Allison Fabino Carr
- Department of Chemistry and Biochemistry, Northern Illinois University, Dekalb, IL, USA
| | - Darshan C. Patel
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, USA
- Process Research & Development, AbbVie Inc, North Chicago, IL, USA
| | - Diego Lopez
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, USA
- AZYP LLC, Arlington, TX, USA
| | - Daniel W. Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, USA
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry, Northern Illinois University, Dekalb, IL, USA
| |
Collapse
|
21
|
Semenyuta IV, Kobzar OL, Hodyna DM, Brovarets VS, Metelytsia LO. In silico study of 4-phosphorylated derivatives of 1,3-oxazole as inhibitors of Candida albicans fructose-1,6-bisphosphate aldolase II. Heliyon 2019; 5:e01462. [PMID: 31011642 PMCID: PMC6460381 DOI: 10.1016/j.heliyon.2019.e01462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/16/2019] [Accepted: 03/27/2019] [Indexed: 02/08/2023] Open
Abstract
In this study, the synthesis, in vitro anti-Candida activity and molecular modeling of 4-phosphorylated derivatives of 1,3-oxazole as inhibitors of Candida albicans fructose-1,6-bisphosphate aldolase (FBA-II) are demonstrated and discussed. Significant similarity of the primary and secondary structure, binding sites and active sites of FBA-II C. albicans and Mycobacterium tuberculosis are established. FBA-II C. albicans inhibitors contained 1,3-oxazole-4-phosphonates moiety are created by analogy to inhibitors FBA-II M. tuberculosis. The experimental studies of the anti-Candida activity of the designed and synthesized compounds have shown their high activity against standard strain and its C. albicans fluconazole resistant clinical isolate. It was hypothesized that the growth suppression of fluconazole-resistant С. albicans strain may be due to the inhibition of aldolase fructose-1,6-bisphosphate. A qualitative homology 3D model of the C. albicans FBA-II was created using SWISS-MODEL server. The probable mechanism of FBA-II inhibition by studied 4-phosphorylated derivatives was shown using molecular docking. The main role of amino acid residues His110, His226, Gly227, Leu248, Val238, Asp144, Lys230, Glu147, Gly227, Ala112, Leu145 and catalytic zinc atom in the formation of stable ligand-protein complexes with ΔG = -6.89, -7.2, -7.16, -7.5, -8.0, -7.9 kcal/mol was shown. Thus, the positive results obtained in the work were demonstrated the promise of using the proposed homology 3D model of the C. albicans FBA-II as the target for the search and development of new anti-Candida agents against azole-resistant fungal pathogens. Designed and studied 4-phosphorylated derivatives of 1,3-oxazole having a direct inhibiting FBA-II molecular mechanism of action can be used as perspective drug-candidates against resistant C. albicans strains.
Collapse
Affiliation(s)
- Ivan V. Semenyuta
- Department of Medical and Biological Researches, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Oleksandr L. Kobzar
- Department of Bioorganic Mechanisms, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Diana M. Hodyna
- Department of Medical and Biological Researches, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Volodymyr S. Brovarets
- Department of Chemistry of Bioactive Nitrogen Containing Heterocyclic Bases, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Larysa O. Metelytsia
- Department of Medical and Biological Researches, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
22
|
Xiao S, Wei L, Hong Z, Rao L, Ren Y, Wan J, Feng L. Design, synthesis and algicides activities of thiourea derivatives as the novel scaffold aldolase inhibitors. Bioorg Med Chem 2019; 27:805-812. [PMID: 30711311 DOI: 10.1016/j.bmc.2019.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/25/2022]
Abstract
By using a new Fragment-Based Virtual Screen strategy, two series of novel FBA-II inhibitors (thiourea derivatives) were de novo discovered based on the active site of fructose-1, 6-bisphosphate aldolase from Cyanobacterial (CyFBA). In comparison, most of the N-(2-benzoylhydrazine-1-carbonothioyl) benzamide derivatives (L14∼L22) exhibit higher CyFBA-II inhibitory activities compared to N-(phenylcarbamothioyl) benzamide derivatives (L1∼L13). Especially, compound L14 not only shows higher CyFBA-II activity (Ki = 0.65 μM), but also exhibits most potent in vivo activity against Synechocystis sp. PCC 6803 (EC50 = 0.09 ppm), higher (7-fold) than that of our previous inhibitor (EC50 = 0.6 ppm). The binding modes of compound L14 and CyFBA-II were further elucidated by jointly using DOX computational protocol, MM-PBSA and site-directed mutagenesis assays. The positive results suggest that strategy adopted in this study was promising to rapidly discovery the potent inhibitors with novel scaffolds. The satisfactory algicide activities suggest that the thiourea derivatives is very likely to be a promising lead for the development of novel specific algicides to solve Cyanobacterial harmful algal blooms (CHABs).
Collapse
Affiliation(s)
- Shan Xiao
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lin Wei
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zongqin Hong
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Li Rao
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanliang Ren
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Jian Wan
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Lingling Feng
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
23
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
24
|
Devi S, Saraswat M, Grewal S, Venkataramani S. Evaluation of Substituent Effect in Z-Isomer Stability of Arylazo-1H-3,5-dimethylpyrazoles: Interplay of Steric, Electronic Effects and Hydrogen Bonding. J Org Chem 2018; 83:4307-4322. [DOI: 10.1021/acs.joc.7b02604] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sudha Devi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S.A.S.Nagar, Manauli, 140306 Punjab, India
| | - Mayank Saraswat
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S.A.S.Nagar, Manauli, 140306 Punjab, India
| | - Surbhi Grewal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S.A.S.Nagar, Manauli, 140306 Punjab, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S.A.S.Nagar, Manauli, 140306 Punjab, India
| |
Collapse
|