1
|
Stopper D, Buntrock S, Tan K, de Carvalho LP, Schäker-Hübner L, Held J, Kassack MU, Hansen FK. Multicomponent syntheses enable the discovery of novel quisinostat-derived chemotypes as histone deacetylase inhibitors. Eur J Med Chem 2025; 281:117045. [PMID: 39549507 DOI: 10.1016/j.ejmech.2024.117045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
In this study, we synthesized and evaluated novel histone deacetylase (HDAC) inhibitors derived from the clinical candidate quisinostat. A library of 16 compounds categorized in three novel chemotypes was rapidly generated using multicomponent reactions (MCRs), enabling efficient structure-activity relationship studies. First, the compounds were evaluated for their activity against the Plasmodium falciparum strains 3D7 and Dd2, the main malaria-causing parasite, identifying compound 18b of the type C series as the most potent. It demonstrated low nanomolar IC50 values (IC50 (3D7) = 0.023 μM; IC50 (Dd2) = 0.047 μM) and high parasite selectivity (SIMRC-5/Pf3D7 > 2174). HDAC inhibition assays confirmed substantial inhibition of the P. falciparum enzyme PfHDAC1 (IC50 = 0.037 μM) as well as of human HDAC1 (IC50 = 0.021 μM) and HDAC6 (IC50 = 0.25 μM). Docking studies suggested distinct binding modes of 18b in P. falciparum and human HDAC1. Additionally, the in vitro anticancer activity was evaluated in Cal27 (head-neck carcinoma), HepG2 (hepatocellular carcinoma), A2780 (ovarian carcinoma), and U87 (glioblastoma) cell lines. Compounds 9b, 9d, and 13f showed potent antiproliferative activity and caspase 3/7 activation, in contrast to 18b. Furthermore, these compounds caused hyperacetylation of histone H3 and α-tubulin, indicating robust cellular target engagement. Overall, in this work we have identified the HDAC inhibitor 18b with selective antiplasmodial and 9b, 9d, and 13f with selective anticancer activities, providing valuable hits for further drug development efforts aimed at creating derivatives with reduced cytotoxicity against non-cancer cells compared to quisinostat.
Collapse
Affiliation(s)
- Daniel Stopper
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany
| | - Susanna Buntrock
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Kathrin Tan
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany
| | | | - Linda Schäker-Hübner
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, 72074, Tübingen, Germany; German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Finn K Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany.
| |
Collapse
|
2
|
Yang L, Ding R, Tong X, Shen T, Jia S, Yan X, Zhang C, Wu L. Discovery of cloxiquine derivatives as potent HDAC inhibitors for the treatment of melanoma via activating PPARγ. Eur J Med Chem 2025; 281:117029. [PMID: 39522492 DOI: 10.1016/j.ejmech.2024.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
The combined treatment with histone deacetylase (HDAC) inhibitors with peroxisome proliferator-activated receptor γ (PPARγ) agonists has displayed significant anticancer efficacy. Based on these results, a series of cloxiquine derivatives were prepared as potent HDAC inhibitors for the treatment of melanoma. Among these compounds, CS4 exhibited excellent inhibitory effects on HDAC1 (IC50 = 38 nM) and HDAC6 (IC50 = 12 nM), and had good antiproliferative effects against A375 and SK-MEL-5 melanoma cells (IC50 values, 1.20 and 0.93 μM, respectively). Mechanism research indicated that CS4 inhibited SK-MEL-5 cell growth by promoting α-tubulin and histone 3 (H3) acetylation. At the metabolic level, treatment with BG11 activated PPARγ and blocked glycolysis in SK-MEL-5 cells, which mediated partial antimelanoma effects of CS4. In addition, CS4 also induced cell cycle arrest at G2, suppressed migration and facilitated apoptosis of SK-MEL-5 cells. More importantly, compound CS4 demonstrated significant in vivo anticancer effect compared with SAHA, and exhibited neglectable toxicity. Consequently, CS4 is the potent HDAC inhibitor, which may be developed as the candidate antimelanoma drug.
Collapse
Affiliation(s)
- Limin Yang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ran Ding
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xiaojie Tong
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tong Shen
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Shuting Jia
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China; Jincheng People's Hospital, Jincheng, 048026, China
| | - Xiqing Yan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Chong Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Liqiang Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
3
|
Esther Rubavathy SM, Prakash M. Computational insights in repurposing a cardiovascular drug for Alzheimer's disease: the role of aromatic amino acids in stabilizing the drug through π-π stacking interaction. Phys Chem Chem Phys 2025; 27:1071-1082. [PMID: 39679694 DOI: 10.1039/d4cp03291h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Alzheimer's disease (AD) is a neurological condition that worsens over time and causes linguistic difficulties, cognitive decline, and memory loss. Since AD is a complicated, multifaceted illness, it is critical to identify drugs to combat this degenerative condition. Histone deacetylase 2 (HDAC2) represents a promising epigenetic target for neurodegenerative diseases. So, for this study, we chose HDAC2 as the targeted protein. Repurposing drugs has many advantages, including reduced costs and high profits. There is a lower probability of malfunction because the unique drug candidate has previously completed numerous investigations. In this study, we have taken 58 clinically approved food and drug administration (FDA) drugs utilized in clinical trials for AD. Molecular docking was carried out for the 58 compounds. The telmisartan drug has the highest binding score of -9.4 kcal mol-1. The angiotensin II receptor blocker (ARB) telmisartan has demonstrated some promise in AD research as of the last update in January 2022. However, its exact significance in treating or preventing AD is still being studied. Molecular dynamics (MD) and molecular mechanics with generalized born and surface area solvation (MM-GBSA)/interaction entropy (IE) calculations were carried out to study the structural stability of the complexes. Umbrella sampling (US) techniques are a cutting-edge drug development method to understand more about the interactions between protein and ligand. π-π stacking interactions play a major role in helping the ligand to bind in the zinc bounding domain of the protein. From these analyses, we conclude that telmisartan, which is a cardiovascular drug, is more potent than the other drugs to treat AD. The anti-inflammatory, neuroprotective, and blood-brain barrier-crossing qualities of telmisartan make it a promising therapeutic agent for AD; however, more research, including larger clinical trials, is needed to determine the drug's precise role in treating AD.
Collapse
Affiliation(s)
- S M Esther Rubavathy
- Computational Chemistry Research Laboratory (CCRL), Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur-603 203, Chengalpattu, Tamil Nadu, India.
| | - M Prakash
- Computational Chemistry Research Laboratory (CCRL), Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur-603 203, Chengalpattu, Tamil Nadu, India.
| |
Collapse
|
4
|
Cao Y, Yu T, Zhu Z, Zhang Y, Sun S, Li N, Gu C, Yang Y. Exploring the landscape of post-translational modification in drug discovery. Pharmacol Ther 2025; 265:108749. [PMID: 39557344 DOI: 10.1016/j.pharmthera.2024.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
Post-translational modifications (PTMs) play a crucial role in regulating protein function, and their dysregulation is frequently associated with various diseases. The emergence of epigenetic drugs targeting factors such as histone deacetylases (HDACs) and histone methyltransferase enhancers of zeste homolog 2 (EZH2) has led to a significant shift towards precision medicine, offering new possibilities to overcome the limitations of traditional therapeutics. In this review, we aim to systematically explore how small molecules modulate PTMs. We discuss the direct targeting of enzymes involved in PTM pathways, the modulation of substrate proteins, and the disruption of protein-enzyme interactions that govern PTM processes. Additionally, we delve into the emerging strategy of employing multifunctional molecules to precisely regulate the modification levels of proteins of interest (POIs). Furthermore, we examine the specific characteristics of these molecules, evaluating their therapeutic benefits and potential drawbacks. The goal of this review is to provide a comprehensive understanding of PTM-targeting strategies and their potential for personalized medicine, offering a forward-looking perspective on the evolution of precision therapeutics.
Collapse
Affiliation(s)
- Yuhao Cao
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianyi Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziang Zhu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanjiao Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ye Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
5
|
Ling L, Zhou G, Zhang X, Mao B, Wan S, Bao Y. A novel histone deacetylase inhibitor protects the blood-brain barrier by regulating NF-κB and Nrf2 signaling pathways in OGD/R injury. Arch Gerontol Geriatr 2024; 131:105739. [PMID: 39756186 DOI: 10.1016/j.archger.2024.105739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/16/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Ischemic stroke, a severe cerebrovascular disease, is particularly prevalent among the elderly. Rsearch has indicated that histone deacetylases (HDACs) are pivotal in the pathogenesis of ischemic stroke. We introduce a novel HDACs inhibitor, HDI-1, as a potential therapeutic strategy for this condition. Our study reveals that HDI-1 expedites the restoration of tight junction proteins, Occludin and Claudin-5, in the oxygen-glucose deprivation/reoxygenation (OGD/R) model using human cerebral microvascular endothelial cells (hCMEC/D3). Moreover, HDI-1 mitigates the impairment of cellular monolayer membrane permeability following injury. This effect may stem from HDI-1's ability to selectively suppress the enzymatic activity of HDAC2. By inhibiting the activation of the NF-κB pathway triggered by OGD/R injury, HDI-1 reduces the secretion of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, thereby diminishing the inflammatory response in hCMEC/D3 cells. Meanwhile, HDI-1 exhibits antioxidant properties by enhancing the Nrf2/HO-1 signaling pathway. Collectively, our findings propose HDI-1 as a promising candidate for ischemic stroke treatment.
Collapse
Affiliation(s)
- Lichao Ling
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, PR China
| | - Guoyang Zhou
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, PR China
| | - Xun Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Baojie Mao
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, PR China
| | - Shu Wan
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, PR China; Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, Zhejiang Province Engineering Research Center for Precision Medicine in Cerebrovascular Diseases, PR China.
| | - Yizhong Bao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang, 310013, PR China.
| |
Collapse
|
6
|
Ghosh R, Biswas S, Bagchi A, Chattopadhyay SK. Synthesis and Evaluation of 9- epi-Koshidacin B as Selective Inhibitor of Histone Deacetylase 1. JOURNAL OF NATURAL PRODUCTS 2024; 87:2757-2767. [PMID: 39655856 DOI: 10.1021/acs.jnatprod.4c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
A concise synthetic route to an epimer of the recently isolated biologically active cyclic tetrapeptide koshidacin B has been developed, which featured a late-stage functionalization of a macrocyclic scaffold through a cross metathesis reaction. The synthetic 9-epi-koshidacin B showed marginal differences in spectroscopic behavior with that of the natural product but exhibited conformational preferences similar to those reported for analogous substrate chlamydocin. Moreover, it exhibited a useful level of selective inhibition of biologically relevant enzyme histone deacetylase 1 with an IC50 value of 0.145 μM over two other isoforms. Docking studies indicate that the natural product as well as its 9-epimer binds very similarly to the active site of HDAC1 indicating little influence of the configuration of the C9-stereocenter.
Collapse
Affiliation(s)
- Rajat Ghosh
- Department of Chemistry, University of Kalyani, Kalyani 741235 West Bengal, India
| | - Sima Biswas
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235 West Bengal, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235 West Bengal, India
| | | |
Collapse
|
7
|
Wu K, Xu X, Wei W, Wen J, Hu H. c-JUN interacts with HDAC1 as a potential combinatorial therapeutic target in acute myeloid leukemia. Int Immunopharmacol 2024; 146:113927. [PMID: 39721452 DOI: 10.1016/j.intimp.2024.113927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Acute myeloid leukemia (AML) is a biologically heterogeneous disease originating from the clonal expansion of hematopoietic stem cells (HSCs). Clonal expansion of hematopoietic stem cell progenitors (HSC-Prog), along with a block in differentiation, are hallmark features of AML. The disease is characterized by poor clinical outcomes, highlighting the urgent need for effective therapeutic strategies and suitable drug targets. We conducted multi-omics analyses, including single-cell RNA sequencing (scRNA-seq), Mendelian randomization (MR), and bulk RNA-seq, to investigate HDAC1's oncogenic role in AML. We identified specific gene signatures at the single-cell level. MR with eQTL data established causal links, and TCGA-LAML RNA-seq provided prognostic insights. Analysis of cellular communication and transcription factors revealed high c-JUN activity in HSC-Prog. We confirmed the association of c-JUN with HDAC1 through Western blotting and Co-immunoprecipitation (Co-IP). Functional validation of c-JUN in AML cells was performed via flow cytometry in vitro. The effectiveness of drugs targeting c-JUN and HDAC1 was assessed in mouse models using live imaging methods like in vivo imaging system (IVIS) and iSMAART. We identified the activity of c-JUN is specifically enhanced in HSC-Prog in AML patients. We suggest a potential regulatory relationship between c-JUN and HDAC1 in AML tumor cells. Inhibition of c-JUN can suppress cell proliferation and CD33 expression in AML, enhancing susceptibility to natural killer (NK) cell-mediated cytotoxicity. The combination of agents targeting c-JUN (Ailanthone) and HDAC1 (Panobinostat) showed robust efficacy in treating AML in xenograft mouse models, outperforming monotherapy. We also observed that the combination of Ailanthone and Panobinostat therapy displayed a safe pharmacological profile without dose-dependent toxicity, suggesting its potential as a therapeutic strategy.
Collapse
Affiliation(s)
- Ke Wu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xiaoyu Xu
- Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wei Wei
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Jie Wen
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Haixi Hu
- Department of Scientific Research, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
8
|
Tinkov OV, Grigorev VY. HDAC3_VS_assistant: cheminformatics-driven discovery of histone deacetylase 3 inhibitors. Mol Divers 2024:10.1007/s11030-024-11066-6. [PMID: 39710831 DOI: 10.1007/s11030-024-11066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024]
Abstract
Histone deacetylase 3 (HDAC3) inhibitors keep significant therapeutic promise for treating oncological, neurodegenerative, and inflammatory diseases. In this work, we developed robust QSAR regression models for HDAC3 inhibitory activity and acute toxicity (LD50, intravenous administration in mice). A total of 1751 compounds were curated for HDAC3 activity, and 15,068 for toxicity. The models employed molecular descriptors such as Morgan fingerprints, MACCS-166 keys, and Klekota-Roth, PubChem fingerprints integrated with machine learning algorithms including random forest, gradient boosting regressor, and support vector machine. The HDAC3 QSAR models achieved Q2test values of up to 0.76 and RMSE values as low as 0.58, while toxicity models attained Q2test values of 0.63 and RMSE values down to 0.41, with applicability domain (AD) coverage exceeding 68%. Internal validation by fivefold cross-validation (Q2cv = 0.70 for HDAC3 and 0.60 for toxicity) and y-randomization confirmed model reliability. Shapley additive explanation (SHAP) was also used to explain the influence of modeling features on model prediction results. The most predictive QSAR models are integrated into the developed HDAC3_VS_assistant application, which is freely available at https://hdac3-vs-assistant-v2.streamlit.app/ . Virtual screening conducted using the HDAC3_VS_assistant web application allowed us to reveal a number of potential inhibitors, and the nature of their bonds with the active HDAC3 site was additionally investigated by molecular docking.
Collapse
Affiliation(s)
- Oleg V Tinkov
- Department of Pharmacology and Pharmaceutical Chemistry, Medical Faculty T.G. Shevchenko, Transdniestria State University, Tiraspol, 3300, Moldova.
| | - Veniamin Y Grigorev
- Institute of Physiologically Active Compounds Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia
| |
Collapse
|
9
|
Jawarkar RD, Mali S, Deshmukh PK, Ingle RG, Al-Hussain SA, Al-Mutairi AA, Zaki MEA. Synergizing GA-XGBoost and QSAR modeling: Breaking down activity aliffs in HDAC1 inhibitors. J Mol Graph Model 2024; 135:108915. [PMID: 39729811 DOI: 10.1016/j.jmgm.2024.108915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024]
Abstract
The work being presented now combines severe gradient boosting with Shapley values, a thriving merger within the field of explainable artificial intelligence. We also use a genetic algorithm to analyse the HDAC1 inhibitory activity of a broad pool of 1274 molecules experimentally reported for HDAC1 inhibition. We conduct this analysis to ascertain the HDAC1 inhibitory activity of these molecules. Based on a rigorous investigation of extreme gradient boosting, the proposed method suggests using a genetic algorithm to identify pharmacophoric features. The statistical acceptability of extreme gradient boosting analysis is robust, with parameters such as R2tr = 0.8797, R2L10 % = 0.8831, Q2F1 = 0.9459, Q2F2 = 0.9452, and Q2F3 = 0.9474. This is the driving force behind the invention of nine Py-descriptor-containing genetic algorithms. Shapley additive explanations formed the basis for the interpretation, assigning a significant value to each variable in the model. This is followed by the use of counterfactual cases to analyse the impact of the discovered molecular descriptors on HDAC1 inhibition. An examination of the molecular descriptors, which include acc_N_3B, fsp2NringC8B, fsp3NC7B, and sp2N_sp3C_3B, demonstrates that these descriptors provide insight into the function that the nitrogen atom plays in influencing HDAC1's inhibitory activity. Furthermore, the investigation shed light on the significant role that the hybridized carbon atoms located in sp2 and sp3 play in HDAC1 inhibition. Thus, the QSAR results are in conformity with the reported findings. In addition, activity cliff analysis supports the QSAR findings. Thus, the genetic algorithm-extreme gradient-boosting GA-XGBoost model is easy to understand and makes decent predictions. Based on this, it indicates that "explainable AI" may prove to be beneficial in the future for the purpose of identifying and using structural features in the process of medication development.
Collapse
Affiliation(s)
- Rahul D Jawarkar
- Department of Medicinal Chemistry, Dr. Rajendra Gode Institute of Pharmacy, University-Mardi Road, Ghatkheda Amravati, 444602, (M.S.) India.
| | - Suraj Mali
- School of Pharmacy, DY Patil Deemed to Be University Sector 7, Nerul, Navi Mumbai, 400706, India.
| | - Prashant K Deshmukh
- Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Nimbari Phata, Buldana Road, Malkapur, 443101, India.
| | - Rahul G Ingle
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (deemed to Be University), Sawangi (M), Wardha India.
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh,11623, Saudi Arabia.
| | - Aamal A Al-Mutairi
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh,11623, Saudi Arabia.
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh,11623, Saudi Arabia.
| |
Collapse
|
10
|
Zahn E, Xie Y, Liu X, Karki R, Searfoss RM, de Luna Vitorino FN, Lempiäinen JK, Gongora J, Lin Z, Zhao C, Yuan ZF, Garcia BA. Development of a high-throughput platform for quantitation of histone modifications on a new QTOF instrument. Mol Cell Proteomics 2024:100897. [PMID: 39708910 DOI: 10.1016/j.mcpro.2024.100897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
Histone post-translational modifications (PTMs) regulate gene expression patterns through epigenetic mechanisms. The 5 histone proteins (H1, H2A, H2B, H3, and H4) are extensively modified, with over 75 distinct modification types spanning more than 200 sites. Despite strong advances in mass spectrometry-based approaches, identification and quantification of modified histone peptides remains challenging due to factors such as isobaric peptides, pseudo-isobaric PTMs, and low stoichiometry of certain marks. Here we describe the development of a new high-throughput method to identify and quantify over 150 modified histone peptides by liquid chromatography-mass spectrometry (LC-MS). Fast gradient microflow liquid chromatography and variable window SWATH data-independent acquisition on a new quadrupole time-of-flight platform is compared to a previous method using nanoflow LC-MS on an Orbitrap hybrid. Histones extracted from cells treated with either a histone deacetylase inhibitor (HDACi) or TGF-beta 1 were analyzed by data-independent acquisition (DIA) on two mass spectrometers: an Orbitrap Exploris 240 with a 55-minute nanoflow LC gradient, and the SCIEX ZenoTOF 7600 with a 10-minute microflow gradient. To demonstrate the reproducibility and speed advantage of the method, 100 consecutive injections of one sample were performed in less than 2 days on the QTOF platform. The result is the comprehensive characterization of histone PTMs achieved in less than 20 minutes of total run time using only 200 ng of sample. Results for drug-treated histone samples are comparable to those produced by the previous method and can be achieved using less than one-third of the instrument time.
Collapse
Affiliation(s)
- Emily Zahn
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Yixuan Xie
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Xingyu Liu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Rashmi Karki
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Richard M Searfoss
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Francisca N de Luna Vitorino
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Joanna K Lempiäinen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Joanna Gongora
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Chenfeng Zhao
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Zuo-Fei Yuan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States.
| |
Collapse
|
11
|
Zhao Q, Liu H, Peng J, Niu H, Liu J, Xue H, Liu W, Liu X, Hao H, Zhang X, Wu J. HDAC8 as a target in drug discovery: Function, structure and design. Eur J Med Chem 2024; 280:116972. [PMID: 39427514 DOI: 10.1016/j.ejmech.2024.116972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Histone deacetylases (HDACs) have emerged as prominent therapeutic targets in drug discovery. Among the members of the HDAC family, HDAC8 exhibits distinct structural and physiological features from other members of the class Ⅰ HDACs. In addition to histones, numerous non-histone substrates such as structural maintenance of chromosomes 3 (SMC3), p53, estrogen-related receptor alpha (ERRα), etc., have been identified for HDAC8, suggesting the involvement of HDAC8 in diverse biological processes. Studies have demonstrated that HDAC8 plays essential roles in certain disease development, e.g., acute myeloid leukemia (AML), neuroblastoma, and X-Linked disorders. Despite several HDAC8 inhibitors have been discovered, only one compound has progressed to clinical studies. Recently, novel strategies targeting HDAC8 have emerged, including identifying innovative zinc-chelating groups (ZBG), developing multi-target drugs, and HDAC8 PROTACs. This review aims to summarize recent progress in developing new HDAC8 inhibitors that incorporate novel strategies and provide an overview of the clinical improvements associated with HDAC8 inhibitors.
Collapse
Affiliation(s)
- Qianlong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Hongyan Liu
- The People's Hospital of Zhaoyuan City, No. 168 Yingbin Road, Zhaoyuan, 265400, Shandong Province, PR China
| | - Jie Peng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Haoqian Niu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Jingqian Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Haoyu Xue
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Wenjia Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Xinyu Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Huabei Hao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Xinbo Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
12
|
Zhong X, Wu X, Zhou Y, Wu R, Yang J, Yin H, Meng H, Xie W, Liu G, Wang C, Bai P, Zhang W. PET imaging assist investigation of HDAC6 expression change in MDD and evaluating antidepressant efficacy of a newly developed HDAC6 inhibitor. Eur J Med Chem 2024; 280:116908. [PMID: 39366254 DOI: 10.1016/j.ejmech.2024.116908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024]
Abstract
The histone deacetylase 6 (HDAC6) is closely related to the pathogenesis of depression in epigenetic regulation. However, it remains unclear how HDAC6 expression changes in depression pathophysiology and whether it is a target for antidepressant treatment. Herein, we investigate the expression change of HDAC6 in major depressive disorder (MDD) and evaluate the efficacy of a novel HDAC6 inhibitor, PB200, using positron emission tomography (PET) imaging. PET imaging studies with an HDAC6 PET probe [18F]Bavarostat allied with in vitro experiments demonstrated significantly increased HDAC6 expression in the brains of MDD mice. To investigate if pharmacological inhibition of HDAC6 can exert antidepressant effects, a series of naphthyridine-based HDAC6 inhibitors were designed and synthesized, among which PB200 demonstrated high selectivity and inhibitory activity against HDAC6, favorable metabolic stability, and excellent brain uptake. Moreover, PB200 exhibited significant antidepressant effects by restoring abnormal HDAC6 expression level and alleviating neuroinflammation. These results imply that targeting HDAC6 shows promise as a therapeutic strategy for depression, and PB200 is a potential therapeutic option for treating MDD.
Collapse
Affiliation(s)
- Xiao Zhong
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yanting Zhou
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rui Wu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jingyi Yang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Honghai Yin
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hui Meng
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weiyao Xie
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Gang Liu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, United States
| | - Ping Bai
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Wei Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
13
|
Fischer F, Schliehe-Diecks J, Tu JW, Gangnus T, Ho YL, Hebeis M, Alves Avelar LA, Scharov K, Watrin T, Kemkes M, Stachura P, Daugs K, Biermann L, Kremeyer J, Horstick N, Span I, Pandyra AA, Borkhardt A, Gohlke H, Kassack MU, Burckhardt BB, Bhatia S, Kurz T. Deciphering the Therapeutic Potential of Novel Pentyloxyamide-Based Class I, IIb HDAC Inhibitors against Therapy-Resistant Leukemia. J Med Chem 2024; 67:21223-21250. [PMID: 39602240 DOI: 10.1021/acs.jmedchem.4c02024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Histone deacetylase inhibitors (HDACi) are established anticancer drugs, especially in hematological cancers. This study aimed to design, synthesize, and evaluate a set of HDACi featuring a pentyloxyamide connecting unit linker region and substituted phenylthiazole cap groups. A structural optimization program yielded HDACi with nanomolar inhibitory activity against histone deacetylase class I/IIb enzymes. The novel inhibitors (4d and 4m) showed superior antileukemic activity compared to several approved HDACi. Furthermore, 4d and 4m displayed synergistic activity when combined with chemotherapeutics, decitabine, and clofarabine. In vitro pharmacokinetic studies showed the most promising profile for 4d with intermediate microsomal stability, excellent plasma stability, and concentration-independent plasma protein binding. Additionally, 4d demonstrated comparable in vivo pharmacokinetics to vorinostat. When administered in vivo, 4d effectively inhibited the proliferation of leukemia cells without causing toxicity. Furthermore, the binding modes of 4d and 4m to the catalytic domain 2 of HDAC6 from Danio rerio were determined by X-ray crystallography.
Collapse
Affiliation(s)
- Fabian Fischer
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jia-Wey Tu
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Tanja Gangnus
- Individualized Pharmacotherapy, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, 48149 Münster, Germany
| | - Yu Lin Ho
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Mara Hebeis
- Bioinorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany
| | - Leandro A Alves Avelar
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Katerina Scharov
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Titus Watrin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Marie Kemkes
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Pawel Stachura
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Katharina Daugs
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lukas Biermann
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Josefa Kremeyer
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nadine Horstick
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ingrid Span
- Bioinorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany
| | - Aleksandra A Pandyra
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Bjoern B Burckhardt
- Individualized Pharmacotherapy, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, 48149 Münster, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
14
|
Zhu D, Pan Y, Yang Y, Wang S. Regulation of the Cilia as a Potential Treatment for Senescence and Tumors: A Review. J Cell Physiol 2024:e31499. [PMID: 39660388 DOI: 10.1002/jcp.31499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
Millions of people worldwide die from malignant tumors every year, and the current clinical treatment is still based on radiotherapy and chemotherapy. Immunotherapy-adjuvant chemotherapy is widely applied, yet resistance to various factors persists in the management of advanced malignancies. Recently researchers have gradually discovered that the integrity of primary cilia is closely related to many diseases. The phenotypic changes in primary cilia are found in some cases of progeria, tumorigenesis, and drug resistance. Primary cilia seem to mediate signaling during these diseases. Hedgehog inhibitors have emerged in recent years to treat tumors by controlling signaling proteins on primary cilia. There is evidence for the use of anti-tumor drugs to treat senescence-related disease. Considering the close relationship between aging and obesity, as well as the obesity is the phenotype of many ciliopathies. Therefore, we speculate that some anti-tumor or anti-aging drugs can treat ciliopathies. Additionally, there is evidence suggesting that anti-aging drugs for tumor treatment, in which the process may be mediated by cilia. This review elucidates for the first time that cilia may be involved in the regulation of senescence, metabolic, tumorigenesis, and tumor resistance and hypothesizes that cilia can be regulated to treat these diseases in the future.
Collapse
Affiliation(s)
- Danping Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuqin Pan
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong Yang
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shukui Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Gautam N, Chapagain PP, Adhikari NP, Tiwari PB. Characterization of molecular interactions between HDAC7 and MEF2A. J Biomol Struct Dyn 2024:1-10. [PMID: 39660765 DOI: 10.1080/07391102.2024.2437523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/17/2024] [Indexed: 12/12/2024]
Abstract
Interactions of transcriptional corepressors such as histone deacetylase 7 (HDAC7), a class IIa HDAC, with myocyte enhancer factor-2 (MEF2) regulate MEF2 activity. Despite previous investigations exploring interactions between HDAC7 and MEF2, a detailed characterization of the HDAC7-MEF2 functional complex is still lacking. Herein, we first modeled the structure of the HDAC7-MEF2A complex and investigated the inter-protein interactions using all-atom molecular dynamics (MD) simulations. We identified specific amino acids within HDAC7 and MEF2A that participate in interactions such as salt bridges, hydrogen bonds, and hydrophobic interactions. Our results reveal a salt bridge formed between LYS96(HDAC7) and ASP63(MEF2A). Our analysis also predicted formations of reliable hydrogen bonds between SER82(HDAC7) and ASP63(MEF2A) as well as LYS96(HDAC7) and ASP63(MEF2A). In addition, clustering of hydrophobic residues at the interface contributes in stabilizing the HDAC7-MEF2A complex. Results from multiple sequence alignment show that most of the HDAC7 residues that are predicted to associate with MEF2A are conserved in at least three class IIa HDACs and all predicted residues in MEF2A are conserved in MEF2s. We also found that the association of DNA to MEF2A has no significant effect on HDAC7-MEF2A interactions. Our results may also provide useful insights into the interactions between other class IIa HDACs and MEF2s.
Collapse
Affiliation(s)
- Narayan Gautam
- Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu, Nepal
- Tri-Chandra Multiple Campus, Tribhuvan University, Ghantaghar, Kathmandu, Nepal
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Narayan P Adhikari
- Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | | |
Collapse
|
16
|
Gerogiannopoulou ADD, Mountanea OG, Routsi EA, Tzeli D, Kokotos CG, Kokotos G. Electron Donor-Acceptor Complex-Assisted Photochemical Conversion of O-2-Nitrobenzyl Protected Hydroxamates to Amides. Chemistry 2024; 30:e202402984. [PMID: 39343744 DOI: 10.1002/chem.202402984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The hydroxamic acid functionality is present in various medicinal agents and has attracted special interest for synthetic transformations in both organic and medicinal chemistry. The N-O bond cleavage of hydroxamic acid derivatives provides an interesting transformation for the generation of various products. We demonstrate, herein, that O-benzyl-type protected hydroxamic acids may undergo photochemical N-O bond cleavage, in the presence or absence of a catalyst, leading to amides. Although some O-benzyl protected aromatic hydroxamates may be photochemically converted to amides in the presence of a base and anthracene as the catalyst, employing O-2-nitrobenzyl group allowed the smooth conversion of both aliphatic and aromatic hydroxamates to primary or secondary amides in good to excellent yields in the presence of an amine, bypassing the need of a catalyst. DFT and UV-Vis studies supported the effective generation of an electron donor-acceptor (EDA) complex between O-2-nitrobenzyl hydroxamates and amines, which enabled the successful product formation under these photochemical conditions. An extensive substrate scope was demonstrated, showcasing that both aliphatic and aromatic hydroxamates are compatible with this protocol, affording a wide variety of primary and secondary amides.
Collapse
Affiliation(s)
- Anna-Dimitra D Gerogiannopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Olga G Mountanea
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - E Alexandros Routsi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, 15771, Greece
| |
Collapse
|
17
|
Luo M, Jiang Z, Wang P, Chen Y, Chen A, Wei B. HDAC1-mediated regulation of KDM1A in pemphigus vulgaris: unlocking mechanisms on ERK pathway activation and cohesion loss. Hum Mol Genet 2024; 33:2133-2144. [PMID: 39471311 DOI: 10.1093/hmg/ddae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 11/01/2024] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune skin disorder characterized by the loss of cell cohesion, with the histone deacetylase 1 (HDAC1) and lysine demethylase 1A (KDM1A) playing critical roles in its pathogenesis. This study aimed to elucidate the molecular mechanisms behind PV, focusing on the function of HDAC1 and KDM1A in disease onset and progression. Based on in vitro and in vivo PV models, we observed a significant increase in HDAC1 mRNA and protein levels in skin tissues of PV patients. Inhibition of HDAC1 ameliorated cell damage and reduced the loss of cell cohesion in human epidermal keratinocytes (HEKs) induced by PV-IgG. Our findings suggest that HDAC1 regulates KDM1A expression through deacetylation, with a notable deficiency in KDM1A expression in PV. Overexpression of KDM1A mitigated cell damage and cohesion loss. The extracellular signal-regulated kinase (ERK) pathway serves as a downstream executor of the HDAC1/KDM1A axis. Inhibiting HDAC1 and increasing KDM1A expression suppressed ERK phosphorylation, reducing PV-related apoptosis. These insights provide a new perspective on treating PV, highlighting the therapeutic potential of targeting HDAC1 expression. The regulatory mechanism of the HDAC1/KDM1A/ERK axis offers crucial clues for understanding PV pathogenesis and developing novel treatments.
Collapse
Affiliation(s)
- Mao Luo
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Ziqi Jiang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Ping Wang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Yangmei Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Aijun Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Bin Wei
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| |
Collapse
|
18
|
Chang Y, Li X, Zhou Y, Yang X, Zhao W, Fang H, Hou X. Simultaneous inhibition of FLT3 and HDAC by novel 6-ethylpyrazine-2-Carboxamide derivatives provides therapeutic advantages in acute myelocytic leukemia. Eur J Med Chem 2024; 279:116847. [PMID: 39265252 DOI: 10.1016/j.ejmech.2024.116847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
Synergetic inhibition of FMS-like tyrosine kinase 3 (FLT3) and histone deacetylase (HDAC) by small molecule chimera presents a promising therapeutic approach for acute myeloid leukemia (AML) with FLT3 mutations. In this study, we first observed that the combined use of FLT3 inhibitor gilteritinib and HDAC inhibitor vorinostat increased the survival rate of leukemia xenograft mouse model. Then, we employed a pharmacophore fusion strategy to develop a novel series of FLT3/HDAC dual inhibitors. Among them, compound 25h demonstrated superior inhibitory activity against both FLT3 and HDAC. In particular, compound 25h exhibited enhanced anti-proliferation activity against MOLM-13 cells in comparison to gilteritinib, vorinostat, and their combination, while maintaining reduced cytotoxicity towards normal cells. Mechanistically, the heightened anti-tumor effect of compound 25h was attributed to its more potent regulation of intracellular pathways, notably phosphorylation of ERK, compared to single drug and combination treatments. Furthermore, compound 25h demonstrated superior anti-tumor efficacy in the MOLM-13 xenograft model compared to combination therapy, along with reduced in vivo toxicity. To conclude, we have identified a novel FLT3/HDAC dual inhibitor that could serve as a potential candidate for the treatment of AML.
Collapse
MESH Headings
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/metabolism
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Animals
- Cell Proliferation/drug effects
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylase Inhibitors/chemistry
- Histone Deacetylase Inhibitors/chemical synthesis
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Mice
- Histone Deacetylases/metabolism
- Structure-Activity Relationship
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/chemical synthesis
- Molecular Structure
- Pyrazines/pharmacology
- Pyrazines/chemistry
- Pyrazines/chemical synthesis
- Drug Screening Assays, Antitumor
- Dose-Response Relationship, Drug
- Cell Line, Tumor
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/metabolism
Collapse
Affiliation(s)
- Yingjie Chang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong, PR China
| | - Xue Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong, PR China
| | - Yue Zhou
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong, PR China
| | - Xinying Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong, PR China
| | - Wei Zhao
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong, PR China.
| | - Hao Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong, PR China.
| | - Xuben Hou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
19
|
Ritika, Liao ZY, Chen PY, Rao NV, Mathew J, Sharma R, Grewal AS, Singh G, Mehan S, Liou JP, Pan CH, Nepali K. Rationally designed febuxostat-based hydroxamic acid and its pH-Responsive nanoformulation elicits anti-tumor activity. Eur J Med Chem 2024; 279:116866. [PMID: 39293244 DOI: 10.1016/j.ejmech.2024.116866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
Attempts to furnish antitumor structural templates that can prevent the occurrence of drug-induced hyperuricemia spurred us to generate xanthine oxidase inhibitor-based hydroxamic acids and anilides. Specifically, the design strategy involved the insertion of febuxostat (xanthine oxidase inhibitor) as a surface recognition part of the HDAC inhibitor pharmacophore model. Investigation outcomes revealed that hydroxamic acid 4 elicited remarkable antileukemic effects mediated via HDAC isoform inhibition. Delightfully, the adduct retained xanthine oxidase inhibitory activity, though xanthine oxidase inhibition was not the underlying mechanism of its cell growth inhibitory effects. Also, compound 4 demonstrated significant in-vivo anti-hyperuricemic (PO-induced hyperuricemia model) and antitumor activity in an HL-60 xenograft mice model. Compound 4 was conjugated with poly (ethylene glycol) poly(aspartic acid) block copolymer to furnish pH-responsive nanoparticles (NPs) in pursuit of circumventing its cytotoxicity towards the normal cell lines. SEM analysis revealed that NPs had uniform size distributions, while TEM analysis ascertained the spherical shape of NPs, indicating their ability to undergo self-assembly. HDAC inhibitor 4 was liberated from the matrix due to the polymeric nanoformulation's pH-responsiveness, and the NPs demonstrated selective cancer cell targeting ability.
Collapse
Affiliation(s)
- Ritika
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Zi-Yi Liao
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Pin-Yu Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - N Vijayakamasewara Rao
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Jacob Mathew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Ajmer Singh Grewal
- Department of Pharmaceutical Sciences, Guru Gobind Singh College of Pharmacy, Near Guru Nanak Khalsa College, Yamuna Nagar, 135001, Haryana, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India; Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Chun Hsu Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| |
Collapse
|
20
|
Aparecida Dos Santos France F, Maeda DK, Rodrigues AB, Ono M, Lopes Nogueira Marchetti F, Marchetti MM, Faustino Martins AC, Gomes RDS, Rainho CA. Exploring fatty acids from royal jelly as a source of histone deacetylase inhibitors: from the hive to applications in human well-being and health. Epigenetics 2024; 19:2400423. [PMID: 39255363 PMCID: PMC11404605 DOI: 10.1080/15592294.2024.2400423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
A differential diet with royal jelly (RJ) during early larval development in honeybees shapes the phenotype, which is probably mediated by epigenetic regulation of gene expression. Evidence indicates that small molecules in RJ can modulate gene expression in mammalian cells, such as the fatty acid 10-hydroxy-2-decenoic acid (10-HDA), previously associated with the inhibition of histone deacetylase enzymes (HDACs). Therefore, we combined computational (molecular docking simulations) and experimental approaches for the screening of potential HDAC inhibitors (HDACi) among 32 RJ-derived fatty acids. Biochemical assays and gene expression analyses (Reverse Transcriptase - quantitative Polymerase Chain Reaction) were performed to evaluate the functional effects of the major RJ fatty acids, 10-HDA and 10-HDAA (10-hydroxy-decanoic acid), in two human cancer cell lines (HCT116 and MDA-MB-231). The molecular docking simulations indicate that these fatty acids might interact with class I HDACs, specifically with the catalytic domain of human HDAC2, likewise well-known HDAC inhibitors (HDACi) such as SAHA (suberoylanilide hydroxamic acid) and TSA (Trichostatin A). In addition, the combined treatment with 10-HDA and 10-HDAA inhibits the activity of human nuclear HDACs and leads to a slight increase in the expression of HDAC-coding genes in cancer cells. Our findings indicate that royal jelly fatty acids collectively contribute to HDAC inhibition and that 10-HDA and 10-HDAA are weak HDACi that facilitate the acetylation of lysine residues of chromatin, triggering an increase in gene expression levels in cancer cells.
Collapse
Affiliation(s)
| | - Debora Kazumi Maeda
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Ana Beatriz Rodrigues
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Mai Ono
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Franciele Lopes Nogueira Marchetti
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marcos Martins Marchetti
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | | | - Cláudia Aparecida Rainho
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
21
|
Sethy B, Upadhyay R, Narwanti I, Yu ZY, Lee SB, Liou JP. Novel dual inhibitor targeting CDC25 and HDAC for treating triple-negative breast cancer. Apoptosis 2024; 29:2047-2073. [PMID: 39395083 PMCID: PMC11550225 DOI: 10.1007/s10495-024-02023-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/14/2024]
Abstract
Triple-negative breast cancer (TNBC) presents a significant challenge for treatment due to its aggressive nature and the lack of effective therapies. This study developed dual inhibitors against cell division cycle 25 (CDC25) and histone deacetylases (HDACs) for TNBC treatment. CDC25 phosphatases are crucial for activating cyclin-dependent kinases (CDKs), the master regulators of cell cycle progression. HDACs regulate various biological processes by deacetylating histone and non-histone proteins, affecting gene expression, chromatin structure, cell differentiation, and proliferation. Dysregulations of HDAC and CDC25 are associated with several human malignancies. We generated a group of dual inhibitors for CDC25 and HDAC by combining the molecular structures of CDC25 (quinoline-5,8-dione) and HDAC (hydroxamic acid or benzamide) pharmacophores. The newly developed compounds were evaluated against various solid-tumor, leukemia, and non-malignant breast epithelial cells. Among the synthesized compounds, 18A emerged as a potent inhibitor, demonstrating significant cytotoxicity against TNBC cells, superior to its effects on other cancer types while sparing non-malignant cells. 18A possessed similar HDAC inhibitory activity as MS-275 and potently suppressed CDC25 activity in vitro and the CDK1 dephosphorylation in cells. Additionally, 18A hindered the progression of S and G2/M phases, triggered DNA damage, and induced apoptosis. These findings underscore the potential of 18A as a targeted therapy for TNBC and warrants further preclinical development.
Collapse
Affiliation(s)
- Bidyadhar Sethy
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Richa Upadhyay
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Iin Narwanti
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
| | - Zih-Yao Yu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Sung-Bau Lee
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
22
|
Wu R, Li P, Hao B, Fredimoses M, Ge Y, Zhou Y, Tang L, Li Y, Liu H, Janson V, Hu Y, Liu H. Design, synthesis, and biological evaluation of novel 5,7,4'-trimethoxyflavone sulfonamide-based derivatives as highly potent inhibitors of LRPPRC/STAT3/CDK1. Bioorg Chem 2024; 153:107878. [PMID: 39395319 DOI: 10.1016/j.bioorg.2024.107878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Leucine-rich pentatricopeptide repeat-containing protein (LRPPRC), signal transducer and activator of transcription 3 (STAT3), and cyclin-dependent kinase 1 (CDK1) are promising therapeutic targets for cancer treatment. However, there is a lack of effective inhibitors of LRPPRC, STAT3, and CDK1 in clinic. Our previous study has proved that 5,7,4'-Trimethoxyflavone (TMF) is a novel inhibitor of LRPPRC/STAT3/CDK1. However, the extraction rate of TMF from Tangerine Peel is quite low, and the doses of TMF in cells and mice are rather high. Herein, structural modifications of TMF have led to two series of TMF derivatives including sulfonamide substituted at 3'-position (7a-m) and 3',8-position (11a-m). Among all compounds, 7e, 7k, 11e, and 11g exhibited as effective, broad-spectrum, and potent anticancer agents in vitro. Moreover, 7e, 7k, 11e, and 11g showed better antitumor effects than TMF and clinical used chemotherapy drug capecitabine in vivo with no obvious toxicity. Mechanism studies showed that 11g could bind to LRPPRC, STAT3, and CDK1 to disassociate the LRPPRC-JAK2-STAT3 and JAK2-STAT3-CDK1 complexes, resulting in suppression of JAK2/STAT3 signaling pathway. These findings suggest that 11g may serve as a leading compound for cancer therapy as a triple-target (LRPPRC, STAT3, and CDK1) inhibitor.
Collapse
Affiliation(s)
- Rui Wu
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Pan Li
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China.
| | - Bingbing Hao
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Mangaladoss Fredimoses
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China
| | - Yunxiao Ge
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yubing Zhou
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lin Tang
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yuanying Li
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hangrui Liu
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Victor Janson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Yamei Hu
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China; Department of Clinical Research and Translational Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hui Liu
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
23
|
Hsu KC, Huang YY, Chu JC, Huang YW, Hu JL, Lin TE, Yen SC, Weng JR, Huang WJ. Synthesis and biological evaluation of ortho-phenyl phenylhydroxamic acids containing phenothiazine with improved selectivity for class IIa histone deacetylases. J Enzyme Inhib Med Chem 2024; 39:2406025. [PMID: 39316378 PMCID: PMC11423540 DOI: 10.1080/14756366.2024.2406025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Class IIa histone deacetylases (HDACs) have been linked to tumorigenesis in various cancers. Previously, we designed phenylhydroxamic acid LH4f as a potent class IIa HDAC inhibitor. However, it also unselectively inhibited class I and class IIb HDACs. To enhance the compound's selectivity towards class IIa HDACs, the ortho-phenyl group from the selective HDAC7 inhibitor 1 is incorporated into ortho position of the phenylhydroxamic acid in LH4f. Compared to LH4f, most resulting compounds displayed substantially improved selectivity towards the class IIa HDACs. Notably, compound 7 g exhibited the strongest HDAC9 inhibition with an IC50 value of 40 nM. Molecular modelling further identified the key interactions of compound 7 g bound to HDAC9. Compound 7 g significantly inhibited several human cancer cells, induced apoptosis, modulated caspase-related proteins as well as p38, and caused DNA damage. These findings suggest the potential of class IIa HDAC inhibitors as lead compounds for the development of cancer therapeutics.
Collapse
Affiliation(s)
- Kai-Cheng Hsu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yun-Yi Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jung-Chun Chu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Huang
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing-Lan Hu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shih-Chung Yen
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, China
| | - Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wei-Jan Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
24
|
Jang JH, Kim JY, Lee TJ. Recent advances in anticancer mechanisms of molecular glue degraders: focus on RBM39-dgrading synthetic sulfonamide such as indisulam, E7820, tasisulam, and chloroquinoxaline sulfonamide. Genes Genomics 2024; 46:1345-1361. [PMID: 39271535 DOI: 10.1007/s13258-024-01565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Synthetic sulfonamide anticancer drugs, including E7820, indisulam, tasisulam, and chloroquinoxaline sulfonamide, exhibit diverse mechanisms of action and therapeutic potential, functioning as molecular glue degraders. E7820 targets RBM39, affecting RNA splicing and angiogenesis by suppressing integrin α2. Phase I studies have demonstrated some stability in advanced solid malignancies; however, further efficacy studies are required. Indisulam causes G1 cell cycle arrest and delays the G1/S transition by modulating splicing through RBM39 degradation via DCAF15. Despite its limited initial efficacy, it shows promise in combination therapies, particularly for hematopoietic malignancies and gliomas. Tasisulam inhibits VEGF signaling, suppresses angiogenesis, and induces apoptosis. Although early trials indicated broad activity, safety concerns have halted its development. Chloroquinoxaline sulfonamide, initially investigated for cell cycle arrest and topoisomerase II inhibition, was discontinued owing to its limited efficacy and toxicity, despite promising initial results. Recent studies revealed the structural interaction of E7820 with DCAF15 and RBM39, although phase II trials on myeloid malignancies have shown limited efficacy. Indisulam is effective against glioblastoma and neuroblastoma, with potential synergy in combination therapies and metabolic disruption. Recent research on tasisulam reveals its potential in cancer therapy by targeting RBM39 degradation through DCAF15-mediated pathways. Understanding these mechanisms could lead to new treatments that affect alternative splicing and improve cancer therapies Overall, although these drugs exhibit promising mechanisms of action, further research is required to optimize their clinical efficacy and safety.
Collapse
Affiliation(s)
- Ji Hoon Jang
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, Republic of Korea
| | - Joo-Young Kim
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, Republic of Korea
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415, Republic of Korea.
| |
Collapse
|
25
|
Lei K, Wu R, Wang J, Lei X, Zhou E, Fan R, Gong L. Sirtuins as Potential Targets for Neuroprotection: Mechanisms of Early Brain Injury Induced by Subarachnoid Hemorrhage. Transl Stroke Res 2024; 15:1017-1034. [PMID: 37779164 PMCID: PMC11522081 DOI: 10.1007/s12975-023-01191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a prevalent cerebrovascular disease with significant global mortality and morbidity rates. Despite advancements in pharmacological and surgical approaches, the quality of life for SAH survivors has not shown substantial improvement. Traditionally, vasospasm has been considered a primary contributor to death and disability following SAH, but anti-vasospastic therapies have not demonstrated significant benefits for SAH patients' prognosis. Emerging studies suggest that early brain injury (EBI) may play a crucial role in influencing SAH prognosis. Sirtuins (SIRTs), a group of NAD + -dependent deacylases comprising seven mammalian family members (SIRT1 to SIRT7), have been found to be involved in neural tissue development, plasticity, and aging. They also exhibit vital functions in various central nervous system (CNS) processes, including cognition, pain perception, mood, behavior, sleep, and circadian rhythms. Extensive research has uncovered the multifaceted roles of SIRTs in CNS disorders, offering insights into potential markers for pathological processes and promising therapeutic targets (such as SIRT1 activators and SIRT2 inhibitors). In this article, we provide an overview of recent research progress on the application of SIRTs in subarachnoid hemorrhage and explore their underlying mechanisms of action.
Collapse
Affiliation(s)
- Kunqian Lei
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Rui Wu
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Jin Wang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Xianze Lei
- Department of Neurology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Erxiong Zhou
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Ruiming Fan
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China.
| | - Lei Gong
- Department of Pharmacy, Institute of Medical Biotechnology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China.
| |
Collapse
|
26
|
Xu Z, Ye C, Wang X, Kong R, Chen Z, Shi J, Chen X, Liu S. Design and synthesis of triazolopyridine derivatives as potent JAK/HDAC dual inhibitors with broad-spectrum antiproliferative activity. J Enzyme Inhib Med Chem 2024; 39:2409771. [PMID: 39377432 PMCID: PMC11463018 DOI: 10.1080/14756366.2024.2409771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
A series of triazolopyridine-based dual JAK/HDAC inhibitors were rationally designed and synthesised by merging different pharmacophores into one molecule. All triazolopyridine derivatives exhibited potent inhibitory activities against both targets and the best compound 4-(((5-(benzo[d][1, 3]dioxol-5-yl)-[1, 2, 4]triazolo[1, 5-a]pyridin-2-yl)amino)methyl)-N-hydroxybenzamide (19) was dug out. 19 was proved to be a pan-HDAC and JAK1/2 dual inhibitor and displayed high cytotoxicity against two cancer cell lines MDA-MB-231 and RPMI-8226 with IC50 values in submicromolar range. Docking simulation revealed that 19 fitted well into the active sites of HDAC and JAK proteins. Moreover, 19 exhibited better metabolic stability in vitro than SAHA. Our study demonstrated that compound 19 was a promising candidate for further preclinical studies.
Collapse
Affiliation(s)
- Zhengshui Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- Key Laboratory of Surgery Critical Care and Life Support, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| | - Changchun Ye
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| | - Xingjie Wang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| | - Ranran Kong
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| | - Zilu Chen
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Jing Shi
- Department of Respiratory and Endocrinology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| | - Xin Chen
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, P. R. China
| | - Shiyuan Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- Key Laboratory of Surgery Critical Care and Life Support, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| |
Collapse
|
27
|
Mao C, Fang J, Zou S, Huang Y, Chen X, Ding X, Fang Z, Zhang N, Lou Y, Chen Z, Ding W, Ma Z. Discovery of the First-in-Class Dual-Target ROCK/HDAC Inhibitor with Potent Antitumor Efficacy in Vivo That Trigger Antitumor Immunity. J Med Chem 2024; 67:20619-20638. [PMID: 39523548 DOI: 10.1021/acs.jmedchem.4c02183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Triple-negative breast cancer (TNBC) represents a highly aggressive and heterogeneous malignancy. Currently, multitarget drug approaches present a promising therapeutic approach for TNBC. Utilizing a combinatorial chemistry strategy to construct a virtual screening database, dual ROCK/HDAC-targeting benzothiophene compounds were identified. Notably, compound 10h effectively inhibits ROCK1/2 and HDAC1/2/3/6/8 while demonstrating potent antiproliferative activity against breast cancer cells. In an orthotopic mouse model of breast cancer, 10h significantly suppressed tumor growth without apparent toxicity. Importantly, 10h induced immunogenic cell death (ICD), promoted dendritic cells (DCs) maturation, and activated T cells, thereby initiating antitumor immunity. In conclusion, compound 10h is a novel dual-target ROCK/HDAC inhibitor that represents a promising treatment strategy for TNBC.
Collapse
Affiliation(s)
- Churu Mao
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Jiebin Fang
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Shijie Zou
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Yun Huang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Xiaoming Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Xia Ding
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Zhangyun Fang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Ningjing Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Yijie Lou
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhe Chen
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wanjing Ding
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Zhongjun Ma
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| |
Collapse
|
28
|
Zhu HJ, Zhou HM, Zhou XX, Li SJ, Zheng MJ, Xu Z, Dai WJ, Ban YB, Zhang MY, Zhang YZ, Lu JR, Xu YT, Wang SQ, Shi XJ, Duan YC. Discovery of Novel 5-Cyano-3-phenylindole-Based LSD1/HDAC Dual Inhibitors for Colorectal Cancer Treatment. J Med Chem 2024; 67:20172-20202. [PMID: 39540222 DOI: 10.1021/acs.jmedchem.4c01524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The dual inhibition of histone lysine-specific demethylase 1 (LSD1) and histone deacetylase (HDAC) has emerged as a promising strategy for cancer therapy. In this study, we report the discovery of novel 5-cyano-3-phenylindole-based LSD1/HDAC dual inhibitors, evaluated through both in vitro and in vivo assays. Among these inhibitors, compound 20c was identified as particularly potent, exhibiting high inhibitory activity against LSD1 (IC50 = 39.0 nM) and HDAC1/2/3/6/8 (IC50 = 1.4, 1.0, 1.3, 2.9, and 16.0 nM, respectively). Compound 20c effectively modulated the expression of biomarkers associated with LSD1 and HDAC inhibition and demonstrated superior antiproliferative activity compared to SAHA and 4SC-202 across multiple colorectal cancer cell lines. Following pharmacokinetic studies, 20c was further assessed in HCT-116 and HT-29 xenograft mouse models. It demonstrated significantly enhanced antitumor efficacy compared to SAHA, without causing observable toxicity. These findings highlight the potential of LSD1/HDAC dual inhibitors for the treatment of malignant cancers.
Collapse
Affiliation(s)
- Hui-Juan Zhu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Hui-Min Zhou
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Xiao-Xiao Zhou
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Shi-Jie Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Meng-Jie Zheng
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Zhen Xu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Wen-Jing Dai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Yi-Bo Ban
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Meng-Yao Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Yi-Zhe Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Jia-Rui Lu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Yong-Tao Xu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Sai-Qi Wang
- Department of Oncology, Henan Province Engineering Research Center for of Intractable Digestive Tract Tumor Precision Therapy & Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan Province 450008, PR China
| | - Xiao-Jing Shi
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Laboratory Animal Center, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Ying-Chao Duan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| |
Collapse
|
29
|
Panduranga P, Makam P, Kumar Katari N, Gundla R, Babu Jonnalagadda S, Kumar Tripuramallu B. Molecular Hybrids of Quinoline and Sulfonamide: Design, Synthesis and in Vitro Anticancer Studies. ChemistryOpen 2024:e202400334. [PMID: 39600047 DOI: 10.1002/open.202400334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Molecular hybrids of diversely functionalized quinoline and sulfonamide have been designed. Multistep synthetic strategies have been used for the synthesis. The anti-cancer properties have been evaluated against various cancer cell lines including HCT116, A549, U2OS, CCRF-CEM, Jurkat, MOLT-4, RAMOS, and K562. Non-cancer cell lines MRC-5 and BJ were also included for comparison. When examining the effects on A549, HCT116, and U2OS cells, all tested compounds exhibited limited potency with IC50 values exceeding 50 μM, indicating weak activity against these cell lines. Against the ITK high cells Viz. are Jurkat, CCRF-CEM and MOLT-4, 9 e, 9 p and 9 j found to the maximum potent compounds with IC50 values of 7.43±7.40 μM, 13.19±1.25 μM and 5.57±7.56 μM respectively. Similarly, in the BTK high cells screenings, 9 n and 9 e molecules with an IC50 value of 2.76±0.79 μM and 5.47±1.71 μM against RAMOS and K562 respectively are highly potent. Interestingly, all the molecules have exhibited IC50 value >50 μM against the non-cancer cells (MRC-5 and BJ), which indicates the promising non-cytotoxic nature of the molecules.
Collapse
Affiliation(s)
- Padyala Panduranga
- Department of Chemistry, VFSTR (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, 522213, India
| | - Parameshwar Makam
- Division of Research and Innovation, Department of Chemistry, Uttaranchal University,Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun Uttarakhand, 248007, India
| | - Naresh Kumar Katari
- School of Chemistry & Physics, College of Agriculture, Engineering & Science, Westville Campus, University of KwaZulu-Natal, P Bag X 54001, Durban, 4000, South Africa
| | - Rambabu Gundla
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University, Hyderabad, Telangana, 502329, India
| | - Sreekantha Babu Jonnalagadda
- School of Chemistry & Physics, College of Agriculture, Engineering & Science, Westville Campus, University of KwaZulu-Natal, P Bag X 54001, Durban, 4000, South Africa
| | - Bharat Kumar Tripuramallu
- Department of Chemistry, VFSTR (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, 522213, India
| |
Collapse
|
30
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
31
|
Lanka G, Banerjee S, Regula S, Adhikari N, Ghosh B. Pharmacophore modeling, 3D-QSAR, and MD simulation-based overture for the discovery of new potential HDAC1 inhibitors. J Biomol Struct Dyn 2024:1-24. [PMID: 39587443 DOI: 10.1080/07391102.2024.2429020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/15/2024] [Indexed: 11/27/2024]
Abstract
Histone deacetylases (HDACs) are important epigenetic regulators that modulate the activity of histone and non-histone proteins leading to various cancers. Histone deacetylase 1 (HDAC1) is a member of class 1 HDAC family related to different cancers. However, the nonselective profile of existing HDAC1 inhibitors restricted their clinical utility. Therefore, the identification of new HDAC1 selective inhibitors may be fruitful against cancer therapy. In this present work, a pharmacophore model was built using 60 benzamide-based known HDAC1 selective inhibitors and it was used further to filter the large epigenetic molecular database of small molecules. Further, the 3D-QSAR model was built using the best common pharmacophore hypothesis consisting of higher PLS statistics of R2 of 0.89, Q2 of 0.83, variance ratio (F) of 65.7 and Pearson-r value of 0.94 revealing the model reliability and its high predictive power. The screened hits of the pharmacophore model were then subjected to molecular docking against HDAC1 to identify high-affinity lead molecules. The top 10 hits were ranked from the docking studies using docking scores for lead optimization. The potential hit molecules M1 and M2 identified from the study showed promising interaction during HDAC1 docking and MD simulation studies with acceptable ADME properties. Also, the newly designed lead compounds M11 and M12 may be considered highly potential inhibitors against HDAC1. The 3D-QSAR analysis, conformational requirements, and observations noticed in the MD simulations study will enable the optimization of lead molecules and to design of novel effective, and selective HDAC1 inhibitors in the future.
Collapse
Affiliation(s)
- Goverdhan Lanka
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, India
- Computer Aided Drug Design Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Sanjeev Regula
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, India
- Computer Aided Drug Design Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, India
| |
Collapse
|
32
|
Raouf YS, Moreno-Yruela C. Slow-Binding and Covalent HDAC Inhibition: A New Paradigm? JACS AU 2024; 4:4148-4161. [PMID: 39610753 PMCID: PMC11600154 DOI: 10.1021/jacsau.4c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024]
Abstract
The dysregulated post-translational modification of proteins is an established hallmark of human disease. Through Zn2+-dependent hydrolysis of acyl-lysine modifications, histone deacetylases (HDACs) are key regulators of disease-implicated signaling pathways and tractable drug targets in the clinic. Early targeting of this family of 11 enzymes (HDAC1-11) afforded a first generation of broadly acting inhibitors with medicinal applications in oncology, specifically in cutaneous and peripheral T-cell lymphomas and in multiple myeloma. However, first-generation HDAC inhibitors are often associated with weak-to-modest patient benefits, dose-limited efficacies, pharmacokinetic liabilities, and recurring clinical toxicities. Alternative inhibitor design to target single enzymes and avoid toxic Zn2+-binding moieties have not overcome these limitations. Instead, recent literature has seen a shift toward noncanonical mechanistic approaches focused on slow-binding and covalent inhibition. Such compounds hold the potential of improving the pharmacokinetic and pharmacodynamic profiles of HDAC inhibitors through the extension of the drug-target residence time. This perspective aims to capture this emerging paradigm and discuss its potential to improve the preclinical/clinical outlook of HDAC inhibitors in the coming years.
Collapse
Affiliation(s)
- Yasir S. Raouf
- Department
of Chemistry, United Arab Emirates University, P.O. Box No. 15551 Al Ain, UAE
| | - Carlos Moreno-Yruela
- Laboratory
of Chemistry and Biophysics of Macromolecules (LCBM), Institute of
Chemical Sciences and Engineering (ISIC), School of Basic Sciences, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
33
|
Al-Awar A, Hussain S. Interplay of Reactive Oxygen Species (ROS) and Epigenetic Remodelling in Cardiovascular Diseases Pathogenesis: A Contemporary Perspective. FRONT BIOSCI-LANDMRK 2024; 29:398. [PMID: 39614429 DOI: 10.31083/j.fbl2911398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 12/01/2024]
Abstract
Cardiovascular diseases (CVDs) continue to be the leading cause of mortality worldwide, necessitating the development of novel therapies. Despite therapeutic advancements, the underlying mechanisms remain elusive. Reactive oxygen species (ROS) show detrimental effects at high concentrations but act as essential signalling molecules at physiological levels, playing a critical role in the pathophysiology of CVD. However, the link between pathologically elevated ROS and CVDs pathogenesis remains poorly understood. Recent research has highlighted the remodelling of the epigenetic landscape as a crucial factor in CVD pathologies. Epigenetic changes encompass alterations in DNA methylation, post-translational histone modifications, adenosine triphosphate (ATP)-dependent chromatin modifications, and noncoding RNA transcripts. Unravelling the intricate link between ROS and epigenetic changes in CVD is challenging due to the complexity of epigenetic signals in gene regulation. This review aims to provide insights into the role of ROS in modulating the epigenetic landscape within the cardiovascular system. Understanding these interactions may offer novel therapeutic strategies for managing CVD by targeting ROS-induced epigenetic changes. It has been widely accepted that epigenetic modifications are established during development and remain fixed once the lineage-specific gene expression pattern is achieved. However, emerging evidence has unveiled its remarkable dynamism. Consequently, it is now increasingly recognized that epigenetic modifications may serve as a crucial link between ROS and the underlying mechanisms implicated in CVD.
Collapse
Affiliation(s)
- Amin Al-Awar
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, 41345 Gothenburg, Sweden
| | - Shafaat Hussain
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, 41345 Gothenburg, Sweden
| |
Collapse
|
34
|
Ruan Y, Guan L, Wang Y, Geng Y, Wang X, Niu MM, Yang L, Xu C, Xu Z. Discovery of a Novel and Potent Dual-Targeting Inhibitor of ATM and HDAC2 Through Structure-Based Virtual Screening for the Treatment of Testicular Cancer. Drug Des Devel Ther 2024; 18:5283-5297. [PMID: 39583632 PMCID: PMC11585990 DOI: 10.2147/dddt.s479113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose Dual inhibition of ataxia telangiectasia mutated (ATM) and histone deacetylase 2 (HDAC2) may be a potential strategy to improve antitumor efficacy in testicular cancer. Methods A combined virtual screening protocol including pharmacophore modeling and molecular docking was used for screening potent dual-target ATM/HDAC2 inhibitors. In order to obtain the optimal lead compound, the dual ATM/HDAC2 inhibitory activity of the screened compounds was further evaluated using enzyme inhibition methods. The binding stability of the optimal compound to the dual targets was verified by molecular dynamics (MD) simulation. MTT assay and in vivo antitumor experiment were performed to validate antitumor efficacy of the optimal compound in testicular cancer. Results Here, we successfully discovered six potent dual-target ATM/HDAC2 inhibitors (AMHs 1-6), which exhibited good inhibitory activity against both ATM and HDAC2. Among them, AMH-4 showed strong inhibitory activity against both ATM (IC50 = 1.12 ± 0.03 nM) and HDAC2 (IC50 = 3.04 ± 0.08 nM). MD simulation indicated that AMH-4 binds to ATM and HDAC2 with satisfactory stability. Importantly, AMH-4 had significant antiproliferative activity on human testicular tumor cells, especially NTERA-2 cL.D1 cells, and no inhibitory effect on normal human testicular cells. In vivo experiments exhibited that AMH-4 was more effective than lartesertib and vorinostat in inhibiting the growth of NTERA-2 cL.D1 xenograft tumors with low toxicity. Conclusion Overall, these results suggest that AMH-4 is an effective and low toxicity candidate for the treatment of testicular germ cell tumors.
Collapse
Affiliation(s)
- Yashi Ruan
- Department of Urology, Reproductive Medicine and Oncology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, 225300, People’s Republic of China
| | - Lixia Guan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Yuting Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Yifei Geng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Xiaoran Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Li Yang
- Department of Urology, Reproductive Medicine and Oncology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, 225300, People’s Republic of China
| | - Cen Xu
- Department of Urology, Reproductive Medicine and Oncology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, 225300, People’s Republic of China
| | - Zhen Xu
- Department of Urology, Reproductive Medicine and Oncology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, 225300, People’s Republic of China
| |
Collapse
|
35
|
Zhou M, Li S, Tan Y, Huang W, Li Y, Yuan X, Li Z. Global Profiling Lysine Reactivity and Ligandability with Oxidant-Triggered Bioconjugation Chemistry. Angew Chem Int Ed Engl 2024:e202418473. [PMID: 39543955 DOI: 10.1002/anie.202418473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/17/2024]
Abstract
Due to the high abundance and diverse functions of lysine residues, both in the interior and on the surface of proteins, the development of new methods to characterize their reactivity and ligandability could significantly expand the pool of druggable targets. To date, only a limited number of aminophilic electrophiles have been assessed for interactions with the lysine proteome, resulting in a substantial fraction remaining inaccessible to current probes. Here, to the best of our knowledge, we report the first oxidant-triggered bioconjugation platform for in-depth profiling of lysines. We quantified over 7000 covalently modifiable lysine residues, which significantly expands the coverage of ligandable lysines in the whole proteome. Chemical proteomics enabled the mapping of more than 100 endogenous kinases, thus providing a comprehensive landscape of ligandable catalytic lysines within the kinome. Moreover, we identified a suite of new ligandable lysines such as K60 of ENO1 and K31 of PPIA, offering insights for exploring new functional and targetable residues. These findings could provide valuable clues for the development of targeted covalent inhibitors (TCIs).
Collapse
Affiliation(s)
- Mengya Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, 510632, Guangzhou, China
| | - Shengrong Li
- Guangdong Second Provincial General Hospital, Postdoctoral Station of Traditional Chinese Medicine, Jinan University, 510632, Guangzhou, China
| | - Yi Tan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, 510632, Guangzhou, China
| | - Weizhen Huang
- The First Huizhou Affiliated Hospital of Guangdong Medical University, 516001, Huizhou, China
| | - Yifang Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, 510632, Guangzhou, China
| | - Xia Yuan
- The First Huizhou Affiliated Hospital of Guangdong Medical University, 516001, Huizhou, China
| | - Zhengqiu Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, 510632, Guangzhou, China
| |
Collapse
|
36
|
Mo H, Liu J, Su Z, Zhao DG, Ma YY, Zhang K, Wang Q, Fu C, Wang Y, Chen M, Hu B. Isoalantolactone/hydroxamic acid hybrids as potent dual STAT3/HDAC inhibitors and self-assembled nanoparticles for cancer therapy. Eur J Med Chem 2024; 277:116765. [PMID: 39146833 DOI: 10.1016/j.ejmech.2024.116765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Conventional chemotherapy, especially with natural anticancer drugs, usually suffers from poor bioavailability and low tumor accumulation. To address these limitations, we developed a novel approach for modifying natural products in which amphiphilic hydroxamic acid hybrids based on a natural product: isoalantolactone (IAL) were rationally designed. Compound 18 is identified as a highly potent dual signal transducer and activator of transcription 3 (STAT3)/histone deacetylases (HDAC) inhibitor and induces autophagy and apoptosis. 18 exhibits higher antitumor potency than IAL and the hydroxamic acid SAHA in vitro and in vivo. Furthermore, 18 self-assembled in water to form nanoparticles (18 NPs), which facilitated the accumulation of drugs in tumor tissues and promoted their cellular uptake, resulting in superior anticancer efficacy compared to free 18. Compared to drug-drug conjugates, hydroxamic acid hybrids have a smaller molecular weight and can synergize with various anticancer drugs. Overall, these findings indicate that 18 utilizing nanomedicines and dual-target drugs provide an efficient strategy for the rational design of dual-target drugs and the modification of natural products.
Collapse
Affiliation(s)
- Hualong Mo
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - JieYing Liu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Zhengxi Su
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Deng-Gao Zhao
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China.
| | - Yan-Yan Ma
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China.
| | - Kun Zhang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Qi Wang
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chun Fu
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yao Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Burong Hu
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
37
|
Stopper D, de Carvalho LP, de Souza ML, Kponomaizoun CE, Winzeler EA, Held J, Hansen FK. Development of peptoid-based heteroaryl-decorated histone deacetylase (HDAC) inhibitors with dual-stage antiplasmodial activity. Eur J Med Chem 2024; 277:116782. [PMID: 39208744 DOI: 10.1016/j.ejmech.2024.116782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Dynamics of epigenetic modifications such as acetylation and deacetylation of histone proteins have been shown to be crucial for the life cycle development and survival of Plasmodium falciparum, the deadliest malaria parasite. In this study, we present a novel series of peptoid-based histone deacetylase (HDAC) inhibitors incorporating nitrogen-containing bicyclic heteroaryl residues as a new generation of antiplasmodial peptoid-based HDAC inhibitors. We synthesized the HDAC inhibitors by an efficient multicomponent protocol based on the Ugi four-component reaction. The subsequent screening of 16 compounds from our mini-library identified 6i as the most promising candidate, demonstrating potent activity against asexual blood-stage parasites (IC50Pf3D7 = 30 nM; IC50PfDd2 = 98 nM), low submicromolar activity against liver-stage parasites (IC50PbEEF = 0.25 μM), excellent microsomal stability (t1/2 > 60 min), and low cytotoxicity to HEK293 cells (IC50 = 136 μM).
Collapse
Affiliation(s)
- Daniel Stopper
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany
| | | | - Mariana Laureano de Souza
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Cindy-Esther Kponomaizoun
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, 72074, Tübingen, Germany; German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Finn K Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany.
| |
Collapse
|
38
|
Wu C, Sun X, Liu L, Cheng L. A Live-Cell Epigenome Manipulation by Photo-Stimuli-Responsive Histone Methyltransferase Inhibitor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404608. [PMID: 39250325 PMCID: PMC11538670 DOI: 10.1002/advs.202404608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Post-translational modifications on the histone H3 tail regulate chromatin structure, impact epigenetics, and hence the gene expressions. Current chemical modulation tools, such as unnatural amino acid incorporation, protein splicing, and sortase-based editing, have allowed for the modification of histones with various PTMs in cellular contexts, but are not applicable for editing native chromatin. The use of small organic molecules to manipulate histone-modifying enzymes alters endogenous histone PTMs but lacks precise temporal and spatial control. To date, there has been no achievement in modulating histone methylation in living cells with spatiotemporal resolution. In this study, a new method is presented for temporally manipulating histone dimethylation H3K9me2 using a photo-responsive inhibitor that specifically targets the methyltransferase G9a on demand. The photo-caged molecule is stable under physiological conditions and cellular environments, but rapidly activated upon exposure to light, releasing the bioactive component that can immediately inhibit the catalytic ability of the G9a in vitro. Besides, this masked compound could also efficiently reactivate the inhibition of methyltransferase activity in living cells, subsequently suppress H3K9me2, a mark that regulates various chromatin functions. Therefore, the chemical system will be a valuable tool for manipulating the epigenome for therapeutic purposes and furthering the understanding of epigenetic mechanisms.
Collapse
Affiliation(s)
- Chuan‐Shuo Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xin Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
- State Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
39
|
Wang B, Shi T, Jia S, Wang E, Ruan X, Sheng C, Wu S, Zhou Q. Indolo[3,2- c]isoquinoline Hydroxamic Acid Derivatives as Novel Orally Topoisomerase-Histone Deacetylase Dual Inhibitors for NSCLC Therapy. J Med Chem 2024. [PMID: 39442082 DOI: 10.1021/acs.jmedchem.4c01859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Based on the synergistic effects of topoisomerase (Top) inhibitors and histone deacetylase (HDAC) inhibitors in cancer therapy, a series of novel Top/HDAC dual inhibitors were designed and synthesized herein. The optimal compound 31 was identified to simultaneously inhibit both Tops and HDACs with potent antiproliferative activity against nonsmall cell lung cancer (NSCLC). Mechanistic studies indicated that compound 31 with increasing reactive oxygen species levels damages DNA, inhibiting cancer cell colony formation and migration and inducing both cancer cell apoptosis and cycle arrest. Noteworthily, compound 31 was orally active in the NSCLC xenograft model, and its antitumor efficacy (TGI = 77.5%, 100 mg/kg) was superior to that of HDAC inhibitor SAHA and SAHA in combination with the Top inhibitor irinotecan. Consequently, this work highlights the therapeutic potential of compound 31 as the Top/HDAC dual inhibitor in NSCLC therapy and provides valuable lead compounds for the further development of antitumor agents in solid tumor therapy.
Collapse
Affiliation(s)
- Bichuan Wang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Ting Shi
- The Department of Urology Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Shuolei Jia
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Enyuan Wang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xiuqin Ruan
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Shanchao Wu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Qingfa Zhou
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
40
|
Fu Y, Francés R, Monge C, Desterke C, Marchio A, Pineau P, Chang-Marchand Y, Mata-Garrido J. Metabolic and Epigenetic Mechanisms in Hepatoblastoma: Insights into Tumor Biology and Therapeutic Targets. Genes (Basel) 2024; 15:1358. [PMID: 39596558 PMCID: PMC11593527 DOI: 10.3390/genes15111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Hepatoblastoma, the most common pediatric liver malignancy, is characterized by significant molecular heterogeneity and poor prognosis in advanced stages. Recent studies highlight the importance of metabolic reprogramming and epigenetic dysregulation in hepatoblastoma pathogenesis. This review aims to explore the metabolic alterations and epigenetic mechanisms involved in hepatoblastoma and how these processes contribute to tumor progression and survival. METHODS Relevant literature on metabolic reprogramming, including enhanced glycolysis, mitochondrial dysfunction, and shifts in lipid and amino acid metabolism, as well as epigenetic mechanisms like DNA methylation, histone modifications, and non-coding RNAs, was reviewed. The interplay between these pathways and their potential as therapeutic targets were examined. RESULTS Hepatoblastoma exhibits metabolic shifts that support tumor growth and survival, alongside epigenetic changes that regulate gene expression and promote tumor progression. These pathways are interconnected, with metabolic changes influencing the epigenetic landscape and vice versa. CONCLUSIONS The dynamic interplay between metabolism and epigenetics in hepatoblastoma offers promising avenues for therapeutic intervention. Future research should focus on integrating metabolic and epigenetic therapies to improve patient outcomes, addressing current gaps in knowledge to develop more effective treatments.
Collapse
Affiliation(s)
- Yuanji Fu
- CNRS, INSERM, Institut Necker Enfants Malades, Université Paris Cité, 75015 Paris, France; (Y.F.); (Y.C.-M.)
| | - Raquel Francés
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75006 Paris, France;
| | - Claudia Monge
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Christophe Desterke
- Faculté de Médecine du Kremlin Bicêtre, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France;
| | - Agnès Marchio
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Pascal Pineau
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Yunhua Chang-Marchand
- CNRS, INSERM, Institut Necker Enfants Malades, Université Paris Cité, 75015 Paris, France; (Y.F.); (Y.C.-M.)
| | - Jorge Mata-Garrido
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France; (C.M.); (A.M.); (P.P.)
| |
Collapse
|
41
|
He R, Xu L, Guo M, Cheng K, Song Z, Xie Y, Wang H, Zhou X, Gu X, Xu J, Deng H, Yang G. Histone deacetylase 2 and 3 of Sarcoptes scabiei: characterization of a potential drug target. Microbiol Spectr 2024; 12:e0073724. [PMID: 39436071 PMCID: PMC11619365 DOI: 10.1128/spectrum.00737-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/18/2024] [Indexed: 10/23/2024] Open
Abstract
Scabies is a contagious zoonotic parasitic disease that causes a substantial risk to both human and animal health and results in significant financial losses. No vaccine is available for scabies, and drug resistance to the conventional treatment for the disease has increased. Histone deacetylase (HDAC) modifies proteins by removing acetyl moieties from histones, regulates transcription, and is crucial for the immune system and apoptotic processes. This study aimed to clone, express, and determine the immunoreactivity of HDAC-2 and HDAC-3 of scabies mites to investigate their potential as scabies drug targets. The effects of inhibitors on recombinant Sarcoptes scabiei HDAC-2 (rSsHDAC-2) and rSsHDAC-3, as well as on the survival rate and ultrastructure of scabies mites in vitro, were also verified. The findings showed that the inhibitors reduced the acetylase activity of rSsHDAC-2 and rSsHDAC-3. Additionally, these inhibitors could significantly reduce the survival rate of scabies mites, making structural alterations in the mites such as mitochondrial pyknosis and cytoplasmic vacuoles and reaching a fatality rate of 76.7% after 24 h of action. In conclusion, HDAC-2 and HDAC-3 were critical to the survival of scabies mites and might be targeted by medications. Furthermore, the effect of inhibitors on the survival rate and structure of isolated scabies mites provides a new direction for developing therapeutic drugs for scabies.IMPORTANCEIn this study, we successfully cloned and expressed recombinant SsHDAC-2 and SsHDAC-3 in a prokaryotic system and confirmed their acetylation-deacetylase activities. These results provide a solid experimental foundation for subsequent research on SsHDAC-2 and SsHDAC-3. Furthermore, we report for the first time the use of SsHDAC-2 and SsHDAC-3 as drug targets. We demonstrated that the inhibition of these HDACs by pharmacological agents can lead to structural damage in the parasite, thereby impacting the survival activity of the scabies mite. This finding opens up a novel therapeutic avenue for the treatment of scabies.
Collapse
Affiliation(s)
- Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Luyang Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Maochuan Guo
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kai Cheng
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ziyi Song
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hui Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuan Zhou
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huidan Deng
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
42
|
Liu Y, Xun W, Zhao T, Huang M, Sun L, Wen G, Kang X, Wang J, Han T. Interplay between acetylation and ubiquitination controls PSAT1 protein stability in lung adenocarcinoma. Commun Biol 2024; 7:1365. [PMID: 39433916 PMCID: PMC11494179 DOI: 10.1038/s42003-024-07051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Serine is essential to maintain maximal growth and proliferation of cancer cells by providing adequate intermediate metabolites and energy. Phosphoserine aminotransferase 1 (PSAT1) is a key enzyme in de novo serine synthesis. However, little is known about the mechanisms underlying PSAT1 degradation. We found that acetylation was the switch that regulated the degradation of PSAT1 in lung adenocarcinoma (LUAD). Deacetylation of PSAT1 on Lys51 by histone deacetylase 7 (HDAC7) enhanced the interaction between PSAT1 and the deubiquitinase ubiquitin-specific processing protease 14 (USP14), leading to the deubiquitination and stabilization of PSAT1; while acetylation of PSAT1 promoted its interaction with the E3 ligase ubiquitination factor E4B (UBE4B), leading to proteasomal degradation. Acetylation of PSAT1 on Lys51 regulated serine metabolism and tumor proliferation in LUAD. Thus, acetylation and ubiquitination cooperatively regulated the protein homeostasis of PSAT1. In conclusion, our study reveals a key regulatory mechanism for maintaining PSAT1 protein homeostasis in LUAD.
Collapse
Affiliation(s)
- Yuhan Liu
- Jiangxi Provincial Key Laboratory of Respirtory Diseases, Jiangxi Institute of Respiratory Disease, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Wenze Xun
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tao Zhao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Menglin Huang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Longhua Sun
- Jiangxi Provincial Key Laboratory of Respirtory Diseases, Jiangxi Institute of Respiratory Disease, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang, Jiangxi, China
- China-Japan Friendship Jiangxi Hospital, National Regional Center for Respiratory Medicine, Nanchang, Jiangxi, China
| | - Guilan Wen
- Jiangxi Provincial Key Laboratory of Respirtory Diseases, Jiangxi Institute of Respiratory Disease, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiuhua Kang
- Jiangxi Provincial Key Laboratory of Respirtory Diseases, Jiangxi Institute of Respiratory Disease, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jianbin Wang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Tianyu Han
- Jiangxi Provincial Key Laboratory of Respirtory Diseases, Jiangxi Institute of Respiratory Disease, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang, Jiangxi, China.
- China-Japan Friendship Jiangxi Hospital, National Regional Center for Respiratory Medicine, Nanchang, Jiangxi, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
43
|
Wang H, Chen J, Chen X, Liu Y, Wang J, Meng Q, Wang H, He Y, Song Y, Li J, Ju Z, Xiao P, Qian J, Song Z. Cancer-Associated Fibroblasts Expressing Sulfatase 1 Facilitate VEGFA-Dependent Microenvironmental Remodeling to Support Colorectal Cancer. Cancer Res 2024; 84:3371-3387. [PMID: 39250301 DOI: 10.1158/0008-5472.can-23-3987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/18/2024] [Accepted: 07/16/2024] [Indexed: 09/11/2024]
Abstract
Tumor stroma plays a critical role in fostering tumor progression and metastasis. Cancer-associated fibroblasts (CAF) are a major component of the tumor stroma. Identifying the key molecular determinants for the protumor properties of CAFs could enable the development of more effective treatment strategies. In this study, through analyses of single-cell sequencing data, we identified a population of CAFs expressing high levels of sulfatase 1 (SULF1), which was associated with poor prognosis in patients with colorectal cancer. Colorectal cancer models using mice with conditional SULF1 knockout in fibroblasts revealed the tumor-supportive function of SULF1+ CAFs. Mechanistically, SULF1+ CAFs enhanced the release of VEGFA from heparan sulfate proteoglycan. The increased bioavailability of VEGFA initiated the deposition of extracellular matrix and enhanced angiogenesis. In addition, intestinal microbiota-produced butyrate suppressed SULF1 expression in CAFs through its histone deacetylase (HDAC) inhibitory activity. The insufficient butyrate production in patients with colorectal cancer increased the abundance of SULF1+ CAFs, thereby promoting tumor progression. Importantly, tumor growth inhibition by HDAC was dependent on SULF1 expression in CAFs, and patients with colorectal cancer with more SULF1+ CAFs were more responsive to treatment with the HDAC inhibitor chidamide. Collectively, these findings unveil the critical role of SULF1+ CAFs in colorectal cancer and provide a strategy to stratify patients with colorectal cancer for HDAC inhibitor treatment. Significance: SULF1+ cancer-associated fibroblasts play a tumor-promoting role in colorectal cancer by stimulating extracellular matrix deposition and angiogenesis and can serve as a biomarker for the therapeutic response to HDAC inhibitors in patients.
Collapse
Affiliation(s)
- Huijuan Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Jiaxin Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Xiaoyu Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Yingqiang Liu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Jiawei Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Qing Meng
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Huogang Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Ying He
- Huzhou Key Laboratory of Translational Medicine, Huzhou, China
| | - Yujia Song
- Hangzhou No. 14 High School, Hangzhou, China
| | - Jingyun Li
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junbin Qian
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Child Health, Hangzhou, China
| | - Zhangfa Song
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
44
|
Tyagarajan S, Andrews CL, Beshore DC, Buevich AV, Curran PJ, Dandliker P, Greshock TJ, Hoar J, Kim A, Karnachi P, Knemeyer I, Kozlowski J, Liu J, Maletic M, Myers R, Rada V, Sha D, Sauvagnat B, Vachal P, Wolkenberg S, Yu W, Yu Y, Krska SW. Rapid Affinity and Microsomal Stability Ranking of Crude Mixture Libraries of Histone Deacetylase Inhibitors. ACS Med Chem Lett 2024; 15:1787-1794. [PMID: 39411537 PMCID: PMC11472384 DOI: 10.1021/acsmedchemlett.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
The science of drug discovery involves multiparameter optimization of molecular structures through iterative design-make-test cycles. For medicinal chemistry library synthesis, traditional workflows involve the isolation of each individual compound, gravimetric quantitation, and preparation of a standard concentration solution for biological assays. In this work, we explore ways to expedite this process by testing unpurified library mixtures using a combination of mass spectrometry-based assays for affinity selection and microsomal metabolic stability. Utilizing this approach, microgram quantities of crude library mixtures can be used to identify high affinity, metabolically stable library members for isolation and full characterization. This streamlined approach was demonstrated for the synthesis and evaluation of two libraries of histone deacetylase inhibitors and was shown to generate decision-making data in line with traditional workflows. The advantages of this paradigm include greatly reduced cycle time, reduced material requirements, and concentration of resources on the most promising compounds.
Collapse
Affiliation(s)
- Sriram Tyagarajan
- Discovery
Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Christine L. Andrews
- Quantitative
Biosciences, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Douglas C. Beshore
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Alexei V. Buevich
- Analytical
Research & Development, Merck &
Co., Inc., Rahway, New Jersey 07065, United States
| | - Patrick J. Curran
- Quantitative
Biosciences, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Peter Dandliker
- Quantitative
Biosciences, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Thomas J. Greshock
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jason Hoar
- Pharmacokinetics,
Pharmacodynamics and Drug Metabolism, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Alex Kim
- Discovery
Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Prabha Karnachi
- Modeling
and Informatics, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ian Knemeyer
- Pharmacokinetics,
Pharmacodynamics and Drug Metabolism, Merck
& Co., Inc., Boston, Massachusetts 02115, United States
| | - Joseph Kozlowski
- Discovery
Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jian Liu
- Discovery
Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Milana Maletic
- Discovery
Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Robert Myers
- Department
of Pharmacology, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Vanessa Rada
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Deyou Sha
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Berengere Sauvagnat
- Quantitative
Biosciences, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Petr Vachal
- Discovery
Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Scott Wolkenberg
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Wensheng Yu
- Discovery
Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Younong Yu
- Discovery
Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Shane W. Krska
- Discovery
Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
45
|
Kraft FB, Biermann L, Schäker-Hübner L, Hanl M, Hamacher A, Kassack MU, Hansen FK. Hydrazide-Based Class I Selective HDAC Inhibitors Completely Reverse Chemoresistance Synergistically in Platinum-Resistant Solid Cancer Cells. J Med Chem 2024; 67:17796-17819. [PMID: 39356226 DOI: 10.1021/acs.jmedchem.4c01817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
In this work, we have synthesized a set of peptoid-based histone deacetylase inhibitors (HDACi) with a substituted hydrazide moiety as zinc-binding group. Subsequently, all compounds were evaluated in biochemical HDAC inhibition assays and for their antiproliferative activity against native and cisplatin-resistant cancer cell lines. The hydrazide derivatives with a propyl or butyl substituent (compounds 5 and 6) emerged as the most potent class I HDAC selective inhibitors (HDAC1-3). Further, compounds 5 and 6 outperformed entinostat in cytotoxicity assays and were able to reverse chemoresistance in cisplatin-resistant A2780 (ovarian) and Cal27 (head-neck) cancer cell lines. Moreover, the hydrazide derivatives 5 and 6 showed strong synergism with cisplatin (combination indices <0.2), again outperforming entinostat, and increased DNA damage, p21, and pro-apoptotic BIM expression, leading to caspase-mediated apoptosis and cell death. Thus, compounds 5 and 6 represent promising lead structures for developing new HDACi capable of reversing chemoresistance in cisplatin resistant cancer cells.
Collapse
Affiliation(s)
- Fabian B Kraft
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Lukas Biermann
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Linda Schäker-Hübner
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Maria Hanl
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Alexandra Hamacher
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Matthias U Kassack
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Finn K Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
46
|
Scheuerer S, Motlova L, Schäker-Hübner L, Sellmer A, Feller F, Ertl FJ, Koch P, Hansen FK, Barinka C, Mahboobi S. Biological and structural investigation of tetrahydro-β-carboline-based selective HDAC6 inhibitors with improved stability. Eur J Med Chem 2024; 276:116676. [PMID: 39067437 DOI: 10.1016/j.ejmech.2024.116676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Our previously reported HDAC6 inhibitor (HDAC6i) Marbostat-100 (4) has provided many arguments for further clinical evaluation. By the substitution of the acidic hydrogen of 4 for different carbon residues, we were able to generate an all-carbon stereocenter, which significantly improves the hydrolytic stability of the inhibitor. Further asymmetric synthesis has shown that the (S)-configured inhibitors preferentially bind to HDAC6. This led to the highly selective and potent methyl-substituted derivative S-29b, which elicited a long-lasting tubulin hyperacetylation in MV4-11 cells. Finally, a crystal structure of the HDAC6/S-29b complex provided mechanistic explanation for the high potency and stereoselectivity of synthesized compound series.
Collapse
Affiliation(s)
- Simon Scheuerer
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany
| | - Lucia Motlova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Linda Schäker-Hübner
- Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Andreas Sellmer
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany
| | - Felix Feller
- Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Fabian J Ertl
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry II, University of Regensburg, 93040, Regensburg, Germany
| | - Pierre Koch
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry II, University of Regensburg, 93040, Regensburg, Germany
| | - Finn K Hansen
- Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Siavosh Mahboobi
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
47
|
Huang Z, Zeng L, Cheng B, Li D. Overview of class I HDAC modulators: Inhibitors and degraders. Eur J Med Chem 2024; 276:116696. [PMID: 39094429 DOI: 10.1016/j.ejmech.2024.116696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Class I histone deacetylases (HDACs) are closely associated with the development of a diverse array of diseases, including cancer, neurodegenerative disorders, HIV, and inflammatory diseases. Considering the essential roles in tumorigenesis, class I HDACs have emerged as highly desirable targets for therapeutic strategies, particularly in the field of anticancer drug development. However, the conventional class I HDAC inhibitors faced several challenges such as acquired resistance, inherent toxicities, and limited efficacy in inhibiting non-enzymatic functions of HDAC. To address these problems, novel strategies have emerged, including the development of class I HDAC dual-acting inhibitors, targeted protein degradation (TPD) technologies such as PROTACs, molecular glues, and HyT degraders, as well as covalent inhibitors. This review provides a comprehensive overview of class I HDAC enzymes and inhibitors, by initially introducing their structure and biological roles. Subsequently, we focus on the recent advancements of class I HDAC modulators, including isoform-selective class I inhibitors, dual-target inhibitors, TPDs, and covalent inhibitors, from the perspectives of rational design principles, pharmacodynamics, pharmacokinetics, and clinical progress. Finally, we also provide the challenges and outlines future prospects in the realm of class I HDAC-targeted drug discovery for cancer therapeutics.
Collapse
Affiliation(s)
- Ziqian Huang
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Limei Zeng
- College of Basic Medicine, Gannan Medical University, Ganzhou, 314000, China
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
48
|
Jia G, Liu J, Hou X, Jiang Y, Li X. Biological function and small molecule inhibitors of histone deacetylase 11. Eur J Med Chem 2024; 276:116634. [PMID: 38972077 DOI: 10.1016/j.ejmech.2024.116634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
HDAC11, as a rising star in the histone deacetylase (HDAC) family, has attracted widespread interest in the biomedical field in recent years specially owing to its high defatty-acylase activity compared its innate deacetylase activity. Numerous studies have provided evidence indicating the crucial involvement of HDAC11 in cancers, immune responses, and metabolic processes. Several potent and selective HDAC11 inhibitors have been discovered and identified, which is crucial for exploring the function of HDAC11 and its potential therapeutic applications. Herein, we present a critical overview of the current advances in the biological function of HDAC11 and its inhibitors. We initially discuss the physiological functions of HDAC11 and its pathological roles in relevant diseases. Subsequently, our main focus centers on the design strategy and development process of HDAC11 inhibitors. Additionally, we address significant challenges and outline future directions in this field. This perspective may provide guidance for the further development of HDAC11 inhibitors and their prospects in disease treatment.
Collapse
Affiliation(s)
- Geng Jia
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Jinyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xinlu Hou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
49
|
Chen L, Huang L, Gu Y, Li C, Sun P, Xiang Y. Novel post-translational modifications of protein by metabolites with immune responses and immune-related molecules in cancer immunotherapy. Int J Biol Macromol 2024; 277:133883. [PMID: 39033895 DOI: 10.1016/j.ijbiomac.2024.133883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 06/30/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Tumour immunotherapy is an effective and essential treatment for cancer. However, the heterogeneity of tumours and the complex and changeable tumour immune microenvironment (TME) creates many uncertainties in the clinical application of immunotherapy, such as different responses to tumour immunotherapy and significant differences in individual efficacy. It makes anti-tumour immunotherapy face many challenges. Immunometabolism is a critical determinant of immune cell response to specific immune effector molecules, significantly affecting the effects of tumour immunotherapy. It is attributed mainly to the fact that metabolites can regulate the function of immune cells and immune-related molecules through the protein post-translational modifications (PTMs) pathway. This study systematically summarizes a variety of novel protein PTMs including acetylation, propionylation, butyrylation, succinylation, crotonylation, malonylation, glutarylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation, benzoylation, lactylation and isonicotinylation in the field of tumour immune regulation and immunotherapy. In particular, we elaborate on how different PTMs in the TME can affect the function of immune cells and lead to immune evasion in cancer. Lastly, we highlight the potential treatment with the combined application of target-inhibited protein modification and immune checkpoint inhibitors (ICIs) for improved immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Lixiang Huang
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, PR China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fuzhou 350001, Fujian, PR China
| | - Yu Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Chen Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, PR China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fuzhou 350001, Fujian, PR China.
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China.
| |
Collapse
|
50
|
Guzenko VV, Bachurin SS, Khaitin AM, Dzreyan VA, Kalyuzhnaya YN, Bin H, Demyanenko SV. Acetylation of p53 in the Cerebral Cortex after Photothrombotic Stroke. Transl Stroke Res 2024; 15:970-985. [PMID: 37580538 DOI: 10.1007/s12975-023-01183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
p53 expression and acetylation are crucial for the survival and death of neurons in penumbra. At the same time, the outcome of ischemia for penumbra cells depends largely on the histone acetylation status, but the effect of histone acetyltransferases and deacetylases on non-histone proteins like p53 is largely understudied. With combined in silico and in vitro approach, we have identified enzymes capable of acetylation/deacetylation, distribution, stability, and pro-apoptotic activity of p53 in ischemic penumbra in the course of post-stroke recovery, and also detected involved loci of acetylation in p53. The dynamic regulation of the acetylation of p53 at lysine 320 is controlled by acetyltransferase PCAF and histone deacetylases HDAC1 and HDAC6. The in silico simulation have made it possible to suggest the acetylation of p53 at lysine 320 acetylation may facilitate the shuttling of p53 between the nucleus and cytoplasm in penumbra neurons. Acetylation of p53 at lysine 320 is more preferable than acetylation at lysine 373 and probably promotes survival and repair of penumbra neurons after stroke. Strategies to increase p53 acetylation at lysine 320 via increasing PCAF activity, inhibiting HDAC1 or HDAC6, inhibiting p53, or a combination of these interventions may have therapeutic benefits for stroke recovery and would be promising for neuroprotective therapy of stroke.
Collapse
Affiliation(s)
- V V Guzenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki ave., Rostov-on-Don, 344090, Russia
| | - S S Bachurin
- Department of General and Clinical Biochemistry no.2, Rostov State Medical University, Nakhichevansky lane, Rostov-on-Don, 344022, Russia
| | - A M Khaitin
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki ave., Rostov-on-Don, 344090, Russia
| | - V A Dzreyan
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki ave., Rostov-on-Don, 344090, Russia
| | - Y N Kalyuzhnaya
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki ave., Rostov-on-Don, 344090, Russia
| | - He Bin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - S V Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki ave., Rostov-on-Don, 344090, Russia.
- Department of General and Clinical Biochemistry no.2, Rostov State Medical University, Nakhichevansky lane, Rostov-on-Don, 344022, Russia.
| |
Collapse
|