1
|
Davidovich P, Nikolaev D, Khadiullina R, Gurzhiy V, Bulatov E. Cyclic vinyl sulfones activate NRF2 to protect from oxidative stress-induced programmed necrosis. Bioorg Med Chem Lett 2025; 117:130058. [PMID: 39644937 DOI: 10.1016/j.bmcl.2024.130058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/07/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
The NRF2 transcriptional factor is a member of cellular stress response machinery and is activated in response to oxidative stress caused either by cellular homeostasis imbalance or by environmental challenges. NRF2 levels are stringently controlled by rapid and continuous proteasomal degradation. KEAP1 is a specific NRF2 binding protein that acts as a bridge between NRF2 and the E3 ligase Cullin-3. In this study, we examine model cyclic vinyl sulfone derivatives as potential NRF2 activating probes. Previously, we and other authors have found anti-inflammatory properties of these compounds in in vivo models; however, the mechanism of action remained unknown. Here, we show that the naphthohydroquinone derivative LCB1353 efficiently stabilizes NRF2 protein levels and upregulates its target genes. At low 5-10 µM concentrations LCB1353 protects non-small cell lung cancer H1299 cells from ferroptotic death induced by cytotoxic concentrations of RSL3, reducing cell death from 90 % to 5 %. Thus, we suggest that cyclic vinyl sulfones are promising scaffolds for the design of protective molecules for conditions associated with toxic and inflammatory levels of oxidative stress.
Collapse
Affiliation(s)
| | - Dmitriy Nikolaev
- Research Institute of Experimental Medicine, Saint-Petersburg, Russia
| | | | | | - Emil Bulatov
- Kazan Federal University, Kazan, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
2
|
Sato M, Yaguchi N, Iijima T, Muramatsu A, Baird L, Suzuki T, Yamamoto M. Sensor systems of KEAP1 uniquely detecting oxidative and electrophilic stresses separately In vivo. Redox Biol 2024; 77:103355. [PMID: 39307045 PMCID: PMC11447412 DOI: 10.1016/j.redox.2024.103355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024] Open
Abstract
In the KEAP1-NRF2 stress response system, KEAP1 acts as a sensor for oxidative and electrophilic stresses through formation of S-S bond and C-S bond, respectively. Of the many questions left related to the sensor activity, following three appear important; whether these KEAP1 sensor systems are operating in vivo, whether oxidative and electrophilic stresses are sensed by the similar or distinct systems, and how KEAP1 equips highly sensitive mechanisms detecting oxidative and electrophilic stresses in vivo. To address these questions, we conducted a series of analyses utilizing KEAP1-cysteine substitution mutant mice, conditional selenocysteine-tRNA (Trsp) knockout mice, and human cohort whole genome sequence (WGS) data. Firstly, the Trsp-knockout provokes severe deficiency of selenoproteins and compensatory activation of NRF2. However, mice lacking homozygously a pair of critical oxidative stress sensor cysteine residues of KEAP1 fail to activate NRF2 in the Trsp-knockout livers. Secondly, this study provides evidence for the differential utilization of KEAP1 sensors for oxidative and electrophilic stresses in vivo. Thirdly, theoretical calculations show that the KEAP1 dimer equips quite sensitive sensor machinery in which modification of a single molecule of KEAP1 within the dimer is sufficient to affect the activity. WGS examinations of rare variants identified seven non-synonymous variants in the oxidative stress sensors in human KEAP1, while no variant was found in electrophilic sensor cysteine residues, supporting the fail-safe nature of the KEAP1 oxidative stress sensor activity. These results provide valuable information for our understanding how mammals respond to oxidative and electrophilic stresses efficiently.
Collapse
Affiliation(s)
- Miu Sato
- Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan; Department of Biochemistry & Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Nahoko Yaguchi
- Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Takuya Iijima
- Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan; Department of Biochemistry & Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Aki Muramatsu
- Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Liam Baird
- Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan; Department of Biochemistry & Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Takafumi Suzuki
- Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan; Department of Biochemistry & Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan.
| | - Masayuki Yamamoto
- Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan; Department of Biochemistry & Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan.
| |
Collapse
|
3
|
Liu L, de Leeuw K, van Goor H, Westra J. The Role of Antioxidant Transcription Factor Nrf2 and Its Activating Compounds in Systemic Lupus Erythematosus. Antioxidants (Basel) 2024; 13:1224. [PMID: 39456477 PMCID: PMC11504041 DOI: 10.3390/antiox13101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease in which kidney involvement, so-called lupus nephritis (LN), is common and one of the most severe manifestations. Oxidative stress (OS) may play a role in the pathogenesis of LN through the exacerbation of inflammation and immune cell dysfunction/dysregulation. Nuclear factor erythroid 2-related factor 2 (Nrf2), also known as nuclear factor erythroid-derived 2-like 2, is a transcription factor that in humans is encoded by the NFE2L2 gene and is regarded as a central regulator of the antioxidative response. Nrf2-activating compounds have been shown to alleviate oxidative stress in cells and tissues of lupus-prone mice. Although the precise mechanisms of Nrf2 activation on the immune system in SLE remain to be elucidated, Nrf2-activating compounds are considered novel therapeutical options to suppress OS and thereby might alleviate disease activity in SLE, especially in LN. This review therefore summarizes the role of the Nrf2 signaling pathway in the pathogenesis of SLE with LN and describes compounds modulating this pathway as potential additional clinical interventions.
Collapse
Affiliation(s)
- Lu Liu
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Karina de Leeuw
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
4
|
Abdolmaleki A, Karimian A, Khoshnazar SM, Asadi A, Samarein ZA, Smail SW, Bhattacharya D. The role of Nrf2 signaling pathways in nerve damage repair. Toxicol Res (Camb) 2024; 13:tfae080. [PMID: 38799411 PMCID: PMC11116835 DOI: 10.1093/toxres/tfae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/05/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
The protein, Nuclear factor-E2-related factor 2 (Nrf2), is a transitory protein that acts as a transcription factor and is involved in the regulation of many cytoprotective genes linked to xenobiotic metabolism and antioxidant responses. Based on the existing clinical and experimental data, it can be inferred that neurodegenerative diseases are characterized by an excessive presence of markers of oxidative stress (OS) and a reduced presence of antioxidant defense systems in both the brain and peripheral tissues. The presence of imbalances in the homeostasis between oxidants and antioxidants has been recognized as a substantial factor in the pathogenesis of neurodegenerative disorders. The dysregulations include several cellular processes such as mitochondrial failure, protein misfolding, and neuroinflammation. These dysregulations all contribute to the disruption of proteostasis in neuronal cells, leading to their eventual mortality. A noteworthy component of Nrf2, as shown by recent research undertaken over the last decade, is to its role in the development of resistance to OS. Nrf2 plays a pivotal role in regulating systems that defend against OS. Extant research offers substantiation for the protective and defensive roles of Nrf2 in the context of neurodegenerative diseases. The purpose of this study is to provide a comprehensive analysis of the influence of Nrf2 on OS and its function in regulating antioxidant defense systems within the realm of neurodegenerative diseases. Furthermore, we evaluate the most recent academic inquiries and empirical evidence about the beneficial and potential role of certain Nrf2 activator compounds within the realm of therapeutic interventions.
Collapse
Affiliation(s)
- Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, PO Box: 179, Ardabil, 11367-56199, Iran
| | - Aida Karimian
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, PO Box: 179, Ardabil, 11367-56199, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Imam Khomeini Highway, Mustafa Khomeini Boulevard, Ibn Sina, Kerman, 9986598, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, PO Box: 179, Ardabil, 11367-56199, Iran
| | - Zahra Akhavi Samarein
- Department of Counseling, Faculty of Education and Psychology, University of Mohaghegh Ardabili, PO Box: 179, Ardabil, 11367-56199, Iran
| | - Shukur Wasman Smail
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Kurdistan Region, 1235897, Iraq
| | - Deepak Bhattacharya
- Ph.D., Policy, Nursing, At Fight-Cancer at Home, Medicinal Toxicology & QC, Sri Radha Krishna Raas Mandir, KedarGouri Road, Bhubaneswar, Odisa 751002, India
| |
Collapse
|
5
|
Wang P, Zhang S, Liu W, Lv X, Wang B, Hu B, Shao Z. Bardoxolone methyl breaks the vicious cycle between M1 macrophages and senescent nucleus pulposus cells through the Nrf2/STING/NF-κB pathway. Int Immunopharmacol 2024; 127:111262. [PMID: 38101216 DOI: 10.1016/j.intimp.2023.111262] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Intervertebral disc (IVD) degeneration (IDD), an age-related degenerative disease, is accompanied by the accumulation of senescent nucleus pulposus (NP) cells and extracellular matrix (ECM) degradation. The current study aims to clarify the role of M1 macrophages in the senescence of NP cells, and further explores whether bardoxolone methyl (CDDO-Me) can alleviate the pathological changes induced by M1 macrophages and relieve IDD. On the one hand, conditioned medium (CM) of M1 macrophages (M1CM) triggered senescence of NP cells and ECM degradation in a time-dependent manner. On the other hand, CM of senescent NP cells (S-NPCM) was collected to treat macrophages and we found that S-NPCM promoted the migration and M1-polarization of macrophages. However, both of the above effects can be partially blocked by CDDO-Me. We further explored the mechanism and found that M1CM promoted the expression level of STING and nuclear translocation of P65 in NP cells, while being restrained by CDDO-Me and STING inhibitor H151. In addition, the employment of Nrf2 inhibitor ML385 facilitated the expression level of STING and nuclear translocation of P65, thereby blocking the effects of CDDO-Me on suppressing senescence of NP cells and ECM degradation. In vivo, the injection of CDDO-Me into the disc decreased the infiltration of M1 macrophages and ameliorated degenerative manifestations in the puncture-induced rat IDD model. In conclusion, CDDO-Me was proved to break the vicious cycle between M1 macrophages and senescent NP cells through the Nrf2/STING/NF-κB pathway, thereby attenuating the progression of IDD.
Collapse
Affiliation(s)
- Peng Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Shuo Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Baichuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Luo G, Aldridge K, Chen T, Aslot V, Kim BG, Han EH, Singh N, Li S, Xiao TS, Sporn MB, Letterio JJ. The synthetic oleanane triterpenoid CDDO-2P-Im binds GRP78/BiP to induce unfolded protein response-mediated apoptosis in myeloma. Mol Oncol 2023; 17:2526-2545. [PMID: 37149844 DOI: 10.1002/1878-0261.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/20/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023] Open
Abstract
Synthetic oleanane triterpenoids (SOTs) are small molecules with broad anticancer properties. A recently developed SOT, 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]-4(-pyridin-2-yl)-1H-imidazole (CDDO-2P-Im or '2P-Im'), exhibits enhanced activity and improved pharmacokinetics over CDDO-Im, a previous generation SOT. However, the mechanisms leading to these properties are not defined. Here, we show the synergy of 2P-Im and the proteasome inhibitor ixazomib in human multiple myeloma (MM) cells and 2P-Im activity in a murine model of plasmacytoma. RNA sequencing and quantitative reverse transcription PCR revealed the upregulation of the unfolded protein response (UPR) in MM cells upon 2P-lm treatment, implicating the activation of the UPR as a key step in 2P-Im-induced apoptosis. Supporting this hypothesis, the deletion of genes encoding either protein kinase R-like endoplasmic reticulum kinase (PERK) or DNA damage-inducible transcript 3 protein (DDIT3; also known as CHOP) impaired the MM response to 2P-Im, as did treatment with ISRIB, integrated stress response inhibitor, which inhibits UPR signaling downstream of PERK. Finally, both drug affinity responsive target stability and thermal shift assays demonstrated direct binding of 2P-Im to endoplasmic reticulum chaperone BiP (GRP78/BiP), a stress-inducible key signaling molecule of the UPR. These data reveal GRP78/BiP as a novel target of SOTs, and specifically of 2P-Im, and suggest the potential broader utility of this class of small molecules as modulators of the UPR.
Collapse
Affiliation(s)
- George Luo
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Toby Chen
- Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Vivek Aslot
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Byung-Gyu Kim
- The Angie Fowler Adolescent and Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH, USA
- The Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Eun Hyang Han
- The Angie Fowler Adolescent and Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH, USA
- The Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Neelima Singh
- The Angie Fowler Adolescent and Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH, USA
- The Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Sai Li
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - John J Letterio
- The Angie Fowler Adolescent and Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH, USA
- The Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
7
|
Wakabayashi N, Yagishita Y, Joshi T, Kensler TW. Forced Hepatic Expression of NRF2 or NQO1 Impedes Hepatocyte Lipid Accumulation in a Lipodystrophy Mouse Model. Int J Mol Sci 2023; 24:13345. [PMID: 37686150 PMCID: PMC10487640 DOI: 10.3390/ijms241713345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Lipodystrophy is a disorder featuring loss of normal adipose tissue depots due to impaired production of normal adipocytes. It leads to a gain of fat deposition in ectopic tissues such as liver and skeletal muscle that results in steatosis, dyslipidemia, and insulin resistance. Previously, we established a Rosa NIC/NIC::AdiCre lipodystrophy model mouse. The lipodystrophic phenotype that included hepatomegaly accompanied with hepatic damage due to higher lipid accumulation was attenuated substantially by amplified systemic NRF2 signaling in mice with hypomorphic expression of Keap1; whole-body Nrf2 deletion abrogated this protection. To determine whether hepatic-specific NRF2 signaling would be sufficient for protection against hepatomegaly and fatty liver development, direct, powerful, transient expression of Nrf2 or its target gene Nqo1 was achieved by administration through hydrodynamic tail vein injection of pCAG expression vectors of dominant-active Nrf2 and Nqo1 in Rosa NIC/NIC::AdiCre mice fed a 9% fat diet. Both vectors enabled protection from hepatic damage, with the pCAG-Nqo1 vector being the more effective as seen with a ~50% decrease in hepatic triglyceride levels. Therefore, activating NRF2 signaling or direct elevation of NQO1 in the liver provides new possibilities to partially reduce steatosis that accompanies lipodystrophy.
Collapse
Affiliation(s)
- Nobunao Wakabayashi
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA or (Y.Y.); (T.J.); (T.W.K.)
| | - Yoko Yagishita
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA or (Y.Y.); (T.J.); (T.W.K.)
- Division of Endocrinology, Columbia University, New York, NY 10032, USA
| | - Tanvi Joshi
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA or (Y.Y.); (T.J.); (T.W.K.)
| | - Thomas W. Kensler
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA or (Y.Y.); (T.J.); (T.W.K.)
| |
Collapse
|
8
|
Adamson RJ, Payne NC, Bartual SG, Mazitschek R, Bullock AN. Structural and biochemical characterization establishes a detailed understanding of KEAP1-CUL3 complex assembly. Free Radic Biol Med 2023; 204:215-225. [PMID: 37156295 PMCID: PMC10564622 DOI: 10.1016/j.freeradbiomed.2023.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
KEAP1 promotes the ubiquitin-dependent degradation of NRF2 by assembling into a CUL3-dependent ubiquitin ligase complex. Oxidative and electrophilic stress inhibit KEAP1 allowing NRF2 to accumulate for the transactivation of stress response genes. To date there are no structures of the KEAP1-CUL3 interaction nor binding data to show the contributions of different domains to their binding affinity. We determined a crystal structure of the BTB and 3-box domains of human KEAP1 in complex with the CUL3 N-terminal domain that showed a heterotetrameric assembly with 2:2 stoichiometry. To support the structural data, we developed a versatile TR-FRET-based assay system to profile the binding of BTB-domain-containing proteins to CUL3 and determine the contribution of distinct protein features, revealing the importance of the CUL3 N-terminal extension for high affinity binding. We further provide direct evidence that the investigational drug CDDO does not disrupt the KEAP1-CUL3 interaction, even at high concentrations, but reduces the affinity of KEAP1-CUL3 binding. The TR-FRET-based assay system offers a generalizable platform for profiling this protein class and may form a suitable screening platform for ligands that disrupt these interactions by targeting the BTB or 3-box domains to block E3 ligase function.
Collapse
Affiliation(s)
- Roslin J Adamson
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - N Connor Payne
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Sergio G Bartual
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA; Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Alex N Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| |
Collapse
|
9
|
Gatbonton-Schwager T, Yagishita Y, Joshi T, Wakabayashi N, Srinivasan H, Suzuki T, Yamamoto M, Kensler TW. A Point Mutation at C151 of Keap1 of Mice Abrogates NRF2 Signaling, Cytoprotection in Vitro, and Hepatoprotection in Vivo by Bardoxolone Methyl (CDDO-Me). Mol Pharmacol 2023; 104:51-61. [PMID: 37188495 PMCID: PMC10353147 DOI: 10.1124/molpharm.123.000671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023] Open
Abstract
Bardoxolone methyl (CDDO-Me) is an oleanane triterpenoid in late-stage clinical development for the treatment of patients with diabetic kidney disease. Preclinical studies in rodents demonstrate the efficacy of triterpenoids against carcinogenesis and other diseases, including renal ischemia-reperfusion injury, hyperoxia-induced acute lung injury, and immune hepatitis. Genetic disruption of Nrf2 abrogates protection by triterpenoids, suggesting that induction of the NRF2 pathway may drive this protection. Herein, we examined the effect of a point mutation (C151S) in KEAP1, a repressor of NRF2 signaling, at cysteine 151 in mouse embryo fibroblasts and mouse liver. Induction of target gene transcripts and enzyme activity by CDDO-Me was lost in C151S mutant fibroblasts compared with wild-type. Protection against menadione toxicity was also nullified in the mutant fibroblasts. In mouse liver, CDDO-Me evoked the nuclear translocation of NRF2, followed by increased transcript and activity levels of a prototypic target gene, Nqo1, in wild-type, but not C151S mutant, mice. To test the role of KEAP1 Cys151 in governing the broader pharmacodynamic action of CDDO-Me, wild-type and C151S mutant mice were challenged with concanavalin A to induce immune hepatitis. Strong protection was seen in wild-type but not C151S mutant mice. RNA-seq analysis of mouse liver from wild-type, C151S mutant, and Nrf2-knockout mice revealed a vigorous response of the NRF2 transcriptome in wild-type, but in neither C151S mutant nor Nrf2-knockout, mice. Activation of "off-target" pathways by CDDO were not observed. These data highlight the singular importance of the KEAP1 cysteine 151 sensor for activation of NRF2 signaling by CDDO-Me. SIGNIFICANCE STATEMENT: KEAP1 serves as a key sensor for induction of the cytoprotective signaling pathway driven by the transcription factor NRF2. Mutation of a single cysteine (C151) in KEAP1 abrogates the induction of NRF2 signaling and its downstream cytoprotective actions in vitro and in vivo by bardoxolone methyl (CDDO-Me), a drug in late-stage clinical development. Further, at these bioeffective concentrations/doses, activation of "off-target" pathways by CDDO-Me are not observed, highlighting the singular importance of NRF2 in its mode of action.
Collapse
Affiliation(s)
- Tonibelle Gatbonton-Schwager
- Translational Research Program (T.G.-S., Y.Y., T.J., N.W., T.W.K.) and Genomics & Bioinformatics (H.S.), Fred Hutchinson Cancer Center, Seattle, Washington and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., M.Y.)
| | - Yoko Yagishita
- Translational Research Program (T.G.-S., Y.Y., T.J., N.W., T.W.K.) and Genomics & Bioinformatics (H.S.), Fred Hutchinson Cancer Center, Seattle, Washington and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., M.Y.)
| | - Tanvi Joshi
- Translational Research Program (T.G.-S., Y.Y., T.J., N.W., T.W.K.) and Genomics & Bioinformatics (H.S.), Fred Hutchinson Cancer Center, Seattle, Washington and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., M.Y.)
| | - Nobunao Wakabayashi
- Translational Research Program (T.G.-S., Y.Y., T.J., N.W., T.W.K.) and Genomics & Bioinformatics (H.S.), Fred Hutchinson Cancer Center, Seattle, Washington and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., M.Y.)
| | - Harini Srinivasan
- Translational Research Program (T.G.-S., Y.Y., T.J., N.W., T.W.K.) and Genomics & Bioinformatics (H.S.), Fred Hutchinson Cancer Center, Seattle, Washington and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., M.Y.)
| | - Takafumi Suzuki
- Translational Research Program (T.G.-S., Y.Y., T.J., N.W., T.W.K.) and Genomics & Bioinformatics (H.S.), Fred Hutchinson Cancer Center, Seattle, Washington and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., M.Y.)
| | - Masayuki Yamamoto
- Translational Research Program (T.G.-S., Y.Y., T.J., N.W., T.W.K.) and Genomics & Bioinformatics (H.S.), Fred Hutchinson Cancer Center, Seattle, Washington and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., M.Y.)
| | - Thomas W Kensler
- Translational Research Program (T.G.-S., Y.Y., T.J., N.W., T.W.K.) and Genomics & Bioinformatics (H.S.), Fred Hutchinson Cancer Center, Seattle, Washington and Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan (T.S., M.Y.)
| |
Collapse
|
10
|
Zhao Z, Dong R, You Q, Jiang Z. Medicinal Chemistry Insights into the Development of Small-Molecule Kelch-Like ECH-Associated Protein 1-Nuclear Factor Erythroid 2-Related Factor 2 (Keap1-Nrf2) Protein-Protein Interaction Inhibitors. J Med Chem 2023. [PMID: 37441735 DOI: 10.1021/acs.jmedchem.3c00712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Oxidative stress has been implicated in a wide range of pathological conditions. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) exerts a central role in regulating the cellular defense system against oxidative and electrophilic insults. Nonelectrophilic inhibition of the protein-protein interaction (PPI) between Kelch-like ECH-associated protein 1 (Keap1) and Nrf2 has become a promising approach to activate Nrf2. Recently, multiple drug discovery strategies have facilitated the development of small-molecule Keap1-Nrf2 PPI inhibitors with potent activity and favorable drug-like properties. In this Perspective, we summarize the latest progress of small-molecule Keap1-Nrf2 PPI inhibitors from medicinal chemistry insights and discuss future prospects and challenges in this field.
Collapse
Affiliation(s)
- Ziquan Zhao
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ruitian Dong
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
11
|
Pant A, Dasgupta D, Tripathi A, Pyaram K. Beyond Antioxidation: Keap1-Nrf2 in the Development and Effector Functions of Adaptive Immune Cells. Immunohorizons 2023; 7:288-298. [PMID: 37099275 PMCID: PMC10579846 DOI: 10.4049/immunohorizons.2200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/05/2023] [Indexed: 04/27/2023] Open
Abstract
Ubiquitously expressed in mammalian cells, the Kelch-like ECH-associated protein 1 (Keap1)-NF erythroid 2-related factor 2 (Nrf2) complex forms the evolutionarily conserved antioxidation system to tackle oxidative stress caused by reactive oxygen species. Reactive oxygen species, generated as byproducts of cellular metabolism, were identified as essential second messengers for T cell signaling, activation, and effector responses. Apart from its traditional role as an antioxidant, a growing body of evidence indicates that Nrf2, tightly regulated by Keap1, modulates immune responses and regulates cellular metabolism. Newer functions of Keap1 and Nrf2 in immune cell activation and function, as well as their role in inflammatory diseases such as sepsis, inflammatory bowel disease, and multiple sclerosis, are emerging. In this review, we highlight recent findings about the influence of Keap1 and Nrf2 in the development and effector functions of adaptive immune cells, that is, T cells and B cells, and discuss the knowledge gaps in our understanding. We also summarize the research potential and targetability of Nrf2 for treating immune pathologies.
Collapse
Affiliation(s)
- Anil Pant
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX
| | - Debolina Dasgupta
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| | - Aprajita Tripathi
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| | - Kalyani Pyaram
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
12
|
Egbujor MC, Tucci P, Onyeije UC, Emeruwa CN, Saso L. NRF2 Activation by Nitrogen Heterocycles: A Review. Molecules 2023; 28:2751. [PMID: 36985723 PMCID: PMC10058096 DOI: 10.3390/molecules28062751] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Several nitrogen heterocyclic analogues have been applied to clinical practice, and about 75% of drugs approved by the FDA contain at least a heterocyclic moiety. Thus, nitrogen heterocycles are beneficial scaffolds that occupy a central position in the development of new drugs. The fact that certain nitrogen heterocyclic compounds significantly activate the NRF2/ARE signaling pathway and upregulate the expression of NRF2-dependent genes, especially HO-1 and NQO1, underscores the need to study the roles and pharmacological effects of N-based heterocyclic moieties in NRF2 activation. Furthermore, nitrogen heterocycles exhibit significant antioxidant and anti-inflammatory activities. NRF2-activating molecules have been of tremendous research interest in recent times due to their therapeutic roles in neuroinflammation and oxidative stress-mediated diseases. A comprehensive review of the NRF2-inducing activities of N-based heterocycles and their derivatives will broaden their therapeutic prospects in a wide range of diseases. Thus, the present review, as the first of its kind, provides an overview of the roles and effects of nitrogen heterocyclic moieties in the activation of the NRF2 signaling pathway underpinning their antioxidant and anti-inflammatory actions in several diseases, their pharmacological properties and structural-activity relationship are also discussed with the aim of making new discoveries that will stimulate innovative research in this area.
Collapse
Affiliation(s)
- Melford C. Egbujor
- Department of Chemical Sciences, Rhema University Nigeria, Aba 453115, Nigeria
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Ugomma C. Onyeije
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, Awka 420007, Nigeria
| | | | - Luciano Saso
- Department of Physiology and Pharmacology, Vittorio Erspamer, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
13
|
Su AL, Penning TM. Role of Human Aldo-Keto Reductases and Nuclear Factor Erythroid 2-Related Factor 2 in the Metabolic Activation of 1-Nitropyrene via Nitroreduction in Human Lung Cells. Chem Res Toxicol 2023; 36:270-280. [PMID: 36693016 PMCID: PMC9974908 DOI: 10.1021/acs.chemrestox.2c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
1-Nitropyrene (1-NP) is a constituent of diesel exhaust and classified as a group 2A probable human carcinogen. The metabolic activation of 1-NP by nitroreduction generates electrophiles that can covalently bind DNA to form mutations to contribute to cancer causation. NADPH-dependent P450 oxidoreductase (POR), xanthine oxidase (XO), aldehyde oxidase (AOX), and NAD(P)H/quinone oxidoreductase 1 (NQO1) may catalyze 1-NP nitroreduction. We recently found that human recombinant aldo-keto reductases (AKRs) 1C1-1C3 catalyze 1-NP nitroreduction. NQO1 and AKR1C1-1C3 are genes induced by nuclear factor erythroid 2-related factor 2 (NRF2). Despite this knowledge, the relative importance of these enzymes and NRF2 to 1-NP nitroreduction is unknown. We used a combination of pharmacological and genetic approaches to assess the relative importance of these enzymes and NRF2 in the aerobic nitroreduction of 1-NP in human bronchial epithelial cells, A549 and HBEC3-KT. 1-NP nitroreduction was assessed by the measurement of 1-aminopyrene (1-AP), the six-electron reduced metabolite of 1-NP, based on its intrinsic fluorescence properties (λex and λem). We found that co-treatment of 1-NP with salicylic acid, an AKR1C1 inhibitor, or ursodeoxycholate, an AKR1C2 inhibitor, for 48 h decreased 1-AP production relative to 1-NP treatment alone (control) in both cell lines. R-Sulforaphane or 1-(2-cyano-3,12,28-trioxooleana-1,9(11)-dien-28-yl)-1H-imidazole (CDDO-Im), two NRF2 activators, each increased 1-AP production relative to control only in HBEC3-KT cells, which have inducible NRF2. Inhibitors of POR, NQO1, and XO failed to modify 1-AP production relative to control in both cell lines. Importantly, A549 wild-type cells with constitutively active NRF2 produced more 1-AP than A549 cells with heterozygous expression of NFE2L2/NRF2, which were able to produce more 1-AP than A549 cells with homozygous knockout of NFE2L2/NRF2. Together, these data show dependence of 1-NP metabolic activation on AKR1Cs and NRF2 in human lung cells. This is the second example whereby NFE2L2/NRF2 is implicated in the carcinogenicity of diesel exhaust constituents.
Collapse
Affiliation(s)
- Anthony L. Su
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Trevor M. Penning
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
14
|
Wan H, Cai Y, Xiao L, Ling Y, Ge L, Mo S, Xie Q, Peng S, Zhou B, Zeng X, Chen X. JFD, a Novel Natural Inhibitor of Keap1 Alkylation, Suppresses Intracellular Mycobacterium Tuberculosis Growth through Keap1/Nrf2/SOD2-Mediated ROS Accumulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6726654. [PMID: 36819778 PMCID: PMC9937762 DOI: 10.1155/2023/6726654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 08/16/2022] [Accepted: 10/14/2022] [Indexed: 02/12/2023]
Abstract
It is an effective strategy to treat tuberculosis by enhancing reactive oxygen species- (ROS-) mediated killing of Mycobacterium tuberculosis in macrophages, but there are no current therapeutic agents targeting this pathway. Honeysuckle has been used as the traditional medicine for tuberculosis treatment for 1500 years. Japoflavone D (JFD) is a novel biflavonoid isolated from Honeysuckle promoting ROS accumulation by Nrf2 pathway in hepatocarcinoma cells. However, its activity to kill M. tuberculosis in macrophages and molecular mechanism has not been reported. Our results showed that JFD enhances the M. tuberculosis elimination by boosting ROS levels in THP-1 cells. Moreover, the massive ROS accumulation activates p38 to induce apoptosis. Notably, the mechanism revealed that JFD suppresses the nuclear transport of Nrf2, thereby inhibiting SOD2 transcription, leading to a large ROS accumulation. Further studies showed that JFD disrupts the Keap1 alkylation at specific residues Cys14, Cys257, and Cys319, which is crucial for Nrf2 activation, thereby interrupts the nuclear transport of Nrf2. In pharmacokinetic study, JFD can stay as the prototype for 24 h in mice and can be excreted in feces without any toxicity. Our data reveal for the first time that a novel biflavonoid JFD as a potent inhibitor of Keap1 alkylation can suppress the nuclear transport of Nrf2. And it is the first research of the inhibitor of Keap1 alkylation. Furthermore, JFD robustly promotes M. tuberculosis elimination from macrophages by inhibiting Keap1/Nrf2/SOD2 pathway, resulting in the ROS accumulation. This work identified Keap1 alkylation as a new drug target for tuberculosis and provides a preliminary basis for the development of antituberculosis lead compounds based on JFD.
Collapse
Affiliation(s)
- Haoqiang Wan
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020 Guangdong Province, China
- Department of Pathology (Longhua Branch), Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong Province, China
| | - Yi Cai
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, 518120 Guangdong Province, China
| | - Lingyun Xiao
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020 Guangdong Province, China
| | - Yunzhi Ling
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020 Guangdong Province, China
| | - Lanlan Ge
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020 Guangdong Province, China
- Department of Pathology (Longhua Branch), Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong Province, China
| | - Siwei Mo
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, 518120 Guangdong Province, China
| | - Qiujie Xie
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020 Guangdong Province, China
| | - Shusong Peng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020 Guangdong Province, China
| | - Boping Zhou
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020 Guangdong Province, China
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020 Guangdong Province, China
- Department of Pathology (Longhua Branch), Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong Province, China
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, 518120 Guangdong Province, China
| | - Xinchun Chen
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, 518120 Guangdong Province, China
| |
Collapse
|
15
|
Targeting Nrf2 and NF-κB Signaling Pathways in Cancer Prevention: The Role of Apple Phytochemicals. Molecules 2023; 28:molecules28031356. [PMID: 36771023 PMCID: PMC9919881 DOI: 10.3390/molecules28031356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Plant secondary metabolites, known as phytochemicals, have recently gained much attention in light of the "circular economy", to reutilize waste products deriving from agriculture and food industry. Phytochemicals are known for their onco-preventive and chemoprotective effects, among several other beneficial properties. Apple phytochemicals have been extensively studied for their effectiveness in a wide range of diseases, cancer included. This review aims to provide a thorough overview of the main studies reported in the literature concerning apple phytochemicals, mostly polyphenols, in cancer prevention. Although there are many different mechanisms targeted by phytochemicals, the Nrf2 and NF-κB signaling pathways are the ones this review will be focused on, highlighting also the existing crosstalk between these two systems.
Collapse
|
16
|
Zhao Z, Dong R, Cui K, You Q, Jiang Z. An updated patent review of Nrf2 activators (2020-present). Expert Opin Ther Pat 2023; 33:29-49. [PMID: 36800917 DOI: 10.1080/13543776.2023.2178299] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
INTRODUCTION The nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor that controls the expression of numerous cytoprotective genes and regulates cellular defense system against oxidative insults. Thus, activating the Nrf2 pathway is a promising strategy for the treatment of various chronic diseases characterized by oxidative stress. AREAS COVERED This review first discusses the biological effects of Nrf2 and the regulatory mechanism of Kelch-like ECH-associated protein 1-Nrf2-antioxidant response element (Keap1-Nrf2-ARE) pathway. Then, Nrf2 activators (2020-present) are summarized based on the mechanism of action. The case studies consist of chemical structures, biological activities, structural optimization, and clinical development. EXPERT OPINION Extensive efforts have been devoted to developing novel Nrf2 activators with improved potency and drug-like properties. These Nrf2 activators have exhibited beneficial effects in in vitro and in vivo models of oxidative stress-related chronic diseases. However, some specific problems, such as target selectivity and brain blood barrier (BBB) permeability, still need to be addressed in the future.
Collapse
Affiliation(s)
- Ziquan Zhao
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ruitian Dong
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Keni Cui
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
17
|
A Comprehensive Review of BET-targeting PROTACs for Cancer Therapy. Bioorg Med Chem 2022; 73:117033. [DOI: 10.1016/j.bmc.2022.117033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/11/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022]
|
18
|
Wakamori S, Taguchi K, Nakayama Y, Ohkoshi A, Sporn MB, Ogawa T, Katori Y, Yamamoto M. Nrf2 protects against radiation-induced oral mucositis via antioxidation and keratin layer thickening. Free Radic Biol Med 2022; 188:206-220. [PMID: 35753588 DOI: 10.1016/j.freeradbiomed.2022.06.239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022]
Abstract
Radiation-induced oral mucositis is one of the most common adverse events in radiation therapy for head and neck cancers, but treatments for oral mucositis are limited to palliative and supportive care. New approaches are required to prevent radiation-induced mucositis and to improve treatments. The Keap1-Nrf2 system regulates cytoprotection against oxidative and electrophilic stresses. Nrf2 also regulates keratin layer thickness in mouse tongues. Therefore, we hypothesized that Nrf2 may protect the tongue epithelium against radiation-induced mucositis via elimination of reactive oxygen species and induction of keratin layer thickening. To test this hypothesis, we prepared a system for γ-ray exposure of restricted areas and irradiated the tongues of model mice with Nrf2 and Keap1 loss-of-function. We discovered that loss of Nrf2 expression indeed sensitized the tongue epithelium to radiation-induced ulcer formation with inflammation. Constitutive Nrf2 activation by genetic Keap1 knockdown alleviated radiation-induced DNA damage by increasing antioxidation. In agreement with the genetic Nrf2 activation model, the Nrf2 inducer CDDO-Im prevented irradiation damage to the tongue epithelium. These results demonstrate that Nrf2 activation has the potential to prevent the development of radiation-induced mucositis and that Nrf2 inducers are an important therapeutic drug for protection of the upper aerodigestive tract from radiation-induced mucositis.
Collapse
Affiliation(s)
- Shun Wakamori
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Department of Otorhinolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Keiko Taguchi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Department of Medical Biochemistry, Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan; Advanced Research Center for Innovations in Next-GEneration Medicine (INGEM), Tohoku University, Sendai, 980-8573, Japan
| | - Yuki Nakayama
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Department of Otorhinolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Akira Ohkoshi
- Department of Otorhinolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Michael B Sporn
- Molecular and Systems Biology, Dartmouth Medical School, Lebanon, NH, 03756, United States
| | - Takenori Ogawa
- Department of Otolaryngology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yukio Katori
- Department of Otorhinolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Department of Medical Biochemistry, Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan; Advanced Research Center for Innovations in Next-GEneration Medicine (INGEM), Tohoku University, Sendai, 980-8573, Japan.
| |
Collapse
|
19
|
Song L, Li M, Feng C, Sa R, Hu X, Wang J, Yin X, Qi C, Dong W, Yang J. Protective effect of curcumin on zebrafish liver under ethanol-induced oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol 2022; 258:109360. [PMID: 35523403 DOI: 10.1016/j.cbpc.2022.109360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 11/03/2022]
Abstract
Oxidative stress has an important role in determining severe damage to the liver, including steatosis. Curcumin (CUR) is a natural polyphenol compound with antioxidant potential but its mechanism is still unclear. In this study, 2% ethanol (ETH) was used to establish a liver injury model in Tg (fabp10: Ps Red) transgenic zebrafish with the fluorescent liver. Ethanol-treated zebrafish had an increased vacuole rate at 144 h post-fertilization (hpf), thus confirming the effectiveness of the proposed model in inducing liver damage. However, when ethanol was submitted to co-exposure with curcumin, fluorescence area and signal intensity, as well as vacuole rate, were similar to the levels found in the control group. RNA-seq results showed that ethanol and CUR affected the regulation of catalytic activity and phenylalanine metabolism, biosynthesis of amino acids, and arginine and proline metabolism signaling pathways. QRT-PCR analysis also showed that treatment with CUR led to the downregulation of genes involved in the Nrf2-Keap1 signaling pathway and altered the expression pattern of genes related to glutathione metabolism (gsr, gpx1a, gstp1, gsto1, and idh1a). CUR also induced an increase in GSH content and recovered decreased GSH caused by ethanol exposure. The findings discussed herein indicate that CUR can promote glutathione synthesis, which aided in the recovery from ethanol-induced liver damage in zebrafish larvae.
Collapse
Affiliation(s)
- Lei Song
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Ming Li
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Chi Feng
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Rigaiqiqige Sa
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Xiaodong Hu
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Jie Wang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Xiaoyu Yin
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Chelimuge Qi
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China.
| | - Jingfeng Yang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China.
| |
Collapse
|
20
|
Qian J, Xu Z, Meng C, Liu Y, Wu H, Wang Y, Yang J, Zheng H, Ran F, Liu GQ, Ling Y. Redox-Activatable Theranostic Co-Prodrug for Precise Tumor Diagnosis and Selective Combination Chemotherapy. J Med Chem 2022; 65:10393-10407. [PMID: 35877176 DOI: 10.1021/acs.jmedchem.2c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel theranostic co-prodrug SCB has been designed by combining a co-prodrug from CDDO-Me and SAHA with a biotin-coupled near-infrared (NIR) probe hemicyanine via redox-responsive linker thiolactate to enhance the tumor theranostic efficacy and reduce the toxic side effects using both active and passive targeting strategies. SCB displayed reactive oxygen species (ROS)- and glutathione (GSH)-dependent release of NIR fluorescence and two parent drugs. Furthermore, the administration of SCB caused selective illumination of the tumor tissues for >24 h, thereby guiding precise removal of a tumor from intraoperative mice. Importantly, SCB exhibited highly efficient tumor inhibition, exerted selective combination therapy through prodrug mode, and minimized the adverse effects. Finally, SCB induced mitochondrial depolarization, DNA damage, and cell apoptosis through ROS generation and downregulation of HDAC6 protein, as verified by H2AX, Bax, cleaved-PARP, and Mcl-1 proteins. Thus, we suggest that SCB can provide a new platform for both precise diagnosis-guided tumor removal and selective combination therapy with high safety.
Collapse
Affiliation(s)
- Jianqiang Qian
- School of Pharmacy, Nantong University, Nantong 226001, P. R. China.,Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, P. R. China
| | - Zhongyuan Xu
- School of Pharmacy, Nantong University, Nantong 226001, P. R. China.,Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, P. R. China
| | - Chi Meng
- School of Pharmacy, Nantong University, Nantong 226001, P. R. China
| | - Yun Liu
- School of Pharmacy, Nantong University, Nantong 226001, P. R. China
| | - Hongmei Wu
- School of Pharmacy, Nantong University, Nantong 226001, P. R. China
| | - Yunyun Wang
- School of Pharmacy, Nantong University, Nantong 226001, P. R. China
| | - Jinxian Yang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, P. R. China
| | - Hongwei Zheng
- School of Pharmacy, Nantong University, Nantong 226001, P. R. China
| | - Fansheng Ran
- School of Pharmacy, Nantong University, Nantong 226001, P. R. China.,Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, P. R. China
| | - Gong-Qing Liu
- School of Pharmacy, Nantong University, Nantong 226001, P. R. China.,Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, P. R. China
| | - Yong Ling
- School of Pharmacy, Nantong University, Nantong 226001, P. R. China.,Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, P. R. China
| |
Collapse
|
21
|
CDDO-Im ameliorates osteoarthritis and inhibits chondrocyte apoptosis in mice via enhancing Nrf2-dependent autophagy. Acta Pharmacol Sin 2022; 43:1793-1802. [PMID: 34754093 PMCID: PMC9253092 DOI: 10.1038/s41401-021-00782-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent chronic degenerative joint disease with few treatment options. The pathogenesis of OA is characterized by sustained inflammation, oxidative stress and chondrocyte apoptosis that eventually lead to cartilage degradation and joint dysfunction. In the present study, we identified a synthetic triterpenoid CDDO-Im(1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole) as an activator of Nrf2 (nuclear factor erythroid 2-related factor 2) that displayed strong anti-OA effects. We showed that CDDO-Im (20 nM) significantly alleviated TNF-α-induced apoptosis of primary human chondrocytes and extracellular matrix degradation. In a mouse OA model incurred by DMM (destabilization of medial meniscus), administration of CDDO-Im (2.5 mg/kg, ip, every other day for 8 weeks) effectively reduced knee joint cartilage erosion and serum levels of inflammatory cytokines IL-1β and IL-6. We revealed that CDDO-Im (20 nM) significantly enhanced autophagy activities in chondrocytes, whereas the autophagy inhibition by chloroquine (CQ, 50 μM) or 3-methyladenine (3-MA, 5 mM) abrogated the anti-apoptosis and chondroprotective effects of CDDO-Im in TNF-α-treated chondrocytes. Moreover, we confirmed that CDDO-Im (1-20 nM) dose-dependently activated Nrf2 pathway in TNF-α-treated chondrocytes, and its chondroprotective and autophagy-enhancing effects were significantly diminished when Nrf2 signaling was blocked by Nrf2 inhibitor ML385 (20 μM) or siRNA-mediated Nrf2 knockdown. Together, our results demonstrate that CDDO-Im exhibits prominent chondroprotective and anti-OA activities owing to its Nrf2 activation and autophagy-enhancing properties, which might provide new insights into the strategies of OA clinical prevention and treatment.
Collapse
|
22
|
Targeting NRF2 in Type 2 diabetes mellitus and depression: Efficacy of natural and synthetic compounds. Eur J Pharmacol 2022; 925:174993. [PMID: 35513015 DOI: 10.1016/j.ejphar.2022.174993] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/18/2022]
Abstract
Evidence supports a strong bidirectional association between depression and Type 2 diabetes mellitus (T2DM). The harmful impact of oxidative stress and chronic inflammation on the development of both disorders is widely accepted. Nuclear factor erythroid 2-related factor 2 (NRF2) is a pertinent target in disease management owing to its reputation as the master regulator of antioxidant responses. NRF2 influences the expression of various cytoprotective phase 2 antioxidant genes, which is hampered in both depression and T2DM. Through interaction and crosstalk with several signaling pathways, NRF2 endeavors to contain the widespread oxidative damage and persistent inflammation involved in the pathophysiology of depression and T2DM. NRF2 promotes the neuroprotective and insulin-sensitizing properties of its upstream and downstream targets, thereby interrupting and preventing disease advancement. Standard antidepressant and antidiabetic drugs may be powerful against these disorders, but unfortunately, they come bearing distressing side effects. Therefore, exploiting the therapeutic potential of NRF2 activators presents an exciting opportunity to manage such bidirectional and comorbid conditions.
Collapse
|
23
|
Dexamethasone Administration in Mice Leads to Less Body Weight Gain over Time, Lower Serum Glucose, and Higher Insulin Levels Independently of NRF2. Antioxidants (Basel) 2021; 11:antiox11010004. [PMID: 35052508 PMCID: PMC8773000 DOI: 10.3390/antiox11010004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022] Open
Abstract
Glucocorticoids are used widely on a long-term basis in autoimmune and inflammatory diseases. Their adverse effects include the development of hyperglycemia and osteoporosis, whose molecular mechanisms have been only partially studied in preclinical models. Both these glucocorticoid-induced pathologies have been shown to be mediated at least in part by oxidative stress. The transcription factor nuclear erythroid factor 2-like 2 (NRF2) is a central regulator of antioxidant and cytoprotective responses. Thus, we hypothesized that NRF2 may play a role in glucocorticoid-induced metabolic disease and osteoporosis. To this end, WT and Nrf2 knockout (Nrf2KO) mice of both genders were treated with 2 mg/kg dexamethasone or vehicle 3 times per week for 13 weeks. Dexamethasone treatment led to less weight gain during the treatment period without affecting food consumption, as well as to lower glucose levels and high insulin levels compared to vehicle-treated mice. Dexamethasone also reduced cortical bone volume and density. All these effects of dexamethasone were similar between male and female mice, as well as between WT and Nrf2KO mice. Hepatic NRF2 signaling and gluconeogenic gene expression were not affected by dexamethasone. A 2-day dexamethasone treatment was also sufficient to increase insulin levels without affecting body weight and glucose levels. Hence, dexamethasone induces hyperinsulinemia, which potentially leads to decreased glucose levels, as well as osteoporosis, both independently of NRF2.
Collapse
|
24
|
Wei J, Meng F, Park KS, Yim H, Velez J, Kumar P, Wang L, Xie L, Chen H, Shen Y, Teichman E, Li D, Wang GG, Chen X, Kaniskan HÜ, Jin J. Harnessing the E3 Ligase KEAP1 for Targeted Protein Degradation. J Am Chem Soc 2021; 143:15073-15083. [PMID: 34520194 PMCID: PMC8480205 DOI: 10.1021/jacs.1c04841] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Proteolysis targeting chimeras (PROTACs) represent a new class of promising therapeutic modalities. PROTACs hijack E3 ligases and the ubiquitin-proteasome system (UPS), leading to selective degradation of the target proteins. However, only a very limited number of E3 ligases have been leveraged to generate effective PROTACs. Herein, we report that the KEAP1 E3 ligase can be harnessed for targeted protein degradation utilizing a highly selective, noncovalent small-molecule KEAP1 binder. We generated a proof-of-concept PROTAC, MS83, by linking the KEAP1 ligand to a BRD4/3/2 binder. MS83 effectively reduces protein levels of BRD4 and BRD3, but not BRD2, in cells in a concentration-, time-, KEAP1- and UPS-dependent manner. Interestingly, MS83 degrades BRD4/3 more durably than the CRBN-recruiting PROTAC dBET1 in MDA-MB-468 cells and selectively degrades BRD4 short isoform over long isoform in MDA-MB-231 cells. It also displays improved antiproliferative activity than dBET1. Overall, our study expands the limited toolbox for targeted protein degradation.
Collapse
Affiliation(s)
- Jieli Wei
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Fanye Meng
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Hyerin Yim
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Julia Velez
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Prashasti Kumar
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Li Wang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - He Chen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Yudao Shen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Emily Teichman
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Dongxu Li
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gang Greg Wang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
25
|
Khusnutdinova E, Petrova A, Zileeva Z, Kuzmina U, Zainullina L, Vakhitova Y, Babkov D, Kazakova O. Novel A-Ring Chalcone Derivatives of Oleanolic and Ursolic Amides with Anti-Proliferative Effect Mediated through ROS-Triggered Apoptosis. Int J Mol Sci 2021; 22:9796. [PMID: 34575964 PMCID: PMC8465963 DOI: 10.3390/ijms22189796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022] Open
Abstract
A series of A-ring modified oleanolic and ursolic acid derivatives including C28 amides (3-oxo-C2-nicotinoylidene/furfurylidene, 3β-hydroxy-C2-nicotinoylidene, 3β-nicotinoyloxy-, 2-cyano-3,4-seco-4(23)-ene, indolo-, lactame and azepane) were synthesized and screened for their cytotoxic activity against the NCI-60 cancer cell line panel. The results of the first assay of thirty-two tested compounds showed that eleven derivatives exhibited cytotoxicity against cancer cells, and six of them were selected for complete dose-response studies. A systematic study of local SARs has been carried out by comparative analysis of potency distributions and similarity relationships among the synthesized compounds using network-like similarity graphs. Among the oleanane type triterpenoids, C2-[4-pyridinylidene]-oleanonic C28-morpholinyl amide exhibited sub-micromolar potencies against 15 different tumor cell lines and revealed particular selectivity for non-small cell lung cancer (HOP-92) with a GI50 value of 0.0347 μM. On the other hand, superior results were observed for C2-[3-pyridinylidene]-ursonic N-methyl-piperazinyl amide 29, which exhibited a broad-spectrum inhibition activity with GI50 < 1 μM against 33 tumor cell lines and <2 μM against all 60 cell lines. This compound has been further evaluated for cell cycle analysis to decipher the mechanism of action. The data indicate that compound 29 could exhibit both cytostatic and cytotoxic activity, depending on the cell line evaluated. The cytostatic activity appears to be determined by induction of the cell cycle arrest at the S (MCF-7, SH-SY5Y cells) or G0/G1 phases (A549 cells), whereas cytotoxicity of the compound against normal cells is nonspecific and arises from apoptosis without significant alterations in cell cycle distribution (HEK293 cells). Our results suggest that the antiproliferative effect of compound 29 is mediated through ROS-triggered apoptosis that involves mitochondrial membrane potential depolarization and caspase activation.
Collapse
Affiliation(s)
- Elmira Khusnutdinova
- Ufa Institute of Chemistry UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (E.K.); (A.P.)
| | - Anastasiya Petrova
- Ufa Institute of Chemistry UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (E.K.); (A.P.)
| | - Zulfia Zileeva
- Institute of Biochemistry and Genetics UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (Z.Z.); (U.K.); (L.Z.); (Y.V.)
| | - Ulyana Kuzmina
- Institute of Biochemistry and Genetics UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (Z.Z.); (U.K.); (L.Z.); (Y.V.)
| | - Liana Zainullina
- Institute of Biochemistry and Genetics UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (Z.Z.); (U.K.); (L.Z.); (Y.V.)
| | - Yulia Vakhitova
- Institute of Biochemistry and Genetics UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (Z.Z.); (U.K.); (L.Z.); (Y.V.)
| | - Denis Babkov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 39 Novorossiyskaya St., 400087 Volgograd, Russia;
| | - Oxana Kazakova
- Ufa Institute of Chemistry UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (E.K.); (A.P.)
| |
Collapse
|
26
|
Baer-Dubowska W, Narożna M, Krajka-Kuźniak V. Anti-Cancer Potential of Synthetic Oleanolic Acid Derivatives and Their Conjugates with NSAIDs. Molecules 2021; 26:molecules26164957. [PMID: 34443544 PMCID: PMC8398353 DOI: 10.3390/molecules26164957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 01/05/2023] Open
Abstract
Naturally occurring pentacyclic triterpenoid oleanolic acid (OA) serves as a good scaffold for additional modifications to achieve synthetic derivatives. Therefore, a large number of triterpenoids have been synthetically modified in order to increase their bioactivity and their protective or therapeutic effects. Moreover, attempts were performed to conjugate synthetic triterpenoids with non-steroidal anti-inflammatory drugs (NSAIDs) or other functional groups. Among hundreds of synthesized triterpenoids, still the most promising is 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO), which reached clinical trials level of investigations. The new group of synthetic triterpenoids are OA oximes. The most active among them is 3-hydroxyiminoolean-12-en-28-oic acid morpholide, which additionally improves the anti-cancer activity of standard NSAIDs. While targeting the Nrf2 and NF-κB signaling pathways is the main mechanism of synthetic OA derivatives′ anti-inflammatory and anti-cancer activity, most of these compounds exhibit multifunctional activity, and affect cross-talk within the cellular signaling network. This short review updates the earlier data and describes the new OA derivatives and their conjugates in the context of modification of signaling pathways involved in inflammation and cell survival and subsequently in cancer development.
Collapse
|
27
|
Zhang L, Xu L, Chen H, Zhang W, Xing C, Qu Z, Yu J, Zhuang C. Structure-based molecular hybridization design of Keap1-Nrf2 inhibitors as novel protective agents of acute lung injury. Eur J Med Chem 2021; 222:113599. [PMID: 34119834 DOI: 10.1016/j.ejmech.2021.113599] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/12/2022]
Abstract
Blocking the Kelch-like epichlorohydrin-related protein 1 (Keap1)-nuclear factor-erythroid 2 related factor 2 (Nrf2) pathway represents as a promising strategy to reduce oxidative stress and related-inflammation, including acute lung injury (ALI). NXPZ-2, a naphthalensulfonamide derivative, was previously reported to effectively inhibit the Keap1-Nrf2 protein-protein interaction (PPI) by our group. In the present work, a series of novel isothiocyanate-containing naphthalensulfonamides with the thioether, sulfoxide and sulfone moieties were designed by a structure-based molecular hybridization strategy using NXPZ-2 and the Nrf2 activator sulforaphane. They possessed good Keap1-Nrf2 PPI inhibitory activity and low cytotoxicity. The molecular docking study was performed to further explain the different activity of the thioether-, sulfoxide- and sulfone-containing naphthalensulfonamides. Among these new derivatives, 2-((N-(4-((N-(2-amino-2-oxoethyl)-4-((3-isothiocyanatopropyl)sulfinyl)phenyl)sulfonamido) naphthalen-1-yl)-4-methoxyphenyl)sulfonamido)acetamide (SCN-16) showed a good KD2 value of 0.455 μM to disrupt the PPI. In an LPS-induced peritoneal macrophage cell model, this compound could cause a significant increase in the nuclear Nrf2 protein, decrease in the cytosolic Nrf2 protein, and further elevate the downstream protective enzymes HO-1 and NQO-1, which were better than the lead compound NXPZ-2 and sulforaphane. What's more, the production of ROS and NO and the expression of pro-inflammatory cytokine TNF-α were also suppressed. In the LPS-induced ALI model, SCN-16 could significantly reduce LPS-induced inflammations and alleviate lung injuries by triggering Nrf2 nuclear translocation. Collectively, our results suggested that SCN-16 could be a novel lead compound targeting Keap1-Nrf2 protective pathway for clinical treatment of ALI.
Collapse
Affiliation(s)
- Le Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Lijuan Xu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Haihu Chen
- Department of Intervention, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA
| | - Zhuo Qu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
28
|
Horie Y, Suzuki T, Inoue J, Iso T, Wells G, Moore TW, Mizushima T, Dinkova-Kostova AT, Kasai T, Kamei T, Koshiba S, Yamamoto M. Molecular basis for the disruption of Keap1-Nrf2 interaction via Hinge & Latch mechanism. Commun Biol 2021; 4:576. [PMID: 33990683 PMCID: PMC8121781 DOI: 10.1038/s42003-021-02100-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
The Keap1-Nrf2 system is central for mammalian cytoprotection against various stresses and a drug target for disease prevention and treatment. One model for the molecular mechanisms leading to Nrf2 activation is the Hinge-Latch model, where the DLGex-binding motif of Nrf2 dissociates from Keap1 as a latch, while the ETGE motif remains attached to Keap1 as a hinge. To overcome the technical difficulties in examining the binding status of the two motifs during protein-protein interaction (PPI) simultaneously, we utilized NMR spectroscopy titration experiments. Our results revealed that latch dissociation is triggered by low-molecular-weight Keap1-Nrf2 PPI inhibitors and occurs during p62-mediated Nrf2 activation, but not by electrophilic Nrf2 inducers. This study demonstrates that Keap1 utilizes a unique Hinge-Latch mechanism for Nrf2 activation upon challenge by non-electrophilic PPI-inhibiting stimuli, and provides critical insight for the pharmacological development of next-generation Nrf2 activators targeting the Keap1-Nrf2 PPI. Using NMR spectroscopy, Horie, Suzuki, Inoue et al. show that the dissociation of Keap1 from Nrf2, or the Hinge-Latch mechanism, is triggered by Keap1-Nrf2 inhibitors and occurs during p62- mediated Nrf2 activation, but not by electrophilic Nrf2 inducers. This study provides insights into the design of Nrf2 activators targeting the Keap1-Nrf2 interaction.
Collapse
Affiliation(s)
- Yuta Horie
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jin Inoue
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai, Japan
| | - Tatsuro Iso
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Geoffrey Wells
- UCL School of Pharmacy, University College London, London, UK
| | - Terry W Moore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Tsunehiro Mizushima
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom.,Department Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takuma Kasai
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan.,PRESTO, JST, Kawaguchi, Japan
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Seizo Koshiba
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan. .,The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai, Japan.
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan. .,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan. .,The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai, Japan.
| |
Collapse
|
29
|
Abstract
Inflammatory processes occur as a generic response of the immune system and can be triggered by various factors, such as infection with pathogenic microorganisms or damaged tissue. Due to the complexity of the inflammation process and its role in common diseases like asthma, cancer, skin disorders or Alzheimer's disease, anti-inflammatory drugs are of high pharmaceutical interest. Nature is a rich source for compounds with anti-inflammatory properties. Several studies have focused on the structural optimization of natural products to improve their pharmacological properties. As derivatization through total synthesis is often laborious with low yields and limited stereoselectivity, the use of biosynthetic, enzyme-driven reactions is an attractive alternative for synthesizing and modifying complex bioactive molecules. In this minireview, we present an outline of the biotechnological methods used to derivatize anti-inflammatory natural products, including precursor-directed biosynthesis, mutasynthesis, combinatorial biosynthesis, as well as whole-cell and in vitro biotransformation.
Collapse
Affiliation(s)
- Lea Winand
- Department of Biochemical and Chemical EngineeringLaboratory of Technical BiologyTU Dortmund UniversityEmil-Figge-Strasse 6644227DortmundGermany
| | - Angela Sester
- Department of Biochemical and Chemical EngineeringLaboratory of Technical BiologyTU Dortmund UniversityEmil-Figge-Strasse 6644227DortmundGermany
- Current address: Chair of Technical BiochemistryTechnical University of DresdenBergstrasse 6601069DresdenGermany
| | - Markus Nett
- Department of Biochemical and Chemical EngineeringLaboratory of Technical BiologyTU Dortmund UniversityEmil-Figge-Strasse 6644227DortmundGermany
| |
Collapse
|
30
|
CDDO-Me Distinctly Regulates Regional Specific Astroglial Responses to Status Epilepticus via ERK1/2-Nrf2, PTEN-PI3K-AKT and NFκB Signaling Pathways. Antioxidants (Basel) 2020; 9:antiox9101026. [PMID: 33096818 PMCID: PMC7589507 DOI: 10.3390/antiox9101026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
2-Cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) is a triterpenoid analogue of oleanolic acid. CDDO-Me shows anti-inflammatory and neuroprotective effects. Furthermore, CDDO-Me has antioxidant properties, since it activates nuclear factor-erythroid 2-related factor 2 (Nrf2), which is a key player of redox homeostasis. In the present study, we evaluated whether CDDO-Me affects astroglial responses to status epilepticus (SE, a prolonged seizure activity) in the rat hippocampus in order to understand the underlying mechanisms of reactive astrogliosis and astroglial apoptosis. Under physiological conditions, CDDO-Me increased Nrf2 expression in the hippocampus without altering activities (phosphorylations) of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), phosphatidylinositol-3-kinase (PI3K), and AKT. CDDO-Me did not affect seizure activity in response to pilocarpine. However, CDDO-Me ameliorated reduced astroglial Nrf2 expression in the CA1 region and the molecular layer of the dentate gyrus (ML), and attenuated reactive astrogliosis and ML astroglial apoptosis following SE. In CA1 astrocytes, CDDO-Me inhibited the PI3K/AKT pathway by activating PTEN. In contrast, CDDO-ME resulted in extracellular signal-related kinases 1/2 (ERK1/2)-mediated Nrf2 upregulation in ML astrocytes. Furthermore, CDDO-Me decreased nuclear factor-κB (NFκB) phosphorylation in both CA1 and ML astrocytes. Therefore, our findings suggest that CDDO-Me may attenuate SE-induced reactive astrogliosis and astroglial apoptosis via regulation of ERK1/2-Nrf2, PTEN-PI3K-AKT, and NFκB signaling pathways.
Collapse
|