1
|
Li P, Li Y, Ma X, Li L, Zeng S, Peng Y, Liang H, Zhang G. Identification of naphthalimide-derivatives as novel PBD-targeted polo-like kinase 1 inhibitors with efficacy in drug-resistant lung cancer cells. Eur J Med Chem 2024; 271:116416. [PMID: 38657480 DOI: 10.1016/j.ejmech.2024.116416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Targeting polo-box domain (PBD) small molecule for polo-like kinase 1 (PLK1) inhibition is a viable alternative to target kinase domain (KD), which could avoid pan-selectivity and dose-limiting toxicity of ATP-competitive inhibitors. However, their efficacy in these settings is still low and inaccessible to clinical requirement. Herein, we utilized a structure-based high-throughput virtual screen to find novel chemical scaffold capable of inhibiting PLK1 via targeting PBD and identified an initial hit molecule compound 1a. Based on the lead compound 1a, a structural optimization approach was carried out and several series of derivatives with naphthalimide structural motif were synthesized. Compound 4Bb was identified as a new potent PLK1 inhibitor with a KD value of 0.29 μM. 4Bb could target PLK1 PBD to inhibit PLK1 activity and subsequently suppress the interaction of PLK1 with protein regulator of cytokinesis 1 (PRC1), finally leading to mitotic catastrophe in drug-resistant lung cancer cells. Furthermore, 4Bb could undergo nucleophilic substitution with the thiol group of glutathione (GSH) to disturb the redox homeostasis through exhausting GSH. By regulating cell cycle machinery and increasing cellular oxidative stress, 4Bb exhibited potent cytotoxicity to multiple cancer cells and drug-resistant cancer cells. Subcutaneous and oral administration of 4Bb could effectively inhibit the growth of drug-resistant tumors in vivo, doubling the survival time of tumor bearing mice without side effects in normal tissues. Thus, our study offers an orally-available, structurally-novel PLK1 inhibitor for drug-resistant lung cancer therapy.
Collapse
Affiliation(s)
- Pingping Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yongkun Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xuesong Ma
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Liangping Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shulan Zeng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yan Peng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Guohai Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
2
|
Gunasekaran P, Hwang YS, Lee GH, Park J, Kim JG, La YK, Park NY, Kothandaraman R, Yim MS, Choi J, Kim HN, Park IY, Lee SJ, Kim MH, Cha-Molstad H, Shin SY, Ryu EK, Bang JK. Degradation of Polo-like Kinase 1 by the Novel Poly-Arginine N-Degron Pathway PROTAC Regulates Tumor Growth in Nonsmall Cell Lung Cancer. J Med Chem 2024; 67:3307-3320. [PMID: 38105611 DOI: 10.1021/acs.jmedchem.3c01493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Polo-like kinase 1 (PLK1), which is crucial in cell cycle regulation, is considered a promising anticancer drug target. Herein, we present the N-degron pathway-based proteolysis targeting chimera (PROTAC) for PLK1 degradation, targeting the Polo-box domain (PBD). We identified DD-2 as the most potent PROTAC that selectively induces PLK1 degradation in cancer cells, including HeLa and nonsmall cell lung cancer (NSCLC), through the N-degron pathway. DD-2 exhibited significant in vitro anticancer effects, inducing G2/M arrest and apoptosis in HeLa and NSCLC cell lines. DD-2 showed significant tumor growth inhibition in a xenograft mouse model using HeLa and NSCLC cell lines, highlighting its potential in cancer treatment. Furthermore, the combination of DD-2 with tyrosine kinase inhibitor (TKI), osimertinib, effectively suppressed tumor growth in double-mutated H1975 cell lines, emphasizing DD-2's potential in combination cancer therapies. Collectively, this study demonstrates the potential of the N-degron pathway, especially using DD-2, for targeted cancer therapies.
Collapse
Affiliation(s)
- Pethaiah Gunasekaran
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chungbuk 28119, Republic of Korea
- Dandicure Inc, Ochang, Chungbuk 28119, Republic of Korea
| | - Yeon Sil Hwang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chungbuk 28119, Republic of Korea
- Dandicure Inc, Ochang, Chungbuk 28119, Republic of Korea
| | - Gong-Hyeon Lee
- Dandicure Inc, Ochang, Chungbuk 28119, Republic of Korea
| | - Jaehui Park
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Jung Gi Kim
- Nucleic Acid Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea
| | - Yeo Kyung La
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chungbuk 28119, Republic of Korea
| | - Nam Yeong Park
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chungbuk 28119, Republic of Korea
| | | | - Min Su Yim
- Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Joonhyeok Choi
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chungbuk 28119, Republic of Korea
| | - Hak Nam Kim
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chungbuk 28119, Republic of Korea
| | - Il Yeong Park
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Soo Jae Lee
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Mi-Hyun Kim
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Hyunjoo Cha-Molstad
- Nucleic Acid Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea
| | - Song Yub Shin
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - Eun Kyoung Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chungbuk 28119, Republic of Korea
- Department of Bio-Analytical Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chungbuk 28119, Republic of Korea
- Dandicure Inc, Ochang, Chungbuk 28119, Republic of Korea
- Department of Bio-Analytical Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
3
|
Jin H, Kim J, Lee O, Kim H, No KT. Leveraging the Fragment Molecular Orbital Method to Explore the PLK1 Kinase Binding Site and Polo-Box Domain for Potent Small-Molecule Drug Design. Int J Mol Sci 2023; 24:15639. [PMID: 37958623 PMCID: PMC10650754 DOI: 10.3390/ijms242115639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Polo-like kinase 1 (PLK1) plays a pivotal role in cell division regulation and emerges as a promising therapeutic target for cancer treatment. Consequently, the development of small-molecule inhibitors targeting PLK1 has become a focal point in contemporary research. The adenosine triphosphate (ATP)-binding site and the polo-box domain in PLK1 present crucial interaction sites for these inhibitors, aiming to disrupt the protein's function. However, designing potent and selective small-molecule inhibitors can be challenging, requiring a deep understanding of protein-ligand interaction mechanisms at these binding sites. In this context, our study leverages the fragment molecular orbital (FMO) method to explore these site-specific interactions in depth. Using the FMO approach, we used the FMO method to elucidate the molecular mechanisms of small-molecule drugs binding to these sites to design PLK1 inhibitors that are both potent and selective. Our investigation further entailed a comparative analysis of various PLK1 inhibitors, each characterized by distinct structural attributes, helping us gain a better understanding of the relationship between molecular structure and biological activity. The FMO method was particularly effective in identifying key binding features and predicting binding modes for small-molecule ligands. Our research also highlighted specific "hot spot" residues that played a critical role in the selective and robust binding of PLK1. These findings provide valuable insights that can be used to design new and effective PLK1 inhibitors, which can have significant implications for developing anticancer therapeutics.
Collapse
Affiliation(s)
- Haiyan Jin
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea; (H.J.); (O.L.)
| | - Jongwan Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea;
| | - Onju Lee
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea; (H.J.); (O.L.)
| | - Hyein Kim
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea;
| | - Kyoung Tai No
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea; (H.J.); (O.L.)
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea;
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| |
Collapse
|
4
|
Park JE, Kirsch K, Lee H, Oliva P, Ahn JI, Ravishankar H, Zeng Y, Fox SD, Kirby SA, Badhwar P, Andresson T, Jacobson KA, Lee KS. Specific inhibition of an anticancer target, polo-like kinase 1, by allosterically dismantling its mechanism of substrate recognition. Proc Natl Acad Sci U S A 2023; 120:e2305037120. [PMID: 37603740 PMCID: PMC10629583 DOI: 10.1073/pnas.2305037120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/07/2023] [Indexed: 08/23/2023] Open
Abstract
Polo-like kinase 1 (Plk1) is considered an attractive target for anticancer therapy. Over the years, studies on the noncatalytic polo-box domain (PBD) of Plk1 have raised the expectation of generating highly specific protein-protein interaction inhibitors. However, the molecular nature of the canonical PBD-dependent interaction, which requires extensive water network-mediated interactions with its phospholigands, has hampered efforts to identify small molecules suitable for Plk1 PBD drug discovery. Here, we report the identification of the first allosteric inhibitor of Plk1 PBD, called Allopole, a prodrug that can disrupt intracellular interactions between PBD and its cognate phospholigands, delocalize Plk1 from centrosomes and kinetochores, and induce mitotic block and cancer cell killing. At the structural level, its unmasked active form, Allopole-A, bound to a deep Trp-Phe-lined pocket occluded by a latch-like loop, whose adjoining region was required for securely retaining a ligand anchored to the phospho-binding cleft. Allopole-A binding completely dislodged the L2 loop, an event that appeared sufficient to trigger the dissociation of a phospholigand and inhibit PBD-dependent Plk1 function during mitosis. Given Allopole's high specificity and antiproliferative potency, this study is expected to open an unexplored avenue for developing Plk1 PBD-specific anticancer therapeutic agents.
Collapse
Affiliation(s)
- Jung-Eun Park
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Klara Kirsch
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Hobin Lee
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Paola Oliva
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Jong Il Ahn
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Harsha Ravishankar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Yan Zeng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Stephen D. Fox
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD21702
| | - Samuel A. Kirby
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Pooja Badhwar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Thorkell Andresson
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD21702
| | - Kenneth A. Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Kyung S. Lee
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| |
Collapse
|
5
|
Xu Z, Zhuang Y, Chen Q. Current scenario of pyrazole hybrids with in vivo therapeutic potential against cancers. Eur J Med Chem 2023; 257:115495. [PMID: 37209450 DOI: 10.1016/j.ejmech.2023.115495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Chemotherapeutics occupy a pivotal role in the medication of different types of cancers, but the prevalence and mortality rates of cancer remain high. The drug resistance and low specificity of current available chemotherapeutics are the main barriers for the effective cancer chemotherapy, evoking an immediate need for the development of novel anticancer agents. Pyrazole is a highly versatile five-membered heterocycle with two adjacent nitrogen atoms and possesses remarkable therapeutic effects and robust pharmacological potency. The pyrazole derivatives especially pyrazole hybrids have demonstrated potent in vitro and in vivo efficacies against cancers through multiple mechanisms, inclusive of apoptosis induction, autophagy regulation, and cell cycle disruption. Moreover, several pyrazole hybrids such as crizotanib (pyrazole-pyridine hybrid), erdafitinib (pyrazole-quinoxaline hybrid) and ruxolitinib (pyrazole-pyrrolo [2,3-d]pyrimidine hybrid) have already been approved for the cancer therapy, revealing that pyrazole hybrids are useful scaffolds to develop novel anticancer agents. The purpose of this review is to summarize the current scenario of pyrazole hybrids with potential in vivo anticancer efficacy along with mechanisms of action, toxicity, and pharmacokinetics, covering papers published in recent 5 years (2018-present), to facilitate further rational exploitation of more effective candidates.
Collapse
Affiliation(s)
- Zhi Xu
- Industry Innovation & Research and Development Institute of Zhumadian, Huanghuai University, Zhumadian, 463000, China.
| | - Yafei Zhuang
- Industry Innovation & Research and Development Institute of Zhumadian, Huanghuai University, Zhumadian, 463000, China
| | - Qingtai Chen
- College of Chemistry Pharmaceutical Engineering, Huanghuai University, Zhumadian, 463000, China
| |
Collapse
|
6
|
Park JE, Lee H, Oliva P, Kirsch K, Kim B, Ahn JI, Alverez CN, Gaikwad S, Krausz KW, O’Connor R, Rai G, Simeonov A, Mock BA, Gonzalez FJ, Lee KS, Jacobson KA. Structural Optimization and Anticancer Activity of Polo-like Kinase 1 (Plk1) Polo-Box Domain (PBD) Inhibitors and Their Prodrugs. ACS Pharmacol Transl Sci 2023; 6:422-446. [PMID: 36926457 PMCID: PMC10012257 DOI: 10.1021/acsptsci.2c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Indexed: 02/22/2023]
Abstract
Polo-like kinase 1 (Plk1), a mitotic kinase whose activity is widely upregulated in various human cancers, is considered an attractive target for anticancer drug discovery. Aside from the kinase domain, the C-terminal noncatalytic polo-box domain (PBD), which mediates the interaction with the enzyme's binding targets or substrates, has emerged as an alternative target for developing a new class of inhibitors. Various reported small molecule PBD inhibitors exhibit poor cellular efficacy and/or selectivity. Here, we report structure-activity relationship (SAR) studies on triazoloquinazolinone-derived inhibitors, such as 43 (a 1-thioxo-2,4-dihydrothieno[2,3-e][1,2,4]triazolo[4,3-a]pyrimidin-5(1H)-one) that effectively block Plk1, but not Plk2 and Plk3 PBDs, with improved affinity and drug-like properties. The range of prodrug moieties needed for thiol group masking of the active drugs has been expanded to increase cell permeability and mechanism-based cancer cell (L363 and HeLa) death. For example, a 5-thio-1-methyl-4-nitroimidazolyl prodrug 80, derived from 43, showed an improved cellular potency (GI50 4.1 μM). As expected, 80 effectively blocked Plk1 from localizing to centrosomes and kinetochores and consequently induced potent mitotic block and apoptotic cell death. Another prodrug 78 containing 9-fluorophenyl in place of the thiophene-containing heterocycle in 80 also induced a comparable degree of anti-Plk1 PBD effect. However, orally administered 78 was rapidly converted in the bloodstream to parent drug 15, which was shown be relatively stable toward in vivo oxidation due to its 9-fluorophenyl group in comparison to unsubstituted phenyl. Further derivatization of these inhibitors, particularly to improve the systemic prodrug stability, could lead to a new class of therapeutics against Plk1-addicted cancers.
Collapse
Affiliation(s)
- Jung-Eun Park
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hobin Lee
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Paola Oliva
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Klara Kirsch
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bora Kim
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jong Il Ahn
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Celeste N. Alverez
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Division
of Preclinical Innovation, National Center
for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Snehal Gaikwad
- Laboratory
of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of
Health, Bethesda, Maryland 20892, United States
| | - Kristopher W. Krausz
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Robert O’Connor
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Ganesha Rai
- Division
of Preclinical Innovation, National Center
for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Anton Simeonov
- Division
of Preclinical Innovation, National Center
for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Beverly A. Mock
- Laboratory
of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of
Health, Bethesda, Maryland 20892, United States
| | - Frank J. Gonzalez
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kyung S. Lee
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kenneth A. Jacobson
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
7
|
Stafford JM, Wyatt MD, McInnes C. Inhibitors of the PLK1 polo-box domain: drug design strategies and therapeutic opportunities in cancer. Expert Opin Drug Discov 2023; 18:65-81. [PMID: 36524399 DOI: 10.1080/17460441.2023.2159942] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Polo Like Kinase 1 (PLK1) is a key regulator of mitosis and its overexpression is frequently observed in a wide variety of human cancers, while often being associated with poor survival rates. Therefore, it is considered a potential and attractive target for cancer therapeutic development. The Polo like kinase family is characterized by the presence of a unique C terminal polobox domain (PBD) involved in regulating kinase activity and subcellular localization. Among the two functionally essential, druggable sites with distinct properties that PLK1 offers, targeting the PBD presents an alternative approach for therapeutic development. AREAS COVERED Significant progress has been made in progressing from the peptidic PBD inhibitors first identified, to peptidomimetic and recently drug-like small molecules. In this review, the rationale for targeting the PBD over the ATP binding site is discussed, along with recent progress, challenges, and outlook. EXPERT OPINION The PBD has emerged as a viable alternative target for the inhibition of PLK1, and progress has been made in using compounds to elucidate mechanistic aspects of activity regulation and in determining roles of the PBD. Studies have resulted in proof of concept of in vivo efficacy suggesting promise for PBD binders in clinical development.
Collapse
Affiliation(s)
- Jessy M Stafford
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Michael D Wyatt
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Campbell McInnes
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
8
|
Gunasekaran P, Lee GH, Hwang YS, Koo BC, Han EH, Bang G, La YK, Park S, Kim HN, Kim MH, Bang JK, Ryu EK. An investigation of Plk1 PBD inhibitor KBJK557 as a tumor growth suppressor in non-small cell lung cancer. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
AbstractLung cancer is the second most commonly reported type of cancer worldwide. Approximately 80–85% of lung cancer occurrences are accounted by non-small cell lung cancer (NSCLC). Polo-like kinase-1 (Plk1) plays multiple roles in cell cycle progression and its overexpression is observed in majority of malignancies, including NSCLC. A combination of frontline drugs and inhibitors targeting the Plk kinase domain (KD) has been used to overcome drug resistance in NSCLC. Plk1 KD inhibitors are highly prone to cross-reactivity with similar kinases, eventually leading to undesirable side effects. Moreover, there have been no reports of Plk1 PBD inhibitors showing antitumorigenic effects on NSCLC cells or animal models so far. To address this issue herein, for the first time, our recently reported Plk1 PBD inhibitor KBJK557 was evaluated for the anticancer potential against NSCLC cells. KBJK557 displayed notable cytotoxic effects in A549, PC9, and H1975 cells. Mechanistic investigations revealed that KBJK557-treated cells underwent G2/M cell cycle arrest, triggering subsequent apoptosis. In vivo antitumorigenic activity in xenograft mice model demonstrates that KBJK557-treated mice showed a considerable decrease in tumor size, proving the significances of Plk1 in lung cancer. Collectively, this study demonstrates that KBJK557 can serve as a promising drug candidate for treating the lung cancer through Plk1 PBD inhibition.
Collapse
|
9
|
Zhang J, Zhang L, Wang J, Ouyang L, Wang Y. Polo-like Kinase 1 Inhibitors in Human Cancer Therapy: Development and Therapeutic Potential. J Med Chem 2022; 65:10133-10160. [PMID: 35878418 DOI: 10.1021/acs.jmedchem.2c00614] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polo-like kinase 1 (PLK1) plays an important role in a variety of cellular functions, including the regulation of mitosis, DNA replication, autophagy, and the epithelial-mesenchymal transition (EMT). PLK1 overexpression is often associated with cell proliferation and poor prognosis in cancer patients, making it a promising antitumor target. To date, at least 10 PLK1 inhibitors (PLK1i) have been entered into clinical trials, among which the typical kinase domain (KD) inhibitor BI 6727 (volasertib) was granted "breakthrough therapy designation" by the FDA in 2013. Unfortunately, many other KD inhibitors showed poor specificity, resulting in dose-limiting toxicity, which has greatly impeded their development. Researchers recently discovered many PLK1i with higher selectivity, stronger potency, and better absorption, distribution, metabolism, and elimination (ADME) characteristics. In this review, we emphasize the structure-activity relationships (SARs) of PLK1i, providing insights into new drugs targeting PLK1 for antitumor clinical practice.
Collapse
Affiliation(s)
- Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lele Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis 38163, Tennessee, United States
| | - Liang Ouyang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
10
|
Ryu S, Park JE, Ham YJ, Lim DC, Kwiatkowski NP, Kim DH, Bhunia D, Kim ND, Yaffe MB, Son W, Kim N, Choi TI, Swain P, Kim CH, Lee JY, Gray NS, Lee KS, Sim T. Novel Macrocyclic Peptidomimetics Targeting the Polo-Box Domain of Polo-Like Kinase 1. J Med Chem 2022; 65:1915-1932. [PMID: 35029981 PMCID: PMC10411393 DOI: 10.1021/acs.jmedchem.1c01359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The polo-box domain (PBD) of Plk1 is a promising target for cancer therapeutics. We designed and synthesized novel phosphorylated macrocyclic peptidomimetics targeting PBD based on acyclic phosphopeptide PMQSpTPL. The inhibitory activities of 16e on Plk1-PBD is >30-fold higher than those of PMQSpTPL. Both 16a and 16e possess excellent selectivity for Plk1-PBD over Plk2/3-PBD. Analysis of the cocrystal structure of Plk1-PBD in complex with 16a reveals that the 3-(trifluoromethyl)benzoyl group in 16a interacts with Arg516 through a π-stacking interaction. This π-stacking interaction, which has not been reported previously, provides insight into the design of novel and potent Plk1-PBD inhibitors. Furthermore, 16h, a PEGlyated macrocyclic phosphopeptide derivative, induces Plk1 delocalization and mitotic failure in HeLa cells. Also, the number of phospho-H3-positive cells in a zebrafish embryo increases in proportion to the amount of 16a. Collectively, the novel macrocyclic peptidomimetics should serve as valuable templates for the design of potent and novel Plk1-PBD inhibitors.
Collapse
Affiliation(s)
- SeongShick Ryu
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Young Jin Ham
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Daniel C. Lim
- Koch Institute for Integrative Cancer Research, and Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nicholas P. Kwiatkowski
- Harvard Medical School, Boston, Massachusetts 02115, United States; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Do-Hee Kim
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon 16227, Republic of Korea
| | - Debabrata Bhunia
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Nam Doo Kim
- Voronoibio Inc., Incheon 21984, Republic of Korea
| | - Michael B. Yaffe
- Koch Institute for Integrative Cancer Research, and Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States; Divisions of Acute Care Surgery, Trauma, and Surgical Critical Care, and Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Woolim Son
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Namkyoung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Puspanjali Swain
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin-Young Lee
- Department of Biological Sciences, Keimyung University, Daegu 42601, Republic of Korea
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Kyung S. Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of, Health, Bethesda, Maryland 20892, United States
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
Spiegel J, Senderowitz H. A Comparison between Enrichment Optimization Algorithm (EOA)-Based and Docking-Based Virtual Screening. Int J Mol Sci 2021; 23:43. [PMID: 35008467 PMCID: PMC8744642 DOI: 10.3390/ijms23010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 12/30/2022] Open
Abstract
Virtual screening (VS) is a well-established method in the initial stages of many drug and material design projects. VS is typically performed using structure-based approaches such as molecular docking, or various ligand-based approaches. Most docking tools were designed to be as global as possible, and consequently only require knowledge on the 3D structure of the biotarget. In contrast, many ligand-based approaches (e.g., 3D-QSAR and pharmacophore) require prior development of project-specific predictive models. Depending on the type of model (e.g., classification or regression), predictive ability is typically evaluated using metrics of performance on either the training set (e.g.,QCV2) or the test set (e.g., specificity, selectivity or QF1/F2/F32). However, none of these metrics were developed with VS in mind, and consequently, their ability to reliably assess the performances of a model in the context of VS is at best limited. With this in mind we have recently reported the development of the enrichment optimization algorithm (EOA). EOA derives QSAR models in the form of multiple linear regression (MLR) equations for VS by optimizing an enrichment-based metric in the space of the descriptors. Here we present an improved version of the algorithm which better handles active compounds and which also takes into account information on inactive (either known inactive or decoy) compounds. We compared the improved EOA in small-scale VS experiments with three common docking tools, namely, Glide-SP, GOLD and AutoDock Vina, employing five molecular targets (acetylcholinesterase, human immunodeficiency virus type 1 protease, MAP kinase p38 alpha, urokinase-type plasminogen activator, and trypsin I). We found that EOA consistently outperformed all docking tools in terms of the area under the ROC curve (AUC) and EF1% metrics that measured the overall and initial success of the VS process, respectively. This was the case when the docking metrics were calculated based on a consensus approach and when they were calculated based on two different sets of single crystal structures. Finally, we propose that EOA could be combined with molecular docking to derive target-specific scoring functions.
Collapse
Affiliation(s)
| | - Hanoch Senderowitz
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel;
| |
Collapse
|
12
|
Gunasekaran P, Han HJ, Choi JH, Ryu EK, Park NY, Bang G, La YK, Park S, Hwang K, Kim HN, Kim MH, Jeon YH, Soung NK, Bang JK. Amphipathic Small Molecule AZT Compound Displays Potent Inhibitory Effects in Cancer Cell Proliferation. Pharmaceutics 2021; 13:pharmaceutics13122071. [PMID: 34959352 PMCID: PMC8704889 DOI: 10.3390/pharmaceutics13122071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 11/24/2022] Open
Abstract
Cancer has been identified as a leading cause of death worldwide, and the increasing number of cancer cases threatens to shorten the average life expectancy of people. Recently, we reported a 3-azido-3-deoxythymidine (AZT)-based amphipathic small molecule, ADG-2e that revealed a notable potency against tumor metastasis. To evaluate the anticancer potential of ADG-2e, we assessed its anticancer potency in vitro and in vivo. Anticancer screening of ADG-2e against cervical cancer cells, HeLa CCL2, and BT549 mammary gland ductal carcinoma showed significant inhibition of cancer cell proliferation. Furthermore, mechanistic investigations revealed that cancer cell death presumably proceeded through an oncosis mechanistic pathway because ADG-2e treated cells showed severe damage on the plasma membrane, a loss of membrane integrity, and leakage of α-tubulin and β-actin. Finally, evaluation of the antitumorigenic potential of ADG-2e in mouse xenograft models revealed that this compound potentially inhibits cancer cell proliferation. Collectively, these findings suggest that ADG-2e can evolve as an anticancer agent, which may represent a model for nucleoside-based small molecule anticancer drug discovery.
Collapse
Affiliation(s)
- Pethaiah Gunasekaran
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Cheongju 28119, Korea; (P.G.); (E.K.R.); (N.Y.P.); (Y.K.L.); (S.P.); (K.H.); (H.N.K.)
- Dandicure Inc., Ochang, Cheongju 28119, Korea
| | - Ho Jin Han
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongju 28116, Korea;
| | - Jung hoon Choi
- Biomedical Omics Group, Korea Basic Science Institute, Ochang, Cheongju 28119, Korea; (J.h.C.); (G.B.)
| | - Eun Kyoung Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Cheongju 28119, Korea; (P.G.); (E.K.R.); (N.Y.P.); (Y.K.L.); (S.P.); (K.H.); (H.N.K.)
- Department of Bio-Analytical Science, University of Science & Technology, Daejeon 34113, Korea
| | - Nam Yeong Park
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Cheongju 28119, Korea; (P.G.); (E.K.R.); (N.Y.P.); (Y.K.L.); (S.P.); (K.H.); (H.N.K.)
- Department of Bio-Analytical Science, University of Science & Technology, Daejeon 34113, Korea
| | - Geul Bang
- Biomedical Omics Group, Korea Basic Science Institute, Ochang, Cheongju 28119, Korea; (J.h.C.); (G.B.)
| | - Yeo Kyung La
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Cheongju 28119, Korea; (P.G.); (E.K.R.); (N.Y.P.); (Y.K.L.); (S.P.); (K.H.); (H.N.K.)
| | - Sunghyun Park
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Cheongju 28119, Korea; (P.G.); (E.K.R.); (N.Y.P.); (Y.K.L.); (S.P.); (K.H.); (H.N.K.)
| | - Kyubin Hwang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Cheongju 28119, Korea; (P.G.); (E.K.R.); (N.Y.P.); (Y.K.L.); (S.P.); (K.H.); (H.N.K.)
| | - Hak Nam Kim
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Cheongju 28119, Korea; (P.G.); (E.K.R.); (N.Y.P.); (Y.K.L.); (S.P.); (K.H.); (H.N.K.)
| | - Mi-Hyun Kim
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea;
| | - Young Ho Jeon
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Korea
- Correspondence: (Y.H.J.); (N.-K.S.); (J.K.B.)
| | - Nak-Kyun Soung
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongju 28116, Korea;
- Correspondence: (Y.H.J.); (N.-K.S.); (J.K.B.)
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Cheongju 28119, Korea; (P.G.); (E.K.R.); (N.Y.P.); (Y.K.L.); (S.P.); (K.H.); (H.N.K.)
- Dandicure Inc., Ochang, Cheongju 28119, Korea
- Department of Bio-Analytical Science, University of Science & Technology, Daejeon 34113, Korea
- Correspondence: (Y.H.J.); (N.-K.S.); (J.K.B.)
| |
Collapse
|
13
|
Paulsen MH, Engqvist M, Ausbacher D, Anderssen T, Langer MK, Haug T, Morello GR, Liikanen LE, Blencke HM, Isaksson J, Juskewitz E, Bayer A, Strøm MB. Amphipathic Barbiturates as Mimics of Antimicrobial Peptides and the Marine Natural Products Eusynstyelamides with Activity against Multi-resistant Clinical Isolates. J Med Chem 2021; 64:11395-11417. [PMID: 34314189 DOI: 10.1021/acs.jmedchem.1c00734] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a series of synthetic cationic amphipathic barbiturates inspired by the pharmacophore model of small antimicrobial peptides (AMPs) and the marine antimicrobials eusynstyelamides. These N,N'-dialkylated-5,5-disubstituted barbiturates consist of an achiral barbiturate scaffold with two cationic groups and two lipophilic side chains. Minimum inhibitory concentrations of 2-8 μg/mL were achieved against 30 multi-resistant clinical isolates of Gram-positive and Gram-negative bacteria, including isolates with extended spectrum β-lactamase-carbapenemase production. The guanidine barbiturate 7e (3,5-di-Br) demonstrated promising in vivo antibiotic efficacy in mice infected with clinical isolates of Escherichia coli and Klebsiella pneumoniae using a neutropenic peritonitis model. Mode of action studies showed a strong membrane disrupting effect and was supported by nuclear magnetic resonance and molecular dynamics simulations. The results express how the pharmacophore model of small AMPs and the structure of the marine eusynstyelamides can be used to design highly potent lead peptidomimetics against multi-resistant bacteria.
Collapse
Affiliation(s)
- Marianne H Paulsen
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Magnus Engqvist
- Department of Chemistry, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Dominik Ausbacher
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Trude Anderssen
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Manuel K Langer
- Department of Chemistry, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Tor Haug
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Glenn R Morello
- Department of Chemistry, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway.,Department of Science, Valley City State University, Valley City, 58072 North Dakota, United States
| | - Laura E Liikanen
- Department of Chemistry, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Hans-Matti Blencke
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Johan Isaksson
- Department of Chemistry, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Eric Juskewitz
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Annette Bayer
- Department of Chemistry, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Morten B Strøm
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| |
Collapse
|