1
|
Hu W, Shen J, Zhou C, Tai Z, Zhu Q, Chen Z, Huang Y, Sheng C. Discovery of Janus Kinase and Histone Deacetylase Dual Inhibitors as a New Strategy to Treat Psoriasis. J Med Chem 2024. [PMID: 39415349 DOI: 10.1021/acs.jmedchem.4c01681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Psoriasis is a common, chronic, recurrent, and inflammatory skin disease, which causes physical and psychological problems in patients and lacks effective and economic therapeutics. Herein, we designed Janus kinase (JAK) and histone deacetylase (HDAC) dual inhibitors as a new strategy for the treatment of psoriasis. In particular, compound 11i was identified with excellent inhibitory activity toward JAKs (JAK2 IC50 = 0.49 nM) and HDACs (HDAC6 IC50 = 12 nM). Moreover, it exhibited potent activities in inhibiting the proliferation of TNF-α-induced HaCAT cells and the production of nitric oxide. Importantly, compound 11i significantly ameliorated psoriasis-like skin lesions in an imiquimod-induced murine model with low toxicity, which was superior to JAK inhibitor momelotinib, HDAC inhibitor vorinostat, and their combination. This work provided a proof-of-concept for JAK/HDAC dual inhibitors as a promising strategy for the treatment of psoriasis.
Collapse
Affiliation(s)
- Weijie Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou 325035, Zhejiang, People's Republic of China
| | - Jing Shen
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Chenchen Zhou
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, People's Republic of China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, People's Republic of China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, People's Republic of China
| | - Yahui Huang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Chunquan Sheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou 325035, Zhejiang, People's Republic of China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, People's Republic of China
| |
Collapse
|
2
|
Ouabane M, Zaki K, Zaki H, Guendouzi A, Sbai A, Sekkate C, Lakhlifi T, Bouachrine M. Inhibition of the Janus kinase protein (JAK1) by the A. Pyrethrum Root Extract for the treatment of Vitiligo pathology. Design, Molecular Docking, ADME-Tox, MD Simulation, and in-silico investigation. Comput Biol Med 2024; 179:108816. [PMID: 38955123 DOI: 10.1016/j.compbiomed.2024.108816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
This study delves into the therapeutic efficacy of A. pyrethrum in addressing vitiligo, a chronic inflammatory disorder known for inducing psychological distress and elevating susceptibility to autoimmune diseases. Notably, JAK inhibitors have emerged as promising candidates for treating immune dermatoses, including vitiligo. Our investigation primarily focuses on the anti-vitiligo potential of A. pyrethrum root extract, specifically targeting N-alkyl-amides, utilizing computational methodologies. Density Functional Theory (DFT) is deployed to meticulously scrutinize molecular properties, while comprehensive evaluations of ADME-Tox properties for each molecule contribute to a nuanced understanding of their therapeutic viability, showcasing remarkable drug-like characteristics. Molecular docking analysis probes ligand interactions with pivotal site JAK1, with all compounds demonstrating significant interactions; notably, molecule 6 exhibits the most interactions with crucial inhibition residues. Molecular dynamics simulations over 500ns further validate the importance and sustainability of these interactions observed in molecular docking, favoring energetically both molecules 6 and 1; however, in terms of stability, the complex with molecule 6 outperforms others. DFT analyses elucidate the distribution of electron-rich oxygen atoms and electron-poor regions within heteroatoms-linked hydrogens. Remarkably, N-alkyl-amides extracted from A. pyrethrum roots exhibit similar compositions, yielding comparable DFT and Electrostatic Potential (ESP) results with subtle distinctions. These findings underscore the considerable potential of A. pyrethrum root extracts as a natural remedy for vitiligo.
Collapse
Affiliation(s)
- Mohamed Ouabane
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco; Chemistry-Biology Applied to the Environment URL CNRT 13, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco
| | - Khadija Zaki
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco
| | - Hanane Zaki
- Biotechnology, Bioresources, And Bioinformatics Laboratory at the Higher School of Technology, 54000, Khenifra, Morocco
| | - Abdelkrim Guendouzi
- Laboratory of Chemistry, Synthesis, Properties and Applications, Department of Chemistry, Faculty of Science, University of Saida, Algeria
| | - Abdelouahid Sbai
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco
| | - Chakib Sekkate
- Chemistry-Biology Applied to the Environment URL CNRT 13, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Department of Chemistry, Faculty of Science, My Ismail University, B.P. 11202, Meknes, 50000, Morocco.
| |
Collapse
|
3
|
Wang B, Guo J, Chen B, Jiao Y, Wan Y, Wu J, Wang Y. Combination of ligand‑based and structure‑based virtual screening for the discovery of novel Janus kinase 2 inhibitors against philadelphia-negative myeloproliferative neoplasms. Mol Divers 2024:10.1007/s11030-024-10938-1. [PMID: 39210217 DOI: 10.1007/s11030-024-10938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
The activating V617F mutation in Janus kinase 2 (JAK2) has been shown to be the major cause for classic Philadelphia-negative myeloproliferative neoplasms (MPNs). Thus, the development of pharmacologic JAK2 inhibitors is an essential move in combating MPNs. In this study, screening methods examining both ligands and their structures were developed to discover novel JAK2 inhibitors from the ChemDiv database with virtual screening identifying 886 candidate inhibitors. Next, these compounds were further filtered using ADMET, drug likeliness, and PAINS filtering, which reduced the compound number even further. This consolidated list of candidate compounds (n = 49) was then evaluated biologically at molecular level and the highest performing inhibitor with a novel scaffold was selected for further examination. This candidate inhibitor, CD4, was then subjected to molecular dynamics studies, with complex stability, root-mean-square deviation, radius of gyration, binding free energy, and binding properties all examined. The result suggested that CD4 interacts with JAK2 and that the CD4-JAK2 complex is stable. This study was able to identify a candidate inhibitor that warrants further examination and optimization and may potentially serve as a future MPN treatment.
Collapse
Affiliation(s)
- Binyou Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jianmin Guo
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Bo Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Yan Jiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Yiwei Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
4
|
Lv Y, Qi J, Babon JJ, Cao L, Fan G, Lang J, Zhang J, Mi P, Kobe B, Wang F. The JAK-STAT pathway: from structural biology to cytokine engineering. Signal Transduct Target Ther 2024; 9:221. [PMID: 39169031 PMCID: PMC11339341 DOI: 10.1038/s41392-024-01934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway serves as a paradigm for signal transduction from the extracellular environment to the nucleus. It plays a pivotal role in physiological functions, such as hematopoiesis, immune balance, tissue homeostasis, and surveillance against tumors. Dysregulation of this pathway may lead to various disease conditions such as immune deficiencies, autoimmune diseases, hematologic disorders, and cancer. Due to its critical role in maintaining human health and involvement in disease, extensive studies have been conducted on this pathway, ranging from basic research to medical applications. Advances in the structural biology of this pathway have enabled us to gain insights into how the signaling cascade operates at the molecular level, laying the groundwork for therapeutic development targeting this pathway. Various strategies have been developed to restore its normal function, with promising therapeutic potential. Enhanced comprehension of these molecular mechanisms, combined with advances in protein engineering methodologies, has allowed us to engineer cytokines with tailored properties for targeted therapeutic applications, thereby enhancing their efficiency and safety. In this review, we outline the structural basis that governs key nodes in this pathway, offering a comprehensive overview of the signal transduction process. Furthermore, we explore recent advances in cytokine engineering for therapeutic development in this pathway.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai, 201112, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Faming Wang
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
5
|
Miao Y, Virtanen A, Zmajkovic J, Hilpert M, Skoda RC, Silvennoinen O, Haikarainen T. Functional and Structural Characterization of Clinical-Stage Janus Kinase 2 Inhibitors Identifies Determinants for Drug Selectivity. J Med Chem 2024; 67:10012-10024. [PMID: 38843875 PMCID: PMC11215726 DOI: 10.1021/acs.jmedchem.4c00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Janus kinase 2 (JAK2) plays a critical role in orchestrating hematopoiesis, and its deregulation leads to various blood disorders, most importantly myeloproliferative neoplasms (MPNs). Ruxolitinib, fedratinib, momelotinib, and pacritinib are FDA-/EMA-approved JAK inhibitors effective in relieving symptoms in MPN patients but show variable clinical profiles due to poor JAK selectivity. The development of next-generation JAK2 inhibitors is hampered by the lack of comparative functional analysis and knowledge of the molecular basis of their selectivity. Here, we provide mechanistic profiling of the four approved and six clinical-stage JAK2 inhibitors and connect selectivity data with high-resolution structural and thermodynamic analyses. All of the JAK inhibitors potently inhibited JAK2 activity. Inhibitors differed in their JAK isoform selectivity and potency for erythropoietin signaling, but their general cytokine inhibition signatures in blood cells were comparable. Structural data indicate that high potency and moderate JAK2 selectivity can be obtained by targeting the front pocket of the adenosine 5'-triphosphate-binding site.
Collapse
Affiliation(s)
- Ya Miao
- Faculty
of Medicine and Health Technology, Tampere
University, 33520 Tampere, Finland
| | - Anniina Virtanen
- Faculty
of Medicine and Health Technology, Tampere
University, 33520 Tampere, Finland
- Institute
of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Jakub Zmajkovic
- Experimental
Hematology, Department of Biomedicine, University
Hospital Basel and University of Basel, 4056 Basel, Switzerland
| | - Morgane Hilpert
- Experimental
Hematology, Department of Biomedicine, University
Hospital Basel and University of Basel, 4056 Basel, Switzerland
| | - Radek C. Skoda
- Experimental
Hematology, Department of Biomedicine, University
Hospital Basel and University of Basel, 4056 Basel, Switzerland
| | - Olli Silvennoinen
- Faculty
of Medicine and Health Technology, Tampere
University, 33520 Tampere, Finland
- Institute
of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Teemu Haikarainen
- Faculty
of Medicine and Health Technology, Tampere
University, 33520 Tampere, Finland
- Fimlab
Laboratories, 33520 Tampere, Finland
| |
Collapse
|
6
|
Dang Y, Zhang T, Pidathala S, Wang G, Wang Y, Chen N, Song C, Lee CH, Zhang Z. Substrate and drug recognition mechanisms of SLC19A3. Cell Res 2024; 34:458-461. [PMID: 38503960 PMCID: PMC11143317 DOI: 10.1038/s41422-024-00951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Affiliation(s)
- Yu Dang
- State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Tianyi Zhang
- School of Life Sciences, Peking University, Beijing, China
| | - Shabareesh Pidathala
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guopeng Wang
- Cryo-EM Platform, School of Life Sciences, Peking University, Beijing, China
| | - Yijie Wang
- School of Life Sciences, Peking University, Beijing, China
| | - Nanhao Chen
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chen Song
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Zhe Zhang
- State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- School of Life Sciences, Peking University, Beijing, China.
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
7
|
Lv Y, Mi P, Babon JJ, Fan G, Qi J, Cao L, Lang J, Zhang J, Wang F, Kobe B. Small molecule drug discovery targeting the JAK-STAT pathway. Pharmacol Res 2024; 204:107217. [PMID: 38777110 DOI: 10.1016/j.phrs.2024.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway functions as a central hub for transmitting signals from more than 50 cytokines, playing a pivotal role in maintaining hematopoiesis, immune balance, and tissue homeostasis. Dysregulation of this pathway has been implicated in various diseases, including immunodeficiency, autoimmune conditions, hematological disorders, and certain cancers. Proteins within this pathway have emerged as effective therapeutic targets for managing these conditions, with various approaches developed to modulate key nodes in the signaling process, spanning from receptor engagement to transcription factor activation. Following the success of JAK inhibitors such as tofacitinib for RA treatment and ruxolitinib for managing primary myelofibrosis, the pharmaceutical industry has obtained approvals for over 10 small molecule drugs targeting the JAK-STAT pathway and many more are at various stages of clinical trials. In this review, we consolidate key strategies employed in drug discovery efforts targeting this pathway, with the aim of contributing to the collective understanding of small molecule interventions in the context of JAK-STAT signaling. We aspire that our endeavors will contribute to advancing the development of innovative and efficacious treatments for a range of diseases linked to this pathway dysregulation.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-Communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China; Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai 201112, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi 710026, China
| | - Faming Wang
- Center for Molecular Biosciences and Non-Communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
8
|
Atz K, Cotos L, Isert C, Håkansson M, Focht D, Hilleke M, Nippa DF, Iff M, Ledergerber J, Schiebroek CCG, Romeo V, Hiss JA, Merk D, Schneider P, Kuhn B, Grether U, Schneider G. Prospective de novo drug design with deep interactome learning. Nat Commun 2024; 15:3408. [PMID: 38649351 PMCID: PMC11035696 DOI: 10.1038/s41467-024-47613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
De novo drug design aims to generate molecules from scratch that possess specific chemical and pharmacological properties. We present a computational approach utilizing interactome-based deep learning for ligand- and structure-based generation of drug-like molecules. This method capitalizes on the unique strengths of both graph neural networks and chemical language models, offering an alternative to the need for application-specific reinforcement, transfer, or few-shot learning. It enables the "zero-shot" construction of compound libraries tailored to possess specific bioactivity, synthesizability, and structural novelty. In order to proactively evaluate the deep interactome learning framework for protein structure-based drug design, potential new ligands targeting the binding site of the human peroxisome proliferator-activated receptor (PPAR) subtype gamma are generated. The top-ranking designs are chemically synthesized and computationally, biophysically, and biochemically characterized. Potent PPAR partial agonists are identified, demonstrating favorable activity and the desired selectivity profiles for both nuclear receptors and off-target interactions. Crystal structure determination of the ligand-receptor complex confirms the anticipated binding mode. This successful outcome positively advocates interactome-based de novo design for application in bioorganic and medicinal chemistry, enabling the creation of innovative bioactive molecules.
Collapse
Affiliation(s)
- Kenneth Atz
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Leandro Cotos
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Clemens Isert
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Maria Håkansson
- SARomics Biostructures AB, Medicon Village, SE-223 81, Lund, Sweden
| | - Dorota Focht
- SARomics Biostructures AB, Medicon Village, SE-223 81, Lund, Sweden
| | - Mattis Hilleke
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - David F Nippa
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070, Basel, Switzerland
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, 81377, Munich, Germany
| | - Michael Iff
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Jann Ledergerber
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Carl C G Schiebroek
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Valentina Romeo
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Jan A Hiss
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Daniel Merk
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, 81377, Munich, Germany
| | - Petra Schneider
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Bernd Kuhn
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Uwe Grether
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Gisbert Schneider
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
9
|
Bu Y, Traore MDM, Zhang L, Wang L, Liu Z, Hu H, Wang M, Li C, Sun D. A gastrointestinal locally activating Janus kinase inhibitor to treat ulcerative colitis. J Biol Chem 2023; 299:105467. [PMID: 37979913 PMCID: PMC10755797 DOI: 10.1016/j.jbc.2023.105467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/11/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
In this study, we integrated machine learning (ML), structure-tissue selectivity-activity-relationship (STAR), and wet lab synthesis/testing to design a gastrointestinal (GI) locally activating JAK inhibitor for ulcerative colitis treatment. The JAK inhibitor achieves site-specific efficacy through high local GI tissue selectivity while minimizing the requirement for JAK isoform specificity to reduce systemic toxicity. We used the ML model (CoGT) to classify whether the designed compounds were inhibitors or noninhibitors. Then we used the regression ML model (MTATFP) to predict their IC50 against related JAK isoforms of predicted JAK inhibitors. The ML model predicted MMT3-72, which was retained in the GI tract, to be a weak JAK1 inhibitor, while MMT3-72-M2, which accumulated in only GI tissues, was predicted to be an inhibitor of JAK1/2 and TYK2. ML docking methods were applied to simulate their docking poses in JAK isoforms. Application of these ML models enabled us to limit our synthetic efforts to MMT3-72 and MMT3-72-M2 for subsequent wet lab testing. The kinase assay confirmed MMT3-72 weakly inhibited JAK1, and MMT3-72-M2 inhibited JAK1/2 and TYK2. We found that MMT3-72 accumulated in the GI lumen, but not in GI tissue or plasma, but released MMT3-72-M2 accumulated in colon tissue with minimal exposure in the plasma. MMT3-72 achieved superior efficacy and reduced p-STAT3 in DSS-induced colitis. Overall, the integration of ML, the structure-tissue selectivity-activity-relationship system, and wet lab synthesis/testing could minimize the effort in the optimization of a JAK inhibitor to treat colitis. This site-specific inhibitor reduces systemic toxicity by minimizing the need for JAK isoform specificity.
Collapse
Affiliation(s)
- Yingzi Bu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, Ann Arbor, Michigan, USA; Michigan Institute for Computational Discovery & Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Mohamed Dit Mady Traore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, Ann Arbor, Michigan, USA
| | - Luchen Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, Ann Arbor, Michigan, USA
| | - Lu Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, Ann Arbor, Michigan, USA
| | - Zhongwei Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, Ann Arbor, Michigan, USA
| | - Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, Ann Arbor, Michigan, USA
| | - Meilin Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, Ann Arbor, Michigan, USA
| | - Chengyi Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, Ann Arbor, Michigan, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, Ann Arbor, Michigan, USA.
| |
Collapse
|
10
|
Liu X, Wang B, Liu Y, Yu Y, Wan Y, Wu J, Wang Y. JAK2 inhibitors for the treatment of Philadelphia-negative myeloproliferative neoplasms: current status and future directions. Mol Divers 2023:10.1007/s11030-023-10742-3. [PMID: 38006563 DOI: 10.1007/s11030-023-10742-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/05/2023] [Indexed: 11/27/2023]
Abstract
The overactivation of Janus kinases 2 (JAK2) by gain-of-function mutations in the JAK2, Myeloproliferative leukemia virus oncogene, or Calreticulin genes are the most important factor in the development of Philadelphia-negative myeloproliferative neoplasms (MPNs). The discovery of the JAK2V617F mutation is a significant breakthrough in understanding the pathogenesis of MPNs, and inhibition of JAK2 abnormal activation has become one of the most effective strategies against MPNs. Currently, three JAK2 inhibitors for treating MPNs have been approved, and several are being evaluated in clinical trials. However, persistent challenges in terms of drug resistance and off-target effects remain unresolved. In this review, we introduce and classify the available JAK2 inhibitors in terms of their mechanisms and clinical considerations. Additionally, through an analysis of target points, binding modes, and structure-activity inhibitor relationships, we propose strategies such as combination therapy and allosteric inhibitors to overcome specific challenges. This review offers valuable insights into current trends and future directions for optimal management of MPNs using JAK2 inhibitors.
Collapse
Affiliation(s)
- Xiaofeng Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Binyou Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China
| | - Yuan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Yang Yu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Yiwei Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
- Zigong Mental Health Center, Zigong Affiliated Hospital of Southwest Medical University, Zigong, 643000, China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
11
|
Thoma G, Decoret O, Vangrevelinghe E, Trunzer M, Decker A, Orjuela Leon A, Beerli C, Bruno S, Hauchard A, Paulat G, Zerwes HG, Hacini-Rachinel F. Design of a Supersoft Topical JAK Inhibitor, Which Is Effective in Human Skin but Rapidly Deactivated in Blood. J Med Chem 2023; 66:15042-15053. [PMID: 37906573 DOI: 10.1021/acs.jmedchem.3c01735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
We describe the discovery and characterization of the supersoft topical JAK inhibitor 3(R), which is potent in biochemical and cellular assays as well as in human skin models. In blood, the neutral ester 3(R) is rapidly hydrolyzed (t1/2 ∼ 6 min) to the corresponding charged carboxylic acid 4 exhibiting >30-fold reduced permeability. Consequently, acid 4 does not reach the intracellular JAK kinases and is inactive in cellular assays and in blood. Thus, hydrolysis by blood esterases leads to the rapid deactivation of topically active ester 3(R) at a rate beyond the maximal hepatic clearance.
Collapse
Affiliation(s)
- Gebhard Thoma
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Odile Decoret
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Eric Vangrevelinghe
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Markus Trunzer
- PK Sciences, Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland
| | - Andrea Decker
- Chemical and Pharmaceutical Profiling, Global Drug Development, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Anette Orjuela Leon
- Immunology Disease Area, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Christian Beerli
- Immunology Disease Area, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Sandro Bruno
- Immunology Disease Area, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Alice Hauchard
- Immunology Disease Area, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Guido Paulat
- Immunology Disease Area, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Hans-Guenter Zerwes
- Immunology Disease Area, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Feriel Hacini-Rachinel
- Immunology Disease Area, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| |
Collapse
|
12
|
Luthfiana D, Utomo DH. Network pharmacology reveals the potential of Dolastatin 16 as a diabetic wound healing agent. In Silico Pharmacol 2023; 11:23. [PMID: 37719716 PMCID: PMC10504231 DOI: 10.1007/s40203-023-00161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/26/2023] [Indexed: 09/19/2023] Open
Abstract
Dolastatin 16, a marine cyclic depsipeptide, was initially isolated from the sea hare Dolabella Auricularia by Pettit et al. Due to the lack of information regarding its bioactivity, target identification becomes an indispensable strategy for revealing the potential targets and mechanisms of action of Dolastatin 16. Network pharmacology was utilized to identify targets associated with the disease, gene ontology, and KEGG pathways. The results highlighted Matrix Metalloproteinase-9 (MMP9) as a potential target of Dolastatin 16 through network pharmacology analysis. This target was found to be primarily involved in the TNF signaling pathway and in foot ulceration-associated diabetic polyneuropathy. Furthermore, the binding mode and dynamic behavior of the complex were investigated through molecular docking and molecular dynamics studies. In the docking study, a native ligand (a hydroxamate inhibitor) and (R)-ND-336 were employed as ligand controls, demonstrating binding energy values of - 6.6 and - 8.9 kcal/mol, respectively. The Dolastatin 16 complex exhibited a strong affinity for MMP9, with a binding energy value of - 9.7 kcal/mol, indicating its high potential as an inhibitor. Molecular dynamics also confirmed the stability of the MMP9-Dolastatin complex throughout the simulation process. Dolastatin 16 has the potential to act as an MMP9 inhibitor, offering promise for accelerating the wound healing process in diabetic foot conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00161-5.
Collapse
Affiliation(s)
- Dewi Luthfiana
- Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO), Malang, Indonesia
| | - Didik Huswo Utomo
- Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO), Malang, Indonesia
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, East Java Indonesia
| |
Collapse
|
13
|
Valipour M, Irannejad H, Keyvani H. An Overview on Anti-COVID-19 Drug Achievements and Challenges Ahead. ACS Pharmacol Transl Sci 2023; 6:1248-1265. [PMID: 37705590 PMCID: PMC10496143 DOI: 10.1021/acsptsci.3c00121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 09/15/2023]
Abstract
The appearance of several coronavirus pandemics/epidemics during the last two decades (SARS-CoV-1 in 2002, MERS-CoV in 2012, and SARS-CoV-2 in 2019) indicates that humanity will face increasing challenges from coronaviruses in the future. The emergence of new strains with similar transmission characteristics as SARS-CoV-2 and mortality rates similar to SARS-CoV-1 (∼10% mortality) or MERS-CoV (∼35% mortality) in the future is a terrifying possibility. Therefore, getting enough preparations to face such risks is an inevitable necessity. The present study aims to review the drug achievements and challenges in the fight against SARS-CoV-2 with a combined perspective derived from pharmacology, pharmacotherapy, and medicinal chemistry insights. Appreciating all the efforts made during the past few years, there is strong evidence that the desired results have not yet been achieved and research in this area should still be pursued seriously. By expressing some pessimistic possibilities and concluding that the drug discovery and pharmacotherapy of COVID-19 have not been successful so far, this short essay tries to draw the attention of responsible authorities to be more prepared against future coronavirus epidemics/pandemics.
Collapse
Affiliation(s)
- Mehdi Valipour
- Razi
Drug Research Center, Iran University of
Medical Sciences, Tehran 1134845764, Iran
| | - Hamid Irannejad
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Hossein Keyvani
- Department
of Virology, School of Medicine, Iran University
of Medical Sciences, Tehran 1134845764, Iran
| |
Collapse
|
14
|
Ren Y, Wu Q, Liu C, Zhang J, Wang Z, Li Y, Zhang Y. Discovery of a traditional Chinese herbal combination for the treatment of atopic dermatitis: saposhnikoviae radix, astragali radix and cnidium monnieri. Arch Dermatol Res 2023; 315:1953-1970. [PMID: 36862182 DOI: 10.1007/s00403-023-02575-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 11/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023]
Abstract
Atopic dermatitis (AD) is a skin disease characterized by pruritus. The present study aimed to discover a herbal combination with anti-allergic and anti-inflammatory activities to treat AD. First, the anti-allergic and anti-inflammatory activities of herbs were evaluated by RBL-2H3 degranulation and HaCaT inflammatory models. Subsequently, the optimal proportion of herbs was determined by uniform design-response surface methodology. The effectiveness and synergistic mechanism was further verified. Cnidium monnieri (CM) suppressed β-hexosaminidase (β-HEX) release, saposhnikoviae radix (SR), astragali radix (AR), and CM inhibited the release of IL-8 and MCP-1. The optimal proportion of herbs was SR∶AR∶CM = 1: 2: 1. The in vivo experiments results indicated that the topical application of combination at high (2 ×) and low (1 ×) doses improved dermatitis score and epidermal thickness, and attenuated mast cell infiltration. Network pharmacology and molecular biology further clarified that the combination resisted AD by regulating the MAPK, JAK signaling pathways, and the downstream cytokines such as IL-6, IL-1β, IL-8, IL-10, and MCP-1. Overall, the herbal combination could inhibit inflammation and allergy, improving AD-like symptoms. The present study discovers a promising herbal combination, worthy of further development as a therapeutic drug for AD.
Collapse
Affiliation(s)
- Yue Ren
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Qi Wu
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chaoqun Liu
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jianing Zhang
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zian Wang
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yingying Li
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yanling Zhang
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
15
|
Nair PC, Piehler J, Tvorogov D, Ross DM, Lopez AF, Gotlib J, Thomas D. Next-Generation JAK2 Inhibitors for the Treatment of Myeloproliferative Neoplasms: Lessons from Structure-Based Drug Discovery Approaches. Blood Cancer Discov 2023; 4:352-364. [PMID: 37498362 PMCID: PMC10472187 DOI: 10.1158/2643-3230.bcd-22-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/20/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023] Open
Abstract
Selective inhibitors of Janus kinase (JAK) 2 have been in demand since the discovery of the JAK2 V617F mutation present in patients with myeloproliferative neoplasms (MPN); however, the structural basis of V617F oncogenicity has only recently been elucidated. New structural studies reveal a role for other JAK2 domains, beyond the kinase domain, that contribute to pathogenic signaling. Here we evaluate the structure-based approaches that led to recently-approved type I JAK2 inhibitors (fedratinib and pacritinib), as well as type II (BBT594 and CHZ868) and pseudokinase inhibitors under development (JNJ7706621). With full-length JAK homodimeric structures now available, superior selective and mutation-specific JAK2 inhibitors are foreseeable. SIGNIFICANCE The JAK inhibitors currently used for the treatment of MPNs are effective for symptom management but not for disease eradication, primarily because they are not strongly selective for the mutant clone. The rise of computational and structure-based drug discovery approaches together with the knowledge of full-length JAK dimer complexes provides a unique opportunity to develop better targeted therapies for a range of conditions driven by pathologic JAK2 signaling.
Collapse
Affiliation(s)
- Pramod C. Nair
- Cancer Program, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, Australia
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Discipline of Clinical Pharmacology, Flinders Health and Medical Research Institute (FHMRI) Cancer Program, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Jacob Piehler
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Denis Tvorogov
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - David M. Ross
- Cancer Program, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, Australia
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Angel F. Lopez
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Jason Gotlib
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Daniel Thomas
- Cancer Program, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, Australia
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
16
|
Henry SP, Jorgensen WL. Progress on the Pharmacological Targeting of Janus Pseudokinases. J Med Chem 2023; 66:10959-10990. [PMID: 37578217 DOI: 10.1021/acs.jmedchem.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The Janus kinases (JAKs) are key components of the JAK-STAT signaling pathway and are involved in myriad physiological processes. Though they are the molecular targets of many FDA-approved drugs, these drugs manifest adverse effects due in part to their inhibition of the requisite JAK kinase activity. However, the JAKs uniquely possess an integrated pseudokinase domain (JH2) that regulates the adjacent kinase domain (JH1). The therapeutic targeting of JH2 domains has been less thoroughly explored and may present an avenue to modulate the JAKs without the adverse effects associated with targeting the adjacent JH1 domain. The potential of this strategy was recently demonstrated with the FDA approval of the TYK2 JH2 ligand deucravacitinib for treating plaque psoriasis. In this light, the structure and targetability of the JAK pseudokinases are discussed, in conjunction with the state of development of ligands that bind to these domains.
Collapse
Affiliation(s)
- Sean P Henry
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - William L Jorgensen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
17
|
Shaikh A. Computational modeling and in vitro evaluation identified natural product-Z218 as a novel Janus kinase 2 (JAK2) inhibitor to combat β-thalassemia. Biotechnol Appl Biochem 2023; 70:1450-1459. [PMID: 36999639 DOI: 10.1002/bab.2459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/09/2023] [Indexed: 04/01/2023]
Abstract
Aberrant activity of Janus kinase 2 (JAK2) is a known driver of several myeloproliferative disorders, including polycythemia vera, and thalassemia. Several inhibitors have been proposed to inhibit JAK2 activity in order to control the disease progression. Ruxolitinib and fedratinib that targets JAK2 kinase have been approved for use in myeloproliferative neoplasms patients. Experimental structures of JAK2 complexed with ruxolitinib provide insights into critical interactions of ruxolitinib. In this work, using a high-throughput virtual screening followed by experimental validations, we have identified a novel natural product from ZINC database that interacts with JAK2 in a manner similar to ruxolitinib and inhibits the activity of JAK2 kinase. Molecular dynamics simulations and MMPBSA method show binding dynamics and stability of our identified lead compound. Kinase inhibition assays show that our identified lead molecule inhibits JAK2 kinase at a nanomolar range, indicating a plausibility that the identified lead molecule can be further studied as natural product inhibitor of JAK2 kinase.
Collapse
Affiliation(s)
- Ahmad Shaikh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
18
|
Diao Y, Liu D, Ge H, Zhang R, Jiang K, Bao R, Zhu X, Bi H, Liao W, Chen Z, Zhang K, Wang R, Zhu L, Zhao Z, Hu Q, Li H. Macrocyclization of linear molecules by deep learning to facilitate macrocyclic drug candidates discovery. Nat Commun 2023; 14:4552. [PMID: 37507402 PMCID: PMC10382584 DOI: 10.1038/s41467-023-40219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Interest in macrocycles as potential therapeutic agents has increased rapidly. Macrocyclization of bioactive acyclic molecules provides a potential avenue to yield novel chemical scaffolds, which can contribute to the improvement of the biological activity and physicochemical properties of these molecules. In this study, we propose a computational macrocyclization method based on Transformer architecture (which we name Macformer). Leveraging deep learning, Macformer explores the vast chemical space of macrocyclic analogues of a given acyclic molecule by adding diverse linkers compatible with the acyclic molecule. Macformer can efficiently learn the implicit relationships between acyclic and macrocyclic structures represented as SMILES strings and generate plenty of macrocycles with chemical diversity and structural novelty. In data augmentation scenarios using both internal ChEMBL and external ZINC test datasets, Macformer display excellent performance and generalisability. We showcase the utility of Macformer when combined with molecular docking simulations and wet lab based experimental validation, by applying it to the prospective design of macrocyclic JAK2 inhibitors.
Collapse
Affiliation(s)
- Yanyan Diao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Dandan Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Huan Ge
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Rongrong Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Kexin Jiang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Runhui Bao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Xiaoqian Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Hongjie Bi
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Wenjie Liao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Ziqi Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Kai Zhang
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai, 200062, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Qiaoyu Hu
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai, 200062, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai, 200062, China.
- Lingang Laboratory, Shanghai, 200031, China.
| |
Collapse
|
19
|
Nitulescu GM, Stancov G, Seremet OC, Nitulescu G, Mihai DP, Duta-Bratu CG, Barbuceanu SF, Olaru OT. The Importance of the Pyrazole Scaffold in the Design of Protein Kinases Inhibitors as Targeted Anticancer Therapies. Molecules 2023; 28:5359. [PMID: 37513232 PMCID: PMC10385367 DOI: 10.3390/molecules28145359] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The altered activation or overexpression of protein kinases (PKs) is a major subject of research in oncology and their inhibition using small molecules, protein kinases inhibitors (PKI) is the best available option for the cure of cancer. The pyrazole ring is extensively employed in the field of medicinal chemistry and drug development strategies, playing a vital role as a fundamental framework in the structure of various PKIs. This scaffold holds major importance and is considered a privileged structure based on its synthetic accessibility, drug-like properties, and its versatile bioisosteric replacement function. It has proven to play a key role in many PKI, such as the inhibitors of Akt, Aurora kinases, MAPK, B-raf, JAK, Bcr-Abl, c-Met, PDGFR, FGFRT, and RET. Of the 74 small molecule PKI approved by the US FDA, 8 contain a pyrazole ring: Avapritinib, Asciminib, Crizotinib, Encorafenib, Erdafitinib, Pralsetinib, Pirtobrutinib, and Ruxolitinib. The focus of this review is on the importance of the unfused pyrazole ring within the clinically tested PKI and on the additional required elements of their chemical structures. Related important pyrazole fused scaffolds like indazole, pyrrolo[1,2-b]pyrazole, pyrazolo[4,3-b]pyridine, pyrazolo[1,5-a]pyrimidine, or pyrazolo[3,4-d]pyrimidine are beyond the subject of this work.
Collapse
Affiliation(s)
| | | | | | - Georgiana Nitulescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (G.M.N.)
| | | | | | | | | |
Collapse
|
20
|
Arwood ML, Liu Y, Harkins SK, Weinstock DM, Yang L, Stevenson KE, Plana OD, Dong J, Cirka H, Jones KL, Virtanen AT, Gupta DG, Ceas A, Lawney B, Yoda A, Leahy C, Hao M, He Z, Choi HG, Wang Y, Silvennoinen O, Hubbard SR, Zhang T, Gray NS, Li LS. New scaffolds for type II JAK2 inhibitors overcome the acquired G993A resistance mutation. Cell Chem Biol 2023; 30:618-631.e12. [PMID: 37290440 PMCID: PMC10495080 DOI: 10.1016/j.chembiol.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 02/07/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
Recurrent JAK2 alterations are observed in myeloproliferative neoplasms, B-cell acute lymphoblastic leukemia, and other hematologic malignancies. Currently available type I JAK2 inhibitors have limited activity in these diseases. Preclinical data support the improved efficacy of type II JAK2 inhibitors, which lock the kinase in the inactive conformation. By screening small molecule libraries, we identified a lead compound with JAK2 selectivity. We highlight analogs with on-target biochemical and cellular activity and demonstrate in vivo activity using a mouse model of polycythemia vera. We present a co-crystal structure that confirms the type II binding mode of our compounds with the "DFG-out" conformation of the JAK2 activation loop. Finally, we identify a JAK2 G993A mutation that confers resistance to the type II JAK2 inhibitor CHZ868 but not to our analogs. These data provide a template for identifying novel type II kinase inhibitors and inform further development of agents targeting JAK2 that overcome resistance.
Collapse
Affiliation(s)
- Matthew L Arwood
- Molecular and Translational Cancer Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Yao Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shannon K Harkins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Cancer Biology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA
| | - Lei Yang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kristen E Stevenson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Olivia D Plana
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jingyun Dong
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Haley Cirka
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kristen L Jones
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Anniina T Virtanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Dikshat G Gupta
- Molecular and Translational Cancer Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Amanda Ceas
- Molecular and Translational Cancer Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Brian Lawney
- Center for Cancer Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Akinori Yoda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Catharine Leahy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Mingfeng Hao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Hwan Geun Choi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yaning Wang
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olli Silvennoinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Stevan R Hubbard
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Loretta S Li
- Molecular and Translational Cancer Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Department of Pediatrics, Division of Hematology, Oncology, and Stem Cell Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
21
|
Thoma G, Vangrevelinghe E, Luneau A, Piechon P, Beerli C, Zerwes HG. Novel Concept for Super-Soft Topical Drugs: Deactivation by an Enzyme-Induced Switch into an Inactive Conformation. ACS Med Chem Lett 2023; 14:841-845. [PMID: 37312861 PMCID: PMC10258901 DOI: 10.1021/acsmedchemlett.3c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023] Open
Abstract
We present a novel concept for the design of supersoft topical drugs. Enzymatic cleavage of the carbonate ester of the potent pan Janus kinase (JAK) inhibitor 2 releases hydroxypyridine 3. Due to hydroxypyridine-pyridone tautomerism, 3 undergoes a rapid conformational change preventing the compound to assume the bioactive conformation required for binding to JAK kinases. We demonstrate that the hydrolysis in human blood and the subsequent shape change lead to the deactivation of 2.
Collapse
Affiliation(s)
- Gebhard Thoma
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, 4002 Basel, Switzerland
| | - Eric Vangrevelinghe
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, 4002 Basel, Switzerland
| | - Alexandre Luneau
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, 4002 Basel, Switzerland
| | - Philippe Piechon
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, 4002 Basel, Switzerland
| | - Christian Beerli
- Immunology
Disease Area, Novartis Institutes for Biomedical
Research, 4002 Basel, Switzerland
| | - Hans-Guenter Zerwes
- Immunology
Disease Area, Novartis Institutes for Biomedical
Research, 4002 Basel, Switzerland
| |
Collapse
|
22
|
Chu W, Li YL, Li JJ, Lin J, Li M, Wang J, He JZ, Zhang YM, Yao J, Jin XJ, Cai H, Liu YQ. Guiqi Baizhu prescription ameliorates cytarabine-induced intestinal mucositis by targeting JAK2 to inhibit M1 macrophage polarization. Biomed Pharmacother 2023; 164:114902. [PMID: 37209628 DOI: 10.1016/j.biopha.2023.114902] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Intestinal mucositis (IM) is characterized by damage to the intestinal mucosa resulting from inhibition of epithelial cell division and loss of renewal capacity following anticancer chemotherapy and radiotherapy. Cytarabine (Ara-C), the main chemotherapy drug for the treatment of leukemia and lymphoma, is a frequent cause of IM. Guiqi Baizhu prescription (GQBZP) is a traditional Chinese medicine with anti-cancer and anti-inflammatory effects. PURPOSE To determine if GQBZP can ameliorate Ara-C induced IM and identify and characterize the pharmacologic and pharmacodynamic mechanisms. STUDY DESIGN AND METHODS IM was induced in mice with Ara-C and concurrently treated with orally administered GQBZP. Body weight and food intake was monitored, with HE staining to calculate ileal histomorphometric scoring and villus length/crypt depth. Immunoblotting was used to detect intestinal tissue inflammatory factors. M1 macrophages (M1) were labeled with CD86 by flow cytometry and iNOS + F4/80 by immunofluorescence. Virtual screening was used to find potentially active compounds in GQBZP that targeted JAK2. In vitro, RAW264.7 cells were skewed to M1 macrophage polarization by lipopolysaccharide (LPS) and interferon-γ (INF-γ) and treated orally with GQBZP or potential active compounds. M1 was labeled with CD86 by flow cytometry and iNOS by immunofluorescence. ELISA was used to detect inflammatory factor expression. Active compounds against JAK2, p-JAK2, STAT1 and p-STAT1 were identified by western blotting and HCS fluorescence. Molecular dynamics simulations and pharmacokinetic predictions were carried out on representative active compounds. RESULTS Experimental results with mice in vivo suggest that GQBZP significantly attenuated Ara-C-induced ileal damage and release of pro-inflammatory factors by inhibiting macrophage polarization to M1. Molecular docking was used to identify potentially active compounds in GQBZP that targeted JAK2, a key factor in macrophage polarization to M1. By examining the main components of each herb and applying Lipinski's rules, ten potentially active compounds were identified. In vitro experimental results suggested that all 10 compounds of GQBZP targeted JAK2 and could inhibit M1 polarization in RAW264.7 cells treated with LPS and INF-γ. Among them, acridine and senkyunolide A down-regulated the expression of JAK2 and STAT1. MD simulations revealed that acridine and senkyunolide A were stable in the active site of JAK2 and exhibited good interactions with the surrounding amino acids. CONCLUSIONS GQBZP can ameliorate Ara-C-induced IM by reducing macrophage polarization to M1, and acridine and senkyunolide A are representative active compounds in GQBZP that target JAK2 to inhibit M1 polarization. Targeting JAK2 to regulate M1 polarization may be a valuable therapeutic strategy for IM.
Collapse
Affiliation(s)
- Wei Chu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, 730000 Lanzhou, China
| | - Ya-Ling Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, 730000 Lanzhou, China; Key Laboratory of Dun Huang Medical and Transformation, Ministry of Education of The People's Republic of China, Gansu University of Chinese Medicine, 730000 Lanzhou, China
| | - Jun-Jie Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, 730000 Lanzhou, China
| | - Jia Lin
- College of Pharmacy, Gansu University of Chinese Medicine, 730000 Lanzhou, China
| | - Mi Li
- College of Pharmacy, Gansu University of Chinese Medicine, 730000 Lanzhou, China
| | - Jiao Wang
- College of Pharmacy, Gansu University of Chinese Medicine, 730000 Lanzhou, China
| | - Jian-Zheng He
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, 730000 Lanzhou, China
| | - Yue-Mei Zhang
- Ophthalmology Department, First Hospital of Lanzhou University, 730000 Lanzhou, China
| | - Juan Yao
- College of Pharmacy, Gansu University of Chinese Medicine, 730000 Lanzhou, China
| | - Xiao-Jie Jin
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, 730000 Lanzhou, China; College of Pharmacy, Gansu University of Chinese Medicine, 730000 Lanzhou, China.
| | - Hui Cai
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 730000 Lanzhou, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, 730000 Lanzhou, China.
| | - Yong-Qi Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, 730000 Lanzhou, China; Key Laboratory of Dun Huang Medical and Transformation, Ministry of Education of The People's Republic of China, Gansu University of Chinese Medicine, 730000 Lanzhou, China.
| |
Collapse
|
23
|
Martins MS, Almeida IF, Cruz MT, Sousa E. Chronic pruritus: from pathophysiology to drug design. Biochem Pharmacol 2023; 212:115568. [PMID: 37116666 DOI: 10.1016/j.bcp.2023.115568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Pruritus, the most common symptom in dermatology, is an innate response capable of protecting skin against irritants. Nonetheless, when it lasts more than six weeks it is assumed to be a chronic pathology having a negative impact on people's lives. Chronic pruritus (CP) can occur in common and rare skin diseases, having a high prevalence in global population. The existing therapies are unable to counteract CP or are associated with adverse effects, so the development of effective treatments is a pressing issue. The pathophysiological mechanisms underlying CP are not yet completely dissected but, based on current knowledge, involve a wide range of receptors, namely neurokinin 1 receptor (NK1R), Janus kinase (JAK), and transient receptor potential (TRP) ion channels, especially transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1). This review will address the relevance of these molecular targets for the treatment of CP and molecules capable of modulating these receptors that have already been studied clinically or have the potential to possibly alleviate this pathology. According to scientific and clinical literature, there is an increase in the expression of these molecular targets in the lesioned skin of patients experiencing CP when compared with non-lesioned skin, highlighting their importance for the development of potential efficacious drugs through the design of antagonists/inhibitors.
Collapse
Affiliation(s)
- Márcia S Martins
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Isaobel F Almeida
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Maria T Cruz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Emília Sousa
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
24
|
Appeldoorn TYJ, Munnink THO, Morsink LM, Hooge MNLD, Touw DJ. Pharmacokinetics and Pharmacodynamics of Ruxolitinib: A Review. Clin Pharmacokinet 2023; 62:559-571. [PMID: 37000342 PMCID: PMC10064968 DOI: 10.1007/s40262-023-01225-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Ruxolitinib is a tyrosine kinase inhibitor targeting the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) pathways. Ruxolitinib is used to treat myelofibrosis, polycythemia vera and steroid-refractory graft-versus-host disease in the setting of allogeneic stem-cell transplantation. This review describes the pharmacokinetics and pharmacodynamics of ruxolitinib. METHODS Pubmed, EMBASE, Cochrane Library and web of Science were searched from the time of database inception to march 15, 2021 and was repeated on November 16, 2021. Articles not written in English, animal or in vitro studies, letters to the editor, case reports, where ruxolitinib was not used for hematological diseases or not available as full text were excluded. RESULTS Ruxolitinib is well absorbed, has 95% bio-availability, and is bound to albumin for 97%. Ruxolitinib pharmacokinetics can be described with a two-compartment model and linear elimination. Volume of distribution differs between men and women, likely related to bodyweight differences. Metabolism is mainly hepatic via CYP3A4 and can be altered by CYP3A4 inducers and inhibitors. The major metabolites of ruxolitinib are pharmacologically active. The main route of elimination of ruxolitinib metabolites is renal. Liver and renal dysfunction affect some of the pharmacokinetic variables and require dose reductions. Model-informed precision dosing might be a way to further optimize and individualize ruxolitinib treatment, but is not yet advised for routine care due to lack of information on target concentrations. CONCLUSION Further research is needed to explain the interindividual variability of the ruxolitinib pharmacokinetic variables and to optimize individual treatment.
Collapse
Affiliation(s)
- T Y J Appeldoorn
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, The Netherlands
| | - T H Oude Munnink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, The Netherlands
| | - L M Morsink
- Department of Hematology, University Medical Centre Groningen, Groningen, The Netherlands
| | - M N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, The Netherlands
| | - D J Touw
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, The Netherlands.
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
25
|
Guo Y, Zou Y, Chen Y, Deng D, Zhang Z, Liu K, Tang M, Yang T, Fu S, Zhang C, Si W, Ma Z, Zhang S, Peng B, Xu D, Chen L. Design, synthesis and biological evaluation of purine-based derivatives as novel JAK2/BRD4(BD2) dual target inhibitors. Bioorg Chem 2023; 132:106386. [PMID: 36702002 DOI: 10.1016/j.bioorg.2023.106386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Based on the pharmacological synergy of JAK2 and BRD4 in the NF-κB pathway and positive therapeutic effect of combination of JAK2 and BRD4 inhibitors in treating MPN and inflammation. A series of unique 9H-purine-2,6-diamine derivatives that selectively inhibited Janus kinase 2 (JAK2) and BRD4(BD2) were designed, prepared, and evaluated for their in vitro and in vivo potency. Among them, compound 9j exhibited acceptable inhibitory activity with IC50 values of 13 and 22 nM for BD2 of BRD4 and JAK2, respectively. The western blot assay demonstrated that 9j performed good functional potency in the NF-κB pathway and the phosphorylation of p65, IκB-α, and IKKα/β signal intensities were suppressed on RAW264.7 cell lines. Furthermore, 9j significantly improved the disease symptoms in a Ba/F3-JAK2V617F allograft model. Meanwhile, 9j was also effective in relieving symptoms in an acute ulcerative colitis model. Taken together, 9j was a potent JAK2/BRD4(BD2) dual target inhibitor and could be a potential lead compound in treating myeloproliferative neoplasms and inflammatory diseases.
Collapse
Affiliation(s)
- Yong Guo
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yurong Zou
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yong Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dexin Deng
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zihao Zhang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kongjun Liu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Suhong Fu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chufeng Zhang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenting Si
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziyan Ma
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shunjie Zhang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Peng
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Lijuan Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
26
|
Signaling pathways in rheumatoid arthritis: implications for targeted therapy. Signal Transduct Target Ther 2023; 8:68. [PMID: 36797236 PMCID: PMC9935929 DOI: 10.1038/s41392-023-01331-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is an incurable systemic autoimmune disease. Disease progression leads to joint deformity and associated loss of function, which significantly impacts the quality of life for sufferers and adds to losses in the labor force. In the past few decades, RA has attracted increased attention from researchers, the abnormal signaling pathways in RA are a very important research field in the diagnosis and treatment of RA, which provides important evidence for understanding this complex disease and developing novel RA-linked intervention targets. The current review intends to provide a comprehensive overview of RA, including a general introduction to the disease, historical events, epidemiology, risk factors, and pathological process, highlight the primary research progress of the disease and various signaling pathways and molecular mechanisms, including genetic factors, epigenetic factors, summarize the most recent developments in identifying novel signaling pathways in RA and new inhibitors for treating RA. therapeutic interventions including approved drugs, clinical drugs, pre-clinical drugs, and cutting-edge therapeutic technologies. These developments will hopefully drive progress in new strategically targeted therapies and hope to provide novel ideas for RA treatment options in the future.
Collapse
|
27
|
Kwon S. Molecular dissection of Janus kinases as drug targets for inflammatory diseases. Front Immunol 2022; 13:1075192. [PMID: 36569926 PMCID: PMC9773558 DOI: 10.3389/fimmu.2022.1075192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
The Janus kinase (JAK) family enzymes are non-receptor tyrosine kinases that phosphorylate cytokine receptors and signal transducer and activator of transcription (STAT) proteins in the JAK-STAT signaling pathway. Considering that JAK-STAT signal transduction is initiated by the binding of ligands, such as cytokines to their receptors, dysfunctional JAKs in the JAK-STAT pathway can lead to severe immune system-related diseases, including autoimmune disorders. Therefore, JAKs are attractive drug targets to develop therapies that block abnormal JAK-STAT signaling. To date, various JAK inhibitors have been developed to block cytokine-triggered signaling pathways. However, kinase inhibitors have intrinsic limitations to drug selectivity. Moreover, resistance to the developed JAK inhibitors constitutes a recently emerging issue owing to the occurrence of drug-resistant mutations. In this review, we discuss the role of JAKs in the JAK-STAT signaling pathway and analyze the structures of JAKs, along with their conformational changes for catalysis. In addition, the entire structure of the murine JAK1 elucidated recently provides information on an interaction mode for dimerization. Based on updated structural information on JAKs, we also discuss strategies for disrupting the dimerization of JAKs to develop novel JAK inhibitors.
Collapse
Affiliation(s)
- Sunghark Kwon
- Department of Biotechnology, Konkuk University, Chungju, Chungbuk, Republic of Korea
| |
Collapse
|
28
|
England JT, Gupta V. Fedratinib: a pharmacotherapeutic option for JAK-inhibitor naïve and exposed patients with myelofibrosis. Expert Opin Pharmacother 2022; 23:1677-1686. [PMID: 36252265 DOI: 10.1080/14656566.2022.2135989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Ruxolitinib is the most commonly used JAK-inhibitor (JAKi) for the management of symptoms related to splenomegaly and cytokine-mediated inflammation in patients with myelofibrosis (MF), but is limited by variable durability of response with most patients experiencing failure after 2-3 years. Long-term data on other approved JAKi, fedratinib and pacritinib, are not available due to the clinical hold put on pivotal trials for toxicity concerns. AREAS COVERED Following the initial hold for concern of Wernicke's encephalopathy, fedratinib was approved by the Food and Drug Administration (FDA) in 2019 for MF. We review the data available from early, and late phase critical trials, outline a role for fedratinib in the current treatment landscape of MF, and highlight the knowledge gaps in optimizing use of fedratinib. EXPERT OPINION The JAKARTA and JAKARTA2 trials established efficacy in spleen volume response (SVR) and symptom reduction in JAKi-naïve and ruxolitinib-exposed MF patients, respectively. Further trials, FREEDOM and FREEDOM2, are in progress to understand long-term effects of fedratinib; and include strategies to mitigate gastrointestinal toxicity, monitor thiamine levels and surveil for encephalopathy. We use fedratinib for symptomatic MF following ruxolitinib failure in patients without significant cytopenias; with practical strategies for monitoring and managing potential toxicity.
Collapse
Affiliation(s)
- James T England
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Vikas Gupta
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
García-Ortegón M, Simm GNC, Tripp AJ, Hernández-Lobato JM, Bender A, Bacallado S. DOCKSTRING: Easy Molecular Docking Yields Better Benchmarks for Ligand Design. J Chem Inf Model 2022; 62:3486-3502. [PMID: 35849793 PMCID: PMC9364321 DOI: 10.1021/acs.jcim.1c01334] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 01/05/2023]
Abstract
The field of machine learning for drug discovery is witnessing an explosion of novel methods. These methods are often benchmarked on simple physicochemical properties such as solubility or general druglikeness, which can be readily computed. However, these properties are poor representatives of objective functions in drug design, mainly because they do not depend on the candidate compound's interaction with the target. By contrast, molecular docking is a widely applied method in drug discovery to estimate binding affinities. However, docking studies require a significant amount of domain knowledge to set up correctly, which hampers adoption. Here, we present dockstring, a bundle for meaningful and robust comparison of ML models using docking scores. dockstring consists of three components: (1) an open-source Python package for straightforward computation of docking scores, (2) an extensive dataset of docking scores and poses of more than 260,000 molecules for 58 medically relevant targets, and (3) a set of pharmaceutically relevant benchmark tasks such as virtual screening or de novo design of selective kinase inhibitors. The Python package implements a robust ligand and target preparation protocol that allows nonexperts to obtain meaningful docking scores. Our dataset is the first to include docking poses, as well as the first of its size that is a full matrix, thus facilitating experiments in multiobjective optimization and transfer learning. Overall, our results indicate that docking scores are a more realistic evaluation objective than simple physicochemical properties, yielding benchmark tasks that are more challenging and more closely related to real problems in drug discovery.
Collapse
Affiliation(s)
- Miguel García-Ortegón
- Statistical
Laboratory, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Rd., Cambridge CB3 0WB, United Kingdom
| | - Gregor N. C. Simm
- Department
of Engineering, University of Cambridge, Trumpington St., Cambridge CB2 1PZ, United Kingdom
| | - Austin J. Tripp
- Department
of Engineering, University of Cambridge, Trumpington St., Cambridge CB2 1PZ, United Kingdom
| | | | - Andreas Bender
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Rd., Cambridge CB2 1EW, United Kingdom
| | - Sergio Bacallado
- Statistical
Laboratory, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Rd., Cambridge CB3 0WB, United Kingdom
| |
Collapse
|
30
|
Sánchez-Ruiz A, Colmenarejo G. Systematic Analysis and Prediction of the Target Space of Bioactive Food Compounds: Filling the Chemobiological Gaps. J Chem Inf Model 2022; 62:3734-3751. [PMID: 35938782 DOI: 10.1021/acs.jcim.2c00888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Food compounds and their molecular interactions are crucial for health and provide new chemotypes and targets for drug and nutraceutic design. Here, we retrieve and analyze the complete set of published interactions of food compounds with human proteins using the FooDB as a compound set and ChEMBL as a source of interactions. The data are analyzed in terms of 19 target classes and 19 compound classes, showing a small fraction of target assignment for the compounds (1.6%) and unraveling multiple gaps in the chemobiological space for these molecules. By using well-established cheminformatic approaches [similarity ensemble approach (SEA) combined with the maximum Tanimoto coefficient to the nearest bioactive, "SEA + TC"], we achieve a much enhanced target assignment (64.2%), filling many of the gaps with target hypothesis for fast focused testing. By publishing these data sets and analyses, we expect to provide a set of resources to speed up the full clarification of the chemobiological space of food compounds, opening new opportunities for drug and nutraceutic design.
Collapse
Affiliation(s)
- Andrés Sánchez-Ruiz
- Biostatistics and Bioinformatics Unit, IMDEA Food, CEI UAM+CSIC, E28049 Madrid, Spain
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, IMDEA Food, CEI UAM+CSIC, E28049 Madrid, Spain
| |
Collapse
|
31
|
Roskoski R. Janus kinase (JAK) inhibitors in the treatment of neoplastic and inflammatory disorders. Pharmacol Res 2022; 183:106362. [PMID: 35878738 DOI: 10.1016/j.phrs.2022.106362] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023]
Abstract
The Janus kinase (JAK) family of nonreceptor protein-tyrosine kinases consists of JAK1, JAK2, JAK3, and TYK2 (Tyrosine Kinase 2). Each of these proteins contains a JAK homology pseudokinase (JH2) domain that interacts with and regulates the activity of the adjacent protein kinase domain (JH1). The Janus kinase family is regulated by numerous cytokines including interferons, interleukins, and hormones such as erythropoietin and thrombopoietin. Ligand binding to cytokine receptors leads to the activation of associated Janus kinases, which then catalyze the phosphorylation of the receptors. The SH2 domain of signal transducers and activators of transcription (STAT) binds to the cytokine receptor phosphotyrosines thereby promoting STAT phosphorylation and activation by the Janus kinases. STAT dimers are then translocated into the nucleus where they participate in the regulation and expression of dozens of proteins. JAK1/3 signaling participates in the pathogenesis of inflammatory disorders while JAK1/2 signaling contributes to the development of myeloproliferative neoplasms as well as several malignancies including leukemias and lymphomas. An activating JAK2 V617F mutation occurs in 95% of people with polycythemia vera and about 50% of cases of myelofibrosis and essential thrombocythemia. Abrocitinib, ruxolitinib, and upadacitinib are JAK inhibitors that are FDA-approved for the treatment of atopic dermatitis. Baricitinib is used for the treatment of rheumatoid arthritis and covid 19. Tofacitinib and upadacitinib are JAK antagonists that are used for the treatment of rheumatoid arthritis and ulcerative colitis. Additionally, ruxolitinib is approved for the treatment of polycythemia vera while fedratinib, pacritinib, and ruxolitinib are approved for the treatment of myelofibrosis.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 106, Box 19, Horse Shoe, NC 28742, United States.
| |
Collapse
|
32
|
Study of Novel Furocoumarin Derivatives on Anti-Vitiligo Activity, Molecular Docking and Mechanism of Action. Int J Mol Sci 2022; 23:ijms23147959. [PMID: 35887323 PMCID: PMC9316487 DOI: 10.3390/ijms23147959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Vitiligo is a common chronic dermatological abnormality that afflicts tens of millions of people. Furocoumarins isolated from Uygur traditional medicinal material Psoralen corylifolia L. have been proven to be highly effective for the treatment of vitiligo. Although many furocoumarin derivatives with anti-vitiligo activity have been synthesized, their targets with respect to the disease are still ambiguous. Fortunately, the JAKs were identified as potential targets for the disease and its inhibitors have been proved to be effective in the treatment of vitiligo in many clinical trials. Thus, sixty-five benzene sulfonate and benzoate derivatives of furocoumarins (7a–7ad, 8a–8ag) with superior anti-vitiligo activity targeting JAKs were designed and synthesized based on preliminary research. The SAR was characterized after the anti-vitiligo-activity evaluation in B16 cells. Twenty-two derivatives showed more potent effects on melanin synthesis in B16 cells than the positive control (8-MOP). Among them, compounds 7y and 8 not only could increase melanin content, but they also improved the catecholase activity of tyrosinase in a concentration-dependent manner. The docking studies indicated that they were able to interact with amino acid residues in JAK1 and JAK2 via hydrogen bonds. Furthermore, candidate 8 showed a moderate inhibition of CXCL−10, which plays an important role in JAK–STAT signaling. The RT-PCR and Western blotting analyses illustrated that compounds 7y and 8 promoted melanogenesis by activating the p38 MAPK and Akt/GSK-3β/β-catenin pathways, as well as increasing the expressions of the MITF and tyrosinase-family genes. Finally, furocoumarin derivative 8 was recognized as a promising candidate for the fight against the disease and worthy of further research in vivo.
Collapse
|
33
|
Patel J, Vazquez T, Chin F, Keyes E, Yan D, Diaz D, Grinnell M, Sharma M, Li Y, Feng R, Sprow G, Dan J, Werth VP. Multidimensional immune profiling of cutaneous lupus erythematosus in vivo stratified by patient responses to antimalarials. Arthritis Rheumatol 2022; 74:1687-1698. [PMID: 35583812 DOI: 10.1002/art.42235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The pathogenesis of cutaneous lupus erythematous (CLE) is multifactorial and CLE is difficult to treat due to heterogeneity of inflammatory processes between patients. Antimalarials such as hydroxychloroquine (HCQ) and quinacrine (QC) have long been first-line systemic therapy; however, many patients do not respond and require systemic immunosuppressants with undesirable side effects. Given the complexity and unpredictable responses in CLE, we sought to identify the immunologic landscape of CLE patients stratified by subsequent treatment outcomes to identify potential biomarkers of inducible response. METHOD We performed imaging mass cytometry with 48 treatment-naïve skin biopsies of HCQ responders, QC responders, and non-responders (NR) to analyze multiple immune cell types and inflammatory markers in their native environment in CLE skin. Patients were stratified according to their subsequent response to antimalarials to identify baseline immunophenotypes which may predict response to therapy. RESULTS HCQ responders demonstrated increased CD4 T cells compared to QC. NR had decreased Tregs compared to QC and increased central memory T cells compared to HCQ. QC responders expressed increased phosphorylated (p) STING and IFNκ compared to HCQ. pSTING and IFNκ localized to conventional dendritic cells and positively correlated on a tissue and cellular level. Neighborhood analysis revealed decreased regulatory cell interactions in NR patients. Hierarchical clustering revealed NR groups separated based on pSTAT2/3/4/5, pIRF3, Granzyme B, pJAK2, IL4, IL17, and IFNγ. CONCLUSION These findings demonstrate differential immune compositions between CLE patients, guiding the future for precision-based medicine and treatment response.
Collapse
Affiliation(s)
- Jay Patel
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Vazquez
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104
| | - Felix Chin
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Keyes
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daisy Yan
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - DeAnna Diaz
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Madison Grinnell
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meena Sharma
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yubin Li
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rui Feng
- Department of Biostatistics and Epidemiology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Grant Sprow
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Josh Dan
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria P Werth
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Henry SP, Liosi ME, Ippolito JA, Cutrona KJ, Krimmer SG, Newton AS, Schlessinger J, Jorgensen WL. Conversion of a False Virtual Screen Hit into Selective JAK2 JH2 Domain Binders Using Convergent Design Strategies. ACS Med Chem Lett 2022; 13:819-826. [PMID: 35586418 PMCID: PMC9109162 DOI: 10.1021/acsmedchemlett.2c00051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
The Janus kinase 2 (JAK2) pseudokinase domain (JH2) is an ATP-binding domain that regulates the activity of the catalytic tyrosine kinase domain (JH1). Dysregulation of JAK2 JH1 signaling caused by the V617F mutation in JH2 is implicated in various myeloproliferative neoplasms. To explore if JAK2 activity can be modulated by a small molecule binding to the ATP site in JH2, we have developed several ligand series aimed at selectively targeting the JAK2 JH2 domain. We report here the evolution of a false virtual screen hit into a new JAK2 JH2 series. Optimization guided by computational modeling has yielded analogues with nanomolar affinity for the JAK2 JH2 domain and >100-fold selectivity for the JH2 domain over the JH1 domain. A crystal structure for one of the potent compounds bound to JAK2 JH2 clarifies the origins of the strong binding and selectivity. The compounds expand the platform for seeking molecules to regulate JAK2 signaling, including V617F JAK2 hyperactivation.
Collapse
Affiliation(s)
- Sean P. Henry
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Maria-Elena Liosi
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Joseph A. Ippolito
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Kara J. Cutrona
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Stefan G. Krimmer
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
- Department
of Pharmacology, Yale University School
of Medicine, New Haven, Connecticut 06520-8066, United States
| | - Ana S. Newton
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Joseph Schlessinger
- Department
of Pharmacology, Yale University School
of Medicine, New Haven, Connecticut 06520-8066, United States
| | - William L. Jorgensen
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
35
|
Chatterjee B, Thakur SS. Remdesivir and Its Combination With Repurposed Drugs as COVID-19 Therapeutics. Front Immunol 2022; 13:830990. [PMID: 35634324 PMCID: PMC9134007 DOI: 10.3389/fimmu.2022.830990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/05/2022] [Indexed: 01/18/2023] Open
Abstract
The SARS-CoV-2 virus needs multiple copies for its multiplication using an enzyme RNA-dependent RNA polymerase (RdRp). Remdesivir inhibits viral RdRp, controls the multiplication of the virus, and protects patients. However, treatment of COVID-19 with remdesivir involves adverse effects. Many ongoing clinical trials are exploring the potential of the combination of remdesivir with repurposed drugs by targeting multiple targets of virus and host human simultaneously. Better results were obtained with the remdesivir–baricitinib combination treatment for COVID-19 compared to the treatment with remdesivir alone. Notably, recovery from COVID-19 was found to be 8 days less via the remdesivir–baricitinib combination treatment as compared to remdesivir treatment alone. Furthermore, the mortality rate via the remdesivir–baricitinib combination treatment was lower compared to the remdesivir-only treatment. Remdesivir targets the SARS-CoV-2 enzyme while baricitinib targets the host human enzyme. Simultaneously, remdesivir and baricitinib as a combination inhibit their target viral RdRp and human Janus kinase, respectively. Ongoing trials for the combination of drugs will suggest in the future whether they may reduce the recovery time, reduce the mortality rate, and improve patient clinical status for noninvasive ventilation. In the future, simultaneously targeting virus replication enzymes and host human kinases may be the strategy for SARS-CoV-2 therapeutics.
Collapse
Affiliation(s)
- Bhaswati Chatterjee
- Chemical Science, National Institute of Pharmaceutical Education and Research, Hyderabad, India
- *Correspondence: Bhaswati Chatterjee, ; Suman S. Thakur,
| | - Suman S. Thakur
- Proteomics and Cell Signaling, Centre for Cellular and Molecular Biology, Hyderabad, India
- *Correspondence: Bhaswati Chatterjee, ; Suman S. Thakur,
| |
Collapse
|
36
|
A Comprehensive Overview of Globally Approved JAK Inhibitors. Pharmaceutics 2022; 14:pharmaceutics14051001. [PMID: 35631587 PMCID: PMC9146299 DOI: 10.3390/pharmaceutics14051001] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Janus kinase (JAK) is a family of cytoplasmic non-receptor tyrosine kinases that includes four members, namely JAK1, JAK2, JAK3, and TYK2. The JAKs transduce cytokine signaling through the JAK-STAT pathway, which regulates the transcription of several genes involved in inflammatory, immune, and cancer conditions. Targeting the JAK family kinases with small-molecule inhibitors has proved to be effective in the treatment of different types of diseases. In the current review, eleven of the JAK inhibitors that received approval for clinical use have been discussed. These drugs are abrocitinib, baricitinib, delgocitinib, fedratinib, filgotinib, oclacitinib, pacritinib, peficitinib, ruxolitinib, tofacitinib, and upadacitinib. The aim of the current review was to provide an integrated overview of the chemical and pharmacological data of the globally approved JAK inhibitors. The synthetic routes of the eleven drugs were described. In addition, their inhibitory activities against different kinases and their pharmacological uses have also been explained. Moreover, their crystal structures with different kinases were summarized, with a primary focus on their binding modes and interactions. The proposed metabolic pathways and metabolites of these drugs were also illustrated. To sum up, the data in the current review could help in the design of new JAK inhibitors with potential therapeutic benefits in inflammatory and autoimmune diseases.
Collapse
|
37
|
Zhou H, Jiang J, Lu J, Ran D, Gan Z. Synthesis and biological evaluation of novel 2,4-dianilinopyrimidine derivatives as potent dual janus kinase 2 and histone deacetylases inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Wang Y, Yan L, Zhang X, Xiang F, Li X, Li S, Song X. Tandem [3 + 1 + 1 + 1] Heterocyclization of α‐Acyl Ketene Dithioacetals with Ammonia and Methanol: Rapid Assembly of Polysubstituted Pyrimidines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Youkun Wang
- Hebei University of Technology School of Chemical Engineering and Technology 300401 Tianjin CHINA
| | - Linlin Yan
- Hebei Chemical and Pharmaceutical College Department of Pharmaceutical Engineering 88 Fangxing Road 050026 Shijiazhuang CHINA
| | - Xiaoxuan Zhang
- Hebei University of Technology School of Chemical Engineering and Technology 300401 Tianjin CHINA
| | - Fengrui Xiang
- Hebei University of Technology School of Chemical Engineering and Technology 300401 Tianjin CHINA
| | - Xiaojun Li
- Hebei University of Technology School of Chemical Engineering and Technology 300401 Tianjin CHINA
| | - Shengnan Li
- Hebei University of Technology School of Chemical Engineering and Technology 300401 Tianjin CHINA
| | - Xiaoning Song
- Hebei University of Technology School of Chemical Engineering and Technology 300401 Tianjin CHINA
| |
Collapse
|
39
|
Alcock LJ, Chang Y, Jarusiewicz JA, Actis M, Nithianantham S, Mayasundari A, Min J, Maxwell D, Hunt J, Smart B, Yang JJ, Nishiguchi G, Fischer M, Mullighan CG, Rankovic Z. Development of Potent and Selective Janus Kinase 2/3 Directing PG-PROTACs. ACS Med Chem Lett 2022; 13:475-482. [PMID: 35300081 PMCID: PMC8919382 DOI: 10.1021/acsmedchemlett.1c00650] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Aberrant activation of the JAK-STAT signaling pathway has been implicated in the pathogenesis of a range of hematological malignancies and autoimmune disorders. Here we describe the design, synthesis, and characterization of JAK2/3 PROTACs utilizing a phenyl glutarimide (PG) ligand as the cereblon (CRBN) recruiter. SJ10542 displayed high selectivity over GSPT1 and other members of the JAK family and potency in patient-derived ALL cells containing both JAK2 fusions and CRLF2 rearrangements.
Collapse
Affiliation(s)
- Lisa J Alcock
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Yunchao Chang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Jamie A Jarusiewicz
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Marisa Actis
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Stanley Nithianantham
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Anand Mayasundari
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Jaeki Min
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Dylan Maxwell
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Jeremy Hunt
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Brandon Smart
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Jun J Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Gisele Nishiguchi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Marcus Fischer
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.,Hematological Malignancies Program, St. Jude Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| |
Collapse
|
40
|
Hu M, Yang T, Yang L, Niu L, Zhu J, Zhao A, Shi M, Yuan X, Tang M, Yang J, Pei H, Yang Z, Chen Q, Ye H, Niu T, Chen L. Preclinical studies of Flonoltinib Maleate, a novel JAK2/FLT3 inhibitor, in treatment of JAK2 V617F-induced myeloproliferative neoplasms. Blood Cancer J 2022; 12:37. [PMID: 35256594 PMCID: PMC8901636 DOI: 10.1038/s41408-022-00628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
Janus kinase 2 (JAK2) hyperactivation by JAK2V617F mutation leads to myeloproliferative neoplasms (MPNs) and targeting JAK2 could serve as a promising therapeutic strategy for MPNs. Here, we report that Flonoltinib Maleate (FM), a selective JAK2/FLT3 inhibitor, shows high selectivity for JAK2 over the JAK family. Surface plasmon resonance assays verified that FM had a stronger affinity for the pseudokinase domain JH2 than JH1 of JAK2 and had an inhibitory effect on JAK2 JH2V617F. The cocrystal structure confirmed that FM could stably bind to JAK2 JH2, and FM suppressed endogenous colony formation of primary erythroid progenitor cells from patients with MPNs. In several JAK2V617F-induced MPN murine models, FM could dose-dependently reduce hepatosplenomegaly and prolong survival. Similar results were observed in JAK2V617F bone marrow transplantation mice. FM exhibited strong inhibitory effects on fibrosis of the spleen and bone marrow. Long-term FM treatment showed good pharmacokinetic/pharmacodynamic characteristics with high drug exposure in tumor-bearing tissues and low toxicity. Currently, FM has been approved by the National Medical Products Administration of China (CXHL2000628), and this study will guide clinical trials for patients with MPNs.
Collapse
Affiliation(s)
- Mengshi Hu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Linyu Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Niu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Jinbing Zhu
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Ailin Zhao
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Mingsong Shi
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Xue Yuan
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Jianhong Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Heying Pei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Chen
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Haoyu Ye
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Ting Niu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China.
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.
- Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu, China.
| |
Collapse
|
41
|
Sk MF, Jonniya NA, Roy R, Kar P. Unraveling the Molecular Mechanism of Recognition of Selected Next-Generation Antirheumatoid Arthritis Inhibitors by Janus Kinase 1. ACS OMEGA 2022; 7:6195-6209. [PMID: 35224383 PMCID: PMC8867477 DOI: 10.1021/acsomega.1c06715] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/28/2022] [Indexed: 05/12/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic immune-related condition, primarily of joints, and is highly disabling and painful. The inhibition of Janus kinase (JAK)-related cytokine signaling pathways using small molecules is prevalent nowadays. The JAK family belongs to nonreceptor cytoplasmic protein tyrosine kinases (PTKs), including JAK1, JAK2, JAK3, and TYK2 (tyrosine kinase 2). JAK1 has received significant attention after being identified as a promising target for developing anti-RA therapeutics. Currently, no crystal structure is available for JAK1 in complex with the next-generation anti-RA drugs. In the current study, we investigated the mechanism of binding of baricitinib, filgotinib, itacitinib, and upadacitinib to JAK1 using a combined method of molecular docking, molecular dynamics simulation, and binding free energy calculation via the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) scheme. We found that the calculated binding affinity decreases in the order upadacitinib > itacitinib > filgotinib > baricitinib. Due to the increased favorable intermolecular electrostatic contribution, upadacitinib is more selective to JAK1 compared to the other three inhibitors. The cross-correlation and principal component analyses showed that different inhibitor bindings significantly affect the binding site dynamics of JAK1. Furthermore, our studies indicated that the hydrophobic residues and hydrogen bonds from the hinge region (Glu957 and Leu959) of JAK1 played an essential role in stabilizing the inhibitors. Protein structural network analysis reveals that the total number of links and hubs in JAK1/baricitinib (354, 48) is more significant than those in apo (328, 40) and the other three complexes. The JAK1/baricitinib complex shows the highest probability of the highest-ranked community, indicating a compact network of the JAK1/baricitinib complex, consistent with its higher stability than the rest of the four systems. Overall, our study may be crucial for the rational design of JAK1-selective inhibitors with better affinity.
Collapse
|
42
|
Antiproliferative, genotoxic activities and quantification of extracts and cucurbitacin B obtained from Luffa operculata (L.) Cogn. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103589] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
43
|
Bilge S, Karadurmus L, Bellur Atici E, Sınağ A, Ozkan S. Electrochemical investigation of ruxolitinib: Sensitive voltammetric assay in drug product and human serum by using different solid electrodes. ELECTROANAL 2022. [DOI: 10.1002/elan.202100625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Khorsandi Z, Keshavarzipour F, Varma RS, Hajipour AR, Sadeghi-Aliabadi H. Sustainable synthesis of potential antitumor new derivatives of Abemaciclib and Fedratinib via C-N cross coupling reactions using Pd/Cu-free Co-catalyst. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Karim RM, Bikowitz MJ, Chan A, Zhu JY, Grassie D, Becker A, Berndt N, Gunawan S, Lawrence NJ, Schönbrunn E. Differential BET Bromodomain Inhibition by Dihydropteridinone and Pyrimidodiazepinone Kinase Inhibitors. J Med Chem 2021; 64:15772-15786. [PMID: 34710325 DOI: 10.1021/acs.jmedchem.1c01096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BRD4 and other members of the bromodomain and extraterminal (BET) family of proteins are promising epigenetic targets for the development of novel therapeutics. Among the reported BRD4 inhibitors are dihydropteridinones and benzopyrimidodiazepinones originally designed to target the kinases PLK1, ERK5, and LRRK2. While these kinase inhibitors were identified as BRD4 inhibitors, little is known about their binding potential and structural details of interaction with the other BET bromodomains. We comprehensively characterized a series of known and newly identified dual BRD4-kinase inhibitors against all eight individual BET bromodomains. A detailed analysis of 23 novel cocrystal structures of BET-kinase inhibitor complexes in combination with direct binding assays and cell signaling studies revealed significant differences in molecular shape complementarity and inhibitory potential. Collectively, the data offer new insights into the action of kinase inhibitors across BET bromodomains, which may aid the development of drugs to inhibit certain BET proteins and kinases differentially.
Collapse
Affiliation(s)
- Rezaul Md Karim
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States.,Department of Molecular Medicine, USF Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Melissa J Bikowitz
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States.,Department of Molecular Medicine, USF Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Alice Chan
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Jin-Yi Zhu
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Dylan Grassie
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Andreas Becker
- Chemical Biology Core, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Norbert Berndt
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Steven Gunawan
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Nicholas J Lawrence
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Ernst Schönbrunn
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| |
Collapse
|
46
|
Wang X, Wang Y, Li X, Yu Z, Song C, Du Y. Nitrile-containing pharmaceuticals: target, mechanism of action, and their SAR studies. RSC Med Chem 2021; 12:1650-1671. [PMID: 34778767 PMCID: PMC8528211 DOI: 10.1039/d1md00131k] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022] Open
Abstract
The nitrile group is an important functional group widely found in both pharmaceutical agents and natural products. More than 30 nitrile-containing pharmaceuticals have been approved by the FDA for the management of a broad range of clinical conditions in the last few decades. Incorporation of a nitrile group into lead compounds has gradually become a promising strategy in rational drug design as it can bring additional benefits including enhanced binding affinity to the target, improved pharmacokinetic profile of parent drugs, and reduced drug resistance. This paper reviews the existing drugs with a nitrile moiety that have been approved or in clinical trials, involving their targets, molecular mechanism of pharmacology and SAR studies, and classifies them into different categories based on their clinical usages.
Collapse
Affiliation(s)
- Xi Wang
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| | - Yuanxun Wang
- National Institution of Biological Sciences, Beijing No. 7 Science Park Road, Zhongguancun Life Science Park Beijing 102206 China
| | - Xuemin Li
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| | - Zhenyang Yu
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| | - Chun Song
- State Key Laboratory of Microbial Technology, Shandong University Qingdao City Shandong Province 266237 China
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| |
Collapse
|
47
|
Ayala-Aguilera CC, Valero T, Lorente-Macías Á, Baillache DJ, Croke S, Unciti-Broceta A. Small Molecule Kinase Inhibitor Drugs (1995-2021): Medical Indication, Pharmacology, and Synthesis. J Med Chem 2021; 65:1047-1131. [PMID: 34624192 DOI: 10.1021/acs.jmedchem.1c00963] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The central role of dysregulated kinase activity in the etiology of progressive disorders, including cancer, has fostered incremental efforts on drug discovery programs over the past 40 years. As a result, kinase inhibitors are today one of the most important classes of drugs. The FDA approved 73 small molecule kinase inhibitor drugs until September 2021, and additional inhibitors were approved by other regulatory agencies during that time. To complement the published literature on clinical kinase inhibitors, we have prepared a review that recaps this large data set into an accessible format for the medicinal chemistry community. Along with the therapeutic and pharmacological properties of each kinase inhibitor approved across the world until 2020, we provide the synthesis routes originally used during the discovery phase, many of which were only available in patent applications. In the last section, we also provide an update on kinase inhibitor drugs approved in 2021.
Collapse
Affiliation(s)
- Cecilia C Ayala-Aguilera
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Teresa Valero
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Álvaro Lorente-Macías
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Daniel J Baillache
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Stephen Croke
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| |
Collapse
|
48
|
Downes CEJ, McClure BJ, Bruning JB, Page E, Breen J, Rehn J, Yeung DT, White DL. Acquired JAK2 mutations confer resistance to JAK inhibitors in cell models of acute lymphoblastic leukemia. NPJ Precis Oncol 2021; 5:75. [PMID: 34376782 PMCID: PMC8355279 DOI: 10.1038/s41698-021-00215-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022] Open
Abstract
Ruxolitinib (rux) Phase II clinical trials are underway for the treatment of high-risk JAK2-rearranged (JAK2r) B-cell acute lymphoblastic leukemia (B-ALL). Treatment resistance to targeted inhibitors in other settings is common; elucidating potential mechanisms of rux resistance in JAK2r B-ALL will enable development of therapeutic strategies to overcome or avert resistance. We generated a murine pro-B cell model of ATF7IP-JAK2 with acquired resistance to multiple type-I JAK inhibitors. Resistance was associated with mutations within the JAK2 ATP/rux binding site, including a JAK2 p.G993A mutation. Using in vitro models of JAK2r B-ALL, JAK2 p.G993A conferred resistance to six type-I JAK inhibitors and the type-II JAK inhibitor, CHZ-868. Using computational modeling, we postulate that JAK2 p.G993A enabled JAK2 activation in the presence of drug binding through a unique resistance mechanism that modulates the mobility of the conserved JAK2 activation loop. This study highlights the importance of monitoring mutation emergence and may inform future drug design and the development of therapeutic strategies for this high-risk patient cohort.
Collapse
Affiliation(s)
- Charlotte E J Downes
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Barbara J McClure
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - John B Bruning
- Institute of Photonics and Advanced Sensing, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Elyse Page
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - James Breen
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Computational and Systems Biology Program, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Jacqueline Rehn
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - David T Yeung
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, Australia
| | - Deborah L White
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia.
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.
- Australian Genomics Health Alliance (AGHA), The Murdoch Children's Research Institute, Parkville, VIC, Australia.
- Australian and New Zealand Children's Oncology Group (ANZCHOG), Clayton, VIC, Australia.
| |
Collapse
|