1
|
Deng Z, Li J, Zhu P, Wang J, Kong Y, Hu Y, Cai J, Dong C. Quinazolinones as Potential Anticancer Agents: Synthesis and Action Mechanisms. Biomolecules 2025; 15:210. [PMID: 40001513 PMCID: PMC11852416 DOI: 10.3390/biom15020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Quinazolinones, essential quinazoline derivatives, exhibit diverse biological activities with applications in pharmaceuticals and insecticides. Some derivatives have already been developed as commercial drugs. Given the rising cancer incidence, there is a critical need for new anticancer agents, and quinazolinones show promising potential in this domain. The present review focuses on novel advances in the synthesis of these important scaffolds and other medicinal aspects involving drug design, the structure-activity relationship, and action mechanisms of quinazoline and quinazolinone derivatives, to help in the development of new quinazoline and quinazolinone derivatives.
Collapse
Affiliation(s)
- Zhijiang Deng
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Polysaccharide Research Center, Zhengzhou 450046, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, China
| | - Jieming Li
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Polysaccharide Research Center, Zhengzhou 450046, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, China
| | - Pengbo Zhu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Polysaccharide Research Center, Zhengzhou 450046, China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jie Wang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Polysaccharide Research Center, Zhengzhou 450046, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, China
| | - Yuanfang Kong
- Henan Polysaccharide Research Center, Zhengzhou 450046, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yulong Hu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Polysaccharide Research Center, Zhengzhou 450046, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, China
| | - Juntao Cai
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Polysaccharide Research Center, Zhengzhou 450046, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, China
| | - Chunhong Dong
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Polysaccharide Research Center, Zhengzhou 450046, China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou 450046, China
| |
Collapse
|
2
|
Xu S, Wang S, Zhou Y, Foley N, Sun L, Walsham L, Tang K, Shi D, Shi X, Zhang Z, Jiang X, Gao S, Liu X, Pannecouque C, Goldstone DC, Dick A, Zhan P. "Pseudosubstrate Envelope"/Free Energy Perturbation-Guided Design and Mechanistic Investigations of Benzothiazole HIV Capsid Modulators with High Ligand Efficiency. J Med Chem 2024; 67:19057-19076. [PMID: 39418501 DOI: 10.1021/acs.jmedchem.4c01544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Based on our proposed "pseudosubstrate envelope" concept, 25 benzothiazole-bearing HIV capsid protein (CA) modulators were designed and synthesized under the guidance of free energy perturbation technology. The most potent compound, IC-1k, exhibited an EC50 of 2.69 nM against HIV-1, being 393 times more potent than the positive control PF74. Notably, IC-1k emerged as the highest ligand efficiency (LE = 0.32) HIV CA modulator, surpassing that of the approved drug lenacapavir (LE = 0.21). Surface plasmon resonance assay and crystallographic analysis confirmed that IC-1k targeted HIV-1 CA within the chemical space of the "pseudosubstrate envelope". Further mechanistic studies revealed a dual-stage inhibition profile: IC-1k disrupted early-stage capsid-host-factor interactions and promoted late-stage capsid misassembly. Preliminary pharmacokinetic evaluations demonstrated significantly improved metabolic stability in human liver microsomes for IC-1k (T1/2 = 91.3 min) compared to PF74 (T1/2 = 0.7 min), alongside a favorable safety profile. Overall, IC-1k presents a promising lead compound for further optimization.
Collapse
Affiliation(s)
- Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Yang Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Nicholas Foley
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Laura Walsham
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Kai Tang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Dazhou Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Xiaoyu Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Zhijiao Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), Leuven B-3000, Belgium
| | - David C Goldstone
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Alexej Dick
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| |
Collapse
|
3
|
McGraw A, Hillmer G, Medehincu SM, Hikichi Y, Gagliardi S, Narayan K, Tibebe H, Marquez D, Mei Bose L, Keating A, Izumi C, Peese K, Joshi S, Krystal M, DeCicco-Skinner KL, Freed EO, Sardo L, Izumi T. Exploring HIV-1 Maturation: A New Frontier in Antiviral Development. Viruses 2024; 16:1423. [PMID: 39339899 PMCID: PMC11437483 DOI: 10.3390/v16091423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
HIV-1 virion maturation is an essential step in the viral replication cycle to produce infectious virus particles. Gag and Gag-Pol polyproteins are assembled at the plasma membrane of the virus-producer cells and bud from it to the extracellular compartment. The newly released progeny virions are initially immature and noninfectious. However, once the Gag polyprotein is cleaved by the viral protease in progeny virions, the mature capsid proteins assemble to form the fullerene core. This core, harboring two copies of viral genomic RNA, transforms the virion morphology into infectious virus particles. This morphological transformation is referred to as maturation. Virion maturation influences the distribution of the Env glycoprotein on the virion surface and induces conformational changes necessary for the subsequent interaction with the CD4 receptor. Several host factors, including proteins like cyclophilin A, metabolites such as IP6, and lipid rafts containing sphingomyelins, have been demonstrated to have an influence on virion maturation. This review article delves into the processes of virus maturation and Env glycoprotein recruitment, with an emphasis on the role of host cell factors and environmental conditions. Additionally, we discuss microscopic technologies for assessing virion maturation and the development of current antivirals specifically targeting this critical step in viral replication, offering long-acting therapeutic options.
Collapse
Affiliation(s)
- Aidan McGraw
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Grace Hillmer
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Stefania M. Medehincu
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Sophia Gagliardi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kedhar Narayan
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Hasset Tibebe
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Dacia Marquez
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Lilia Mei Bose
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Adleigh Keating
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Coco Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kevin Peese
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Samit Joshi
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Mark Krystal
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Kathleen L. DeCicco-Skinner
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Luca Sardo
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Taisuke Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
- District of Columbia Center for AIDS Research, Washington, DC 20052, USA
| |
Collapse
|
4
|
McGraw A, Hillmer G, Choi J, Narayan K, Mehedincu SM, Marquez D, Tibebe H, DeCicco-Skinner KL, Izumi T. Evaluating HIV-1 Infectivity and Virion Maturation across Varied Producer Cells with a Novel FRET-Based Detection and Quantification Assay. Int J Mol Sci 2024; 25:6396. [PMID: 38928103 PMCID: PMC11204348 DOI: 10.3390/ijms25126396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The maturation of HIV-1 virions is a crucial process in viral replication. Although T-cells are a primary source of virus production, much of our understanding of virion maturation comes from studies using the HEK293T human embryonic kidney cell line. Notably, there is a lack of comparative analyses between T-cells and HEK293T cells in terms of virion maturation efficiency in existing literature. We previously developed an advanced virion visualization system based on the FRET principle, enabling the effective distinction between immature and mature virions via fluorescence microscopy. In this study, we utilized pseudotyped, single-round infectious viruses tagged with FRET labels (HIV-1 Gag-iFRET∆Env) derived from Jurkat (a human T-lymphocyte cell line) and HEK293T cells to evaluate their virion maturation rates. HEK293T-derived virions demonstrated a maturity rate of 81.79%, consistent with other studies and our previous findings. However, virions originating from Jurkat cells demonstrated a significantly reduced maturation rate of 68.67% (p < 0.0001). Correspondingly, viruses produced from Jurkat cells exhibited significantly reduced infectivity compared to those derived from HEK293T cells, with the relative infectivity measured at 65.3%. This finding is consistent with the observed relative maturation rate of viruses produced by Jurkat cells. These findings suggest that initiation of virion maturation directly correlates with viral infectivity. Our observation highlights the dynamic nature of virus-host interactions and their implications for virion production and infectivity.
Collapse
Affiliation(s)
- Aidan McGraw
- Department of Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (J.C.); (K.N.); (S.M.M.); (D.M.); (H.T.); (K.L.D.-S.)
| | - Grace Hillmer
- Department of Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (J.C.); (K.N.); (S.M.M.); (D.M.); (H.T.); (K.L.D.-S.)
| | - Jeongpill Choi
- Department of Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (J.C.); (K.N.); (S.M.M.); (D.M.); (H.T.); (K.L.D.-S.)
| | - Kedhar Narayan
- Department of Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (J.C.); (K.N.); (S.M.M.); (D.M.); (H.T.); (K.L.D.-S.)
| | - Stefania M. Mehedincu
- Department of Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (J.C.); (K.N.); (S.M.M.); (D.M.); (H.T.); (K.L.D.-S.)
| | - Dacia Marquez
- Department of Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (J.C.); (K.N.); (S.M.M.); (D.M.); (H.T.); (K.L.D.-S.)
| | - Hasset Tibebe
- Department of Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (J.C.); (K.N.); (S.M.M.); (D.M.); (H.T.); (K.L.D.-S.)
| | - Kathleen L. DeCicco-Skinner
- Department of Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (J.C.); (K.N.); (S.M.M.); (D.M.); (H.T.); (K.L.D.-S.)
| | - Taisuke Izumi
- Department of Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (J.C.); (K.N.); (S.M.M.); (D.M.); (H.T.); (K.L.D.-S.)
- District of Columbia Center for AIDS Research, Washington, DC 20052, USA
| |
Collapse
|
5
|
McGraw A, Hillmer G, Choi J, Narayan K, Marquez D, Tibebe H, Izumi T. Evaluating HIV-1 Infectivity and Virion Maturation Across Varied Producer Cells with a Novel FRET-Based Detection and Quantification Assay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.25.573317. [PMID: 38234844 PMCID: PMC10793453 DOI: 10.1101/2023.12.25.573317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The maturation of HIV-1 virions is a crucial process in viral replication. Although T cells are a primary source of virus production, much of our understanding of virion maturation comes from studies using the HEK293T human embryonic kidney cell line. Notably, there is a lack of comparative analyses between T cells and HEK293T cells in terms of virion maturation efficiency in existing literature. We previously developed an advanced virion visualization system based on the FRET principle, enabling the effective distinction between immature and mature virions via fluorescence microscopy. In this study, we utilized pseudotyped, single-round infectious viruses tagged with FRET labels (HIV-1 Gag-iFRETΔEnv) derived from Jurkat (a human T lymphocyte cell line) and HEK293T cells to evaluate their virion maturation rates. HEK293T-derived virions demonstrated a maturity rate of 81.79%, consistent with other studies and our previous findings. However, virions originating from Jurkat cells demonstrated a significantly reduced maturation rate of 68.67% (p < 0.0001). Correspondingly, viruses produced from Jurkat cells exhibited significantly reduced infectivity compared to those derived from HEK293T cells, with the relative infectivity measured at 65.3%. This finding is consistent with the observed relative maturation rate of viruses produced by Jurkat cells. These findings suggest that initiation of virion maturation directly correlates with viral infectivity. Our observation highlights the dynamic nature of virus-host interactions and their implications for virion production and infectivity.
Collapse
|
6
|
Mao E, Prieto Kullmer CN, Sakai HA, MacMillan DWC. Direct Bioisostere Replacement Enabled by Metallaphotoredox Deoxydifluoromethylation. J Am Chem Soc 2024; 146:5067-5073. [PMID: 38365186 PMCID: PMC11474587 DOI: 10.1021/jacs.3c14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The replacement of a functional group with its corresponding bioisostere is a widely employed tactic during drug discovery campaigns that allows medicinal chemists to improve the ADME properties of candidates while maintaining potency. However, the incorporation of bioisosteres typically requires lengthy de novo resynthesis of potential candidates, which represents a bottleneck in their broader evaluation. An alternative would be to directly convert a functional group into its corresponding bioisostere at a late stage. Herein, we report the realization of this approach through the conversion of aliphatic alcohols into the corresponding difluoromethylated analogues via the merger of benzoxazolium-mediated deoxygenation and copper-mediated C(sp3)-CF2H bond formation. The utility of this method is showcased in a variety of complex alcohols and drug compounds.
Collapse
Affiliation(s)
- Edna Mao
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | | | - Holt A. Sakai
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - David W. C. MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
7
|
McVicker R, O’Boyle NM. Chirality of New Drug Approvals (2013-2022): Trends and Perspectives. J Med Chem 2024; 67:2305-2320. [PMID: 38344815 PMCID: PMC10895675 DOI: 10.1021/acs.jmedchem.3c02239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Many drugs are chiral with their chirality determining their biological interactions, safety, and efficacy. Since the 1980s, there has been a regulatory preference to bring single enantiomer to market. This perspective discusses trends related to chirality that have developed in the past decade (2013-2022) of new drug approvals. The EMA has not approved a racemate since 2016, while the average for the FDA is one per year from 2013 to 2022. These 10 include drugs which have been previously marketed elsewhere for several decades, analogues of pre-existing drugs, or drugs where the undefined stereocenter does not play a role in therapeutic activity. Two chiral switches were identified which were both combined with drug repurposing. This combination strategy has the potential to produce therapeutically valuable drugs in a faster time frame. Two class III atropisomers displaying axial chirality were approved between 2013 and 2022, one as a racemate and one as a single enantiomer.
Collapse
Affiliation(s)
- Rebecca
U. McVicker
- School
of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences
Institute, Trinity College Dublin, 152−160 Pearse Street, Dublin 2, D02 R590, Ireland
- Gamlen
Tableting Ltd, 3 Stanton
Way, London SE26 5FU, United Kingdom
| | - Niamh M. O’Boyle
- School
of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences
Institute, Trinity College Dublin, 152−160 Pearse Street, Dublin 2, D02 R590, Ireland
| |
Collapse
|
8
|
Marquis KA, Everett J, Cantu A, McFarland A, Sherrill-Mix S, Krystal M, Parcella K, Gillis E, Fridell RA, Bushman FD. The HIV-1 Capsid-Targeted Inhibitor GSK878 Alters Selection of Target Sites for HIV DNA Integration. AIDS Res Hum Retroviruses 2024; 40:114-126. [PMID: 37125442 PMCID: PMC10877385 DOI: 10.1089/aid.2022.0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Decades of effort have yielded highly effective antiviral agents to treat HIV, but viral strains have evolved resistance to each inhibitor type, focusing attention on the importance of developing new inhibitor classes. A particularly promising new target is the HIV capsid, the function of which can be disrupted by highly potent inhibitors that persist long term in treated subjects. Studies with such inhibitors have contributed to an evolving picture of the role of capsid itself-the inhibitors, like certain capsid protein (CA) amino acid substitutions, can disrupt intracellular trafficking to alter the selection of target sites for HIV DNA integration in cellular chromosomes. In this study, we compare effects on HIV integration targeting for two potent inhibitors-a new molecule targeting CA, GSK878, and the previously studied lenacapavir (LEN, formerly known as GS-6207). We find that both inhibitors reduce integration in active transcription units and near epigenetic marks associated with active transcription. A careful study of integration near repeated sequences indicated frequencies were also altered for integration within multiple repeat classes. One notable finding was increased integration in centromeric satellite repeats in the presence of LEN and GSK878, which is of interest because proviruses integrated in centromeric repeats have been associated with transcriptional repression, inducibility, and latency. These data add to the picture that CA protein remains associated with preintegration complexes through the point in infection during which target sites for integration are selected, and specify new aspects of the consequences of disrupting this mechanism.
Collapse
Affiliation(s)
- Kaitlin A. Marquis
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adrian Cantu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexander McFarland
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott Sherrill-Mix
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Peng Y, Zong Y, Wang D, Chen J, Chen ZS, Peng F, Liu Z. Current drugs for HIV-1: from challenges to potential in HIV/AIDS. Front Pharmacol 2023; 14:1294966. [PMID: 37954841 PMCID: PMC10637376 DOI: 10.3389/fphar.2023.1294966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
The human immunodeficiency virus (HIV) persists in latently infected CD4+T cells and integrates with the host genome until cell death. Acquired immunodeficiency syndrome (AIDS) is associated with HIV-1. Possibly, treating HIV/AIDS is an essential but challenging clinical goal. This review provides a detailed account of the types and mechanisms of monotherapy and combination therapy against HIV-1 and describes nanoparticle and hydrogel delivery systems. In particular, the recently developed capsid inhibitor (Lenacapavir) and the Ainuovirine/tenofovir disoproxil fumarate/lamivudine combination (ACC008) are described. It is interestingly to note that the lack of the multipass transmembrane proteins serine incorporator 3 (SERINC3) and the multipass transmembrane proteins serine incorporator 5 (SERINC5) may be one of the reasons for the enhanced infectivity of HIV-1. This discovery of SERINC3 and SERINC5 provides new ideas for HIV-1 medication development. Therefore, we believe that in treating AIDS, antiviral medications should be rationally selected for pre-exposure and post-exposure prophylaxis to avoid the emergence of drug resistance. Attention should be paid to the research and development of new drugs to predict HIV mutations as accurately as possible and to develop immune antibodies to provide multiple guarantees for the cure of AIDS.
Collapse
Affiliation(s)
- Yuan Peng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yanjun Zong
- Department of Medical Microbiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Dongfeng Wang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Junbing Chen
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Fujun Peng
- School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Zhijun Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| |
Collapse
|
10
|
Kaushik S, Paliwal SK, Iyer MR, Patil VM. Promising Schiff bases in antiviral drug design and discovery. Med Chem Res 2023; 32:1063-1076. [PMID: 37305208 PMCID: PMC10171175 DOI: 10.1007/s00044-023-03068-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023]
Abstract
Emerging and re-emerging illnesses will probably present a new hazard of infectious diseases and have fostered the urge to research new antiviral agents. Most of the antiviral agents are analogs of nucleosides and only a few are non-nucleoside antiviral agents. There is quite a less percentage of marketed/clinically approved non-nucleoside antiviral medications. Schiff bases are organic compounds that possess a well-demonstrated profile against cancer, viruses, fungus, and bacteria, as well as in the management of diabetes, chemotherapy-resistant cases, and malarial infections. Schiff bases resemble aldehydes or ketones with an imine/azomethine group instead of a carbonyl ring. Schiff bases have a broad application profile not only in therapeutics/medicine but also in industrial applications. Researchers have synthesized and screened various Schiff base analogs for their antiviral potential. Some of the important heterocyclic compounds like istatin, thiosemicarbazide, quinazoline, quinoyl acetohydrazide, etc. have been used to derive novel Schiff base analogs. Keeping in view the outbreak of viral pandemics and epidemics, this manuscript compiles a review of Schiff base analogs concerning their antiviral properties and structural-activity relationship analysis.
Collapse
Affiliation(s)
- Shikha Kaushik
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh India
- Department of Pharmacy, Banasthali Vidyapith, Tonk, Rajasthan India
| | | | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, NIAAA/NIH, Rockville, MD USA
| | - Vaishali M. Patil
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh India
| |
Collapse
|