1
|
Herrera-Arozamena C, Estrada-Valencia M, García-Díez G, Pérez C, León R, Infantes L, Morales-García JA, Pérez-Castillo A, Del Sastre E, López MG, Rodríguez-Franco MI. Discovery of a potent melatonin-based inhibitor of quinone reductase-2 with neuroprotective and neurogenic properties. Eur J Med Chem 2024; 277:116763. [PMID: 39146834 DOI: 10.1016/j.ejmech.2024.116763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
5-Methoxy-3-(5-methoxyindolin-2-yl)-1H-indole (3), whose structure was unambiguously elucidated by X-ray analysis, was identified as a multi-target compound with potential application in neurodegenerative diseases. It is a low nanomolar inhibitor of QR2 (IC50 = 7.7 nM), with greater potency than melatonin and comparable efficacy to the most potent QR2 inhibitors described to date. Molecular docking studies revealed the potential binding mode of 3 to QR2, which explains its superior potency compared to melatonin. Furthermore, compound 3 inhibits hMAO-A, hMAO-B and hLOX-5 in the low micromolar range and is an excellent ROS scavenger. In phenotypic assays, compound 3 showed neuroprotective activity in a cellular model of oxidative stress damage, it was non-toxic, and was able to activate neurogenesis from neural stem-cell niches of adult mice. These excellent biological properties, together with its both good in silico and in vitro drug-like profile, highlight compound 3 as a promising drug candidate for neurodegenerative diseases.
Collapse
Affiliation(s)
- Clara Herrera-Arozamena
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006, Madrid, Spain
| | - Martín Estrada-Valencia
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006, Madrid, Spain
| | - Guillermo García-Díez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006, Madrid, Spain
| | - Concepción Pérez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006, Madrid, Spain
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006, Madrid, Spain
| | - Lourdes Infantes
- Instituto de Química Física Blas Cabrera, Consejo Superior de Investigaciones Científicas (IQF-CSIC), C/ Serrano 119, E-28006, Madrid, Spain
| | - José A Morales-García
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Avda. Complutense s/n, E-28040, Madrid, Spain
| | - Ana Pérez-Castillo
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), C/ Arturo Duperier 4, E-28029, Madrid, Spain
| | - Eric Del Sastre
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), C/ Arzobispo Morcillo 4, E-28029, Madrid, Spain
| | - Manuela G López
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), C/ Arzobispo Morcillo 4, E-28029, Madrid, Spain
| | - María Isabel Rodríguez-Franco
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006, Madrid, Spain.
| |
Collapse
|
2
|
Lu J, Chen S, Wu M, Yin H, Lin X, Wu W, Weng Z. Copper-Catalyzed Oxidative Synthesis of 3-Aryl-5-fluoroalkyl-1,3,4-oxadiazol-2(3 H)-ones Using Perfluorocarboxylic Anhydride as a Reagent. J Org Chem 2024; 89:14447-14453. [PMID: 39319749 DOI: 10.1021/acs.joc.4c01900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
A copper-catalyzed oxidative annulation of sydnones with perfluorocarboxylic anhydride for the synthesis of 3-aryl-5-fluoroalkyl-1,3,4-oxadiazol-2(3H)-ones is developed. A diverse array of 3-aryl-5-fluoroalkyl-1,3,4-oxadiazol-2(3H)-ones are prepared with good yields (>73 examples, yields up to 95%). The synthetic utility of the developed protocol was demonstrated by gram-scale synthesis, and the synthetic transformation to 1,2,4-triazol-3-one products. A mechanistic study suggests that the reaction proceeds via the extrusion of carbon dioxide to generate the hydrazide intermediate, which then undergoes intramolecular cyclization and oxidation.
Collapse
Affiliation(s)
- Jiaqing Lu
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
- SINOPEC (Beijing), Research Institute of Chemical Industry Co., Ltd, Beijing 10013, China
| | - Shouxiong Chen
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Minze Wu
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Hongshan Yin
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xi Lin
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Wei Wu
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Zhiqiang Weng
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, and Fujian Engineering Research Center of New Chinese lacquer Material, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
3
|
Liu SS, Ma CX, Quan ZY, Ding J, Yang L, Liu SM, Zhang HA, Qing H, Liang JH. Discovery of Novel Diphenyl Acrylonitrile Derivatives That Promote Adult Rats' Hippocampal Neurogenesis. Int J Mol Sci 2024; 25:1241. [PMID: 38279241 PMCID: PMC10816640 DOI: 10.3390/ijms25021241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024] Open
Abstract
We previously discovered WS-6 as a new antidepressant in correlation to its function of stimulating neurogenesis. Herein, several different scaffolds (stilbene, 1,3-diphenyl 1-propene, 1,3-diphenyl 2-propene, 1,2-diphenyl acrylo-1-nitrile, 1,2-diphenyl acrylo-2-nitrile, 1,3-diphenyl trimethylamine), further varied through substitutions of twelve amide substituents plus the addition of a methylene unit and an inverted amide, were examined to elucidate the SARs for promoting adult rat neurogenesis. Most of the compounds could stimulate proliferation of progenitors, but just a few chemicals possessing a specific structural profile, exemplified by diphenyl acrylonitrile 29b, 32a, and 32b, showed better activity than the clinical drug NSI-189 in promoting newborn cells differentiation into mature neurons. The most potent diphenyl acrylonitrile 32b had an excellent brain AUC to plasma AUC ratio (B/P = 1.6), suggesting its potential for further development as a new lead.
Collapse
Affiliation(s)
- Si-Si Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (S.-S.L.); (C.-X.M.); (J.D.); (S.-M.L.)
| | - Cong-Xuan Ma
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (S.-S.L.); (C.-X.M.); (J.D.); (S.-M.L.)
| | - Zheng-Yang Quan
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Z.-Y.Q.); (L.Y.); (H.-A.Z.)
| | - Jing Ding
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (S.-S.L.); (C.-X.M.); (J.D.); (S.-M.L.)
| | - Liang Yang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Z.-Y.Q.); (L.Y.); (H.-A.Z.)
| | - Si-Meng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (S.-S.L.); (C.-X.M.); (J.D.); (S.-M.L.)
| | - He-Ao Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Z.-Y.Q.); (L.Y.); (H.-A.Z.)
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Z.-Y.Q.); (L.Y.); (H.-A.Z.)
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (S.-S.L.); (C.-X.M.); (J.D.); (S.-M.L.)
| |
Collapse
|
4
|
Xie WS, Shehzadi K, Ma HL, Liang JH. A Potential Strategy for Treatment of Neurodegenerative Disorders by Regulation of Adult Hippocampal Neurogenesis in Human Brain. Curr Med Chem 2022; 29:5315-5347. [DOI: 10.2174/0929867329666220509114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/13/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Adult hippocampal neurogenesis is a multistage mechanism that continues throughout the lifespan of human and non-human mammals. These adult-born neurons in the central nervous system (CNS) play a significant role in various hippocampus-dependent processes, including learning, mood regulation, pattern recognition, etc. Reduction of adult hippocampal neurogenesis, caused by multiple factors such as neurological disorders and aging, would impair neuronal proliferation and differentiation and result in memory loss. Accumulating studies have indicated that functional neuron impairment could be restored by promoting adult hippocampal neurogenesis. In this review, we summarized the small molecules that could efficiently promote the process of adult neurogenesis, particularly the agents that have the capacity of crossing the blood-brain barrier (BBB), and showed in vivo efficacy in mammalian brains. This may pave the way for the rational design of drugs to treat humnan neurodegenerative disorders in the future.
Collapse
Affiliation(s)
- Wei-Song Xie
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Kiran Shehzadi
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Hong-Le Ma
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jian-Hua Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| |
Collapse
|
5
|
Tian Y, Li S, Dong K, Su X, Fu S, Lv X, Duan M, Yang T, Han Y, Hu G, Liu J, Sun Y, Yue H, Sun Y, Zhang H, Du Z, Miao Z, Tong M, Liu Y, Qin M, Gong P, Hou Y, Gao Z, Zhao Y. Discovery of benzamide derivatives containing urea moiety as soluble epoxide hydrolase inhibitors. Bioorg Chem 2022; 127:105898. [DOI: 10.1016/j.bioorg.2022.105898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022]
|
6
|
Elisi GM, Scalvini L, Lodola A, Bedini A, Spadoni G, Rivara S. In silico drug discovery of melatonin receptor ligands with therapeutic potential. Expert Opin Drug Discov 2022; 17:343-354. [PMID: 35255751 DOI: 10.1080/17460441.2022.2043846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The neurohormone melatonin (N-acetyl-5-methoxytryptamine) regulates circadian rhythms exerting a variety of effects in the central nervous system and in periphery. These activities are mainly mediated by activation of MT1 and MT2 GPCRs. MT1/MT2 agonist compounds are used clinically for insomnia, depression, and circadian rhythm disturbances. AREA COVERED The following review describes the design strategies that have led to the identification of melatonin receptor ligands, guided by in silico approaches and molecular modeling. Initial ligand-based design, mainly relying on pharmacophore modeling and 3D-QSAR, has been flanked by structure-based virtual screening, given the recent availability of MT1 and MT2 crystal structures. Receptor ligands with different activity profiles, agonist/antagonist and subtype-selective compounds, are available. EXPERT OPINION An insight on the pharmacological characterization and therapeutic perspectives for relevant ligands is provided. In silico drug discovery has been instrumental in the design of novel ligands targeting melatonin receptors. Ligand-based approaches has led to the construction of a solid framework defining structure-activity relationships to obtain compounds with a tailored pharmacological profile. Structure-based techniques could integrate previous knowledge and provide compounds with novel chemotypes and pharmacological activity as drug candidates for disease conditions in which melatonin receptor ligands are currently being investigated, including cancer and pain.
Collapse
Affiliation(s)
- Gian Marco Elisi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Annalida Bedini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Silvia Rivara
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| |
Collapse
|
7
|
Herrera-Arozamena C, Estrada-Valencia M, López-Caballero P, Pérez C, Morales-García JA, Pérez-Castillo A, Sastre ED, Fernández-Mendívil C, Duarte P, Michalska P, Lombardía J, Senar S, León R, López MG, Rodríguez-Franco MI. Resveratrol-Based MTDLs to Stimulate Defensive and Regenerative Pathways and Block Early Events in Neurodegenerative Cascades. J Med Chem 2022; 65:4727-4751. [PMID: 35245051 PMCID: PMC8958504 DOI: 10.1021/acs.jmedchem.1c01883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
By replacing a phenolic
ring of (E)-resveratrol
with an 1,3,4-oxadiazol-2(3H)-one heterocycle, new
resveratrol-based multitarget-directed ligands (MTDLs) were obtained.
They were evaluated in several assays related to oxidative stress
and inflammation (monoamine oxidases, nuclear erythroid 2-related
factor, quinone reductase-2, and oxygen radical trapping) and then
in experiments of increasing complexity (neurogenic properties and
neuroprotection vs okadaic acid). 5-[(E)-2-(4-Methoxyphenyl)ethenyl]-3-(prop-2-yn-1-yl)-1,3,4-oxadiazol-2(3H)-one (4e) showed a well-balanced MTDL profile:
cellular activation of the NRF2-ARE pathway (CD = 9.83 μM),
selective inhibition of both hMAO-B and QR2 (IC50s = 8.05
and 0.57 μM), and the best ability to promote hippocampal neurogenesis.
It showed a good drug-like profile (positive in vitro central nervous
system permeability, good physiological solubility, no glutathione
conjugation, and lack of PAINS or Lipinski alerts) and exerted neuroprotective
and antioxidant actions in both acute and chronic Alzheimer models
using hippocampal tissues. Thus, 4e is an interesting
MTDL that could stimulate defensive and regenerative pathways and
block early events in neurodegenerative cascades.
Collapse
Affiliation(s)
- Clara Herrera-Arozamena
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain.,Programa de Doctorado en Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid, Spain
| | - Martín Estrada-Valencia
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Patricia López-Caballero
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Concepción Pérez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - José A Morales-García
- Instituto de Investigaciones Biomédicas (CSIC-UAM), C/Arturo Duperier, 4, E-28029 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, E-28031 Madrid, Spain.,Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid, Spain
| | - Ana Pérez-Castillo
- Instituto de Investigaciones Biomédicas (CSIC-UAM), C/Arturo Duperier, 4, E-28029 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, E-28031 Madrid, Spain
| | - Eric Del Sastre
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - Cristina Fernández-Mendívil
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - Pablo Duarte
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - Patrycja Michalska
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - José Lombardía
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - Sergio Senar
- DrTarget Machine Learning, C/Alejo Carpentier 13, E-28806 Alcalá de Henares, Madrid, Spain
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain.,Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - Manuela G López
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de la Princesa (IIS-IP), C/Diego de León 62, E-28006 Madrid, Spain
| | - María Isabel Rodríguez-Franco
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain
| |
Collapse
|
8
|
Yepes AF, Arias JD, Cardona-G W, Herrera-R A, Moreno G. New class of hybrids based on chalcone and melatonin: a promising therapeutic option for the treatment of colorectal cancer. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02805-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Delogu GL, Kumar A, Gatto G, Bustelo F, Saavedra LM, Rodríguez-Franco MI, Laguna R, Viña D. Synthesis and in vitro study of nitro- and methoxy-2-phenylbenzofurans as human monoamine oxidase inhibitors. Bioorg Chem 2021; 107:104616. [PMID: 33444985 DOI: 10.1016/j.bioorg.2020.104616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022]
Abstract
A new series of 2-phenylbenzofuran derivatives were designed and synthesized to determine relevant structural features for the MAO inhibitory activity and selectivity. Methoxy substituents were introduced in the 2-phenyl ring, whereas the benzofuran moiety was not substituted or substituted at the positions 5 or 7 with a nitro group. Substitution patterns on both the phenyl ring and the benzofuran moiety determine the affinity for MAO-A or MAO-B. The 2-(3-methoxyphenyl)-5-nitrobenzofuran 9 was the most potent MAO-B inhibitor (IC50 = 0.024 µM) identified in this series, whereas 7-nitro-2-phenylbenzofuran 7 was the most potent MAO-A inhibitor (IC50 = 0.168 µM), both acting as reversible inhibitors. The number and position of the methoxyl groups on the 2-phenyl ring, have an important influence on the inhibitory activity. Molecular docking studies confirmed the experimental results and highlighted the importance of key residues in enzyme inhibition.
Collapse
Affiliation(s)
- Giovanna L Delogu
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy.
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari 09123 Cagliari, Italy
| | - Gianluca Gatto
- Department of Electrical and Electronic Engineering, University of Cagliari 09123 Cagliari, Italy
| | - Fernando Bustelo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Avda Barcelona s/n, Campus Vida 15782, Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Lucía M Saavedra
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), c/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Maria Isabel Rodríguez-Franco
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), c/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Reyes Laguna
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Avda Barcelona s/n, Campus Vida 15782, Santiago de Compostela, Spain
| | - Dolores Viña
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Avda Barcelona s/n, Campus Vida 15782, Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
10
|
Hu M, Jiang Y, Sun N, Hu B, Shen Z, Hu X, Jin L. Nickel-catalyzed C3-alkylation of indoles with alcohols via a borrowing hydrogen strategy. NEW J CHEM 2021. [DOI: 10.1039/d1nj01581h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An efficient Ni-catalyzed C3-alkylation of indoles with alcohols via a borrowing hydrogen pathway was achieved utilizing an N,O-donor coordinated nickel complex as the precatalyst.
Collapse
Affiliation(s)
- Miao Hu
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
| | - Yong Jiang
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
| | - Nan Sun
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
| | - Baoxiang Hu
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
| | - Zhenlu Shen
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
| | - Xinquan Hu
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
| | - Liqun Jin
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| |
Collapse
|
11
|
Kumari S, Carmona AV, Tiwari AK, Trippier PC. Amide Bond Bioisosteres: Strategies, Synthesis, and Successes. J Med Chem 2020; 63:12290-12358. [PMID: 32686940 DOI: 10.1021/acs.jmedchem.0c00530] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The amide functional group plays a key role in the composition of biomolecules, including many clinically approved drugs. Bioisosterism is widely employed in the rational modification of lead compounds, being used to increase potency, enhance selectivity, improve pharmacokinetic properties, eliminate toxicity, and acquire novel chemical space to secure intellectual property. The introduction of a bioisostere leads to structural changes in molecular size, shape, electronic distribution, polarity, pKa, dipole or polarizability, which can be either favorable or detrimental to biological activity. This approach has opened up new avenues in drug design and development resulting in more efficient drug candidates introduced onto the market as well as in the clinical pipeline. Herein, we review the strategic decisions in selecting an amide bioisostere (the why), synthetic routes to each (the how), and success stories of each bioisostere (the implementation) to provide a comprehensive overview of this important toolbox for medicinal chemists.
Collapse
Affiliation(s)
- Shikha Kumari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Angelica V Carmona
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, Ohio 43614, United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
12
|
Sun Z, Xi L, Zheng K, Zhang Z, Baldridge KK, Olson MA. Classical and non-classical melatonin receptor agonist-directed micellization of bipyridinium-based supramolecular amphiphiles in water. SOFT MATTER 2020; 16:4788-4799. [PMID: 32400822 DOI: 10.1039/d0sm00424c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The addition of molecular recognition units into structures of amphiphiles is a means by which soft matter capable of undergoing template-directed micellization can be obtained. These supramolecular amphiphiles can bind with molecular templates using non-covalent bonding interactions, forming host-guest complexes that hold the amphiphiles together as they undergo micellization. In most cases, such templates are synthesized and designed for a specific molecular recognition motif. It is not clear, however, to what extent these types of amphiphile systems are responsive to members of a biologically derived class of molecular targets, for example, melatonin receptor agonists and their numerous isosteres. Herein, we describe the template-directed micellization and arrangement at the air-water interface of a bipyridinium-based gemini surfactant, driven by the influence of donor-acceptor CT interactions with a series of bioactive classical and non-classical melatonin isosteres. Under the conditions of templation by either 5-methoxytryptophol, N-acetylserotonin, N-acetyltryptamine, or the pharmaceutical agent agomelatine, favorable Gibbs free energies of micellization were observed with decreases in CMC by up to 70%, and concomitant increases of 28% in surface pressure, and decreases of 20% in contact angle versus untemplated solutions. Solid state thermochromic transition temperatures for inkjet-printed patterns of the templated amphiphile solutions were inversely correlated with trends observed for their respective CMCs, and exhibited no correlation to their binding constants. These findings contend for the generalizable use of melatonin receptor agonists as targets and/or templates for chemical systems, which rely on π-stacking donor-acceptor CT interactions in water to facilitate the actions of binding, sequestration, or template-directed self-assembly.
Collapse
Affiliation(s)
- Zhimin Sun
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | - Lihui Xi
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | - Kai Zheng
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | - Zhao Zhang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | - Kim K Baldridge
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | - Mark A Olson
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| |
Collapse
|
13
|
Herrera-Arozamena C, Estrada-Valencia M, Pérez C, Lagartera L, Morales-García JA, Pérez-Castillo A, Franco-Gonzalez JF, Michalska P, Duarte P, León R, López MG, Mills A, Gago F, García-Yagüe ÁJ, Fernández-Ginés R, Cuadrado A, Rodríguez-Franco MI. Tuning melatonin receptor subtype selectivity in oxadiazolone-based analogues: Discovery of QR2 ligands and NRF2 activators with neurogenic properties. Eur J Med Chem 2020; 190:112090. [DOI: 10.1016/j.ejmech.2020.112090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
|
14
|
Estrada-Valencia M, Herrera-Arozamena C, Pérez C, Viña D, Morales-García JA, Pérez-Castillo A, Ramos E, Romero A, Laurini E, Pricl S, Rodríguez-Franco MI. New flavonoid - N, N-dibenzyl( N-methyl)amine hybrids: Multi-target-directed agents for Alzheimer´s disease endowed with neurogenic properties. J Enzyme Inhib Med Chem 2020; 34:712-727. [PMID: 31852270 PMCID: PMC6407579 DOI: 10.1080/14756366.2019.1581184] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The design of multi-target directed ligands (MTDLs) is a valid approach for obtaining effective drugs for complex pathologies. MTDLs that combine neuro-repair properties and block the first steps of neurotoxic cascades could be the so long wanted remedies to treat neurodegenerative diseases (NDs). By linking two privileged scaffolds with well-known activities in ND-targets, the flavonoid and the N,N-dibenzyl(N-methyl)amine (DBMA) fragments, new CNS-permeable flavonoid - DBMA hybrids (1-13) were obtained. They were subjected to biological evaluation in a battery of targets involved in Alzheimer's disease (AD) and other NDs, namely human cholinesterases (hAChE/hBuChE), β-secretase (hBACE-1), monoamine oxidases (hMAO-A/B), lipoxygenase-5 (hLOX-5) and sigma receptors (σ1R/σ2R). After a funnel-type screening, 6,7-dimethoxychromone - DBMA (6) was highlighted due to its neurogenic properties and an interesting MTD-profile in hAChE, hLOX-5, hBACE-1 and σ1R. Molecular dynamic simulations showed the most relevant drug-protein interactions of hybrid 6, which could synergistically contribute to neuronal regeneration and block neurodegeneration.
Collapse
Affiliation(s)
- Martín Estrada-Valencia
- Institute of Medicinal Chemistry, Spanish Council for Scientific Research (IQM-CSIC), Madrid, Spain
| | - Clara Herrera-Arozamena
- Institute of Medicinal Chemistry, Spanish Council for Scientific Research (IQM-CSIC), Madrid, Spain
| | - Concepción Pérez
- Institute of Medicinal Chemistry, Spanish Council for Scientific Research (IQM-CSIC), Madrid, Spain
| | - Dolores Viña
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José A Morales-García
- Institute for Biomedical Research "Alberto Sols", Spanish Council for Scientific Research (IIB-CSIC), Madrid, Spain.,Biomedical Research Networking Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Cellular Biology, Medical School, Complutense University of Madrid, Madrid, Spain
| | - Ana Pérez-Castillo
- Institute for Biomedical Research "Alberto Sols", Spanish Council for Scientific Research (IIB-CSIC), Madrid, Spain.,Biomedical Research Networking Centre on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain; x
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain; x
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture (DEA), Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture (DEA), Trieste, Italy
| | | |
Collapse
|
15
|
Stauch B, Johansson LC, McCorvy JD, Patel N, Han GW, Huang XP, Gati C, Batyuk A, Slocum ST, Ishchenko A, Brehm W, White TA, Michaelian N, Madsen C, Zhu L, Grant TD, Grandner JM, Shiriaeva A, Olsen RHJ, Tribo AR, Yous S, Stevens RC, Weierstall U, Katritch V, Roth BL, Liu W, Cherezov V. Structural basis of ligand recognition at the human MT 1 melatonin receptor. Nature 2019; 569:284-288. [PMID: 31019306 PMCID: PMC6696938 DOI: 10.1038/s41586-019-1141-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 03/25/2019] [Indexed: 11/08/2022]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a neurohormone that maintains circadian rhythms1 by synchronization to environmental cues and is involved in diverse physiological processes2 such as the regulation of blood pressure and core body temperature, oncogenesis, and immune function3. Melatonin is formed in the pineal gland in a light-regulated manner4 by enzymatic conversion from 5-hydroxytryptamine (5-HT or serotonin), and modulates sleep and wakefulness5 by activating two high-affinity G-protein-coupled receptors, type 1A (MT1) and type 1B (MT2)3,6. Shift work, travel, and ubiquitous artificial lighting can disrupt natural circadian rhythms; as a result, sleep disorders affect a substantial population in modern society and pose a considerable economic burden7. Over-the-counter melatonin is widely used to alleviate jet lag and as a safer alternative to benzodiazepines and other sleeping aids8,9, and is one of the most popular supplements in the United States10. Here, we present high-resolution room-temperature X-ray free electron laser (XFEL) structures of MT1 in complex with four agonists: the insomnia drug ramelteon11, two melatonin analogues, and the mixed melatonin-serotonin antidepressant agomelatine12,13. The structure of MT2 is described in an accompanying paper14. Although the MT1 and 5-HT receptors have similar endogenous ligands, and agomelatine acts on both receptors, the receptors differ markedly in the structure and composition of their ligand pockets; in MT1, access to the ligand pocket is tightly sealed from solvent by extracellular loop 2, leaving only a narrow channel between transmembrane helices IV and V that connects it to the lipid bilayer. The binding site is extremely compact, and ligands interact with MT1 mainly by strong aromatic stacking with Phe179 and auxiliary hydrogen bonds with Asn162 and Gln181. Our structures provide an unexpected example of atypical ligand entry for a non-lipid receptor, lay the molecular foundation of ligand recognition by melatonin receptors, and will facilitate the design of future tool compounds and therapeutic agents, while their comparison to 5-HT receptors yields insights into the evolution and polypharmacology of G-protein-coupled receptors.
Collapse
MESH Headings
- Acetamides/chemistry
- Acetamides/metabolism
- Amino Acid Sequence
- Antidepressive Agents/chemistry
- Antidepressive Agents/metabolism
- Crystallization
- Electrons
- Humans
- Indenes/chemistry
- Indenes/metabolism
- Lasers
- Ligands
- Melatonin/analogs & derivatives
- Melatonin/chemistry
- Models, Molecular
- Molecular Docking Simulation
- Mutation
- Receptor, Melatonin, MT1/agonists
- Receptor, Melatonin, MT1/chemistry
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Serotonin, 5-HT2C/chemistry
- Structure-Activity Relationship
- Substrate Specificity
Collapse
Affiliation(s)
- Benjamin Stauch
- Bridge Institute,USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Linda C Johansson
- Bridge Institute,USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - John D McCorvy
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nilkanth Patel
- Bridge Institute,USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Gye Won Han
- Bridge Institute,USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cornelius Gati
- SLAC National Accelerator Laboratory, Bioscience Division, Menlo Park, CA, USA
- Stanford University, Department of Structural Biology, Stanford, CA, USA
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Samuel T Slocum
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrii Ishchenko
- Bridge Institute,USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Wolfgang Brehm
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
| | - Thomas A White
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
| | - Nairie Michaelian
- Bridge Institute,USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Caleb Madsen
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Lan Zhu
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Thomas D Grant
- Hauptman-Woodward Institute, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jessica M Grandner
- Bridge Institute,USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Anna Shiriaeva
- Bridge Institute,USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Reid H J Olsen
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra R Tribo
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Saïd Yous
- Univ Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
| | - Raymond C Stevens
- Bridge Institute,USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Vsevolod Katritch
- Bridge Institute,USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Wei Liu
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| | - Vadim Cherezov
- Bridge Institute,USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Döndaş HA, Retamosa MDG, Sansano JM. Recent Development in Palladium-Catalyzed Domino Reactions: Access to Materials and Biologically Important Carbo- and Heterocycles. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00110] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- H. Ali Döndaş
- Mersin University, Faculty of Pharmacy, Yenisehir Campus 33169, Yenisehir, Mersin, Turkey
| | - María de Gracia Retamosa
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - José M. Sansano
- Departamento de Química Orgánica, Instituto de Síntesis Orgánica (ISO) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), University of Alicante, 03080 Alicante, Spain
| |
Collapse
|
17
|
Figueiro-Silva J, Antequera D, Pascual C, de la Fuente Revenga M, Volt H, Acuña-Castroviejo D, Rodríguez-Franco MI, Carro E. The Melatonin Analog IQM316 May Induce Adult Hippocampal Neurogenesis and Preserve Recognition Memories in Mice. Cell Transplant 2019; 27:423-437. [PMID: 29873251 PMCID: PMC6038050 DOI: 10.1177/0963689717721217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neurogenesis in the adult hippocampus is a unique process in neurobiology that requires functional integration of newly generated neurons, which may disrupt existing hippocampal network connections and consequently loss of established memories. As neurodegenerative diseases characterized by abnormal neurogenesis and memory dysfunctions are increasing, the identification of new anti-aging drugs is required. In adult mice, we found that melatonin, a well-established neurogenic hormone, and the melatonin analog 2-(2-(5-methoxy-1H-indol-3-yl)ethyl)-5-methyl-1,3,4-oxadiazole (IQM316) were able to induce hippocampal neurogenesis, measured by neuronal nuclei (NeuN) and 5-bromo-2′-deoxyuridine (BrdU) labeling. More importantly, only IQM316 administration was able to induce hippocampal neurogenesis while preserving previously acquired memories, assessed with object recognition tests. In vitro studies with embryonic neural stem cells replicated the finding that both melatonin and IQM316 induce direct differentiation of neural precursors without altering their proliferative activity. Furthermore, IQM316 induces differentiation through a mechanism that is not dependent of melatonergic receptors (MTRs), since the MTR antagonist luzindole could not block the IQM316-induced effects. We also found that IQM316 and melatonin modulate mitochondrial DNA copy number and oxidative phosphorylation proteins, while maintaining mitochondrial function as measured by respiratory assays and enzymatic activity. These results uncover a novel pharmacological agent that may be capable of inducing adult hippocampal neurogenesis at a healthy and sustainable rate that preserves recognition memories.
Collapse
Affiliation(s)
- Joana Figueiro-Silva
- 1 Laboratorio de Enfermedades Neurodegenerativas, Hospital 12 de Octubre, Madrid, Spain.,2 Instituto de Investigación, Hospital 12 de Octubre, Madrid, Spain.,3 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Desireé Antequera
- 1 Laboratorio de Enfermedades Neurodegenerativas, Hospital 12 de Octubre, Madrid, Spain.,2 Instituto de Investigación, Hospital 12 de Octubre, Madrid, Spain.,3 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Consuelo Pascual
- 1 Laboratorio de Enfermedades Neurodegenerativas, Hospital 12 de Octubre, Madrid, Spain.,2 Instituto de Investigación, Hospital 12 de Octubre, Madrid, Spain.,3 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Mario de la Fuente Revenga
- 4 Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Huayqui Volt
- 5 Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Darío Acuña-Castroviejo
- 5 Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | | | - Eva Carro
- 1 Laboratorio de Enfermedades Neurodegenerativas, Hospital 12 de Octubre, Madrid, Spain.,2 Instituto de Investigación, Hospital 12 de Octubre, Madrid, Spain.,3 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
18
|
Multi-target-directed ligands for Alzheimer's disease: Discovery of chromone-based monoamine oxidase/cholinesterase inhibitors. Eur J Med Chem 2018; 158:781-800. [DOI: 10.1016/j.ejmech.2018.07.056] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022]
|
19
|
Estrada Valencia M, Herrera-Arozamena C, de Andrés L, Pérez C, Morales-García JA, Pérez-Castillo A, Ramos E, Romero A, Viña D, Yáñez M, Laurini E, Pricl S, Rodríguez-Franco MI. Neurogenic and neuroprotective donepezil-flavonoid hybrids with sigma-1 affinity and inhibition of key enzymes in Alzheimer's disease. Eur J Med Chem 2018; 156:534-553. [PMID: 30025348 DOI: 10.1016/j.ejmech.2018.07.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/18/2018] [Accepted: 07/09/2018] [Indexed: 12/01/2022]
Abstract
In this work we describe neurogenic and neuroprotective donepezil-flavonoid hybrids (DFHs), exhibiting nanomolar affinities for the sigma-1 receptor (σ1R) and inhibition of key enzymes in Alzheimer's disease (AD), such as acetylcholinesterase (AChE), 5-lipoxygenase (5-LOX), and monoamine oxidases (MAOs). In general, new compounds scavenge free radical species, are predicted to be brain-permeable, and protect neuronal cells against mitochondrial oxidative stress. N-(2-(1-Benzylpiperidin-4-yl)ethyl)-6,7-dimethoxy-4-oxo-4H-chromene-2-carboxamide (18) is highlighted due to its interesting biological profile in σ1R, AChE, 5-LOX, MAO-A and MAO-B. In phenotypic assays, it protects a neuronal cell line against mitochondrial oxidative stress and promotes maturation of neural stem cells into a neuronal phenotype, which could contribute to the reparation of neuronal tissues. Molecular modelling studies of 18 in AChE, 5-LOX and σ1R revealed the main interactions with these proteins, which will be further exploited in the optimization of new, more efficient DFHs.
Collapse
Affiliation(s)
- Martín Estrada Valencia
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, 28006, Madrid, Spain
| | - Clara Herrera-Arozamena
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, 28006, Madrid, Spain
| | - Lucía de Andrés
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, 28006, Madrid, Spain
| | - Concepción Pérez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, 28006, Madrid, Spain
| | - José A Morales-García
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (IIB-CSIC), C/Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), C/ Valderrebollo 5, 28031, Madrid, Spain; Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Ana Pérez-Castillo
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (IIB-CSIC), C/Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), C/ Valderrebollo 5, 28031, Madrid, Spain
| | - Eva Ramos
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Alejandro Romero
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Dolores Viña
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Matilde Yáñez
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Erik Laurini
- Molecular Simulation Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste, 34127 Trieste, Italy
| | - Sabrina Pricl
- Molecular Simulation Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste, 34127 Trieste, Italy
| | - María Isabel Rodríguez-Franco
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, 28006, Madrid, Spain.
| |
Collapse
|
20
|
Recent advance in oxazole-based medicinal chemistry. Eur J Med Chem 2018; 144:444-492. [DOI: 10.1016/j.ejmech.2017.12.044] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/04/2017] [Accepted: 12/13/2017] [Indexed: 01/09/2023]
|
21
|
Wet-osot S, Phakhodee W, Pattarawarapan M. Application of N-Acylbenzotriazoles in the Synthesis of 5-Substituted 2-Ethoxy-1,3,4-oxadiazoles as Building Blocks toward 3,5-Disubstituted 1,3,4-Oxadiazol-2(3H)-ones. J Org Chem 2017; 82:9923-9929. [DOI: 10.1021/acs.joc.7b01863] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Sirawit Wet-osot
- Department
of Chemistry and Center of Excellence for Innovation in
Chemistry, Faculty of Science, ‡Graduate School, and §Center of Excellence in Materials Science
and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wong Phakhodee
- Department
of Chemistry and Center of Excellence for Innovation in
Chemistry, Faculty of Science, ‡Graduate School, and §Center of Excellence in Materials Science
and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mookda Pattarawarapan
- Department
of Chemistry and Center of Excellence for Innovation in
Chemistry, Faculty of Science, ‡Graduate School, and §Center of Excellence in Materials Science
and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
22
|
Monjas L, Arce MP, León R, Egea J, Pérez C, Villarroya M, López MG, Gil C, Conde S, Rodríguez-Franco MI. Enzymatic and solid-phase synthesis of new donepezil-based L- and d -glutamic acid derivatives and their pharmacological evaluation in models related to Alzheimer's disease and cerebral ischemia. Eur J Med Chem 2017; 130:60-72. [DOI: 10.1016/j.ejmech.2017.02.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/09/2017] [Accepted: 02/12/2017] [Indexed: 12/25/2022]
|
23
|
Espadinha M, Dourado J, Lajarin-Cuesta R, Herrera-Arozamena C, Gonçalves LMD, Rodríguez-Franco MI, de Los Rios C, Santos MMM. Optimization of Bicyclic Lactam Derivatives as NMDA Receptor Antagonists. ChemMedChem 2017; 12:537-545. [PMID: 28218498 DOI: 10.1002/cmdc.201700037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/16/2017] [Indexed: 11/06/2022]
Abstract
N-Methyl-d-aspartate (NMDA) receptors are fundamental for the normal function of the central nervous system (CNS), and play an important role in memory and learning. Over-activation of these receptors leads to neuronal loss associated with major neurological disorders such as Parkinson's disease, Alzheimer's disease, schizophrenia, and epilepsy. In this study, 22 novel enantiopure bicyclic lactams were designed, synthesized, and evaluated as NMDA receptor antagonists. Most of the new compounds displayed NMDA receptor antagonism, and the most promising compound showed an IC50 value on the same order of magnitude as that of memantine, an NMDA receptor antagonist in clinical use for the treatment of Alzheimer's disease. Further biological evaluation indicated that this compound is brain permeable (determined by an in vitro assay) and non-hepatotoxic. All these results indicate that (3S,7aS)-7a-(4-chlorophenyl)-3-(4-hydroxybenzyl)tetrahydropyrrolo[2,1-b]oxazol-5(6H)-one (compound 5 b) is a potential candidate for the treatment of pathologies associated with the over-activation of NMDA receptors.
Collapse
Affiliation(s)
- Margarida Espadinha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Jorge Dourado
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Rocio Lajarin-Cuesta
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autonoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain.,Instituto de Investigacion Sanitaria, Hospital, Universitario de la Princesa, 28006, Madrid, Spain
| | | | - Lidia M D Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | | | - Cristobal de Los Rios
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autonoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain.,Instituto de Investigacion Sanitaria, Hospital, Universitario de la Princesa, 28006, Madrid, Spain
| | - Maria M M Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| |
Collapse
|
24
|
Zhang S, Chen S, Li Y, Liu Y. Melatonin as a promising agent of regulating stem cell biology and its application in disease therapy. Pharmacol Res 2016; 117:252-260. [PMID: 28042087 DOI: 10.1016/j.phrs.2016.12.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 01/20/2023]
Abstract
Stem cells have emerged as an important approach to repair and regenerate damaged tissues or organs and show great therapeutic potential in a variety of diseases. However, the low survival of engrafted stem cells still remains a major challenge for stem cell therapy. As a major hormone from the pineal gland, melatonin has been shown to play an important role in regulating the physiological and pathological functions of stem cells, such as promoting proliferation, migration and differentiation. Thus, melatonin combined with stem cell transplantation displayed promising application potential in neurodegenerative diseases, liver cirrhosis, wound healing, myocardial infarction, kidney ischemia injury, osteoporosis, etc. It exerts its physiological and pathological functions through its anti-oxidant, anti-inflammatory, anti-apoptosis and anti-ageing properties. Here, we summarize recent advances on exploring the biological role of melatonin in stem cells, and discuss its potential applications in stem cell-based therapy.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Simon Chen
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Yuan Li
- College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Yu Liu
- Department of Clinical Laboratory Diagnosis, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
25
|
Recent Advances in Neurogenic Small Molecules as Innovative Treatments for Neurodegenerative Diseases. Molecules 2016; 21:molecules21091165. [PMID: 27598108 PMCID: PMC6273783 DOI: 10.3390/molecules21091165] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/22/2016] [Accepted: 08/29/2016] [Indexed: 12/20/2022] Open
Abstract
The central nervous system of adult mammals has long been considered as a complex static structure unable to undergo any regenerative process to refurbish its dead nodes. This dogma was challenged by Altman in the 1960s and neuron self-renewal has been demonstrated ever since in many species, including humans. Aging, neurodegenerative, and some mental diseases are associated with an exponential decrease in brain neurogenesis. Therefore, the controlled pharmacological stimulation of the endogenous neural stem cells (NSCs) niches might counteract the neuronal loss in Alzheimer’s disease (AD) and other pathologies, opening an exciting new therapeutic avenue. In the last years, druggable molecular targets and signalling pathways involved in neurogenic processes have been identified, and as a consequence, different drug types have been developed and tested in neuronal plasticity. This review focuses on recent advances in neurogenic agents acting at serotonin and/or melatonin systems, Wnt/β-catenin pathway, sigma receptors, nicotinamide phosphoribosyltransferase (NAMPT) and nuclear erythroid 2-related factor (Nrf2).
Collapse
|
26
|
Jockers R, Delagrange P, Dubocovich ML, Markus RP, Renault N, Tosini G, Cecon E, Zlotos DP. Update on melatonin receptors: IUPHAR Review 20. Br J Pharmacol 2016; 173:2702-25. [PMID: 27314810 DOI: 10.1111/bph.13536] [Citation(s) in RCA: 291] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/15/2016] [Accepted: 05/19/2016] [Indexed: 02/06/2023] Open
Abstract
Melatonin receptors are seven transmembrane-spanning proteins belonging to the GPCR superfamily. In mammals, two melatonin receptor subtypes exist - MT1 and MT2 - encoded by the MTNR1A and MTNR1B genes respectively. The current review provides an update on melatonin receptors by the corresponding subcommittee of the International Union of Basic and Clinical Pharmacology. We will highlight recent developments of melatonin receptor ligands, including radioligands, and give an update on the latest phenotyping results of melatonin receptor knockout mice. The current status and perspectives of the structure of melatonin receptor will be summarized. The physiological importance of melatonin receptor dimers and biologically important and type 2 diabetes-associated genetic variants of melatonin receptors will be discussed. The role of melatonin receptors in physiology and disease will be further exemplified by their functions in the immune system and the CNS. Finally, antioxidant and free radical scavenger properties of melatonin and its relation to melatonin receptors will be critically addressed.
Collapse
Affiliation(s)
- Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,University Paris Descartes, Paris, France
| | | | - Margarita L Dubocovich
- Department Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Science, University at Buffalo (SUNY), Buffalo, USA
| | - Regina P Markus
- Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Erika Cecon
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,University Paris Descartes, Paris, France
| | - Darius P Zlotos
- Department of Pharmaceutical Chemistry, The German University in Cairo, New Cairo City, Cairo, Egypt
| |
Collapse
|
27
|
Estrada M, Pérez C, Soriano E, Laurini E, Romano M, Pricl S, Morales-García JA, Pérez-Castillo A, Rodríguez-Franco MI. New neurogenic lipoic-based hybrids as innovative Alzheimer's drugs with σ-1 agonism and β-secretase inhibition. Future Med Chem 2016; 8:1191-207. [PMID: 27402296 DOI: 10.4155/fmc-2016-0036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Neurogenic agents emerge as innovative drugs for the treatment of Alzheimer's disease (AD), whose pathological complexity suggests strengthening research in the multi-target directed ligands strategy. RESULTS By combining the lipoic acid structure with N-benzylpiperidine or N,N-dibenzyl(N-methyl)amine fragments, new multi-target directed ligands were obtained that act at three relevant targets in AD: σ-1 receptor (σ1R), β-secretase-1 (BACE1) and acetylcholinesterase (AChE). Moreover, they show potent neurogenic properties, good antioxidant capacity and favorable CNS permeability. Molecular modeling studies on AChE, σ1R and BACE1 highlight relevant drug-protein interactions that may contribute to the development of new disease-modifying drugs. CONCLUSION New lipoic-based σ1 agonists endowed with neurogenic, antioxidant, cholinergic and amyloid β-peptide-reducing properties have been discovered for the potential treatment of AD.
Collapse
Affiliation(s)
- Martín Estrada
- Instituto de Química Médica (IQM-CSIC), C/Juan de la Cierva 3, 28006-Madrid, Spain
| | - Concepción Pérez
- Instituto de Química Médica (IQM-CSIC), C/Juan de la Cierva 3, 28006-Madrid, Spain
| | - Elena Soriano
- Instituto de Química Orgánica General (IQOG-CSIC), C/Juan de la Cierva 3, 28006-Madrid, Spain
| | - Erik Laurini
- Molecular Simulation Engineering (MOSE) Laboratory, DEA, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio 28, 34127 - Trieste, Italy
| | - Sabrina Pricl
- Molecular Simulation Engineering (MOSE) Laboratory, DEA, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy
- National Interuniversity Consortium for Material Science & Technology (INSTM), Research Unit MOSE-DEA, University of Trieste, Trieste, Italy
| | - José A Morales-García
- Instituto de Investigaciones Biomédicas "Alberto Sols" (IIB-CSIC), C/Arturo Duperier 4, 28029-Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, 28031-Madrid, Spain
| | - Ana Pérez-Castillo
- Instituto de Investigaciones Biomédicas "Alberto Sols" (IIB-CSIC), C/Arturo Duperier 4, 28029-Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, 28031-Madrid, Spain
| | | |
Collapse
|
28
|
Estrada M, Herrera-Arozamena C, Pérez C, Viña D, Romero A, Morales-García JA, Pérez-Castillo A, Rodríguez-Franco MI. New cinnamic - N-benzylpiperidine and cinnamic - N,N-dibenzyl(N-methyl)amine hybrids as Alzheimer-directed multitarget drugs with antioxidant, cholinergic, neuroprotective and neurogenic properties. Eur J Med Chem 2016; 121:376-386. [PMID: 27267007 DOI: 10.1016/j.ejmech.2016.05.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/25/2016] [Accepted: 05/23/2016] [Indexed: 12/18/2022]
Abstract
Here we describe new families of multi-target directed ligands obtained by linking antioxidant cinnamic-related structures with N-benzylpiperidine (NBP) or N,N-dibenzyl(N-methyl)amine (DBMA) fragments. Resulting hybrids, in addition to their antioxidant and neuroprotective properties against mitochondrial oxidative stress, are active at relevant molecular targets in Alzheimer's disease, such as cholinesterases (hAChE and hBuChE) and monoamine oxidases (hMAO-A and hMAO-B). Hybrids derived from umbellic - NBP (8), caffeic - NBP (9), and ferulic - DBMA (12) displayed balanced biological profiles, with IC50s in the low-micromolar and submicromolar range for hChEs and hMAOs, and an antioxidant potency comparable to vitamin E. Moreover, the caffeic - NBP hybrid 9 is able to improve the differentiation of adult SGZ-derived neural stem cells into a neuronal phenotype in vitro.
Collapse
Affiliation(s)
- Martín Estrada
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006, Madrid, Spain
| | - Clara Herrera-Arozamena
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006, Madrid, Spain
| | - Concepción Pérez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006, Madrid, Spain
| | - Dolores Viña
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Alejandro Romero
- Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - José A Morales-García
- Instituto de Investigaciones Biomédicas "Alberto Sols", (IIB-CSIC), C/Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, 28031, Madrid, Spain
| | - Ana Pérez-Castillo
- Instituto de Investigaciones Biomédicas "Alberto Sols", (IIB-CSIC), C/Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, 28031, Madrid, Spain
| | - María Isabel Rodríguez-Franco
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006, Madrid, Spain.
| |
Collapse
|
29
|
Solé D, Pérez-Janer F, Zulaica E, Guastavino JF, Fernández I. Pd-Catalyzed α-Arylation of Sulfones in a Three-Component Synthesis of 3-[2-(Phenyl/methylsulfonyl)ethyl]indoles. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Daniel Solé
- Laboratori
de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Ferran Pérez-Janer
- Laboratori
de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Ester Zulaica
- Laboratori
de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Javier F. Guastavino
- Laboratori
de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Israel Fernández
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas,
Centro de Innovación en Química Avanzada (ORFEO−CINQA), Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
30
|
Chu J, Tu Y, Chen J, Tan D, Liu X, Pi R. Effects of melatonin and its analogues on neural stem cells. Mol Cell Endocrinol 2016; 420:169-79. [PMID: 26499395 DOI: 10.1016/j.mce.2015.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 09/27/2015] [Accepted: 10/18/2015] [Indexed: 12/30/2022]
Abstract
Neural stem cells (NSCs) are multipotent cells which are capable of self-replication and differentiation into neurons, astrocytes or oligodendrocytes in the central nervous system (CNS). NSCs are found in two main regions in the adult brain: the subgranular zone (SGZ) in the hippocampal dentate gyrus (DG) and the subventricular zone (SVZ). The recent discovery of NSCs in the adult mammalian brain has fostered a plethora of translational and preclinical studies to investigate novel approaches for the therapy of neurodegenerative diseases. Melatonin is the major secretory product synthesized and secreted by the pineal gland and shows both a wide distribution within phylogenetically distant organisms from bacteria to humans and a great functional versatility. Recently, accumulated experimental evidence showed that melatonin plays an important role in NSCs, including its proliferation, differentiation and survival, which are modulated by many factors including MAPK/ERK signaling pathway, histone acetylation, neurotrophic factors, transcription factors, and apoptotic genes. The purpose of this review is to summarize the beneficial effects of melatonin on NSCs and further to discuss the potential usage of melatonin and its derivatives or analogues in the treatment of CNS neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiaqi Chu
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510080, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yalin Tu
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510080, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jingkao Chen
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510080, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dunxian Tan
- Department of Cellular and Structural Biology, The University of Texas, Health Science Center at San Antonio, 7703 Floyd Curl, San Antonio, TX 78229, USA
| | - Xingguo Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Rongbiao Pi
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510080, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China.
| |
Collapse
|
31
|
Viault G, Poupart S, Mourlevat S, Lagaraine C, Devavry S, Lefoulon F, Bozon V, Dufourny L, Delagrange P, Guillaumet G, Suzenet F. Design, synthesis and biological evaluation of fluorescent ligands for MT1 and/or MT2 melatonin receptors. RSC Adv 2016. [DOI: 10.1039/c6ra10812a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fluorescent melatoninergic ligands have been designed by associating the 4-azamelatonin ligands with different fluorophores.
Collapse
Affiliation(s)
- G. Viault
- Institut de Chimie Organique et Analytique
- Université d’Orléans
- UMR CNRS 7311
- 45067 Orléans Cedex 2
- France
| | - S. Poupart
- Institut de Chimie Organique et Analytique
- Université d’Orléans
- UMR CNRS 7311
- 45067 Orléans Cedex 2
- France
| | | | | | | | | | - V. Bozon
- PRC
- INRA
- CNRS
- IFCE
- Université de Tours
| | | | - P. Delagrange
- Institut de Recherche Servier
- Sciences Expérimentales
- 78290 Croissy
- France
| | - G. Guillaumet
- Institut de Chimie Organique et Analytique
- Université d’Orléans
- UMR CNRS 7311
- 45067 Orléans Cedex 2
- France
| | - F. Suzenet
- Institut de Chimie Organique et Analytique
- Université d’Orléans
- UMR CNRS 7311
- 45067 Orléans Cedex 2
- France
| |
Collapse
|
32
|
New coumarin-based fluorescent melatonin ligands. Design, synthesis and pharmacological characterization. Eur J Med Chem 2015; 103:370-3. [DOI: 10.1016/j.ejmech.2015.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 11/17/2022]
|