1
|
Logan KM, Kaplan W, Simov V, Zhou H, Li D, Torres L, Morriello GJ, Acton JJ, Pio B, Chen YH, Keylor MH, Johnson R, Kattar SD, Chau R, Yan X, Ardolino M, Zarate C, Otte KM, Palte RL, Xiong T, McMinn SE, Lin S, Neelamkavil SF, Liu P, Su J, Hegde LG, Woodhouse JD, Moy LY, Ciaccio PJ, Piesvaux J, Zebisch M, Henry C, Barker J, Wood HB, Kennedy ME, DiMauro EF, Fell MJ, Fuller PH. Discovery and Optimization of N-Heteroaryl Indazole LRRK2 Inhibitors. J Med Chem 2024; 67:16807-16819. [PMID: 39231262 DOI: 10.1021/acs.jmedchem.4c01627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Inhibition of leucine-rich repeat kinase 2 is a genetically supported mechanism for the treatment of Parkinson's disease. We previously disclosed the discovery of an indazole series lead that demonstrated both safety and translational risks. The safety risks were hypothesized to be of unknown origin, so structural diversity in subsequent chemical matter was prioritized. The translational risks were identified due to a low brain Kpu,u in nonhuman primate studies, which raised concern over the use of an established peripheral biomarker as a surrogate for central target engagement. Given these challenges, the team sought to leverage structure- and property-based drug design and expanded efflux transporter profiling to identify structurally distinct leads with enhanced CNS drug-likeness. Herein, we describe the discovery of a "reinvented" indazole series with improved physicochemical properties and efflux transporter profiles while maintaining excellent potency and off-target kinase selectivity, which resulted in advanced lead, compound 23.
Collapse
Affiliation(s)
- Kaitlyn M Logan
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Will Kaplan
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Vladimir Simov
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Hua Zhou
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Derun Li
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Luis Torres
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Gregori J Morriello
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - John J Acton
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Barbara Pio
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Yi-Heng Chen
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Mitchell H Keylor
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Rebecca Johnson
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Solomon D Kattar
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Ryan Chau
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Xin Yan
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Michael Ardolino
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Cayetana Zarate
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Karin M Otte
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Rachel L Palte
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Tina Xiong
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Spencer E McMinn
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Shishi Lin
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | | | - Ping Liu
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jing Su
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Laxminarayan G Hegde
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Janice D Woodhouse
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Lily Y Moy
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Paul J Ciaccio
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jennifer Piesvaux
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Matthias Zebisch
- Evotec (U.K.) Ltd., 90 Park Drive, Milton Park, Abingdon OX14 4RZ, Oxfordshire, U.K
| | - Clare Henry
- Evotec (U.K.) Ltd., 90 Park Drive, Milton Park, Abingdon OX14 4RZ, Oxfordshire, U.K
| | - John Barker
- Evotec (U.K.) Ltd., 90 Park Drive, Milton Park, Abingdon OX14 4RZ, Oxfordshire, U.K
| | - Harold B Wood
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Matthew E Kennedy
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Erin F DiMauro
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Matthew J Fell
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Peter H Fuller
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Pfeil AJ, Hale JD, Zhang TS, Wakayama K, Miyazaki I, Odintsov I, Somwar R. Preclinical evaluation of targeted therapies for central nervous system metastases. Dis Model Mech 2024; 17:dmm050836. [PMID: 39344915 PMCID: PMC11463968 DOI: 10.1242/dmm.050836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
The central nervous system (CNS) represents a site of sanctuary for many metastatic tumors when systemic therapies that control the primary tumor cannot effectively penetrate intracranial lesions. Non-small cell lung cancers (NSCLCs) are the most likely of all neoplasms to metastasize to the brain, with up to 60% of patients developing CNS metastases during the disease process. Targeted therapies such as tyrosine kinase inhibitors (TKIs) have helped reduce lung cancer mortality but vary considerably in their capacity to control CNS metastases. The ability of these therapies to effectively target lesions in the CNS depends on several of their pharmacokinetic properties, including blood-brain barrier permeability, affinity for efflux transporters, and binding affinity for both plasma and brain tissue. Despite the existence of numerous preclinical models with which to characterize these properties, many targeted therapies have not been rigorously tested for CNS penetration during the discovery process, whereas some made it through preclinical testing despite poor brain penetration kinetics. Several TKIs have now been engineered with the characteristics of CNS-penetrant drugs, with clinical trials proving these efforts fruitful. This Review outlines the extent and variability of preclinical evidence for the efficacy of NSCLC-targeted therapies, which have been approved by the US Food and Drug Administration (FDA) or are in development, for treating CNS metastases, and how these data correlate with clinical outcomes.
Collapse
Affiliation(s)
- Alexander J. Pfeil
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Joshua D. Hale
- University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Tiger S. Zhang
- University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Kentaro Wakayama
- Taiho Pharmaceutical Co. Ltd. 3, Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Isao Miyazaki
- Taiho Pharmaceutical Co. Ltd. 3, Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Igor Odintsov
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 021105, USA
| | - Romel Somwar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
3
|
Ren L, Moreno D, Baer BR, Barbour P, Bettendorf T, Bouhana K, Brown K, Brown SA, Fell JB, Hartley DP, Hicken EJ, Laird ER, Lee P, McCown J, Otten JN, Prigaro B, Wallace R, Kahn D. Identification of the Clinical Candidate PF-07284890 ( ARRY-461), a Highly Potent and Brain Penetrant BRAF Inhibitor for the Treatment of Cancer. J Med Chem 2024. [PMID: 39077892 DOI: 10.1021/acs.jmedchem.4c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Mutant BRAFV600E is one of the most common oncogenic drivers in metastatic melanoma. While first generation BRAFV600E inhibitors are capable of controlling tumors systemically, they are unable to adequately treat tumors that have metastasized to the brain due to insufficient penetration across the blood-brain barrier (BBB). Through a combination of structure-based drug design (SBDD) and the optimization of physiochemical properties to enhance BBB penetration, we herein report the discovery of the brain-penetrant BRAFV600E inhibitor PF-07284890 (ARRY-461). In mice studies, ARRY-461 proved to be highly brain-penetrant and was able to drive regressions of A375 BRAFV600E tumors implanted both subcutaneously and intracranially. Based on compelling preclinical safety and efficacy studies, ARRY-461 was progressed into a Phase 1 A/B clinical trial (NCT04543188).
Collapse
Affiliation(s)
- Li Ren
- Enliven Therapeutics, Boulder, Colorado 80301, United States
| | - David Moreno
- Enliven Therapeutics, Boulder, Colorado 80301, United States
| | - Brian R Baer
- Pfizer Boulder R&D, Boulder, Colorado 80301, United States
| | | | | | - Karyn Bouhana
- Cogent Biosciences, Boulder, Colorado 80301, United States
| | - Karin Brown
- Pfizer Boulder R&D, Boulder, Colorado 80301, United States
| | - Suzy A Brown
- Pfizer Boulder R&D, Boulder, Colorado 80301, United States
| | - Jay B Fell
- Cogent Biosciences, Boulder, Colorado 80301, United States
| | | | - Erik J Hicken
- Pfizer Boulder R&D, Boulder, Colorado 80301, United States
| | - Ellen R Laird
- Pfizer Boulder R&D, Boulder, Colorado 80301, United States
| | - Patrice Lee
- Pfizer Boulder R&D, Boulder, Colorado 80301, United States
| | - Joseph McCown
- Pfizer Boulder R&D, Boulder, Colorado 80301, United States
| | | | | | - Ross Wallace
- Loxo Oncology, Louisville, Colorado 80027, United States
| | - Dean Kahn
- Pfizer Boulder R&D, Boulder, Colorado 80301, United States
| |
Collapse
|
4
|
Gupta K, Perkerson RB, Parsons TM, Angom R, Amerna D, Burgess JD, Ren Y, McLean PJ, Mukhopadhyay D, Vibhute P, Wszolek ZK, Zubair AC, Quiñones-Hinojosa A, Kanekiyo T. Secretome from iPSC-derived MSCs exerts proangiogenic and immunosuppressive effects to alleviate radiation-induced vascular endothelial cell damage. Stem Cell Res Ther 2024; 15:230. [PMID: 39075600 PMCID: PMC11287895 DOI: 10.1186/s13287-024-03847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Radiation therapy is the standard of care for central nervous system tumours. Despite the success of radiation therapy in reducing tumour mass, irradiation (IR)-induced vasculopathies and neuroinflammation contribute to late-delayed complications, neurodegeneration, and premature ageing in long-term cancer survivors. Mesenchymal stromal cells (MSCs) are adult stem cells that facilitate tissue integrity, homeostasis, and repair. Here, we investigated the potential of the iPSC-derived MSC (iMSC) secretome in immunomodulation and vasculature repair in response to radiation injury utilizing human cell lines. METHODS We generated iPSC-derived iMSC lines and evaluated the potential of their conditioned media (iMSC CM) to treat IR-induced injuries in human monocytes (THP1) and brain vascular endothelial cells (hCMEC/D3). We further assessed factors in the iMSC secretome, their modulation, and the molecular pathways they elicit. RESULTS Increasing doses of IR disturbed endothelial tube and spheroid formation in hCMEC/D3. When IR-injured hCMEC/D3 (IR ≤ 5 Gy) were treated with iMSC CM, endothelial cell viability, adherence, spheroid compactness, and proangiogenic sprout formation were significantly ameliorated, and IR-induced ROS levels were reduced. iMSC CM augmented tube formation in cocultures of hCMEC/D3 and iMSCs. Consistently, iMSC CM facilitated angiogenesis in a zebrafish model in vivo. Furthermore, iMSC CM suppressed IR-induced NFκB activation, TNF-α release, and ROS production in THP1 cells. Additionally, iMSC CM diminished NF-kB activation in THP1 cells cocultured with irradiated hCMEC/D3, iMSCs, or HMC3 microglial lines. The cytokine array revealed that iMSC CM contains the proangiogenic and immunosuppressive factors MCP1/CCL2, IL6, IL8/CXCL8, ANG (Angiogenin), GROα/CXCL1, and RANTES/CCL5. Common promoter regulatory elements were enriched in TF-binding motifs such as androgen receptor (ANDR) and GATA2. hCMEC/D3 phosphokinome profiling revealed increased expression of pro-survival factors, the PI3K/AKT/mTOR modulator PRAS40 and β-catenin in response to CM. The transcriptome analysis revealed increased expression of GATA2 in iMSCs and the enrichment of pathways involved in RNA metabolism, translation, mitochondrial respiration, DNA damage repair, and neurodevelopment. CONCLUSIONS The iMSC secretome is a comodulated composite of proangiogenic and immunosuppressive factors that has the potential to alleviate radiation-induced vascular endothelial cell damage and immune activation.
Collapse
Affiliation(s)
- Kshama Gupta
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
| | - Ralph B Perkerson
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Tammee M Parsons
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Ramacharan Angom
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Danilyn Amerna
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Jeremy D Burgess
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Pamela J McLean
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Debabrata Mukhopadhyay
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Prasanna Vibhute
- Department of Radiology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Zbigniew K Wszolek
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Abba C Zubair
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Alfredo Quiñones-Hinojosa
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
| |
Collapse
|
5
|
Jovanović M, Radan M, Čarapić M, Filipović N, Nikolic K, Crevar M. Application of parallel artificial membrane permeability assay technique and chemometric modeling for blood-brain barrier permeability prediction of protein kinase inhibitors. Future Med Chem 2024; 16:873-885. [PMID: 38639375 PMCID: PMC11373572 DOI: 10.4155/fmc-2023-0390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
Aim: This study aims to investigate the passive diffusion of protein kinase inhibitors through the blood-brain barrier (BBB) and to develop a model for their permeability prediction. Materials & methods: We used the parallel artificial membrane permeability assay to obtain logPe values of each of 34 compounds and calculated descriptors for these structures to perform quantitative structure-property relationship modeling, creating different regression models. Results: The logPe values have been calculated for all 34 compounds. Support vector machine regression was considered the most reliable, and CATS2D_09_DA, CATS2D_04_AA, B04[N-S] and F07[C-N] descriptors were identified as the most influential to passive BBB permeability. Conclusion: The quantitative structure-property relationship-support vector machine regression model that has been generated can serve as an efficient method for preliminary screening of BBB permeability of new analogs.
Collapse
Affiliation(s)
- Milan Jovanović
- University of Belgrade - Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Vojvode Stepe 450, P.O.Box 146, 11221, Belgrade, Serbia
- University of Belgrade - "VINCA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Department of Molecular Biology & Endocrinology, Mike Petrovica Alasa 12-14, Vinca, 11351, Belgrade, Serbia
| | - Milica Radan
- Institute for Medicinal Plant Research "Dr. Josif Pančić", Tadeuša Košćuška 1, Belgrade, 11000, Serbia
| | - Marija Čarapić
- Medicines & Medical Devices Agency of Serbia, Vojvode Stepe 458, 11000, Belgrade, Serbia
| | - Nenad Filipović
- University of Belgrade - Faculty of Agriculture, Nemanjina 6, 11000, Belgrade, Serbia
| | - Katarina Nikolic
- University of Belgrade - Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Vojvode Stepe 450, P.O.Box 146, 11221, Belgrade, Serbia
| | - Milkica Crevar
- University of Belgrade - Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Vojvode Stepe 450, P.O.Box 146, 11221, Belgrade, Serbia
| |
Collapse
|
6
|
Stepanenko AA, Sosnovtseva AO, Valikhov MP, Chernysheva AA, Abramova OV, Pavlov KA, Chekhonin VP. Systemic and local immunosuppression in glioblastoma and its prognostic significance. Front Immunol 2024; 15:1326753. [PMID: 38481999 PMCID: PMC10932993 DOI: 10.3389/fimmu.2024.1326753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/06/2024] [Indexed: 04/07/2024] Open
Abstract
The effectiveness of tumor therapy, especially immunotherapy and oncolytic virotherapy, critically depends on the activity of the host immune cells. However, various local and systemic mechanisms of immunosuppression operate in cancer patients. Tumor-associated immunosuppression involves deregulation of many components of immunity, including a decrease in the number of T lymphocytes (lymphopenia), an increase in the levels or ratios of circulating and tumor-infiltrating immunosuppressive subsets [e.g., macrophages, microglia, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs)], as well as defective functions of subsets of antigen-presenting, helper and effector immune cell due to altered expression of various soluble and membrane proteins (receptors, costimulatory molecules, and cytokines). In this review, we specifically focus on data from patients with glioblastoma/glioma before standard chemoradiotherapy. We discuss glioblastoma-related immunosuppression at baseline and the prognostic significance of different subsets of circulating and tumor-infiltrating immune cells (lymphocytes, CD4+ and CD8+ T cells, Tregs, natural killer (NK) cells, neutrophils, macrophages, MDSCs, and dendritic cells), including neutrophil-to-lymphocyte ratio (NLR), focus on the immune landscape and prognostic significance of isocitrate dehydrogenase (IDH)-mutant gliomas, proneural, classical and mesenchymal molecular subtypes, and highlight the features of immune surveillance in the brain. All attempts to identify a reliable prognostic immune marker in glioblastoma tissue have led to contradictory results, which can be explained, among other things, by the unprecedented level of spatial heterogeneity of the immune infiltrate and the significant phenotypic diversity and (dys)functional states of immune subpopulations. High NLR is one of the most repeatedly confirmed independent prognostic factors for shorter overall survival in patients with glioblastoma and carcinoma, and its combination with other markers of the immune response or systemic inflammation significantly improves the accuracy of prediction; however, more prospective studies are needed to confirm the prognostic/predictive power of NLR. We call for the inclusion of dynamic assessment of NLR and other blood inflammatory markers (e.g., absolute/total lymphocyte count, platelet-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, systemic immune-inflammation index, and systemic immune response index) in all neuro-oncology studies for rigorous evaluation and comparison of their individual and combinatorial prognostic/predictive significance and relative superiority.
Collapse
Affiliation(s)
- Aleksei A. Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasiia O. Sosnovtseva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marat P. Valikhov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia A. Chernysheva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga V. Abramova
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Konstantin A. Pavlov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
7
|
Rahban M, Joushi S, Bashiri H, Saso L, Sheibani V. Characterization of prevalent tyrosine kinase inhibitors and their challenges in glioblastoma treatment. Front Chem 2024; 11:1325214. [PMID: 38264122 PMCID: PMC10804459 DOI: 10.3389/fchem.2023.1325214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive malignant primary tumor in the central nervous system. Despite extensive efforts in radiotherapy, chemotherapy, and neurosurgery, there remains an inadequate level of improvement in treatment outcomes. The development of large-scale genomic and proteomic analysis suggests that GBMs are characterized by transcriptional heterogeneity, which is responsible for therapy resistance. Hence, knowledge about the genetic and epigenetic heterogeneity of GBM is crucial for developing effective treatments for this aggressive form of brain cancer. Tyrosine kinases (TKs) can act as signal transducers, regulate important cellular processes like differentiation, proliferation, apoptosis and metabolism. Therefore, TK inhibitors (TKIs) have been developed to specifically target these kinases. TKIs are categorized into allosteric and non-allosteric inhibitors. Irreversible inhibitors form covalent bonds, which can lead to longer-lasting effects. However, this can also increase the risk of off-target effects and toxicity. The development of TKIs as therapeutics through computer-aided drug design (CADD) and bioinformatic techniques enhance the potential to improve patients' survival rates. Therefore, the continued exploration of TKIs as drug targets is expected to lead to even more effective and specific therapeutics in the future.
Collapse
Affiliation(s)
- Mahdie Rahban
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamideh Bashiri
- Physiology Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, Rome, Italy
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
8
|
Baillache DJ, Valero T, Lorente-Macías Á, Bennett DJ, Elliott RJR, Carragher NO, Unciti-Broceta A. Discovery of pyrazolopyrimidines that selectively inhibit CSF-1R kinase by iterative design, synthesis and screening against glioblastoma cells. RSC Med Chem 2023; 14:2611-2624. [PMID: 38099057 PMCID: PMC10718585 DOI: 10.1039/d3md00454f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/09/2023] [Indexed: 12/17/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of brain cancer in adults, with an average life expectancy under treatment of approx. 15 months. GBM is characterised by a complex set of genetic alterations that results in significant disruption of receptor tyrosine kinase (RTK) signaling. We report here an exploration of the pyrazolo[3,4-d]pyrimidine scaffold in search for antiproliferative compounds directed to GBM treatment. Small compound libraries were synthesised and screened against GBM cells to build up structure-antiproliferative activity-relationships (SAARs) and inform further rounds of design, synthesis and screening. 76 novel compounds were generated through this iterative process that found low micromolar potencies against selected GBM lines, including patient-derived stem cells. Phenomics analysis demonstrated preferential activity against glioma cells of the mesenchymal subtype, whereas kinome screening identified colony stimulating factor-1 receptor (CSF-1R) as the lead's target, a RTK implicated in the tumourigenesis and progression of different cancers and the immunoregulation of the GBM microenvironment.
Collapse
Affiliation(s)
- Daniel J Baillache
- Edinburgh Cancer Research, Institute of Genetics & Cancer, University of Edinburgh Crewe Road South Edinburgh EH4 2XR UK
- Cancer Research UK Scotland Centre UK
| | - Teresa Valero
- Edinburgh Cancer Research, Institute of Genetics & Cancer, University of Edinburgh Crewe Road South Edinburgh EH4 2XR UK
- Cancer Research UK Scotland Centre UK
| | - Álvaro Lorente-Macías
- Edinburgh Cancer Research, Institute of Genetics & Cancer, University of Edinburgh Crewe Road South Edinburgh EH4 2XR UK
- Cancer Research UK Scotland Centre UK
| | | | - Richard J R Elliott
- Edinburgh Cancer Research, Institute of Genetics & Cancer, University of Edinburgh Crewe Road South Edinburgh EH4 2XR UK
- Cancer Research UK Scotland Centre UK
| | - Neil O Carragher
- Edinburgh Cancer Research, Institute of Genetics & Cancer, University of Edinburgh Crewe Road South Edinburgh EH4 2XR UK
- Cancer Research UK Scotland Centre UK
| | - Asier Unciti-Broceta
- Edinburgh Cancer Research, Institute of Genetics & Cancer, University of Edinburgh Crewe Road South Edinburgh EH4 2XR UK
- Cancer Research UK Scotland Centre UK
| |
Collapse
|
9
|
Liu Y, Zhan Z, Kang Z, Li M, Lv Y, Li S, Tong L, Feng F, Li Y, Zhang M, Xue Y, Chen Y, Zhang T, Song P, Su Y, Shen Y, Sun Y, Yang X, Chen Y, Yao S, Yang H, Wang C, Geng M, Li W, Duan W, Xie H, Ding J. Preclinical and early clinical studies of a novel compound SYHA1813 that efficiently crosses the blood-brain barrier and exhibits potent activity against glioblastoma. Acta Pharm Sin B 2023; 13:4748-4764. [PMID: 38045044 PMCID: PMC10692396 DOI: 10.1016/j.apsb.2023.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/30/2023] [Accepted: 08/09/2023] [Indexed: 12/05/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant brain tumor in adults and is poorly controlled. Previous studies have shown that both macrophages and angiogenesis play significant roles in GBM progression, and co-targeting of CSF1R and VEGFR is likely to be an effective strategy for GBM treatment. Therefore, this study developed a novel and selective inhibitor of CSF1R and VEGFR, SYHA1813, possessing potent antitumor activity against GBM. SYHA1813 inhibited VEGFR and CSF1R kinase activities with high potency and selectivity and thus blocked the cell viability of HUVECs and macrophages and exhibited anti-angiogenetic effects both in vitro and in vivo. SYHA1813 also displayed potent in vivo antitumor activity against GBM in immune-competent and immune-deficient mouse models, including temozolomide (TMZ) insensitive tumors. Notably, SYHA1813 could penetrate the blood-brain barrier (BBB) and prolong the survival time of mice bearing intracranial GBM xenografts. Moreover, SYHA1813 treatment resulted in a synergistic antitumor efficacy in combination with the PD-1 antibody. As a clinical proof of concept, SYHA1813 achieved confirmed responses in patients with recurrent GBM in an ongoing first-in-human phase I trial. The data of this study support the rationale for an ongoing phase I clinical study (ChiCTR2100045380).
Collapse
Affiliation(s)
- Yingqiang Liu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhengsheng Zhan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhuang Kang
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Mengyuan Li
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongcong Lv
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shenglan Li
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Linjiang Tong
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fang Feng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yan Li
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mengge Zhang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaping Xue
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yi Chen
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Zhang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Peiran Song
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yi Su
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanyan Shen
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yiming Sun
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinying Yang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Chen
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shanyan Yao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hanyu Yang
- Shanghai Runshi Pharmaceutical Technology Co., Ltd., Shanghai 201218, China
| | - Caixia Wang
- Shanghai Runshi Pharmaceutical Technology Co., Ltd., Shanghai 201218, China
| | - Meiyu Geng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbin Li
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wenhu Duan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hua Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jian Ding
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
10
|
Lien VT, Hauge E, Nuruddin S, Klaveness J, Olberg DE. Synthesis and preclinical evaluation of a selective MET kinase positron emission tomography tracer. J Labelled Comp Radiopharm 2023; 66:452-460. [PMID: 37867318 DOI: 10.1002/jlcr.4066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023]
Abstract
The tyrosine kinase MET (hepatocyte growth factor receptor) is activated or mutated in a wide range of cancers and is often correlated with a poor prognosis. Precision medicine with positron emission tomography (PET) can potentially aid in the assessment of tumor biochemistry and heterogeneity, which can prompt the selection of the most effective therapeutic regimes. The selective MET inhibitor PF04217903 (1) formed the basis for a bioisosteric replacement, leading to the deoxyfluorinated analog [18 F]2. [18 F]2 could be synthesized with a "hydrous fluoroethylation" protocol in 6.3 ± 2.6% radiochemical yield and a molar activity of >50 GBq/μmol. In vitro autoradiography indicated that [18 F]2 selectively binds to MET in PC3 tumor tissue, and in vivo biodistribution in mice showed predominantly a hepatobiliary excretion along with a low retention of radiotracer in other organs.
Collapse
Affiliation(s)
- Vegard Torp Lien
- Department of Pharmacy, University of Oslo, Oslo, Norway
- Norwegian Medical Cyclotron Center, Oslo, Norway
| | - Emily Hauge
- Department of Pharmacy, University of Oslo, Oslo, Norway
- Norwegian Medical Cyclotron Center, Oslo, Norway
| | | | - Jo Klaveness
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Dag Erlend Olberg
- Department of Pharmacy, University of Oslo, Oslo, Norway
- Norwegian Medical Cyclotron Center, Oslo, Norway
| |
Collapse
|
11
|
Hill J, Jones RM, Crich D. Discovery of a Hydroxylamine-Based Brain-Penetrant EGFR Inhibitor for Metastatic Non-Small-Cell Lung Cancer. J Med Chem 2023; 66:15477-15492. [PMID: 37934858 PMCID: PMC10683025 DOI: 10.1021/acs.jmedchem.3c01669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023]
Abstract
Metastases to the brain remain a significant problem in lung cancer, as treatment by most small-molecule targeted therapies is severely limited by efflux transporters at the blood-brain barrier (BBB). Here, we report the discovery of a selective, orally bioavailable, epidermal growth factor receptor (EGFR) inhibitor, 9, that exhibits high brain penetration and potent activity in osimertinib-resistant cell lines bearing L858R/C797S and exon19del/C797S EGFR resistance mutations. In vivo, 9 induced tumor regression in an intracranial patient-derived xenograft (PDX) murine model suggesting it as a potential lead for the treatment of localized and metastatic non-small-cell lung cancer (NSCLC) driven by activating mutant bearing EGFR. Overall, we demonstrate that an underrepresented functional group in medicinal chemistry, the trisubstituted hydroxylamine moiety, can be incorporated into a drug scaffold without the toxicity commonly surmised to accompany these units, all while maintaining potent biological activity and without the molecular weight creep common to drug optimization campaigns.
Collapse
Affiliation(s)
- Jarvis Hill
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department
of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
| | | | - David Crich
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department
of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| |
Collapse
|
12
|
Kattar SD, Gulati A, Margrey KA, Keylor MH, Ardolino M, Yan X, Johnson R, Palte RL, McMinn SE, Nogle L, Su J, Xiao D, Piesvaux J, Lee S, Hegde LG, Woodhouse JD, Faltus R, Moy LY, Xiong T, Ciaccio PJ, Pearson K, Patel M, Otte KM, Leyns CEG, Kennedy ME, Bennett DJ, DiMauro EF, Fell MJ, Fuller PH. Discovery of MK-1468: A Potent, Kinome-Selective, Brain-Penetrant Amidoisoquinoline LRRK2 Inhibitor for the Potential Treatment of Parkinson's Disease. J Med Chem 2023; 66:14912-14927. [PMID: 37861679 DOI: 10.1021/acs.jmedchem.3c01486] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Genetic mutation of the leucine-rich repeat kinase 2 (LRRK2) protein has been associated with Parkinson's disease (PD), a disabling and progressive neurodegenerative disorder that is devoid of efficacious disease-modifying therapies. Herein, we describe the invention of an amidoisoquinoline (IQ)-derived LRRK2 inhibitor lead chemical series. Knowledge-, structure-, and property-based drug design in concert with rigorous application of in silico calculations and presynthesis predictions enabled the prioritization of molecules with favorable CNS "drug-like" physicochemical properties. This resulted in the discovery of compound 8, which was profiled extensively before human ether-a-go-go (hERG) ion channel inhibition halted its progression. Strategic reduction of lipophilicity and basicity resulted in attenuation of hERG ion channel inhibition while maintaining a favorable CNS efflux transporter profile. Further structure- and property-based optimizations resulted in the discovery of preclinical candidate MK-1468. This exquisitely selective LRRK2 inhibitor has a projected human dose of 48 mg BID and a preclinical safety profile that supported advancement toward GLP toxicology studies.
Collapse
Affiliation(s)
- Solomon D Kattar
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Anmol Gulati
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Kaila A Margrey
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Mitchell H Keylor
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Michael Ardolino
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Xin Yan
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Rebecca Johnson
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Rachel L Palte
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Spencer E McMinn
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Lisa Nogle
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jing Su
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Dong Xiao
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jennifer Piesvaux
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Susi Lee
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Laxminarayan G Hegde
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Janice D Woodhouse
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Robert Faltus
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Lily Y Moy
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Tina Xiong
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Paul J Ciaccio
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Kara Pearson
- Merck & Co., Inc., 770 Sumneytown Pike., West Point, Pennsylvania 19486, United States
| | - Mayankbhai Patel
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Karin M Otte
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Cheryl E G Leyns
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Matthew E Kennedy
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | | | - Erin F DiMauro
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Matthew J Fell
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Peter H Fuller
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
13
|
Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier: Potential New Targets to Improve Brain Drug Delivery. Pharmacol Rev 2023; 75:815-853. [PMID: 36973040 PMCID: PMC10441638 DOI: 10.1124/pharmrev.120.000025] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, which poses a tremendous clinical problem to successfully treat central nervous system (CNS) diseases. Understanding basic transporter biology, including intracellular regulation mechanisms that control these transporters, is critical to solving this clinical problem.In this comprehensive review, we summarize current knowledge on signaling pathways that regulate ABCB1/ABCG2 at the blood-brain barrier. In Section I, we give a historical overview on blood-brain barrier research and introduce the role that ABCB1 and ABCG2 play in this context. In Section II, we summarize the most important strategies that have been tested to overcome the ABCB1/ABCG2 efflux system at the blood-brain barrier. In Section III, the main component of this review, we provide detailed information on the signaling pathways that have been identified to control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is followed by Section IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in the context of CNS disease. Lastly, in Section V, we conclude by highlighting examples of how transporter regulation could be targeted for therapeutic purposes in the clinic. SIGNIFICANCE STATEMENT: The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to successful drug delivery to the brain. The article reviews signaling pathways that regulate blood-brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Anika M S Hartz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
14
|
Miyazaki I, Odintsov I, Ishida K, Lui AJW, Kato M, Suzuki T, Zhang T, Wakayama K, Kurth RI, Cheng R, Fujita H, Delasos L, Vojnic M, Khodos I, Yamada Y, Ishizawa K, Mattar MS, Funabashi K, Chang Q, Ohkubo S, Yano W, Terada R, Giuliano C, Lu YC, Bonifacio A, Kunte S, Davare MA, Cheng EH, de Stanchina E, Lovati E, Iwasawa Y, Ladanyi M, Somwar R. Vepafestinib is a pharmacologically advanced RET-selective inhibitor with high CNS penetration and inhibitory activity against RET solvent front mutations. NATURE CANCER 2023; 4:1345-1361. [PMID: 37743366 PMCID: PMC10518257 DOI: 10.1038/s43018-023-00630-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/08/2023] [Indexed: 09/26/2023]
Abstract
RET receptor tyrosine kinase is activated in various cancers (lung, thyroid, colon and pancreatic, among others) through oncogenic fusions or gain-of-function single-nucleotide variants. Small-molecule RET kinase inhibitors became standard-of-care therapy for advanced malignancies driven by RET. The therapeutic benefit of RET inhibitors is limited, however, by acquired mutations in the drug target as well as brain metastasis, presumably due to inadequate brain penetration. Here, we perform preclinical characterization of vepafestinib (TAS0953/HM06), a next-generation RET inhibitor with a unique binding mode. We demonstrate that vepafestinib has best-in-class selectivity against RET, while exerting activity against commonly reported on-target resistance mutations (variants in RETL730, RETV804 and RETG810), and shows superior pharmacokinetic properties in the brain when compared to currently approved RET drugs. We further show that these properties translate into improved tumor control in an intracranial model of RET-driven cancer. Our results underscore the clinical potential of vepafestinib in treating RET-driven cancers.
Collapse
Affiliation(s)
| | - Igor Odintsov
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Allan J W Lui
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | | | - Tom Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Renate I Kurth
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan Cheng
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Lukas Delasos
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Morana Vojnic
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Northwell Health Cancer Institute, Lenox Hill Hospital, New York, NY, USA
| | - Inna Khodos
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Kota Ishizawa
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan
| | - Marissa S Mattar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Qing Chang
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Wakako Yano
- Taiho Pharmaceutical Co. Ltd., Tsukuba, Japan
| | | | | | - Yue Christine Lu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Siddharth Kunte
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Dana Cancer Center, Toledo, OH, USA
| | - Monika A Davare
- Department of Pediatrics, Oregon Health Sciences University, Portland, OR, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Romel Somwar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
15
|
Cornelissen F, Markert G, Deutsch G, Antonara M, Faaij N, Bartelink I, Noske D, Vandertop WP, Bender A, Westerman BA. Explaining Blood-Brain Barrier Permeability of Small Molecules by Integrated Analysis of Different Transport Mechanisms. J Med Chem 2023; 66:7253-7267. [PMID: 37217193 PMCID: PMC10259449 DOI: 10.1021/acs.jmedchem.2c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 05/24/2023]
Abstract
The blood-brain barrier (BBB) represents a major obstacle to delivering drugs to the central nervous system (CNS), resulting in the lack of effective treatment for many CNS diseases including brain cancer. To accelerate CNS drug development, computational prediction models could save the time and effort needed for experimental evaluation. Here, we studied BBB permeability focusing on active transport (influx and efflux) as well as passive diffusion using previously published and self-curated data sets. We created prediction models based on physicochemical properties, molecular substructures, or their combination to understand which mechanisms contribute to BBB permeability. Our results show that features that predicted passive diffusion over membranes overlap with features that explain endothelial permeation of approved CNS-active drugs. We also identified physical properties and molecular substructures that positively or negatively predicted BBB transport. These findings provide guidance toward identifying BBB-permeable compounds by optimally matching physicochemical and molecular properties to BBB transport mechanisms.
Collapse
Affiliation(s)
- Fleur
M.G. Cornelissen
- Department
of Neurosurgery, Amsterdam UMC, location VUMC, Cancer Center, Amsterdam 1105, AZ, the Netherlands
| | - Greta Markert
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Rd, Cambridge CB2 1EW, U.K.
| | - Ghislaine Deutsch
- Department
of Neurosurgery, Amsterdam UMC, location VUMC, Cancer Center, Amsterdam 1105, AZ, the Netherlands
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Rd, Cambridge CB2 1EW, U.K.
| | - Maria Antonara
- Department
of Neurosurgery, Amsterdam UMC, location VUMC, Cancer Center, Amsterdam 1105, AZ, the Netherlands
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Rd, Cambridge CB2 1EW, U.K.
| | - Noa Faaij
- Department
of Neurosurgery, Amsterdam UMC, location VUMC, Cancer Center, Amsterdam 1105, AZ, the Netherlands
| | - Imke Bartelink
- Department
of Pharmacy, Amsterdam UMC, location VUMC, Cancer Center, Amsterdam 1105, AZ, the Netherlands
| | - David Noske
- Department
of Neurosurgery, Amsterdam UMC, location VUMC, Cancer Center, Amsterdam 1105, AZ, the Netherlands
| | - W. Peter Vandertop
- Department
of Neurosurgery, Amsterdam UMC, location VUMC, Cancer Center, Amsterdam 1105, AZ, the Netherlands
| | - Andreas Bender
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Rd, Cambridge CB2 1EW, U.K.
| | - Bart A. Westerman
- Department
of Neurosurgery, Amsterdam UMC, location VUMC, Cancer Center, Amsterdam 1105, AZ, the Netherlands
- Window
Consortium (www.window-consortium.org)
| |
Collapse
|
16
|
Wu Y, Walker JR, Westberg M, Ning L, Monje M, Kirkland TA, Lin MZ, Su Y. Kinase-Modulated Bioluminescent Indicators Enable Noninvasive Imaging of Drug Activity in the Brain. ACS CENTRAL SCIENCE 2023; 9:719-732. [PMID: 37122464 PMCID: PMC10141594 DOI: 10.1021/acscentsci.3c00074] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Indexed: 05/03/2023]
Abstract
Aberrant kinase activity contributes to the pathogenesis of brain cancers, neurodegeneration, and neuropsychiatric diseases, but identifying kinase inhibitors that function in the brain is challenging. Drug levels in blood do not predict efficacy in the brain because the blood-brain barrier prevents entry of most compounds. Rather, assessing kinase inhibition in the brain requires tissue dissection and biochemical analysis, a time-consuming and resource-intensive process. Here, we report kinase-modulated bioluminescent indicators (KiMBIs) for noninvasive longitudinal imaging of drug activity in the brain based on a recently optimized luciferase-luciferin system. We develop an ERK KiMBI to report inhibitors of the Ras-Raf-MEK-ERK pathway, for which no bioluminescent indicators previously existed. ERK KiMBI discriminates between brain-penetrant and nonpenetrant MEK inhibitors, reveals blood-tumor barrier leakiness in xenograft models, and reports MEK inhibitor pharmacodynamics in native brain tissues and intracranial xenografts. Finally, we use ERK KiMBI to screen ERK inhibitors for brain efficacy, identifying temuterkib as a promising brain-active ERK inhibitor, a result not predicted from chemical characteristics alone. Thus, KiMBIs enable the rapid identification and pharmacodynamic characterization of kinase inhibitors suitable for treating brain diseases.
Collapse
Affiliation(s)
- Yan Wu
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Neurobiology, Stanford University, Stanford, California 94305, United States
| | - Joel R. Walker
- Promega
Biosciences LLC, San Luis Obispo, California 93401, United States
| | - Michael Westberg
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Neurobiology, Stanford University, Stanford, California 94305, United States
- Department
of Chemistry, Aarhus University, Aarhus 8000, Denmark
| | - Lin Ning
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Neurobiology, Stanford University, Stanford, California 94305, United States
| | - Michelle Monje
- Department
of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, United States
- Howard Hughes
Medical Institute, Stanford University, Stanford, California 94305, United States
| | - Thomas A. Kirkland
- Promega
Biosciences LLC, San Luis Obispo, California 93401, United States
| | - Michael Z. Lin
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Neurobiology, Stanford University, Stanford, California 94305, United States
- Department
of Pediatrics, Stanford University, Stanford, California 94305, United States
- Department
of Chemical and Systems Biology, Stanford
University, Stanford, California 94305, United States
| | - Yichi Su
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Neurobiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
17
|
Nie Z, Wang D, Wang S, Wang L. Facile construction of irinotecan loaded mesoporous nano-formulation with surface-initiated polymerization to improve stimuli-responsive drug delivery for breast cancer therapy. Heliyon 2023; 9:e15087. [PMID: 37128309 PMCID: PMC10148107 DOI: 10.1016/j.heliyon.2023.e15087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
This work uses rice husk to fabricate mesoporous silica nanoparticles (D-RMN) for breast cancer therapy. The biocompatible dual-responsive (DAN-RMN) was developed by polymerizing acrylic acid (AA) and n-isopropyl acrylamide (NIPAM) on the DV-RMN surface monomeric ratio to increase drug delivery efficiency after vinyl groups were added to the surface of nanoparticles (DAN-RMN). Various analytical and spectroscopical methods characterized the fabricated nanoparticles. Additionally, further encapsulation with SN-38 into the DAN-RMN enhances anticancer efficiency. The in-vitro controlled SN-38 release displayed remarkable temperature and pH response. The MTT assay established the biocompatibility and cytotoxicity of natural sources of silica and DAN-RMN. The fabricated SN-38@DAN-RMN nanoparticles effectively killed the MDA-MB-231 and 4T1 cancerous cells, confirmed by the MTT assay. The IC50 values of SN-38@DAN-RMN in MDA-MB-231 and 4T1 for 1.8 μg/mL and 1.7 μg/mL, respectively. In addition, acridine orange-ethidium bromide (AO-EB) dual staining methods were used to determine morphological changes of cell shrinkage and fragmentation. Nuclear staining methods confirmed the nuclear fragmentation and condensation of the cells. Further, the cell death was examined using dual staining Annexin V-FITC/PI in flow cytometric analyses to assess apoptosis in the MDA-MB-231 and 4T1 cell lines. The apoptotic cell ratio of SN-38@DAN-RMN in MDA-MB-231 and 4T1 for 27.8 and 32.8, respectively. Since there is no drug leakage in the blood while the carrier is in circulation, the DAN-RMN nanocarrier may be used for targeted and stimuli-responsive administration using ultrasound imaging.
Collapse
|
18
|
Lolli J, Tessari F, Berti F, Fusella M, Fiorentin D, Bimbatti D, Basso U, Busato F. Impressive reduction of brain metastasis radionecrosis after cabozantinib therapy in metastatic renal carcinoma: A case report and review of the literature. Front Oncol 2023; 13:1136300. [PMID: 36959812 PMCID: PMC10028179 DOI: 10.3389/fonc.2023.1136300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Radionecrosis is a consequence of SRS (stereotactic radiosurgery) for brain metastases in 34% of cases, and if symptomatic (8%-16%), it requires therapy with corticosteroids and bevacizumab and, less frequently, surgery. Oncological indications are increasing and appropriate stereotactic adapted LINACs (linear accelerators) are becoming more widely available worldwide. Efforts are being made to treat brain radionecrosis in order to relieve symptoms and spare the use of active therapies. Case presentation Herein, we describe a 65-year-old female patient presenting with brain radionecrosis 6 months after stereotactic radiotherapy for two brain metastatic lesions. Being symptomatic with headache and slow cognitive-motor function, the patient received corticosteroids. Because of later lung progression, the patient took cabozantinib. An impressive reduction of the two brain radionecrosis areas was seen at the brain MRI 2 months after the initiation of the angiogenic drug. Discussion The high incidence of radionecrosis (2/2 treated lesions) can be interpreted by the combination of SRS and previous ipilimumab that is associated with increased risk of radionecrosis. The molecular mechanisms of brain radionecrosis, and its exact duration in time, are poorly understood. We hypothesize that the antiangiogenic effect of cabozantinib may have had a strong effect in reducing brain radionecrosis areas. Conclusion In this clinical case, cabozantinib is associated with a fast and significant volume reduction of brain radionecrosis appearing after SRS and concomitant immunotherapy. This drug seems to show, like bevacizumab, clinical implications not only for its efficacy in systemic disease control but also in reducing brain radionecrosis. More research is needed to evaluate all molecular mechanisms of brain radionecrosis and their interaction with systemic therapies like third-generation TKIs.
Collapse
Affiliation(s)
- Jacopo Lolli
- Radiotherapy Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Francesca Tessari
- Radiotherapy Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Franco Berti
- Radiotherapy Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Marco Fusella
- Radiotherapy Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
- Department of Radiation Oncology, Abano Terme Hospital, Padua, Italy
| | - Davide Fiorentin
- Radiotherapy Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
- Department of Radiation Oncology, Abano Terme Hospital, Padua, Italy
| | - Davide Bimbatti
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCSS, Padua, Italy
| | - Umberto Basso
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCSS, Padua, Italy
| | - Fabio Busato
- Radiotherapy Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
- Department of Radiation Oncology, Abano Terme Hospital, Padua, Italy
| |
Collapse
|
19
|
Candito DA, Simov V, Gulati A, Kattar S, Chau RW, Lapointe BT, Methot JL, DeMong DE, Graham TH, Kurukulasuriya R, Keylor MH, Tong L, Morriello GJ, Acton JJ, Pio B, Liu W, Scott JD, Ardolino MJ, Martinot TA, Maddess ML, Yan X, Gunaydin H, Palte RL, McMinn SE, Nogle L, Yu H, Minnihan EC, Lesburg CA, Liu P, Su J, Hegde LG, Moy LY, Woodhouse JD, Faltus R, Xiong T, Ciaccio P, Piesvaux JA, Otte KM, Kennedy ME, Bennett DJ, DiMauro EF, Fell MJ, Neelamkavil S, Wood HB, Fuller PH, Ellis JM. Discovery and Optimization of Potent, Selective, and Brain-Penetrant 1-Heteroaryl-1 H-Indazole LRRK2 Kinase Inhibitors for the Treatment of Parkinson's Disease. J Med Chem 2022; 65:16801-16817. [PMID: 36475697 DOI: 10.1021/acs.jmedchem.2c01605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inhibition of leucine-rich repeat kinase 2 (LRRK2) kinase activity represents a genetically supported, chemically tractable, and potentially disease-modifying mechanism to treat Parkinson's disease. Herein, we describe the optimization of a novel series of potent, selective, central nervous system (CNS)-penetrant 1-heteroaryl-1H-indazole type I (ATP competitive) LRRK2 inhibitors. Type I ATP-competitive kinase physicochemical properties were integrated with CNS drug-like properties through a combination of structure-based drug design and parallel medicinal chemistry enabled by sp3-sp2 cross-coupling technologies. This resulted in the discovery of a unique sp3-rich spirocarbonitrile motif that imparted extraordinary potency, pharmacokinetics, and favorable CNS drug-like properties. The lead compound, 25, demonstrated exceptional on-target potency in human peripheral blood mononuclear cells, excellent off-target kinase selectivity, and good brain exposure in rat, culminating in a low projected human dose and a pre-clinical safety profile that warranted advancement toward pre-clinical candidate enabling studies.
Collapse
Affiliation(s)
- David A Candito
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Vladimir Simov
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Anmol Gulati
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Solomon Kattar
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Ryan W Chau
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Blair T Lapointe
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Joey L Methot
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Duane E DeMong
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Thomas H Graham
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Ravi Kurukulasuriya
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Mitchell H Keylor
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Ling Tong
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey07033, United States
| | - Gregori J Morriello
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey07033, United States
| | - John J Acton
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey07033, United States
| | - Barbara Pio
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey07033, United States
| | - Weiguo Liu
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey07033, United States
| | - Jack D Scott
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey07033, United States
| | - Michael J Ardolino
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Theodore A Martinot
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Matthew L Maddess
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Xin Yan
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Hakan Gunaydin
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Rachel L Palte
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Spencer E McMinn
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Lisa Nogle
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Hongshi Yu
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Ellen C Minnihan
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Charles A Lesburg
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Ping Liu
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Jing Su
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey07033, United States
| | - Laxminarayan G Hegde
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Lily Y Moy
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Janice D Woodhouse
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Robert Faltus
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Tina Xiong
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Paul Ciaccio
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Jennifer A Piesvaux
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Karin M Otte
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Matthew E Kennedy
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | | | - Erin F DiMauro
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Matthew J Fell
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - Santhosh Neelamkavil
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey07033, United States
| | - Harold B Wood
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey07033, United States
| | - Peter H Fuller
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| | - J Michael Ellis
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts02115, United States
| |
Collapse
|
20
|
Tan Q, Zhao S, Xu T, Wang Q, Lan M, Yan L, Chen X. Getting drugs to the brain: advances and prospects of organic nanoparticle delivery systems for assisting drugs to cross the blood-brain barrier. J Mater Chem B 2022; 10:9314-9333. [PMID: 36349976 DOI: 10.1039/d2tb01440h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The blood-brain barrier (BBB) plays an irreplaceable role in protecting the central nervous system (CNS) from bloodborne pathogens. However, the BBB complicates the treatment of CNS diseases because it prevents almost all therapeutic drugs from getting into the CNS. With the growing understanding of the physiological characteristics of the BBB and the development of nanotechnology, nanomaterial-based drug delivery systems have become promising tools for delivering drugs across the BBB to the CNS. Herein, we systematically summarize the recent progress in organic-nanoparticle delivery systems for treating CNS diseases and evaluate their mechanisms in overcoming the BBB with the aim to provide a comprehensive understanding of the advantages, disadvantages, and challenges of organic nanoparticles in delivering drugs across the BBB. This review may inspire new research ideas and directions for applying nanotechnology to treat CNS diseases.
Collapse
Affiliation(s)
- Qiuxia Tan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Shaojing Zhao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Ting Xu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Qin Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Minhuan Lan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, UK.
| |
Collapse
|
21
|
Fabro F, Kannegieter NM, de Graaf EL, Queiroz K, Lamfers MLM, Ressa A, Leenstra S. Novel kinome profiling technology reveals drug treatment is patient and 2D/3D model dependent in glioblastoma. Front Oncol 2022; 12:1012236. [PMID: 36408180 PMCID: PMC9670801 DOI: 10.3389/fonc.2022.1012236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma is the deadliest brain cancer. One of the main reasons for poor outcome resides in therapy resistance, which adds additional challenges in finding an effective treatment. Small protein kinase inhibitors are molecules that have become widely studied for cancer treatments, including glioblastoma. However, none of these drugs have demonstrated a therapeutic activity or brought more benefit compared to the current standard procedure in clinical trials. Hence, understanding the reasons of the limited efficacy and drug resistance is valuable to develop more effective strategies toward the future. To gain novel insights into the method of action and drug resistance in glioblastoma, we established in parallel two patient-derived glioblastoma 2D and 3D organotypic multicellular spheroids models, and exposed them to a prolonged treatment of three weeks with temozolomide or either the two small protein kinase inhibitors enzastaurin and imatinib. We coupled the phenotypic evidence of cytotoxicity, proliferation, and migration to a novel kinase activity profiling platform (QuantaKinome™) that measured the activities of the intracellular network of kinases affected by the drug treatments. The results revealed a heterogeneous inter-patient phenotypic and molecular response to the different drugs. In general, small differences in kinase activation were observed, suggesting an intrinsic low influence of the drugs to the fundamental cellular processes like proliferation and migration. The pathway analysis indicated that many of the endogenously detected kinases were associated with the ErbB signaling pathway. We showed the intertumoral variability in drug responses, both in terms of efficacy and resistance, indicating the importance of pursuing a more personalized approach. In addition, we observed the influence derived from the application of 2D or 3D models in in vitro studies of kinases involved in the ErbB signaling pathway. We identified in one 3D sample a new resistance mechanism derived from imatinib treatment that results in a more invasive behavior. The present study applied a new approach to detect unique and specific drug effects associated with pathways in in vitro screening of compounds, to foster future drug development strategies for clinical research in glioblastoma.
Collapse
Affiliation(s)
- Federica Fabro
- Department of Neurosurgery, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | | | | | | | - Martine L. M. Lamfers
- Department of Neurosurgery, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | | | - Sieger Leenstra
- Department of Neurosurgery, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
- *Correspondence: Sieger Leenstra,
| |
Collapse
|
22
|
Molecular dynamics simulations of a central nervous system-penetrant drug AZD3759 with lipid bilayer. J Mol Model 2022; 28:261. [DOI: 10.1007/s00894-022-05266-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
|
23
|
Godinho-Pereira J, Lopes MD, Garcia AR, Botelho HM, Malhó R, Figueira I, Brito MA. A Drug Screening Reveals Minocycline Hydrochloride as a Therapeutic Option to Prevent Breast Cancer Cells Extravasation across the Blood-Brain Barrier. Biomedicines 2022; 10:1988. [PMID: 36009536 PMCID: PMC9405959 DOI: 10.3390/biomedicines10081988] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Among breast cancer (BC) patients, 15-25% develop BC brain metastases (BCBM), a severe condition due to the limited therapeutic options, which points to the need for preventive strategies. We aimed to find a drug able to boost blood-brain barrier (BBB) properties and prevent BC cells (BCCs) extravasation, among PI3K, HSP90, and EGFR inhibitors and approved drugs. We used BCCs (4T1) and BBB endothelial cells (b.End5) to identify molecules with toxicity to 4T1 cells and safe for b.End5 cells. Moreover, we used those cells in mixed cultures to perform a high-throughput microscopy screening of drugs' ability to ameliorate BBB properties and prevent BCCs adhesion and migration across the endothelium, as well as to analyse miRNAs expression and release profiles. KW-2478, buparlisib, and minocycline hydrochloride (MH) promoted maximal expression of the junctional protein β-catenin and induced 4T1 cells nucleus changes. Buparlisib and MH further decreased 4T1 adhesion. MH was the most promising in preventing 4T1 migration and BBB disruption, tumour and endothelial cytoskeleton-associated proteins modifications, and miRNA deregulation. Our data revealed MH's ability to improve BBB properties, while compromising BCCs viability and interaction with BBB endothelial cells, besides restoring miRNAs' homeostasis, paving the way for MH repurposing for BCBM prevention.
Collapse
Affiliation(s)
- Joana Godinho-Pereira
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Margarida Dionísio Lopes
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana Rita Garcia
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Hugo M. Botelho
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1746-016 Lisbon, Portugal
| | - Rui Malhó
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1746-016 Lisbon, Portugal
| | - Inês Figueira
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Farm-ID—Faculty of Pharmacy Association for Research and Development, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Alexandra Brito
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
24
|
Kelly AM, Berry MR, Tasker SZ, McKee SA, Fan TM, Hergenrother PJ. Target-Agnostic P-Glycoprotein Assessment Yields Strategies to Evade Efflux, Leading to a BRAF Inhibitor with Intracranial Efficacy. J Am Chem Soc 2022; 144:12367-12380. [PMID: 35759775 DOI: 10.1021/jacs.2c03944] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The blood-brain barrier (BBB) presents a major hurdle in the development of central nervous system (CNS) active therapeutics, and expression of the P-glycoprotein (P-gp) efflux transporter at the blood-brain interface further impedes BBB penetrance of most small molecules. Designing efflux liabilities out of compounds can be laborious, and there is currently no generalizable approach to directly transform periphery-limited agents to ones active in the CNS. Here, we describe a target-agnostic, prospective assessment of P-gp efflux using diverse compounds. Our results demonstrate that reducing the molecular size or appending a carboxylic acid in many cases enables evasion of P-gp efflux in cell-based experiments and in mice. These strategies were then applied to transform a periphery-limited V600EBRAF inhibitor, dabrafenib, into versions that possess potent and selective anti-cancer activity but now also evade P-gp-mediated efflux. When compared to dabrafenib, the compound developed herein (everafenib) has superior BBB penetrance and superior efficacy in an intracranial mouse model of metastatic melanoma, suggesting it as a lead candidate for the treatment of melanoma metastases to the brain and gliomas with BRAF mutation. More generally, the results described herein suggest the actionability of the trends observed in these target-agnostic efflux studies and provide guidance for the conversion of non-BBB-penetrant drugs into versions that are BBB-penetrant and efficacious.
Collapse
Affiliation(s)
- Aya M Kelly
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthew R Berry
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sarah Z Tasker
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sydney A McKee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Timothy M Fan
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
25
|
Ladduwahetty T, Lee MR, Maillard MC, Cachope R, Todd D, Barnes M, Beaumont V, Chauhan A, Gallati C, Haughan AF, Kempf G, Luckhurst CA, Matthews K, McAllister G, Mitchell P, Patel H, Rose M, Saville-Stones E, Steinbacher S, Stott AJ, Thatcher E, Tierney J, Urbonas L, Munoz-Sanjuan I, Dominguez C. Identification of a Potent, Selective, and Brain-Penetrant Rho Kinase Inhibitor and its Activity in a Mouse Model of Huntington's Disease. J Med Chem 2022; 65:9819-9845. [PMID: 35816678 DOI: 10.1021/acs.jmedchem.2c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Rho kinase (ROCK) pathway is implicated in the pathogenesis of several conditions, including neurological diseases. In Huntington's disease (HD), ROCK is implicated in mutant huntingtin (HTT) aggregation and neurotoxicity, and members of the ROCK pathway are increased in HD mouse models and patients. To validate this mode of action as a potential treatment for HD, we sought a potent, selective, central nervous system (CNS)-penetrant ROCK inhibitor. Identifying a compound that could be dosed orally in mice with selectivity against other AGC kinases, including protein kinase G (PKG), whose inhibition could potentially activate the ROCK pathway, was paramount for the program. We describe the optimization of published ligands to identify a novel series of ROCK inhibitors based on a piperazine core. Morphing of the early series developed in-house by scaffold hopping enabled the identification of a compound exhibiting high potency and desired selectivity and demonstrating a robust pharmacodynamic (PD) effect by the inhibition of ROCK-mediated substrate (MYPT1) phosphorylation after oral dosing.
Collapse
Affiliation(s)
- Tammy Ladduwahetty
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Matthew R Lee
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Michel C Maillard
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Roger Cachope
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Daniel Todd
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Michael Barnes
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Vahri Beaumont
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Alka Chauhan
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Caroline Gallati
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Alan F Haughan
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Georg Kempf
- Proteros Biostructures GmbH, Bunsenstr. 7a, D-82152 Planegg-Martinsried, Germany
| | | | - Kim Matthews
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - George McAllister
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Philip Mitchell
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Hiral Patel
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Mark Rose
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | | | - Stefan Steinbacher
- Proteros Biostructures GmbH, Bunsenstr. 7a, D-82152 Planegg-Martinsried, Germany
| | - Andrew J Stott
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Emma Thatcher
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Jason Tierney
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Liudvikas Urbonas
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Ignacio Munoz-Sanjuan
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Celia Dominguez
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| |
Collapse
|
26
|
Rathi S, Griffith JI, Zhang W, Zhang W, Oh JH, Talele S, Sarkaria JN, Elmquist WF. The influence of the blood-brain barrier in the treatment of brain tumours. J Intern Med 2022; 292:3-30. [PMID: 35040235 DOI: 10.1111/joim.13440] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Brain tumours have a poor prognosis and lack effective treatments. The blood-brain barrier (BBB) represents a major hurdle to drug delivery to brain tumours. In some locations in the tumour, the BBB may be disrupted to form the blood-brain tumour barrier (BBTB). This leaky BBTB enables diagnosis of brain tumours by contrast enhanced magnetic resonance imaging; however, this disruption is heterogeneous throughout the tumour. Thus, relying on the disrupted BBTB for achieving effective drug concentrations in brain tumours has met with little clinical success. Because of this, it would be beneficial to design drugs and drug delivery strategies to overcome the 'normal' BBB to effectively treat the brain tumours. In this review, we discuss the role of BBB/BBTB in brain tumour diagnosis and treatment highlighting the heterogeneity of the BBTB. We also discuss various strategies to improve drug delivery across the BBB/BBTB to treat both primary and metastatic brain tumours. Recognizing that the BBB represents a critical determinant of drug efficacy in central nervous system tumours will allow a more rapid translation from basic science to clinical application. A more complete understanding of the factors, such as BBB-limited drug delivery, that have hindered progress in treating both primary and metastatic brain tumours, is necessary to develop more effective therapies.
Collapse
Affiliation(s)
- Sneha Rathi
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Jessica I Griffith
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Wenjuan Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Wenqiu Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Ju-Hee Oh
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Surabhi Talele
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - William F Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
27
|
Nakagawa T, Kijima T, Imasato N, Nagoshi A, Nakamura G, Uematsu T, Suzuki I, Nishihara D, Kamai T. Efficacy of cabozantinib therapy for brain metastases from renal cell carcinoma. IJU Case Rep 2022; 5:293-296. [PMID: 35795125 PMCID: PMC9249636 DOI: 10.1002/iju5.12459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/18/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Takashi Nakagawa
- Department of Urology Dokkyo Medical University Shimotsuga Tochigi Japan
| | - Toshiki Kijima
- Department of Urology Dokkyo Medical University Shimotsuga Tochigi Japan
| | - Naoki Imasato
- Department of Urology Dokkyo Medical University Shimotsuga Tochigi Japan
| | - Akihiko Nagoshi
- Department of Urology Dokkyo Medical University Shimotsuga Tochigi Japan
| | - Gaku Nakamura
- Department of Urology Dokkyo Medical University Shimotsuga Tochigi Japan
| | - Toshitaka Uematsu
- Department of Urology Dokkyo Medical University Shimotsuga Tochigi Japan
| | - Issei Suzuki
- Department of Urology Dokkyo Medical University Shimotsuga Tochigi Japan
| | - Daisaku Nishihara
- Department of Urology Dokkyo Medical University Shimotsuga Tochigi Japan
| | - Takao Kamai
- Department of Urology Dokkyo Medical University Shimotsuga Tochigi Japan
| |
Collapse
|
28
|
Fairhurst RA, Furet P, Imbach-Weese P, Stauffer F, Rueeger H, McCarthy C, Ripoche S, Oswald S, Arnaud B, Jary A, Maira M, Schnell C, Guthy DA, Wartmann M, Kiffe M, Desrayaud S, Blasco F, Widmer T, Seiler F, Gutmann S, Knapp M, Caravatti G. Identification of NVP-CLR457 as an Orally Bioavailable Non-CNS-Penetrant pan-Class IA Phosphoinositol-3-Kinase Inhibitor. J Med Chem 2022; 65:8345-8379. [PMID: 35500094 DOI: 10.1021/acs.jmedchem.2c00267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Balanced pan-class I phosphoinositide 3-kinase inhibition as an approach to cancer treatment offers the prospect of treating a broad range of tumor types and/or a way to achieve greater efficacy with a single inhibitor. Taking buparlisib as the starting point, the balanced pan-class I PI3K inhibitor 40 (NVP-CLR457) was identified with what was considered to be a best-in-class profile. Key to the optimization to achieve this profile was eliminating a microtubule stabilizing off-target activity, balancing the pan-class I PI3K inhibition profile, minimizing CNS penetration, and developing an amorphous solid dispersion formulation. A rationale for the poor tolerability profile of 40 in a clinical study is discussed.
Collapse
Affiliation(s)
- Robin A Fairhurst
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Pascal Furet
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | | | - Frédéric Stauffer
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Heinrich Rueeger
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Clive McCarthy
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Sebastien Ripoche
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Susanne Oswald
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Bertrand Arnaud
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Aline Jary
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Michel Maira
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Christian Schnell
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Daniel A Guthy
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Markus Wartmann
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Michael Kiffe
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | | | - Francesca Blasco
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Toni Widmer
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Frank Seiler
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Sascha Gutmann
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| | - Mark Knapp
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Giorgio Caravatti
- Novartis Institutes for BioMedical Research, Basel CH-4002, Switzerland
| |
Collapse
|
29
|
Quader S, Kataoka K, Cabral H. Nanomedicine for brain cancer. Adv Drug Deliv Rev 2022; 182:114115. [PMID: 35077821 DOI: 10.1016/j.addr.2022.114115] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/18/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023]
Abstract
CNS tumors remain among the deadliest forms of cancer, resisting conventional and new treatment approaches, with mortality rates staying practically unchanged over the past 30 years. One of the primary hurdles for treating these cancers is delivering drugs to the brain tumor site in therapeutic concentration, evading the blood-brain (tumor) barrier (BBB/BBTB). Supramolecular nanomedicines (NMs) are increasingly demonstrating noteworthy prospects for addressing these challenges utilizing their unique characteristics, such as improving the bioavailability of the payloadsviacontrolled pharmacokinetics and pharmacodynamics, BBB/BBTB crossing functions, superior distribution in the brain tumor site, and tumor-specific drug activation profiles. Here, we review NM-based brain tumor targeting approaches to demonstrate their applicability and translation potential from different perspectives. To this end, we provide a general overview of brain tumor and their treatments, the incidence of the BBB and BBTB, and their role on NM targeting, as well as the potential of NMs for promoting superior therapeutic effects. Additionally, we discuss critical issues of NMs and their clinical trials, aiming to bolster the potential clinical applications of NMs in treating these life-threatening diseases.
Collapse
Affiliation(s)
- Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan.
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
30
|
Manley PW, Huth F, Moussaoui S, Schoepfer J. A kinase inhibitor which specifically targets the ABL myristate pocket (STAMP), but unlike asciminib crosses the blood–brain barrier. Bioorg Med Chem Lett 2022; 59:128577. [DOI: 10.1016/j.bmcl.2022.128577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/03/2022] [Accepted: 01/15/2022] [Indexed: 11/25/2022]
|
31
|
Gu X, Zhang H, Jiao M, Han B, Zhang Z, Li J, Zhang Q. Histone deacetylase 6 inhibitors with blood-brain barrier penetration as a potential strategy for CNS-Disorders therapy. Eur J Med Chem 2022; 229:114090. [PMID: 34992037 DOI: 10.1016/j.ejmech.2021.114090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 11/27/2022]
Abstract
Histone deacetylase 6 inhibitors (HDAC6is) have been applied to certain cancer diseases and more recently to central nervous system (CNS) disorders including Rett syndrome, Alzheimer's and Parkinson's diseases, and major depressive disorder. Brain penetrance is the major challenge for the development of HDAC6is as potential therapeutics for CNS disorders due in part to the polarity of hydroxamate ZBG. Hence, only a handful of brain-penetrant HDAC6is have been reported and a few display appropriate in vitro and in vivo activities in models of neurological diseases in last decades. This review summarizes the contemporary research being done on HADC6is with brain penetration both the biological pathways involved and the structural modification attempts.
Collapse
Affiliation(s)
- Xiu Gu
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China; School of Chemistry & Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Hao Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China; School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Minru Jiao
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Bo Han
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Zixue Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Jianqi Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Qingwei Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China.
| |
Collapse
|
32
|
Fogli S, Tabbò F, Capuano A, Re MD, Passiglia F, Cucchiara F, Scavone C, Gori V, Novello S, Schmidinger M, Danesi R. The expanding family of c-Met inhibitors in solid tumors: a comparative analysis of their pharmacologic and clinical differences. Crit Rev Oncol Hematol 2022; 172:103602. [DOI: 10.1016/j.critrevonc.2022.103602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
|
33
|
Keylor MH, Gulati A, Kattar SD, Johnson RE, Chau RW, Margrey KA, Ardolino MJ, Zarate C, Poremba KE, Simov V, Morriello GJ, Acton JJ, Pio B, Yan X, Palte RL, McMinn SE, Nogle L, Lesburg CA, Adpressa D, Lin S, Neelamkavil S, Liu P, Su J, Hegde LG, Woodhouse JD, Faltus R, Xiong T, Ciaccio PJ, Piesvaux J, Otte KM, Wood HB, Kennedy ME, Bennett DJ, DiMauro EF, Fell MJ, Fuller PH. Structure-Guided Discovery of Aminoquinazolines as Brain-Penetrant and Selective LRRK2 Inhibitors. J Med Chem 2021; 65:838-856. [PMID: 34967623 DOI: 10.1021/acs.jmedchem.1c01968] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The leucine-rich repeat kinase 2 (LRRK2) protein has been genetically and functionally linked to Parkinson's disease (PD), a disabling and progressive neurodegenerative disorder whose current therapies are limited in scope and efficacy. In this report, we describe a rigorous hit-to-lead optimization campaign supported by structural enablement, which culminated in the discovery of brain-penetrant, candidate-quality molecules as represented by compounds 22 and 24. These compounds exhibit remarkable selectivity against the kinome and offer good oral bioavailability and low projected human doses. Furthermore, they showcase the implementation of stereochemical design elements that serve to enable a potency- and selectivity-enhancing increase in polarity and hydrogen bond donor (HBD) count while maintaining a central nervous system-friendly profile typified by low levels of transporter-mediated efflux and encouraging brain penetration in preclinical models.
Collapse
Affiliation(s)
- Mitchell H Keylor
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Anmol Gulati
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Solomon D Kattar
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Rebecca E Johnson
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Ryan W Chau
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Kaila A Margrey
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Michael J Ardolino
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Cayetana Zarate
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Kelsey E Poremba
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Vladimir Simov
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Gregori J Morriello
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - John J Acton
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Barbara Pio
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Xin Yan
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Rachel L Palte
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Spencer E McMinn
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Lisa Nogle
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Charles A Lesburg
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Donovon Adpressa
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Shishi Lin
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Santhosh Neelamkavil
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Ping Liu
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jing Su
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Laxminarayan G Hegde
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Janice D Woodhouse
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Robert Faltus
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Tina Xiong
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Paul J Ciaccio
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jennifer Piesvaux
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Karin M Otte
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Harold B Wood
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Matthew E Kennedy
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | | | - Erin F DiMauro
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Matthew J Fell
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Peter H Fuller
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
34
|
Li J, Hu X, Luo T, Lu Y, Feng Y, Zhang H, Liu D, Fan X, Wang Y, Jiang L, Wang Y, Hao X, Shi T, Wang Z. N-2-(phenylamino) benzamide derivatives as novel anti-glioblastoma agents: Synthesis and biological evaluation. Eur J Med Chem 2021; 226:113817. [PMID: 34537445 DOI: 10.1016/j.ejmech.2021.113817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022]
Abstract
Glioblastoma is one of the most lethal brain tumors. The crucial chemotherapy is mainly alkylating agents with modest clinical success. Given this desperate need and inspired by the encouraging results of a phase II trial via concomitant Topo I inhibitor plus COX-2 inhibitor, we designed a series of N-2-(phenylamino) benzamide derivatives as novel anti-glioblastoma agents based on structure modification on 1,5-naphthyridine derivatives (Topo I inhibitors). Notably, the target compounds I-1 (33.61 ± 1.15 μM) and I-8 (45.01 ± 2.37 μM) were confirmed to inhibit COX-2, while a previous reported compound (1,5-naphthyridine derivative) resulted nearly inactive towards COX-2 (IC50 > 150 μM). Besides, I-1 and I-8 exhibited higher anti-proliferation, anti-migration, anti-invasion effects than the parent compound 1,5-naphthyridine derivative, suggesting the success of modification based on the parent. Moreover, I-1 obviously repressed tumor growth in the C6 glioma orthotopic model (TGI = 66.7%) and U87MG xenograft model (TGI = 69.4%). Besides, I-1 downregulated PGE2, VEGF, MMP-9, and STAT3 activation, upregulated E-cadherin in the orthotopic model. More importantly, I-1 showed higher safety than temozolomide and different mechanism from temozolomide in the C6 glioma orthotopic model. All the evidence demonstrated that N-2-(phenylamino) benzamide derivatives as novel anti-glioblastoma agents could be promising for the glioma management.
Collapse
Affiliation(s)
- Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Tian Luo
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yingmei Lu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yiyue Feng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Dan Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xiaohong Fan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuqing Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Liming Jiang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuying Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
35
|
Axtman AD. Characterizing the role of the dark kinome in neurodegenerative disease - A mini review. Biochim Biophys Acta Gen Subj 2021; 1865:130014. [PMID: 34547390 DOI: 10.1016/j.bbagen.2021.130014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Drugs that modulate previously unexplored targets could potentially slow or halt the progression of neurodegenerative diseases. Several candidate proteins lie within the dark kinome, those human kinases that have not been well characterized. Much of the kinome (~80%) remains poorly studied, and these targets likely harbor untapped biological potential. SCOPE OF REVIEW This review highlights the significance of kinases as mediators of aberrant pathways in neurodegeneration and provides examples of published high-quality small molecules that modulate some of these kinases. MAJOR CONCLUSIONS There is a need for continued efforts to develop high-quality chemical tools to illuminate the function of understudied kinases in the brain. Potent and selective small molecules enable accurate pairing of an observed phenotype with a protein target. GENERAL SIGNIFICANCE The examples discussed herein support the premise that validation of therapeutic hypotheses surrounding kinase targets can be accomplished via small molecules and they can serve as the basis for disease-focused drug development campaigns.
Collapse
Affiliation(s)
- Alison D Axtman
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Structural Genomics Consortium, Chapel Hill, NC, USA.
| |
Collapse
|
36
|
Bouchè V, Aldegheri G, Donofrio CA, Fioravanti A, Roberts-Thomson S, Fox SB, Schettini F, Generali D. BRAF Signaling Inhibition in Glioblastoma: Which Clinical Perspectives? Front Oncol 2021; 11:772052. [PMID: 34804975 PMCID: PMC8595319 DOI: 10.3389/fonc.2021.772052] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022] Open
Abstract
IDH-wild type (wt) glioblastoma (GB) accounts for approximately 90% of all GB and has a poor outcome. Surgery and adjuvant therapy with temozolomide and radiotherapy is the main therapeutic approach. Unfortunately, after relapse and progression, which occurs in most cases, there are very limited therapeutic options available. BRAF which plays a role in the oncogenesis of several malignant tumors, is also involved in a small proportion of IDH-wt GB. Previous successes with anti-B-Raf targeted therapy in tumors with V600E BRAF mutation like melanoma, combined with the poor prognosis and paucity of therapeutic options for GB patients is leading to a growing interest in the potential efficacy of this approach. This review is thus focused on dissecting the state of the art and future perspectives on BRAF pathway inhibition in IDH-wt GB. Overall, clinical efficacy is mostly described within case reports and umbrella trials, with promising but still insufficient results to draw more definitive conclusions. Further studies are needed to better define the molecular and phenotypic features that predict for a favorable response to treatment. In addition, limitations of B-Raf-inhibitors, in monotherapy or in combination with other therapeutic partners, to penetrate the blood-brain barrier and the development of acquired resistance mechanisms responsible for tumor progression need to be addressed.
Collapse
Affiliation(s)
- Victoria Bouchè
- Department of Medicine, Surgery and Health Sciences, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Giovanni Aldegheri
- Department of Medicine, Surgery and Health Sciences, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Carmine Antonio Donofrio
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal National Health System (NHS) Foundation Trust, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Antonio Fioravanti
- Medical Oncology and Translational Research Unit, Azienda Socio-Sanitaria Territoriale (ASST) of Cremona, Cremona Hospital, Cremona, Italy
| | | | - Stephen B. Fox
- Department of Pathology, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
| | - Francesco Schettini
- Translational Genomics and Targeted Therapies in Solid Tumors Group, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Daniele Generali
- Department of Medicine, Surgery and Health Sciences, Cattinara Hospital, University of Trieste, Trieste, Italy
- Unit of Neurosurgery, Azienda Socio-Sanitaria Territoriale (ASST) of Cremona, Cremona Hospital, Cremona, Italy
| |
Collapse
|
37
|
Hirsch L, Martinez Chanza N, Farah S, Xie W, Flippot R, Braun DA, Rathi N, Thouvenin J, Collier KA, Seront E, de Velasco G, Dzimitrowicz H, Beuselinck B, Xu W, Bowman IA, Lam ET, Abuqayas B, Bilen MA, Varkaris A, Zakharia Y, Harrison MR, Mortazavi A, Barthélémy P, Agarwal N, McKay RR, Brastianos PK, Krajewski KM, Albigès L, Harshman LC, Choueiri TK. Clinical Activity and Safety of Cabozantinib for Brain Metastases in Patients With Renal Cell Carcinoma. JAMA Oncol 2021; 7:1815-1823. [PMID: 34673916 DOI: 10.1001/jamaoncol.2021.4544] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance Patients with brain metastases from renal cell carcinoma (RCC) have been underrepresented in clinical trials, and effective systemic therapy is lacking. Cabozantinib shows robust clinical activity in metastatic RCC, but its effect on brain metastases remains unclear. Objective To assess the clinical activity and toxic effects of cabozantinib to treat brain metastases in patients with metastatic RCC. Design, Setting, and Participants This retrospective cohort study included patients with metastatic RCC and brain metastases treated in 15 international institutions (US, Belgium, France, and Spain) between January 2014 and October 2020. Cohort A comprised patients with progressing brain metastases without concomitant brain-directed local therapy, and cohort B comprised patients with stable or progressing brain metastases concomitantly treated by brain-directed local therapy. Exposures Receipt of cabozantinib monotherapy at any line of treatment. Main Outcomes and Measures Intracranial radiological response rate by modified Response Evaluation Criteria in Solid Tumors, version 1.1, and toxic effects of cabozantinib. Results Of the 88 patients with brain metastases from RCC included in the study, 33 (38%) were in cohort A and 55 (62%) were in cohort B; the majority of patients were men (n = 69; 78%), and the median age at cabozantinib initiation was 61 years (range, 34-81 years). Median follow-up was 17 months (range, 2-74 months). The intracranial response rate was 55% (95% CI, 36%-73%) and 47% (95% CI, 33%-61%) in cohorts A and B, respectively. In cohort A, the extracranial response rate was 48% (95% CI, 31%-66%), median time to treatment failure was 8.9 months (95% CI, 5.9-12.3 months), and median overall survival was 15 months (95% CI, 9.0-30.0 months). In cohort B, the extracranial response rate was 38% (95% CI, 25%-52%), time to treatment failure was 9.7 months (95% CI, 6.0-13.2 months), and median overall survival was 16 months (95% CI, 12.0-21.9 months). Cabozantinib was well tolerated, with no unexpected toxic effects or neurological adverse events reported. No treatment-related deaths were observed. Conclusions and Relevance In this cohort study, cabozantinib showed considerable intracranial activity and an acceptable safety profile in patients with RCC and brain metastases. Support of prospective studies evaluating the efficacy of cabozantinib for brain metastases in patients with RCC is critical.
Collapse
Affiliation(s)
- Laure Hirsch
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Nieves Martinez Chanza
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Medical Oncology Department, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Subrina Farah
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Wanling Xie
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ronan Flippot
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - David A Braun
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Jonathan Thouvenin
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Katharine A Collier
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus
| | - Emmanuel Seront
- Institut Roi Albert II, Department of Medical Oncology, St Luc University Hospital, Brussels, Belgium
| | | | | | - Benoit Beuselinck
- Leuven Cancer Institute, Universitaire Ziekenhuizen, Leuven, Belgium
| | - Wenxin Xu
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - I Alex Bowman
- University of Texas Southwestern Medical Center, Dallas
| | - Elaine T Lam
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora
| | - Bashar Abuqayas
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City
| | | | | | - Yousef Zakharia
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City
| | | | - Amir Mortazavi
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus
| | - Philippe Barthélémy
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
| | | | - Rana R McKay
- Moores Cancer Center, University of California San Diego, La Jolla
| | - Priscilla K Brastianos
- Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston
| | | | - Laurence Albigès
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Lauren C Harshman
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Toni K Choueiri
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
38
|
Devonport J, Bodnár N, McGown A, Bukar Maina M, Serpell LC, Kállay C, Spencer J, Kostakis GE. Salpyran: A Cu(II) Selective Chelator with Therapeutic Potential. Inorg Chem 2021; 60:15310-15320. [PMID: 34609139 DOI: 10.1021/acs.inorgchem.1c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the rational design of a tunable Cu(II) chelating scaffold, 2-(((2-((pyridin-2-ylmethyl)amino)ethyl)amino)methyl)phenol, Salpyran (HL). This tetradentate ligand is predicated to have suitable permeation, has an extremely high affinity for Cu compared to clioquinol (pCu7.4 = 10.65 vs 5.91), and exhibits excellent selectivity for Cu(II) over Zn(II) in aqueous media. Solid and solution studies corroborate the formation of a stable [Cu(II)L]+ monocationic species at physiological pH values (7.4). Its action as an antioxidant was tested in ascorbate, tau, and human prion protein assays, which reveal that Salpyran prevents the formation of reactive oxygen species from the binary Cu(II)/H2O2 system, demonstrating its potential use as a therapeutic small molecule metal chelator.
Collapse
Affiliation(s)
- Jack Devonport
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, United Kingdom
| | - Nikolett Bodnár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Andrew McGown
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, United Kingdom
| | - Mahmoud Bukar Maina
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom.,College of Medical Sciences, Yobe State University, KM 7, Sir Kashim Ibrahim Way, PMB 1144 Damaturu, Yobe State, Nigeria
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Csilla Kállay
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, United Kingdom
| | - George E Kostakis
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, United Kingdom
| |
Collapse
|
39
|
Xiong B, Wang Y, Chen Y, Xing S, Liao Q, Chen Y, Li Q, Li W, Sun H. Strategies for Structural Modification of Small Molecules to Improve Blood-Brain Barrier Penetration: A Recent Perspective. J Med Chem 2021; 64:13152-13173. [PMID: 34505508 DOI: 10.1021/acs.jmedchem.1c00910] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the development of central nervous system (CNS) drugs, the blood-brain barrier (BBB) restricts many drugs from entering the brain to exert therapeutic effects. Although many novel delivery methods of large molecule drugs have been designed to assist transport, small molecule drugs account for the vast majority of the CNS drugs used clinically. From this perspective, we review studies from the past five years that have sought to modify small molecules to increase brain exposure. Medicinal chemists make it easier for small molecules to cross the BBB by improving diffusion, reducing efflux, and activating carrier transporters. On the basis of their excellent work, we summarize strategies for structural modification of small molecules to improve BBB penetration. These strategies are expected to provide a reference for the future development of small molecule CNS drugs.
Collapse
Affiliation(s)
- Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yuanyuan Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ying Chen
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qinghong Liao
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Qi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China.,School of Basic Medicine, Qingdao University, Qingdao 266071, People's Republic of China
| | - Wei Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
40
|
Borsari C, De Pascale M, Wymann MP. Chemical and Structural Strategies to Selectively Target mTOR Kinase. ChemMedChem 2021; 16:2744-2759. [PMID: 34114360 PMCID: PMC8518124 DOI: 10.1002/cmdc.202100332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 11/08/2022]
Abstract
Dysregulation of the mechanistic target of rapamycin (mTOR) pathway is implicated in cancer and neurological disorder, which identifies mTOR inhibition as promising strategy for the treatment of a variety of human disorders. First-generation mTOR inhibitors include rapamycin and its analogues (rapalogs) which act as allosteric inhibitors of TORC1. Structurally unrelated, ATP-competitive inhibitors that directly target the mTOR catalytic site inhibit both TORC1 and TORC2. Here, we review investigations of chemical scaffolds explored for the development of highly selective ATP-competitive mTOR kinase inhibitors (TORKi). Extensive medicinal chemistry campaigns allowed to overcome challenges related to structural similarity between mTOR and the phosphoinositide 3-kinase (PI3K) family. A broad region of chemical space is covered by TORKi. Here, the investigation of chemical substitutions and physicochemical properties has shed light on the compounds' ability to cross the blood brain barrier (BBB). This work provides insights supporting the optimization of TORKi for the treatment of cancer and central nervous system disorders.
Collapse
Affiliation(s)
- Chiara Borsari
- Department of BiomedicineUniversity of BaselMattenstrasse 284058BaselSwitzerland
| | - Martina De Pascale
- Department of BiomedicineUniversity of BaselMattenstrasse 284058BaselSwitzerland
| | - Matthias P. Wymann
- Department of BiomedicineUniversity of BaselMattenstrasse 284058BaselSwitzerland
| |
Collapse
|
41
|
Wei X, Meel MH, Breur M, Bugiani M, Hulleman E, Phoenix TN. Defining tumor-associated vascular heterogeneity in pediatric high-grade and diffuse midline gliomas. Acta Neuropathol Commun 2021; 9:142. [PMID: 34425907 PMCID: PMC8381557 DOI: 10.1186/s40478-021-01243-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022] Open
Abstract
The blood–brain barrier (BBB) plays important roles in brain tumor pathogenesis and treatment response, yet our understanding of its function and heterogeneity within or across brain tumor types remains poorly characterized. Here we analyze the neurovascular unit (NVU) of pediatric high-grade glioma (pHGG) and diffuse midline glioma (DMG) using patient derived xenografts and natively forming glioma mouse models. We show tumor-associated vascular differences between these glioma subtypes, and parallels between PDX and mouse model systems, with DMG models maintaining a more normal vascular architecture, BBB function and endothelial transcriptional program relative to pHGG models. Unlike prior work in angiogenic brain tumors, we find that expression of secreted Wnt antagonists do not alter the tumor-associated vascular phenotype in DMG tumor models. Together, these findings highlight vascular heterogeneity between pHGG and DMG and differences in their response to alterations in developmental BBB signals that may participate in driving these pathological differences.
Collapse
|
42
|
Maliyakkal N, Appadath Beeran A, Udupa N. Nanoparticles of cisplatin augment drug accumulations and inhibit multidrug resistance transporters in human glioblastoma cells. Saudi Pharm J 2021; 29:857-873. [PMID: 34408546 PMCID: PMC8363105 DOI: 10.1016/j.jsps.2021.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022] Open
Abstract
Background Cisplatin (CSP) is a potent anticancer drug widely used in treating glioblastoma multiforme (GBM). However, CSP's clinical efficacy in GBM contrasted with low therapeutic ratio, toxicity, and multidrug resistance (MDR). Therefore, we have developed a system for the active targeting of cisplatin in GBM via cisplatin loaded polymeric nanoplatforms (CSP-NPs). Methods CSP-NPs were prepared by modified double emulsion and nanoprecipitation techniques. The physiochemical characterizations of CSP-NPs were performed using zeta sizer, scanning electron microscopy (SEM), drug release kinetics, and drug content analysis. Cytotoxicity, induction of apoptosis, and cell cycle-specific activity of CSP-NPs in human GBM cell lines were evaluated by MTT assay, fluorescent microscopy, and flow cytometry. Intracellular drug uptake was gauged by fluorescent imaging and flow cytometry. The potential of CSP-NPs to inhibit MDR transporters were assessed by flow cytometry-based drug efflux assays. Results CSP-NPs have smooth surface properties with discrete particle size with required zeta potential, polydispersity index, drug entrapment efficiency, and drug content. CSP-NPs has demonstrated an ‘initial burst effect’ followed by sustained drug release properties. CSP-NPs imparted dose and time-dependent cytotoxicity and triggered apoptosis in human GBM cells. Interestingly, CSP-NPs significantly increased uptake, internalization, and accumulations of anticancer drugs. Moreover, CSP-NPs significantly reversed the MDR transporters (ABCB1 and ABCG2) in human GBM cells. Conclusion The nanoparticulate system of cisplatin seems to has a promising potential for active targeting of cisplatin as an effective and specific therapeutic for human GBM, thus eliminating current chemotherapy's limitations.
Collapse
Key Words
- ABC, ATP-binding cassette
- ANOVA, Analysis of variance
- Active drug targeting
- BBB, Blood brain barrier
- BCRP, Breast cancer resistance protein
- CSP, Cisplatin
- CSP-NPs, Cisplatin nanoparticles DMEM, Dulbecco’s modified eagle medium
- Cisplatin nanoparticles
- DMSO, Dimethyl sulfoxide
- DNR, Daunorubicin
- DOX, Doxorubicin
- Drug uptake and accumulations
- EDTA, Ethylenediaminetetraacetic acid
- EPR, Enhanced permeability retention
- FACS, Fluorescence activated cell sorting
- FBS, Fetal bovine serum
- FTC, Fumitremorgin C
- GBM, Glioblastoma multiforme
- HBSS, Hank’s balanced salt solution
- HPLC, High Performance Liquid Chromatography
- Induction of Apoptosis
- MDR, Multidrug resistance
- MTT, Methyl tetrazolium
- MX, Mitoxantrone
- NPs, Nanoparticles
- O.D., Optical density
- PBS, Phosphate buffer saline
- PI, Propidium iodide
- PLGA, Poly (lactic-co-glycolic) acid
- RT, Room temperature
- Rho-123, Rhodamine 123
- SDS, Sodium dodecyl sulfate
- SEM, Scanning electron microscopy
- Targeting multidrug resistance (MDR) transporters
- nm, Nanometer
Collapse
Affiliation(s)
- Naseer Maliyakkal
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushait, King Khalid University, Abha, Saudi Arabia.,Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.,Cancer Research Unit, King Khalid University, Abha, Saudi Arabia
| | - Asmy Appadath Beeran
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nayanabhirama Udupa
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
43
|
Elkamhawy A, Ali EMH, Lee K. New horizons in drug discovery of lymphocyte-specific protein tyrosine kinase (Lck) inhibitors: a decade review (2011-2021) focussing on structure-activity relationship (SAR) and docking insights. J Enzyme Inhib Med Chem 2021; 36:1574-1602. [PMID: 34233563 PMCID: PMC8274522 DOI: 10.1080/14756366.2021.1937143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lymphocyte-specific protein tyrosine kinase (Lck), a non-receptor Src family kinase, has a vital role in various cellular processes such as cell cycle control, cell adhesion, motility, proliferation, and differentiation. Lck is reported as a key factor regulating the functions of T-cell including the initiation of TCR signalling, T-cell development, in addition to T-cell homeostasis. Alteration in expression and activity of Lck results in numerous disorders such as cancer, asthma, diabetes, rheumatoid arthritis, atherosclerosis, and neuronal diseases. Accordingly, Lck has emerged as a novel target against different diseases. Herein, we amass the research efforts in literature and pharmaceutical patents during the last decade to develop new Lck inhibitors. Additionally, structure-activity relationship studies (SAR) and docking models of these new inhibitors within the active site of Lck were demonstrated offering deep insights into their different binding modes in a step towards the identification of more potent, selective, and safe Lck inhibitors.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eslam M H Ali
- Center for Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Republic of Korea.,University of Science & Technology (UST), Daejeon, Republic of Korea.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
44
|
He C, Xu K, Zhu X, Dunphy PS, Gudenas B, Lin W, Twarog N, Hover LD, Kwon CH, Kasper LH, Zhang J, Li X, Dalton J, Jonchere B, Mercer KS, Currier DG, Caufield W, Wang Y, Xie J, Broniscer A, Wetmore C, Upadhyaya SA, Qaddoumi I, Klimo P, Boop F, Gajjar A, Zhang J, Orr BA, Robinson GW, Monje M, Freeman Iii BB, Roussel MF, Northcott PA, Chen T, Rankovic Z, Wu G, Chiang J, Tinkle CL, Shelat AA, Baker SJ. Patient-derived models recapitulate heterogeneity of molecular signatures and drug response in pediatric high-grade glioma. Nat Commun 2021; 12:4089. [PMID: 34215733 PMCID: PMC8253809 DOI: 10.1038/s41467-021-24168-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 05/25/2021] [Indexed: 01/02/2023] Open
Abstract
Pediatric high-grade glioma (pHGG) is a major contributor to cancer-related death in children. In vitro and in vivo disease models reflecting the intimate connection between developmental context and pathogenesis of pHGG are essential to advance understanding and identify therapeutic vulnerabilities. Here we report establishment of 21 patient-derived pHGG orthotopic xenograft (PDOX) models and eight matched cell lines from diverse groups of pHGG. These models recapitulate histopathology, DNA methylation signatures, mutations and gene expression patterns of the patient tumors from which they were derived, and include rare subgroups not well-represented by existing models. We deploy 16 new and existing cell lines for high-throughput screening (HTS). In vitro HTS results predict variable in vivo response to PI3K/mTOR and MEK pathway inhibitors. These unique new models and an online interactive data portal for exploration of associated detailed molecular characterization and HTS chemical sensitivity data provide a rich resource for pediatric brain tumor research.
Collapse
Affiliation(s)
- Chen He
- Department of Developmental Neurobiology, Memphis, TN, USA
| | - Ke Xu
- Center for Applied Bioinformatics, Memphis, TN, USA
- Department of Computational Biology, Memphis, TN, USA
| | - Xiaoyan Zhu
- Department of Developmental Neurobiology, Memphis, TN, USA
| | - Paige S Dunphy
- Department of Developmental Neurobiology, Memphis, TN, USA
- Department of Oncology, Memphis, TN, USA
| | - Brian Gudenas
- Department of Developmental Neurobiology, Memphis, TN, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, Memphis, TN, USA
| | - Nathaniel Twarog
- Department of Chemical Biology and Therapeutics, Memphis, TN, USA
| | - Laura D Hover
- Department of Developmental Neurobiology, Memphis, TN, USA
| | | | | | - Junyuan Zhang
- Department of Developmental Neurobiology, Memphis, TN, USA
| | - Xiaoyu Li
- Department of Pathology, Memphis, TN, USA
| | | | | | | | - Duane G Currier
- Department of Chemical Biology and Therapeutics, Memphis, TN, USA
| | - William Caufield
- Preclinical Pharmacokinetics Shared Resource St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yingzhe Wang
- Preclinical Pharmacokinetics Shared Resource St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jia Xie
- Department of Chemical Biology and Therapeutics, Memphis, TN, USA
| | - Alberto Broniscer
- Division of Hematology-Oncology, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | - Paul Klimo
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Frederick Boop
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Jinghui Zhang
- Department of Computational Biology, Memphis, TN, USA
| | | | | | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Burgess B Freeman Iii
- Preclinical Pharmacokinetics Shared Resource St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, Memphis, TN, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, Memphis, TN, USA
- Department of Computational Biology, Memphis, TN, USA
| | | | - Christopher L Tinkle
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Anang A Shelat
- Department of Chemical Biology and Therapeutics, Memphis, TN, USA.
| | | |
Collapse
|
45
|
Wang Z, Peet NP, Zhang P, Jiang Y, Rong L. Current Development of Glioblastoma Therapeutic Agents. Mol Cancer Ther 2021; 20:1521-1532. [PMID: 34172531 DOI: 10.1158/1535-7163.mct-21-0159] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumor in humans. Over the past several decades, despite improvements in neurosurgical techniques, development of powerful chemotherapeutic agents, advances in radiotherapy, and comprehensive genomic profiling and molecular characterization, treatment of GBM has achieved very limited success in increasing overall survival. Thus, identifying and understanding the key molecules and barriers responsible for the malignant phenotypes and treatment resistance of GBM will yield new potential therapeutic targets. We review the most recent development of receptor tyrosine kinase targeted therapy for GBM and discuss the current status of several novel strategies with the emphasis on blood-brain barrier penetration as a major obstacle for small-molecule drugs to achieve their therapeutic goals. Likewise, a major opportunity for the treatment of GBM lies in the use of biomarkers for the discovery and development of new receptor tyrosine kinase targeted therapy.
Collapse
Affiliation(s)
- Zilai Wang
- Chicago BioSolutions, Inc., Chicago, Illinois.
| | | | - Pin Zhang
- Chicago BioSolutions, Inc., Chicago, Illinois
| | - Yuwei Jiang
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
46
|
Gulati A, Yeung CS, Lapointe B, Kattar SD, Gunaydin H, Scott JD, Childers KK, Methot JL, Simov V, Kurukulasuriya R, Pio B, Morriello GJ, Liu P, Tang H, Neelamkavil S, Wood HB, Rada VL, Ardolino MJ, Yan XC, Palte R, Otte K, Faltus R, Woodhouse J, Hegde LG, Ciaccio P, Minnihan EC, DiMauro EF, Fell MJ, Fuller PH, Ellis JM. Optimization of brain-penetrant picolinamide derived leucine-rich repeat kinase 2 (LRRK2) inhibitors. RSC Med Chem 2021; 12:1164-1173. [PMID: 34355182 DOI: 10.1039/d1md00097g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022] Open
Abstract
The discovery of potent, kinome selective, brain penetrant LRRK2 inhibitors is the focus of extensive research seeking new, disease-modifying treatments for Parkinson's disease (PD). Herein, we describe the discovery and evolution of a picolinamide-derived lead series. Our initial optimization efforts aimed at improving the potency and CLK2 off-target selectivity of compound 1 by modifying the heteroaryl C-H hinge and linker regions. This resulted in compound 12 which advanced deep into our research operating plan (ROP) before heteroaryl aniline metabolite 14 was characterized as Ames mutagenic, halting its progression. Strategic modifications to our ROP were made to enable early de-risking of putative aniline metabolites or hydrolysis products for mutagenicity in Ames. This led to the discovery of 3,5-diaminopyridine 15 and 4,6-diaminopyrimidine 16 as low risk for mutagenicity (defined by a 3-strain Ames negative result). Analysis of key matched molecular pairs 17 and 18 led to the prioritization of the 3,5-diaminopyridine sub-series for further optimization due to enhanced rodent brain penetration. These efforts culminated in the discovery of ethyl trifluoromethyl pyrazole 23 with excellent LRRK2 potency and expanded selectivity versus off-target CLK2.
Collapse
Affiliation(s)
- Anmol Gulati
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Charles S Yeung
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Blair Lapointe
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Solomon D Kattar
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Hakan Gunaydin
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Jack D Scott
- Merck & Co., Inc. 2015 Galloping Hill Road Kenilworth New Jersey 07033 USA
| | - Kaleen K Childers
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Joey L Methot
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Vladimir Simov
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Ravi Kurukulasuriya
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Barbara Pio
- Merck & Co., Inc. 2015 Galloping Hill Road Kenilworth New Jersey 07033 USA
| | - Greg J Morriello
- Merck & Co., Inc. 2015 Galloping Hill Road Kenilworth New Jersey 07033 USA
| | - Ping Liu
- Merck & Co., Inc. 2015 Galloping Hill Road Kenilworth New Jersey 07033 USA
| | - Haiqun Tang
- Merck & Co., Inc. 2015 Galloping Hill Road Kenilworth New Jersey 07033 USA
| | | | - Harold B Wood
- Merck & Co., Inc. 2015 Galloping Hill Road Kenilworth New Jersey 07033 USA
| | - Vanessa L Rada
- Merck & Co., Inc. 770 Sumneytown Pike West Point Pennsylvania 19486 USA
| | - Michael J Ardolino
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Xin Cindy Yan
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Rachel Palte
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Karin Otte
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Robert Faltus
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Janice Woodhouse
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Laxminarayan G Hegde
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Paul Ciaccio
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Ellen C Minnihan
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Erin F DiMauro
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Matthew J Fell
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - Peter H Fuller
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| | - J Michael Ellis
- Merck & Co., Inc. 33 Avenue Louis Pasteur Boston Massachusetts 02115 USA +1 617 992 2472 +1 617 992 3113
| |
Collapse
|
47
|
Murrell E, Tong J, Smil D, Kiyota T, Aman AM, Isaac MB, Watson IDG, Vasdev N. Leveraging Open Science Drug Development for PET: Preliminary Neuroimaging of 11C-Labeled ALK2 Inhibitors. ACS Med Chem Lett 2021; 12:846-850. [PMID: 34055235 PMCID: PMC8155239 DOI: 10.1021/acsmedchemlett.1c00127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
![]()
Mutations
in the gene encoding activin receptor-like kinase 2 (ALK2)
are implicated in the pathophysiology of a pediatric brainstem cancer,
diffuse intrinsic pontine glioma (DIPG). Inhibitors of ALK2 that cross
the blood–brain barrier have been proposed as a method of treatment
for DIPG. As part of an open science approach to radiopharmaceutical
and drug discovery, we developed 11C-labeled radiotracers
from potent and selective lead ALK2 inhibitors to investigate their
brain permeability through positron emission tomography (PET) neuroimaging.
Four radiotracers were synthesized by 11C-methylation and
assessed by dynamic PET imaging in healthy Sprague–Dawley rats.
One of the compounds, [11C]M4K2127, showed high initial brain uptake (SUV ∼
2), including in the region of interest (pons). This data supports
the use of this chemotype as a brain penetrant ALK2 inhibitor that
permeates evenly into the pons with potential application for the
treatment of DIPG.
Collapse
Affiliation(s)
- Emily Murrell
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), 250 College St., M5T 1R8, Toronto, Ontario Canada
| | - Junchao Tong
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), 250 College St., M5T 1R8, Toronto, Ontario Canada
| | - David Smil
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, M5G 0A3, Toronto, Ontario Canada
| | - Taira Kiyota
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, M5G 0A3, Toronto, Ontario Canada
| | - Ahmed M. Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, M5G 0A3, Toronto, Ontario Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., M5S 3M2, Toronto, Ontario Canada
| | - Methvin B. Isaac
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, M5G 0A3, Toronto, Ontario Canada
| | - Iain D. G. Watson
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, M5G 0A3, Toronto, Ontario Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), 250 College St., M5T 1R8, Toronto, Ontario Canada
- Department of Psychiatry, University of Toronto, 250 College St., M5T 1R8, Toronto, Ontario Canada
| |
Collapse
|
48
|
Zeytün E, Altıntop MD, Sever B, Özdemir A, Ellakwa DE, Ocak Z, Ciftci HI, Otsuka M, Fujita M, Radwan MO. A New Series of Antileukemic Agents: Design, Synthesis, In Vitro and In Silico Evaluation of Thiazole-Based ABL1 Kinase Inhibitors. Anticancer Agents Med Chem 2021; 21:1099-1109. [PMID: 32838725 DOI: 10.2174/1871520620666200824100408] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/09/2020] [Accepted: 07/31/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND After the approval of imatinib, more than 25 antitumor agents targeting kinases have been approved, and several promising candidates are at various stages of clinical evaluation. OBJECTIVES Due to the importance of the thiazole scaffold in targeted anticancer drug discovery, the goal of this work is to identify new thiazolyl hydrazones as potent ABL1 kinase inhibitors for the management of Chronic Myeloid Leukemia (CML). METHODS New thiazolyl hydrazones (2a-p) were synthesized and investigated for their cytotoxic effects on the K562 CML cell line. Compounds 2h, 2j and 2l showed potent anticancer activity against K562 cell line. The cytotoxic effects of these compounds on other leukemia (HL-60, MT-2 and Jurkat) and HeLa human cervical carcinoma cell lines were also investigated. Furthermore, their cytotoxic effects on Mitogen-Activated Peripheral Blood Mononuclear Cells (MA-PBMCs) were evaluated to determine their selectivity. Due to its selective and potent anticancer activity, compound 2j was benchmarked for its apoptosis-inducing potential on K562 cell line and inhibitory effects on eight different Tyrosine Kinases (TKs), including ABL1 kinase. In order to investigate the binding mode of compound 2j into the ATP binding site of ABL1 kinase (PDB: 1IEP), a molecular docking study was conducted using MOE 2018.01 program. The QikProp module of Schrödinger's Molecular modelling package was used to predict the pharmacokinetic properties of compounds 2a-p. RESULTS 4-(4-(Methylsulfonyl)phenyl)-2-[2-((1,3-benzodioxol-4-yl)methylene)hydrazinyl]thiazole (2j) showed antiproliferative activity against K562 cell line with an IC50 value of 8.87±1.93 μM similar to imatinib (IC50= 6.84±1.11μM). Compound 2j was found to be more effective than imatinib on HL-60, Jurkat and MT-2 cells. Compound 2j also showed cytotoxic activity against HeLa cell line similar to imatinib. The higher selectivity index value of compound 2j than imatinib indicated that its antiproliferative activity was selective. Compound 2j also induced apoptosis in K562 cell line more than imatinib. Among eight TKs, compound 2j showed the strongest inhibitory activity against ABL1 kinase enzyme (IC50= 5.37±1.17μM). According to molecular docking studies, compound 2j exhibited high affinity to the ATP binding site of ABL1 kinase, forming significant intermolecular interactions. On the basis of in silico studies, this compound did not violate Lipinski's rule of five and Jorgensen's rule of three. CONCLUSION Compound 2j stands out as a potential orally bioavailable ABL1 kinase inhibitor for the treatment of CML.
Collapse
Affiliation(s)
- Ebru Zeytün
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Mehlika D Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Doha E Ellakwa
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Zeynep Ocak
- Department of Microbiology, Kocaeli State Hospital, Kocaeli 41300, Turkey
| | - Halil I Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto 8620973, Japan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto 8620973, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto 8620973, Japan
| | - Mohamed O Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto 8620973, Japan
| |
Collapse
|
49
|
Peikert K, Federti E, Matte A, Constantin G, Pietronigro EC, Fabene PF, Defilippi P, Turco E, Del Gallo F, Pucci P, Amoresano A, Illiano A, Cozzolino F, Monti M, Garello F, Terreno E, Alper SL, Glaß H, Pelzl L, Akgün K, Ziemssen T, Ordemann R, Lang F, Brunati AM, Tibaldi E, Andolfo I, Iolascon A, Bertini G, Buffelli M, Zancanaro C, Lorenzetto E, Siciliano A, Bonifacio M, Danek A, Walker RH, Hermann A, De Franceschi L. Therapeutic targeting of Lyn kinase to treat chorea-acanthocytosis. Acta Neuropathol Commun 2021; 9:81. [PMID: 33941276 PMCID: PMC8091687 DOI: 10.1186/s40478-021-01181-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/14/2021] [Indexed: 11/18/2022] Open
Abstract
Chorea-Acanthocytosis (ChAc) is a devastating, little understood, and currently untreatable neurodegenerative disease caused by VPS13A mutations. Based on our recent demonstration that accumulation of activated Lyn tyrosine kinase is a key pathophysiological event in human ChAc cells, we took advantage of Vps13a−/− mice, which phenocopied human ChAc. Using proteomic approach, we found accumulation of active Lyn, γ-synuclein and phospho-tau proteins in Vps13a−/− basal ganglia secondary to impaired autophagy leading to neuroinflammation. Mice double knockout Vps13a−/− Lyn−/− showed normalization of red cell morphology and improvement of autophagy in basal ganglia. We then in vivo tested pharmacologic inhibitors of Lyn: dasatinib and nilotinib. Dasatinib failed to cross the mouse brain blood barrier (BBB), but the more specific Lyn kinase inhibitor nilotinib, crosses the BBB. Nilotinib ameliorates both Vps13a−/− hematological and neurological phenotypes, improving autophagy and preventing neuroinflammation. Our data support the proposal to repurpose nilotinib as new therapeutic option for ChAc patients.
Collapse
|
50
|
Grossman SA, Romo CG, Rudek MA, Supko J, Fisher J, Nabors LB, Wen PY, Peereboom DM, Ellingson BM, Elmquist W, Barker FG, Kamson D, Sarkaria JN, Timmer W, Bindra RS, Ye X. Baseline requirements for novel agents being considered for phase II/III brain cancer efficacy trials: conclusions from the Adult Brain Tumor Consortium's first workshop on CNS drug delivery. Neuro Oncol 2021; 22:1422-1424. [PMID: 32506123 DOI: 10.1093/neuonc/noaa142] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | | | | | - Jeffrey Supko
- Massachusetts General Hospital, Boston, Massachusetts
| | - Joy Fisher
- Johns Hopkins University, Baltimore, Maryland
| | - L Burt Nabors
- University of Alabama Birmingham, Birmingham, Alabama
| | | | | | | | | | - Fred G Barker
- Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | | | | - Xiaobu Ye
- Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|