1
|
Fiorentino F, Fabbrizi E, Mai A, Rotili D. Activation and inhibition of sirtuins: From bench to bedside. Med Res Rev 2024. [PMID: 39215785 DOI: 10.1002/med.22076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
The sirtuin family comprises seven NAD+-dependent enzymes which catalyze protein lysine deacylation and mono ADP-ribosylation. Sirtuins act as central regulators of genomic stability and gene expression and control key processes, including energetic metabolism, cell cycle, differentiation, apoptosis, and aging. As a result, all sirtuins play critical roles in cellular homeostasis and organism wellness, and their dysregulation has been linked to metabolic, cardiovascular, and neurological diseases. Furthermore, sirtuins have shown dichotomous roles in cancer, acting as context-dependent tumor suppressors or promoters. Given their central role in different cellular processes, sirtuins have attracted increasing research interest aimed at developing both activators and inhibitors. Indeed, sirtuin modulation may have therapeutic effects in many age-related diseases, including diabetes, cardiovascular and neurodegenerative disorders, and cancer. Moreover, isoform selective modulators may increase our knowledge of sirtuin biology and aid to develop better therapies. Through this review, we provide critical insights into sirtuin pharmacology and illustrate their enzymatic activities and biological functions. Furthermore, we outline the most relevant sirtuin modulators in terms of their modes of action, structure-activity relationships, pharmacological effects, and clinical applications.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Emanuele Fabbrizi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Geng W, Zhang Q, Liu L, Tai G, Gan X. Design, Synthesis, and Herbicidal Activity of Novel Tetrahydrophthalimide Derivatives Containing Oxadiazole/Thiadiazole Moieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17191-17199. [PMID: 39054861 DOI: 10.1021/acs.jafc.4c01389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Protoporphyrinogen oxidase (PPO, EC 1.3.3.4) has a high status in the development of new inhibitors. To develop novel and highly effective PPO inhibitors, active substructure linking and bioisosterism replacement strategies were used to design and synthesize novel tetrahydrophthalimide derivatives containing oxadiazole/thiadiazole moieties, and their inhibitory effects on Nicotiana tobacco PPO (NtPPO) and herbicidal activity were evaluated. Among them, compounds B11 (Ki = 9.05 nM) and B20 (Ki = 10.23 nM) showed significantly better inhibitory activity against NtPPO than that against flumiclorac-pentyl (Ki = 46.02 nM). Meanwhile, compounds A20 and B20 were 100% effective against three weeds (Abutilon theophrasti, Amaranthus retroflexus, and Portulaca oleracea) at 37.5 g a.i./ha. It was worth observing that compound B11 was more than 90% effective against three weeds (Abutilon theophrasti, Amaranthus retroflexus, and Portulaca oleracea) at 18.75 and 9.375 g a.i./ha. It was also safer to rice, maize, and wheat than flumiclorac-pentyl at 150 g a.i./ha. In addition, the molecular docking results showed that compound B11 could stably bind to NtPPO and it had a stronger hydrogen bond with Arg98 (2.9 Å) than that of flumiclorac-pentyl (3.2 Å). This research suggests that compound B11 could be used as a new PPO inhibitor, and it could help control weeds in agricultural production.
Collapse
Affiliation(s)
- Wang Geng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Qi Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Li Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Gangyin Tai
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiuhai Gan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Ayoup MS, Barakat MR, Abdel-Hamid H, Emam E, Al-Faiyz YS, Masoud AA, Ghareeb DA, Sonousi A, Kassab AE. Design, synthesis, and biological evaluation of 1,2,4-oxadiazole-based derivatives as multitarget anti-Alzheimer agents. RSC Med Chem 2024; 15:2080-2097. [PMID: 38911158 PMCID: PMC11187554 DOI: 10.1039/d4md00113c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/04/2024] [Indexed: 06/25/2024] Open
Abstract
A series of novel 1,2,4-oxadiazole-based derivatives were synthesized and evaluated for their potential anti-Alzheimer disease activity. The results revealed that compounds 2b, 2c, 2d, 3a, 4a, 6, 9a, 9b, and 13b showed excellent inhibitory activity against acetylcholinesterase (AChE) with IC50 values in the range of 0.0158 to 0.121 μM. They were 1.01 to 7.78 times more potent than donepezil (IC50 = 0.123 μM). The newly synthesized compounds exhibited lower activity towards butyrylcholinesterase (BuChE) when compared to rivastigmine. Compounds 4b and 13b showed the most prominent inhibitory potential against BuChE with IC50 values of 11.50 and 15 μM, respectively. Moreover, 4b, and 9b were found to be more potent antioxidant agents (IC50 values of 59.25, and 56.69 μM, respectively) in comparison with ascorbic acid (IC50 = 74.55 μM). Compounds 2b and 2c exhibited monoamine oxidase-B (MAO-B) inhibitory activity with IC50 values of 74.68 and 225.48 μM, respectively. They were 3.55 and 1.17 times more potent than biperiden (IC50 = 265.85 μM). The prominent interactions of the compounds with the AChE active site can be used to computationally explain the high AChE inhibitory activity. The results unveiled 1,2,4-oxadiazole derivatives 2c and 3a as multitarget anti-AD agents. The predicted ADME properties for compounds 2b and 4a were satisfactory, and 4a had the highest likelihood of crossing the blood-brain barrier (BBB), making it the optimum compound for future optimization.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Department of Chemistry, College of Science, King Faisal University P.O. Box 400 Al-Ahsa 31982 Saudi Arabia
- Chemistry Department, Faculty of Science, Alexandria University P.O. Box 426 Alexandria 21321 Egypt
| | - Mohamed Reda Barakat
- Chemistry Department, Faculty of Science, Alexandria University P.O. Box 426 Alexandria 21321 Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University P.O. Box 426 Alexandria 21321 Egypt
| | - Ehab Emam
- General Q.C Manager, Alexandria company for pharmaceuticals Alexandria 21521 Egypt
| | - Yasair S Al-Faiyz
- Department of Chemistry, College of Science, King Faisal University P.O. Box 400 Al-Ahsa 31982 Saudi Arabia
| | - Aliaa A Masoud
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University 21511 Alexandria Egypt
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University 21511 Alexandria Egypt
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city) New Borg El Arab Alexandria Egypt
| | - Amr Sonousi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University P.O. Box 11562, Kasr El-Aini Street Cairo Egypt
- University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capital Cairo Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University P.O. Box 11562, Kasr El-Aini Street Cairo Egypt
| |
Collapse
|
4
|
Scarano N, Brullo C, Musumeci F, Millo E, Bruzzone S, Schenone S, Cichero E. Recent Advances in the Discovery of SIRT1/2 Inhibitors via Computational Methods: A Perspective. Pharmaceuticals (Basel) 2024; 17:601. [PMID: 38794171 PMCID: PMC11123952 DOI: 10.3390/ph17050601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Sirtuins (SIRTs) are classified as class III histone deacetylases (HDACs), a family of enzymes that catalyze the removal of acetyl groups from the ε-N-acetyl lysine residues of histone proteins, thus counteracting the activity performed by histone acetyltransferares (HATs). Based on their involvement in different biological pathways, ranging from transcription to metabolism and genome stability, SIRT dysregulation was investigated in many diseases, such as cancer, neurodegenerative disorders, diabetes, and cardiovascular and autoimmune diseases. The elucidation of a consistent number of SIRT-ligand complexes helped to steer the identification of novel and more selective modulators. Due to the high diversity and quantity of the structural data thus far available, we reviewed some of the different ligands and structure-based methods that have recently been used to identify new promising SIRT1/2 modulators. The present review is structured into two sections: the first includes a comprehensive perspective of the successful computational approaches related to the discovery of SIRT1/2 inhibitors (SIRTIs); the second section deals with the most interesting SIRTIs that have recently appeared in the literature (from 2017). The data reported here are collected from different databases (SciFinder, Web of Science, Scopus, Google Scholar, and PubMed) using "SIRT", "sirtuin", and "sirtuin inhibitors" as keywords.
Collapse
Affiliation(s)
- Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Francesca Musumeci
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.M.); (S.B.)
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.M.); (S.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Schenone
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| |
Collapse
|
5
|
Chen M, Tan J, Jin Z, Jiang T, Wu J, Yu X. Research progress on Sirtuins (SIRTs) family modulators. Biomed Pharmacother 2024; 174:116481. [PMID: 38522239 DOI: 10.1016/j.biopha.2024.116481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
Sirtuins (SIRTs) represent a class of nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases that exert a crucial role in cellular signal transduction and various biological processes. The mammalian sirtuins family encompasses SIRT1 to SIRT7, exhibiting therapeutic potential in counteracting cellular aging, modulating metabolism, responding to oxidative stress, inhibiting tumors, and improving cellular microenvironment. These enzymes are intricately linked to the occurrence and treatment of diverse pathological conditions, including cancer, autoimmune diseases, and cardiovascular disorders. Given the significance of histone modification in gene expression and chromatin structure, maintaining the equilibrium of the sirtuins family is imperative for disease prevention and health restoration. Mounting evidence suggests that modulators of SIRTs play a crucial role in treating various diseases and maintaining physiological balance. This review delves into the molecular structure and regulatory functions of the sirtuins family, reviews the classification and historical evolution of SIRTs modulators, offers a systematic overview of existing SIRTs modulation strategies, and elucidates the regulatory mechanisms of SIRTs modulators (agonists and inhibitors) and their clinical applications. The article concludes by summarizing the challenges encountered in SIRTs modulator research and offering insights into future research directions.
Collapse
Affiliation(s)
- Mingkai Chen
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China; School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Junfei Tan
- School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zihan Jin
- Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou City, China
| | - Tingting Jiang
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Jiabiao Wu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Xiaolong Yu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China; The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
6
|
Maure A, Lawarée E, Fiorentino F, Pawlik A, Gona S, Giraud-Gatineau A, Eldridge MJG, Danckaert A, Hardy D, Frigui W, Keck C, Gutierrez C, Neyrolles O, Aulner N, Mai A, Hamon M, Barreiro LB, Brodin P, Brosch R, Rotili D, Tailleux L. A host-directed oxadiazole compound potentiates antituberculosis treatment via zinc poisoning in human macrophages and in a mouse model of infection. PLoS Biol 2024; 22:e3002259. [PMID: 38683873 PMCID: PMC11081512 DOI: 10.1371/journal.pbio.3002259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 05/09/2024] [Accepted: 03/13/2024] [Indexed: 05/02/2024] Open
Abstract
Antituberculosis drugs, mostly developed over 60 years ago, combined with a poorly effective vaccine, have failed to eradicate tuberculosis. More worryingly, multiresistant strains of Mycobacterium tuberculosis (MTB) are constantly emerging. Innovative strategies are thus urgently needed to improve tuberculosis treatment. Recently, host-directed therapy has emerged as a promising strategy to be used in adjunct with existing or future antibiotics, by improving innate immunity or limiting immunopathology. Here, using high-content imaging, we identified novel 1,2,4-oxadiazole-based compounds, which allow human macrophages to control MTB replication. Genome-wide gene expression analysis revealed that these molecules induced zinc remobilization inside cells, resulting in bacterial zinc intoxication. More importantly, we also demonstrated that, upon treatment with these novel compounds, MTB became even more sensitive to antituberculosis drugs, in vitro and in vivo, in a mouse model of tuberculosis. Manipulation of heavy metal homeostasis holds thus great promise to be exploited to develop host-directed therapeutic interventions.
Collapse
Affiliation(s)
- Alexandra Maure
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Emeline Lawarée
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Alexandre Pawlik
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Saideep Gona
- Department of Genetic Medicine, University of Chicago, Chicago, Illinois, United States of America
| | | | | | - Anne Danckaert
- Institut Pasteur, Université Paris Cité, UTechS BioImaging-C2RT, Paris, France
| | - David Hardy
- Institut Pasteur, Université Paris Cité, Histopathology Platform, Paris, France
| | - Wafa Frigui
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Camille Keck
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Claude Gutierrez
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nathalie Aulner
- Institut Pasteur, Université Paris Cité, UTechS BioImaging-C2RT, Paris, France
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
- Pasteur Institute, Cenci-bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Mélanie Hamon
- Institut Pasteur, Université Paris Cité, Chromatine et Infection unit, Paris, France
| | - Luis B. Barreiro
- Department of Genetic Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Priscille Brodin
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Roland Brosch
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Ludovic Tailleux
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| |
Collapse
|
7
|
Bursch KL, Goetz CJ, Smith BC. Current Trends in Sirtuin Activator and Inhibitor Development. Molecules 2024; 29:1185. [PMID: 38474697 DOI: 10.3390/molecules29051185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Sirtuins are NAD+-dependent protein deacylases and key metabolic regulators, coupling the cellular energy state with selective lysine deacylation to regulate many downstream cellular processes. Humans encode seven sirtuin isoforms (Sirt1-7) with diverse subcellular localization and deacylase targets. Sirtuins are considered protective anti-aging proteins since increased sirtuin activity is canonically associated with lifespan extension and decreased activity with developing aging-related diseases. However, sirtuins can also assume detrimental cellular roles where increased activity contributes to pathophysiology. Modulation of sirtuin activity by activators and inhibitors thus holds substantial potential for defining the cellular roles of sirtuins in health and disease and developing therapeutics. Instead of being comprehensive, this review discusses the well-characterized sirtuin activators and inhibitors available to date, particularly those with demonstrated selectivity, potency, and cellular activity. This review also provides recommendations regarding the best-in-class sirtuin activators and inhibitors for practical research as sirtuin modulator discovery and refinement evolve.
Collapse
Affiliation(s)
- Karina L Bursch
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Christopher J Goetz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
8
|
Kaya SG, Eren G. Selective inhibition of SIRT2: A disputable therapeutic approach in cancer therapy. Bioorg Chem 2024; 143:107038. [PMID: 38113655 DOI: 10.1016/j.bioorg.2023.107038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
Sirtuin 2 (SIRT2) is involved in a wide range of processes, from transcription to metabolism to genome stability. Dysregulation of SIRT2 has been associated with the pathogenesis and progression of different diseases, such as cancer and neurodegenerative disorders. In this context, targeting SIRT2 activity by small molecule inhibitors is a promising therapeutic strategy for treating related conditions, particularly cancer. This review summarizes the regulatory roles and molecular mechanisms of SIRT2 in cancer and the attempts to evaluate potential antitumor activities of SIRT2-selective inhibitors by in vitro and in vivo testing, which are expected to deepen our understanding of the role of SIRT2 in tumorigenesis and progression and may offer important clues or inspiration ideas for developing SIRT2 inhibitors with excellent affinity and selectivity.
Collapse
Affiliation(s)
- Selen Gozde Kaya
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye.
| | - Gokcen Eren
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye.
| |
Collapse
|
9
|
Gozelle M, Bakar-Ates F, Massarotti A, Ozkan E, Gunindi HB, Ozkan Y, Eren G. In silico approach reveals N-(5-phenoxythiophen-2-yl)-2-(arylthio)acetamides as promising selective SIRT2 inhibitors: the case of structural optimization of virtual screening-derived hits. J Biomol Struct Dyn 2023:1-12. [PMID: 38112299 DOI: 10.1080/07391102.2023.2293252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
Epigenetic modifications play an essential role in tumor suppression and promotion. Among the diverse range of epigenetic regulators, SIRT2, a member of NAD+-dependent protein deacetylates, has emerged as a crucial regulator of cellular processes, including cell cycle progression, DNA repair, and metabolism, impacting tumor growth and survival. In the present work, a series of N-(5-phenoxythiophen-2-yl)-2-(arylthio)acetamide derivatives were identified following a structural optimization of previously reported virtual screening hits, accompanied by enhanced SIRT2 inhibitory potency. Among the compounds, ST44 and ST45 selectively inhibited SIRT2 with IC50 values of 6.50 and 7.24 μM, respectively. The predicted binding modes of the two compounds revealed the success of the optimization run. Moreover, ST44 displayed antiproliferative effects on the MCF-7 human breast cancer cell line. Further, the contribution of SIRT2 inhibition in this effect of ST44 was supported by western blotting, affording an increased α-tubulin acetylation. Furthermore, molecular dynamics (MD) simulations and binding free energy calculations using molecular mechanics/generalized born surface area (MM-GBSA) method evaluated the accuracy of predicted binding poses and ligand affinities. The results revealed that ST44 exhibited a remarkable level of stability, with minimal deviations from its initial docking conformation. These findings represented a significant improvement over the virtual screening hits and may contribute substantially to our knowledge for further selective SIRT2 drug discovery.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahmut Gozelle
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Filiz Bakar-Ates
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Türkiye
| | - Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, "A. Avogadro", Novara, Italy
| | - Erva Ozkan
- Department of Biochemistry, Faculty of Pharmacy, Ankara Medipol University, Ankara, Türkiye
| | - Habibe Beyza Gunindi
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Yesim Ozkan
- Department of Biochemistry, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Gokcen Eren
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| |
Collapse
|
10
|
Buravchenko GI, Shchekotikhin AE. Quinoxaline 1,4-Dioxides: Advances in Chemistry and Chemotherapeutic Drug Development. Pharmaceuticals (Basel) 2023; 16:1174. [PMID: 37631089 PMCID: PMC10459860 DOI: 10.3390/ph16081174] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
N-Oxides of heterocyclic compounds are the focus of medical chemistry due to their diverse biological properties. The high reactivity and tendency to undergo various rearrangements have piqued the interest of synthetic chemists in heterocycles with N-oxide fragments. Quinoxaline 1,4-dioxides are an example of an important class of heterocyclic N-oxides, whose wide range of biological activity determines the prospects of their practical use in the development of drugs of various pharmaceutical groups. Derivatives from this series have found application in the clinic as antibacterial drugs and are used in agriculture. Quinoxaline 1,4-dioxides present a promising class for the development of new drugs targeting bacterial infections, oncological diseases, malaria, trypanosomiasis, leishmaniasis, and amoebiasis. The review considers the most important methods for the synthesis and key directions in the chemical modification of quinoxaline 1,4-dioxide derivatives, analyzes their biological properties, and evaluates the prospects for the practical application of the most interesting compounds.
Collapse
|
11
|
Scarano N, Abbotto E, Musumeci F, Salis A, Brullo C, Fossa P, Schenone S, Bruzzone S, Cichero E. Virtual Screening Combined with Enzymatic Assays to Guide the Discovery of Novel SIRT2 Inhibitors. Int J Mol Sci 2023; 24:ijms24119363. [PMID: 37298312 DOI: 10.3390/ijms24119363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Sirtuin isoform 2 (SIRT2) is one of the seven sirtuin isoforms present in humans, being classified as class III histone deacetylases (HDACs). Based on the high sequence similarity among SIRTs, the identification of isoform selective modulators represents a challenging task, especially for the high conservation observed in the catalytic site. Efforts in rationalizing selectivity based on key residues belonging to the SIRT2 enzyme were accompanied in 2015 by the publication of the first X-ray crystallographic structure of the potent and selective SIRT2 inhibitor SirReal2. The subsequent studies led to different experimental data regarding this protein in complex with further different chemo-types as SIRT2 inhibitors. Herein, we reported preliminary Structure-Based Virtual Screening (SBVS) studies using a commercially available library of compounds to identify novel scaffolds for the design of new SIRT2 inhibitors. Biochemical assays involving five selected compounds allowed us to highlight the most effective chemical features supporting the observed SIRT2 inhibitory ability. This information guided the following in silico evaluation and in vitro testing of further compounds from in-house libraries of pyrazolo-pyrimidine derivatives towards novel SIRT2 inhibitors (1-5). The final results indicated the effectiveness of this scaffold for the design of promising and selective SIRT2 inhibitors, featuring the highest inhibition among the tested compounds, and validating the applied strategy.
Collapse
Affiliation(s)
- Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Elena Abbotto
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Francesca Musumeci
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Annalisa Salis
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Paola Fossa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Silvia Schenone
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| |
Collapse
|
12
|
Luo G, Liu B, Fu T, Liu Y, Li B, Li N, Geng Q. The Role of Histone Deacetylases in Acute Lung Injury-Friend or Foe. Int J Mol Sci 2023; 24:ijms24097876. [PMID: 37175583 PMCID: PMC10178380 DOI: 10.3390/ijms24097876] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Acute lung injury (ALI), caused by intrapulmonary or extrapulmonary factors such as pneumonia, shock, and sepsis, eventually disrupts the alveolar-capillary barrier, resulting in diffuse pulmonary oedema and microatasis, manifested by refractory hypoxemia, and respiratory distress. Not only is ALI highly lethal, but even if a patient survives, there are also multiple sequelae. Currently, there is no better treatment than supportive care, and we urgently need to find new targets to improve ALI. Histone deacetylases (HDACs) are epigenetically important enzymes that, together with histone acetylases (HATs), regulate the acetylation levels of histones and non-histones. While HDAC inhibitors (HDACis) play a therapeutic role in cancer, inflammatory, and neurodegenerative diseases, there is also a large body of evidence suggesting the potential of HDACs as therapeutic targets in ALI. This review explores the unique mechanisms of HDACs in different cell types of ALI, including macrophages, pulmonary vascular endothelial cells (VECs), alveolar epithelial cells (AECs), and neutrophils.
Collapse
Affiliation(s)
- Guoqing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tinglv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Boyang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
13
|
Mn(II) assisted synthesis of N-phenyl-5-(pyridin-3-yl)-1,3,4-oxadiazol-2-amine and evaluation of its Antiproliferative activity. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Abstract
The silent information regulator (sirtuin) is a family of enzymes involved in epigenetic processes with lysine deacetylase activity, having as substrates histones and other proteins. They participate in a wide range of cellular and pathologic processes, such as gene expression, cell division and motility, oxidative-induced stress management, metabolic control and carcinogenesis, among others, thus presenting as interesting therapeutic targets. In this article, the authors describe the inhibitory mechanisms and binding modes of the human sirtuin 2 (hSIRT2) inhibitors, which had their complexes with the enzyme structurally characterized. The results help pave the way for the rational designing of new hSIRT2 inhibitors and the development of novel therapeutic agents targeting this epigenetic enzyme.
Collapse
|
15
|
Kucukoglu K, Faydali N, Bul D, Nadaroglu H, Sever B, Altıntop MD, Ozturk B, Guzel I. Synthesis, in silico and in vitro evaluation of new 3,5-disubstituted-1,2,4-oxadiazole derivatives as carbonic anhydrase inhibitors and cytotoxic agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
16
|
Suenkel B, Valente S, Zwergel C, Weiss S, Di Bello E, Fioravanti R, Aventaggiato M, Amorim JA, Garg N, Kumar S, Lombard DB, Hu T, Singh PK, Tafani M, Palmeira CM, Sinclair D, Mai A, Steegborn C. Potent and Specific Activators for Mitochondrial Sirtuins Sirt3 and Sirt5. J Med Chem 2022; 65:14015-14031. [PMID: 36228194 PMCID: PMC9653166 DOI: 10.1021/acs.jmedchem.2c01215] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sirtuins are NAD+-dependent protein deacylases involved in metabolic regulation and aging-related diseases. Specific activators for seven human Sirtuin isoforms would be important chemical tools and potential therapeutic drugs. Activators have been described for Sirt1 and act via a unique N-terminal domain of this isoform. For most other Sirtuin isoforms, including mitochondrial Sirt3-5, no potent and specific activators have yet been identified. We here describe the identification and characterization of 1,4-dihydropyridine-based compounds that either act as pan Sirtuin activators or specifically stimulate Sirt3 or Sirt5. The activators bind to the Sirtuin catalytic cores independent of NAD+ and acylated peptides and stimulate turnover of peptide and protein substrates. The compounds also activate Sirt3 or Sirt5 in cellular systems regulating, e.g., apoptosis and electron transport chain. Our results provide a scaffold for potent Sirtuin activation and derivatives specific for Sirt3 and Sirt5 as an excellent basis for further drug development.
Collapse
Affiliation(s)
- Benjamin Suenkel
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, and Pasteur Institute, Cenci-Bolognetti Foundation, 00185 Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, and Pasteur Institute, Cenci-Bolognetti Foundation, 00185 Rome, Italy
| | - Sandra Weiss
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Elisabetta Di Bello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, and Pasteur Institute, Cenci-Bolognetti Foundation, 00185 Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, and Pasteur Institute, Cenci-Bolognetti Foundation, 00185 Rome, Italy
| | - Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - João A. Amorim
- Department of Life Sciences, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Genetics Department, Blavatnik Institute, Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA 02115, USA
| | - Neha Garg
- Genetics Department, Blavatnik Institute, Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA 02115, USA
| | - Surinder Kumar
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109-2800, USA
| | - David B. Lombard
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109-2800, USA
- Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109-2800, USA
| | - Tuo Hu
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - Pankaj K. Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Carlos M. Palmeira
- Department of Life Sciences, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - David Sinclair
- Genetics Department, Blavatnik Institute, Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA 02115, USA
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, and Pasteur Institute, Cenci-Bolognetti Foundation, 00185 Rome, Italy
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
17
|
Luo Z, Wang Y, Pang S, Gao S, Liu N, Gao X, Zhang L, Qi X, Yang Y, Zhang L. Synthesis and Bioactivity Evaluation of a Novel 1,2,4-Oxadiazole Derivative in vitro and in 3×Tg Mice. Drug Des Devel Ther 2022; 16:3285-3296. [PMID: 36187086 PMCID: PMC9521684 DOI: 10.2147/dddt.s372750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Aim Alzheimer’s disease (AD) is the most common neurodegenerative disease whose patients suffered from cognitive impairments. In our study, a novel 1,2,4-Oxadiazole derivative wyc-7-20 was synthesized, which showed low cytotoxicity and potent neuroprotective effect at the cellular level. Improved cognitive impairments, β-amyloid (Aβ) clearance, and tau pathological phenotypes were detected in transgenic animal models after wyc-7-20 treatment. Reversed expressions in AD-related genes were also detected. The results demonstrated wyc-7-20 was potent in AD therapy. Purpose The pathological complexity of AD increased difficulties in medical research. To explore a new potential medical treatment for AD, a novel 1,2,4-Oxadiazole derivative (wyc-7-20) was designed, synthesized to explore the application in this study. Materials and Methods Human neuroblastoma (SH-SY5Y) cells and human hepatocellular carcinoma (HepG2) cells were used to detect median lethal dose (LD50). H2O2 and Aβ1–42 oligomers (AβOs) were respectively, added into SH-SY5Y cells to detect anti-ROS (reactive oxygen species) and anti-AβOs effects of wyc-7-20. 3×Tg mice were administered with wyc-7-20, and then Y maze test and Morris water maze (MWM) test were applied to detect cognitive improvements. Brain tissue samples were subsequently collected and analyzed using different techniques. Results wyc-7-20 showed low cytotoxicity and potent neuroprotective effect at the cellular level. Improved cognitive impairments, Aβ clearance, and tau pathological phenotypes were detected in transgenic animal models after wyc-7-20 treatment. Reversed expressions in AD-related genes were also detected. Conclusion wyc-7-20 was potent in AD therapy.
Collapse
Affiliation(s)
- Zhuohui Luo
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, People’s Republic of China
| | - Yongcheng Wang
- Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Material Medical, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, People’s Republic of China
| | - Shuo Pang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, People’s Republic of China
| | - Shan Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, People’s Republic of China
| | - Ning Liu
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, People’s Republic of China
| | - Xiang Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, People’s Republic of China
| | - Li Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, People’s Republic of China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Xiaolong Qi
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, People’s Republic of China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Yajun Yang
- Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Material Medical, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, People’s Republic of China
- Correspondence: Yajun Yang, Institute of Material Medical, Peking Union Medical College, Chinese Academy of Medical Sciences, Nanwei Road, Xicheng District, Beijing, 100050, People’s Republic of China, Email
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, People’s Republic of China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
- Lianfeng Zhang, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People’s Republic of China, Tel +86 10-87778442, Fax +86 10-67776394, Email
| |
Collapse
|
18
|
Abbotto E, Scarano N, Piacente F, Millo E, Cichero E, Bruzzone S. Virtual Screening in the Identification of Sirtuins’ Activity Modulators. Molecules 2022; 27:molecules27175641. [PMID: 36080416 PMCID: PMC9457788 DOI: 10.3390/molecules27175641] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Sirtuins are NAD+-dependent deac(et)ylases with different subcellular localization. The sirtuins’ family is composed of seven members, named SIRT-1 to SIRT-7. Their substrates include histones and also an increasing number of different proteins. Sirtuins regulate a wide range of different processes, ranging from transcription to metabolism to genome stability. Thus, their dysregulation has been related to the pathogenesis of different diseases. In this review, we discussed the pharmacological approaches based on sirtuins’ modulators (both inhibitors and activators) that have been attempted in in vitro and/or in in vivo experimental settings, to highlight the therapeutic potential of targeting one/more specific sirtuin isoform(s) in cancer, neurodegenerative disorders and type 2 diabetes. Extensive research has already been performed to identify SIRT-1 and -2 modulators, while compounds targeting the other sirtuins have been less studied so far. Beside sections dedicated to each sirtuin, in the present review we also included sections dedicated to pan-sirtuins’ and to parasitic sirtuins’ modulators. A special focus is dedicated to the sirtuins’ modulators identified by the use of virtual screening.
Collapse
Affiliation(s)
- Elena Abbotto
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
- Correspondence:
| |
Collapse
|
19
|
Xu Q, Liu X, Mohseni G, Hao X, Ren Y, Xu Y, Gao H, Wang Q, Wang Y. Mechanism research and treatment progress of NAD pathway related molecules in tumor immune microenvironment. Cancer Cell Int 2022; 22:242. [PMID: 35906622 PMCID: PMC9338646 DOI: 10.1186/s12935-022-02664-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is the core of cellular energy metabolism. NAMPT, Sirtuins, PARP, CD38, and other molecules in this classic metabolic pathway affect many key cellular functions and are closely related to the occurrence and development of many diseases. In recent years, several studies have found that these molecules can regulate cell energy metabolism, promote the release of related cytokines, induce the expression of neoantigens, change the tumor immune microenvironment (TIME), and then play an anticancer role. Drugs targeting these molecules are under development or approved for clinical use. Although there are some side effects and drug resistance, the discovery of novel drugs, the development of combination therapies, and the application of new technologies provide solutions to these challenges and improve efficacy. This review presents the mechanisms of action of NAD pathway-related molecules in tumor immunity, advances in drug research, combination therapies, and some new technology-related therapies.
Collapse
Affiliation(s)
- QinChen Xu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Ghazal Mohseni
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Xiaodong Hao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Yidan Ren
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Yiwei Xu
- Marine College, Shandong University, 264209, Weihai, China
| | - Huiru Gao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Qin Wang
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China.
| |
Collapse
|
20
|
Hit evaluation results in 5-benzyl-1,3,4-thiadiazole-2-carboxamide based SIRT2-selective inhibitor with improved affinity and selectivity. Bioorg Chem 2022; 123:105746. [DOI: 10.1016/j.bioorg.2022.105746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022]
|
21
|
Abstract
Sirtuins are NAD+-dependent protein lysine deacylase and mono-ADP ribosylases present in both prokaryotes and eukaryotes. The sirtuin family comprises seven isoforms in mammals, each possessing different subcellular localization and biological functions. Sirtuins have received increasing attention in the past two decades given their pivotal functions in a variety of biological contexts, including cytodifferentiation, transcriptional regulation, cell cycle progression, apoptosis, inflammation, metabolism, neurological and cardiovascular physiology and cancer. Consequently, modulation of sirtuin activity has been regarded as a promising therapeutic option for many pathologies. In this review, we provide an up-to-date overview of sirtuin biology and pharmacology. We examine the main features of the most relevant inhibitors and activators, analyzing their structure-activity relationships, applications in biology, and therapeutic potential.
Collapse
|
22
|
Atmaram UA, Roopan SM. Biological activity of oxadiazole and thiadiazole derivatives. Appl Microbiol Biotechnol 2022; 106:3489-3505. [PMID: 35562490 PMCID: PMC9106569 DOI: 10.1007/s00253-022-11969-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
Abstract
The 5-membered oxadiazole and thiadiazole scaffolds are the most privileged and well-known heterocycles, being a common and essential feature of a variety of natural products and medicinal agents. These scaffolds take up the center position and are the core structural components of numerous drugs that belong to different categories. These include antimicrobial, anti-tubercular, anti-inflammatory, analgesic, antiepileptic, antiviral, and anticancer agents. In this review, we mostly talk about the isomers 1,2,4-oxadiazole and 1,3,4-thiadiazole because they have important pharmacological properties. This is partly because they are chemical and heat resistant, unlike other isomers, and they can be used as bio-isosteric replacements in drug design. We are reviewing the structural modifications of different oxadiazole and thiadiazole derivatives, more specifically, the anti-tubercular and anticancer pharmacological activities reported over the last 5 years, as we have undertaken this as a core area of research. This review article desires to do a thorough study and analysis of the recent progress made in the important biological isomers 1,2,4-oxadiazole and 1,3,4-thiadiazol. This will be a great place to start for future research. Key points • Five-membered heterocyclic compound chemistry and biological activity recent survey. • Synthesis and pharmacological evolution of 1,2,4-oxadiazole and 1,3,4-thiadiazole are discussed in detail. • The value and significance of heterocyclic compounds in the field of drug designing are highlighted. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11969-0.
Collapse
Affiliation(s)
- Upare Abhay Atmaram
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Selvaraj Mohana Roopan
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
23
|
Hendawy OM. A comprehensive review of recent advances in the biological activities of 1,2,4-oxadiazoles. Arch Pharm (Weinheim) 2022; 355:e2200045. [PMID: 35445430 DOI: 10.1002/ardp.202200045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/10/2022]
Abstract
Nitrogen heterocycles play an essential role in medication development. The 1,2,4-oxadiazole heterocycle has been extensively studied, yielding a large variety of molecules with varied biological functions. The 1,2,4-oxadiazole shows bioisosteric equivalency with ester and amide moieties. In recent years, the 1,2,4-oxadiazole nucleus has received a lot of attention in medicinal chemistry. It was thought to be a pharmacophore component in the production of biologically intriguing drugs. This review presents a comprehensive overview of the recent achievements in the biological activities of 1,2,4-oxadiazoles as potential antimicrobial, anticancer, anti-inflammatory, neuroprotective, and antidiabetic agents. The structure-activity relationship and mechanisms of action are also reviewed.
Collapse
Affiliation(s)
- Omnia M Hendawy
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| |
Collapse
|
24
|
Dai Z, An LY, Chen XY, Yang F, Zhao N, Li CC, Ren R, Li BY, Tao WY, Li P, Jiang C, Yan F, Jiang ZY, You QD, Di B, Xu LL. Target Fishing Reveals a Novel Mechanism of 1,2,4-Oxadiazole Derivatives Targeting Rpn6, a Subunit of 26S Proteasome. J Med Chem 2022; 65:5029-5043. [PMID: 35253427 DOI: 10.1021/acs.jmedchem.1c02210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,2,4-Oxadiazole derivatives, a class of Nrf2-ARE activators, exert an extensive therapeutic effect on inflammation, cancer, neurodegeneration, and microbial infection. Among these analogues, DDO-7263 is the most potent Nrf2 activator and used as the core structure for bioactive probes to explore the precise mechanism. In this work, we obtained compound 7, a mimic of DDO-7263, and biotin-labeled and fluorescein-based probes, which exhibited homologous biological activities to DDO-7263, including activating Nrf2 and its downstream target genes, anti-oxidative stress, and anti-inflammatory effects. Affinity chromatography and mass analysis techniques revealed Rpn6 as the potential target protein regulating the Nrf2 signaling pathway. In vitro affinity experiments further confirmed that DDO-7263 upregulated Nrf2 through binding to Rpn6 to block the assembly of 26S proteasome and the subsequent degradation of ubiquitinated Nrf2. These results indicated that Rpn6 is a promising candidate target to activate the Nrf2 pathway for protecting cells and tissues from oxidative, electrophilic, and exogenous microbial stimulation.
Collapse
Affiliation(s)
- Zhen Dai
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Lu-Yan An
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Yi Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Fan Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Ni Zhao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Cui-Cui Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Ren Ren
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Bing-Yan Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Wei-Yan Tao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Pei Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Fang Yan
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Zheng-Yu Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Di
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
25
|
Gond M, Shukla A, Pandey SK, Bharty M, Maiti B, Acharya A, Tiwari N, Katiyar D, Butcher R. Mn(II) catalyzed synthesis of 5(4-hydroxyphenyl)-2-(N-phenylamino)-1,3,4-oxadiazole: Crystal structure, DFT, molecular docking, Hirshfeld surface analysis, and in vitro anticancer activity on DL cells. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Jin T, Li P, Wang C, Tang X, Yu X, Sun F, Luo L, Ou H, Li G. Jellynolide A, pokepola esters, and sponalisolides from the aquaculture sponge Spongia officinalis L. PHYTOCHEMISTRY 2022; 194:113006. [PMID: 34837765 DOI: 10.1016/j.phytochem.2021.113006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Jellynolide A, an unreported bicyclic diterpenoid with an unprecedented penta-substituted carbon skeleton which implied an irregular biogenic pathway, together with four pairs of rare phosphate triesters, (±)-pokepola ester B-E, one undescribed related racemic furanoterpenoid, (±)-sponalisolide C, one undescribed furanoterpenoid, (-)-sponalisolide D, and two known (±)-sponalisolide B and dendrolasin carboxylic acid were isolated from the aquaculture Spongia officinalis L. Their structures were elucidated by comprehensive spectroscopic analysis, quantum chemical calculation of NMR parameters, and electronic circular dichroism (ECD). The plausible biosynthetic pathway of jellynolide A was proposed. (±)-Pokepola ester C exhibited significant inhibition against Wnt, HIF1 signaling pathways. (+)-Pokepola ester B and (-)-pokepola ester D showed moderate cytotoxicity activities.
Collapse
Affiliation(s)
- Tianyun Jin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Department, Ocean University of China, Qingdao, 266003, People's Republic of China; Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao, 266235, People's Republic of China
| | - Pinglin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Department, Ocean University of China, Qingdao, 266003, People's Republic of China; Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao, 266235, People's Republic of China.
| | - Cili Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Department, Ocean University of China, Qingdao, 266003, People's Republic of China; Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao, 266235, People's Republic of China
| | - Xuli Tang
- College of Chemistry and Chemical Engineering, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Xiaoli Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Department, Ocean University of China, Qingdao, 266003, People's Republic of China; Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao, 266235, People's Republic of China
| | - Fengqing Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Department, Ocean University of China, Qingdao, 266003, People's Republic of China; Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao, 266235, People's Republic of China
| | - Lianzhong Luo
- Engineering Research Center of Marine Biopharmaceutical Resource, Xiamen Medical College, Xiamen, 361023, People's Republic of China
| | - Huilong Ou
- Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, People's Republic of China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Department, Ocean University of China, Qingdao, 266003, People's Republic of China; Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao, 266235, People's Republic of China.
| |
Collapse
|
27
|
A review on synthetic account of 1,2,4-oxadiazoles as anti-infective agents. Mol Divers 2022; 26:2967-2980. [PMID: 34984590 PMCID: PMC8727175 DOI: 10.1007/s11030-021-10375-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/24/2021] [Indexed: 11/03/2022]
Abstract
Most of the currently marketed drugs consist of heterocyclic scaffolds containing nitrogen and or oxygen as heteroatoms in their structures. Several research groups have synthesized diversely substituted 1,2,4-oxadiazoles as anti-infective agents having anti-bacterial, anti-viral, anti-leishmanial, etc. activities. For the first time, the present review article will provide the coverage of synthetic account of 1,2,4-oxadiazoles as anti-infective agents along with their potential for SAR, activity potential, promising target for mode of action. The efforts have been made to provide the chemical intuitions to the reader to design new chemical entity with potential of anti-infective activity. This review will mark the impact as the valuable, comprehensive and pioneered work along with the library of synthetic strategies for the organic and medicinal chemists for further refinement of 1,2,4-oxadiazole as anti-infective agents.
Collapse
|
28
|
Hong JY, Lin H. Sirtuin Modulators in Cellular and Animal Models of Human Diseases. Front Pharmacol 2021; 12:735044. [PMID: 34650436 PMCID: PMC8505532 DOI: 10.3389/fphar.2021.735044] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/24/2021] [Indexed: 12/22/2022] Open
Abstract
Sirtuins use NAD+ to remove various acyl groups from protein lysine residues. Through working on different substrate proteins, they display many biological functions, including regulation of cell proliferation, genome stability, metabolism, and cell migration. There are seven sirtuins in humans, SIRT1-7, each with unique enzymatic activities, regulatory mechanisms, subcellular localizations, and substrate scopes. They have been indicated in many human diseases, including cancer, neurodegeneration, microbial infection, metabolic and autoimmune diseases. Consequently, interests in development of sirtuin modulators have increased in the past decade. In this brief review, we specifically summarize genetic and pharmacological modulations of sirtuins in cancer, neurological, and cardiovascular diseases. We further anticipate this review will be helpful for scrutinizing the significance of sirtuins in the studied diseases.
Collapse
Affiliation(s)
- Jun Young Hong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States.,Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Cornell University, Ithaca, NY, United States
| |
Collapse
|
29
|
Sukuroglu MK, Gozelle M, Ozkan Y, Eren G. The potential of 4-aryl-6-morpholino-3(2H)-pyridazinone-2-arylpiperazinylacetamide as a new scaffold for SIRT2 inhibition: in silico approach guided by pharmacophore mapping and molecular docking. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02782-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Komaniecki G, Lin H. Lysine Fatty Acylation: Regulatory Enzymes, Research Tools, and Biological Function. Front Cell Dev Biol 2021; 9:717503. [PMID: 34368168 PMCID: PMC8339906 DOI: 10.3389/fcell.2021.717503] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022] Open
Abstract
Post-translational acylation of lysine side chains is a common mechanism of protein regulation. Modification by long-chain fatty acyl groups is an understudied form of lysine acylation that has gained increasing attention recently due to the characterization of enzymes that catalyze the addition and removal this modification. In this review we summarize what has been learned about lysine fatty acylation in the approximately 30 years since its initial discovery. We report on what is known about the enzymes that regulate lysine fatty acylation and their physiological functions, including tumorigenesis and bacterial pathogenesis. We also cover the effect of lysine fatty acylation on reported substrates. Generally, lysine fatty acylation increases the affinity of proteins for specific cellular membranes, but the physiological outcome depends greatly on the molecular context. Finally, we will go over the experimental tools that have been used to study lysine fatty acylation. While much has been learned about lysine fatty acylation since its initial discovery, the full scope of its biological function has yet to be realized.
Collapse
Affiliation(s)
- Garrison Komaniecki
- Graduate Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY, United States.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Hening Lin
- Graduate Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY, United States.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States.,Howard Hughes Medical Institute, Cornell University, Ithaca, NY, United States
| |
Collapse
|
31
|
Tarasenko MV, Kotlyarova VD, Baykov SV, Shetnev AA. 2-(1,2,4-Oxadiazol-5-yl)anilines Based on Amidoximes and Isatoic Anhydrides: Synthesis and Structure Features. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221050030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Anjali Jha, Sen A, Malla RR. Chemistry of Oxadiazole Analogues: Current Status and Applications. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021030092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Wang C, Rui X, Si D, Dai R, Zhu Y, Wen H, Li W, Liu J. Copper‐Catalyzed Three‐Component Cascade Reaction of Benzaldehyde with Benzylamine and Hydroxylamine or Aniline: Synthesis of 1,2,4‐Oxadiazoles and Quinazolines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chao Wang
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Xiyan Rui
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Dongjuan Si
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Rupeng Dai
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Yueyue Zhu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Hongmei Wen
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Wei Li
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Jian Liu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| |
Collapse
|
34
|
Kapoor G, Bhutani R, Pathak DP, Chauhan G, Kant R, Grover P, Nagarajan K, Siddiqui SA. Current Advancement in the Oxadiazole-Based Scaffolds as Anticancer Agents. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1886123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Garima Kapoor
- KIET School of Pharmacy, KIET Group of InstitutionsGhaziabad, Uttar Pradesh, India
| | - Rubina Bhutani
- School of Medical and Allied Sciences, GD Goenka University, Gurgaon, Haryana, India
| | - Dharam Pal Pathak
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), New Delhi, India
| | - Garima Chauhan
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), New Delhi, India
| | - Ravi Kant
- Lloyd Institute of Management and Technology, Greater Noida, India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of InstitutionsGhaziabad, Uttar Pradesh, India
| | - Kandasamy Nagarajan
- KIET School of Pharmacy, KIET Group of InstitutionsGhaziabad, Uttar Pradesh, India
| | | |
Collapse
|
35
|
Nielsen AL, Rajabi N, Kudo N, Lundø K, Moreno-Yruela C, Bæk M, Fontenas M, Lucidi A, Madsen AS, Yoshida M, Olsen CA. Mechanism-based inhibitors of SIRT2: structure-activity relationship, X-ray structures, target engagement, regulation of α-tubulin acetylation and inhibition of breast cancer cell migration. RSC Chem Biol 2021; 2:612-626. [PMID: 34458803 PMCID: PMC8341974 DOI: 10.1039/d0cb00036a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
Sirtuin 2 (SIRT2) is a protein deacylase enzyme that removes acetyl groups and longer chain acyl groups from post-translationally modified lysine residues. It affects diverse biological functions in the cell and has been considered a drug target in relation to both neurodegenerative diseases and cancer. Therefore, access to well-characterized and robust tool compounds is essential for the continued investigation of the complex functions of this enzyme. Here, we report a collection of chemical probes that are potent, selective, stable in serum, water-soluble, and inhibit SIRT2-mediated deacetylation and demyristoylation in cells. Compared to the current landscape of SIRT2 inhibitors, this is a unique ensemble of features built into a single compound. We expect the developed chemotypes to find broad application in the interrogation of SIRT2 functions in both healthy and diseased cells, and to provide a foundation for the development of future therapeutics. Sirtuin 2 (SIRT2) is a protein deacylase enzyme that removes acetyl groups and longer chain acyl groups from post-translationally modified lysine residues. Here, we developed small peptide-based inhibitors of its activity in living cells in culture.![]()
Collapse
Affiliation(s)
- Alexander L Nielsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Nima Rajabi
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Norio Kudo
- RIKEN Center for Sustainable Resource Science (S13) Hirosawa 2-1 Wako Saitama 351-0198 Japan
| | - Kathrine Lundø
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen Blegdamsvej 3B DK-2200 Copenhagen Denmark
| | - Carlos Moreno-Yruela
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Michael Bæk
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Martin Fontenas
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Alessia Lucidi
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Andreas S Madsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science (S13) Hirosawa 2-1 Wako Saitama 351-0198 Japan
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| |
Collapse
|
36
|
Benassi A, Doria F, Pirota V. Groundbreaking Anticancer Activity of Highly Diversified Oxadiazole Scaffolds. Int J Mol Sci 2020; 21:ijms21228692. [PMID: 33217987 PMCID: PMC7698752 DOI: 10.3390/ijms21228692] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/29/2022] Open
Abstract
Nowadays, an increasing number of heterocyclic-based drugs found application in medicinal chemistry and, in particular, as anticancer agents. In this context, oxadiazoles—five-membered aromatic rings—emerged for their interesting biological properties. Modification of oxadiazole scaffolds represents a valid strategy to increase their anticancer activity, especially on 1,2,4 and 1,3,4 regioisomers. In the last years, an increasing number of oxadiazole derivatives, with remarkable cytotoxicity for several tumor lines, were identified. Structural modifications, that ensure higher cytotoxicity towards malignant cells, represent a solid starting point in the development of novel oxadiazole-based drugs. To increase the specificity of this strategy, outstanding oxadiazole scaffolds have been designed to selectively interact with biological targets, including enzymes, globular proteins, and nucleic acids, showing more promising antitumor effects. In the present work, we aim to provide a comprehensive overview of the anticancer activity of these heterocycles, describing their effect on different targets and highlighting how their structural versatility has been exploited to modulate their biological properties.
Collapse
|
37
|
Nxumalo CI, Ngidi LS, Shandu JSE, Maliehe TS. Isolation of endophytic bacteria from the leaves of Anredera cordifolia CIX1 for metabolites and their biological activities. BMC Complement Med Ther 2020; 20:300. [PMID: 33028279 PMCID: PMC7541265 DOI: 10.1186/s12906-020-03095-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/27/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endophytes, especially those that are found from ethnopharmacologically noteworthy medicinal plants have attracted attention due to their diverse bioactive metabolites of pharmacological importance. METHODS This study aimed at isolating endophytic bacterium from the leaves of Anredera cordifolia CIX1 for its bioactive metabolites. The endophytic isolates were identified by 16S rRNA sequence and investigated for antibiotic sensitivity using different antibiotics. The secondary metabolites were evaluated for antibacterial activity against four bacterial strains. The 2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2'-azinobis (3- ethylbenzothiazoline-6-sulfonic acid) (ABTS) methods were used to assess their scavenging activities. The chemical components were analysed by gas chromatography-mass spectrometry (GC-MS). RESULTS Out of 13 isolates, Isolate 1 was identified as Pseudomonas aeruginosa CP043328.1. It was resistant to clindamycin, ertapenem, penicillin G, amoxicillin, cephalothin and kanamycin but sensitive to imipenem, meropenem, and gentamycin. Its extract demonstrated antibacterial activity with minimum inhibitory concentration value of 0.098 against Bacillus cereus (ATCC 10102) and Staphylococcus aureus (ATCC 25925) and 0.391 mg/ml against Escherichia coli (ATCC 25922) and Proteus mirabilis (ATCC 25933). The extract revealed DPPH and ABTS scavenging activities with half maximal inhibitory concentration value of 0.650 mg/ml and 0.15 mg/ml, respectively. The GC-MS revealed a total of 15 compounds with diisooctyl phthalate (50.51%) and [1, 2, 4] oxadiazole, 5-benzyl-3 (10.44%) as major components. CONCLUSIONS P. aeruginosa CP043328.1 produced secondary metabolites with antibacterial and antioxidant activities.
Collapse
Affiliation(s)
- Celiwe Innocentia Nxumalo
- Faculty of Science and Agriculture, Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa, KwaZulu Natal Province, 3886, South Africa
| | - Londeka Sibusisiwe Ngidi
- Faculty of Science and Agriculture, Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa, KwaZulu Natal Province, 3886, South Africa.
| | - Jabulani Siyabonga Emmanuel Shandu
- Faculty of Science and Agriculture, Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa, KwaZulu Natal Province, 3886, South Africa
| | - Tsolanku Sidney Maliehe
- Faculty of Science and Agriculture, Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa, KwaZulu Natal Province, 3886, South Africa
| |
Collapse
|
38
|
Yang W, Chen W, Su H, Li R, Song C, Wang Z, Yang L. Recent advances in the development of histone deacylase SIRT2 inhibitors. RSC Adv 2020; 10:37382-37390. [PMID: 35521274 PMCID: PMC9057128 DOI: 10.1039/d0ra06316a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
Sirtuin 2 (SIRT2) is an important and special member of the atypical histone deacetylase Sirtuin (SIRT) family. Due to its extensive catalytic effects, SIRT2 can regulate autophagy, myelination, immunity, inflammation and other physiological processes. Recent evidence revealed that dysregulation of human SIRT2 activity is associated with the pathogenesis and prognosis of cancers, Parkinson's disease and other disorders; thus SIRT2 is a promising target for potential therapeutic intervention. This review presents a systematic summary of nine chemotypes of small-molecule SIRT2 inhibitors, particularly including the discovery and structural optimization strategies, which will be useful for future efforts to develop new inhibitors targeting SIRT2 and associated target proteins. This review presents a systematic summarization of nine chemotypes of small-molecule SIRT2 inhibitors, which will be useful for future efforts to develop new inhibitors targeting SIRT2 and associated target proteins.![]()
Collapse
Affiliation(s)
- Wenyu Yang
- College of Food and Bioengineering, Xihua University Chengdu 610039 China
| | - Wei Chen
- College of Food and Bioengineering, Xihua University Chengdu 610039 China
| | - Huilin Su
- College of Food and Bioengineering, Xihua University Chengdu 610039 China
| | - Rong Li
- College of Food and Bioengineering, Xihua University Chengdu 610039 China
| | - Chen Song
- College of Food and Bioengineering, Xihua University Chengdu 610039 China
| | - Zhouyu Wang
- College of Science, Xihua University Sichuan 610039 China +86-28-87720552
| | - Lingling Yang
- College of Food and Bioengineering, Xihua University Chengdu 610039 China
| |
Collapse
|
39
|
Structure activity study of S-trityl-cysteamine dimethylaminopyridine derivatives as SIRT2 inhibitors: Improvement of SIRT2 binding and inhibition. Bioorg Med Chem Lett 2020; 30:127458. [DOI: 10.1016/j.bmcl.2020.127458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
|
40
|
Exploring the newer oxadiazoles as real inhibitors of human SIRT2 in hepatocellular cancer cells. Bioorg Med Chem Lett 2020; 30:127330. [DOI: 10.1016/j.bmcl.2020.127330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 01/08/2023]
|
41
|
Biernacki K, Daśko M, Ciupak O, Kubiński K, Rachon J, Demkowicz S. Novel 1,2,4-Oxadiazole Derivatives in Drug Discovery. Pharmaceuticals (Basel) 2020; 13:ph13060111. [PMID: 32485996 PMCID: PMC7345688 DOI: 10.3390/ph13060111] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Five-membered 1,2,4-oxadiazole heterocyclic ring has received considerable attentionbecause of its unique bioisosteric properties and an unusually wide spectrum of biological activities.Thus, it is a perfect framework for the novel drug development. After a century since the1,2,4-oxadiazole have been discovered, the uncommon potential attracted medicinal chemists'attention, leading to the discovery of a few presently accessible drugs containing 1,2,4-oxadiazoleunit. It is worth noting that the interest in a 1,2,4-oxadiazoles' biological application has been doubledin the last fifteen years. Herein, after a concise historical introduction, we present a comprehensiveoverview of the recent achievements in the synthesis of 1,2,4-oxadiazole-based compounds and themajor advances in their biological applications in the period of the last five years as well as briefremarks on prospects for further development.
Collapse
Affiliation(s)
- Karol Biernacki
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (K.B.); (O.C.); (J.R.)
| | - Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Olga Ciupak
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (K.B.); (O.C.); (J.R.)
| | - Konrad Kubiński
- Department of Molecular Biology, Faculty of Biotechnology and Environment Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland;
| | - Janusz Rachon
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (K.B.); (O.C.); (J.R.)
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (K.B.); (O.C.); (J.R.)
- Correspondence:
| |
Collapse
|
42
|
Identification of Inhibitors to Trypanosoma cruzi Sirtuins Based on Compounds Developed to Human Enzymes. Int J Mol Sci 2020; 21:ijms21103659. [PMID: 32455951 PMCID: PMC7279216 DOI: 10.3390/ijms21103659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 12/11/2022] Open
Abstract
Chagas disease is an illness caused by the protozoan parasite Trypanosoma cruzi, affecting more than 7 million people in the world. Benznidazole and nifurtimox are the only drugs available for treatment and in addition to causing several side effects, are only satisfactory in the acute phase of the disease. Sirtuins are NAD+-dependent deacetylases involved in several biological processes, which have become drug target candidates in various disease settings. T. cruzi presents two sirtuins, one cytosolic (TcSir2rp1) and the latter mitochondrial (TcSir2rp3). Here, we characterized the effects of human sirtuin inhibitors against T. cruzi sirtuins as an initial approach to develop specific parasite inhibitors. We found that, of 33 compounds tested, two inhibited TcSir2rp1 (15 and 17), while other five inhibited TcSir2rp3 (8, 12, 13, 30, and 32), indicating that specific inhibitors can be devised for each one of the enzymes. Furthermore, all inhibiting compounds prevented parasite proliferation in cultured mammalian cells. When combining the most effective inhibitors with benznidazole at least two compounds, 17 and 32, demonstrated synergistic effects. Altogether, these results support the importance of exploring T. cruzi sirtuins as drug targets and provide key elements to develop specific inhibitors for these enzymes as potential targets for Chagas disease treatment.
Collapse
|
43
|
Wössner N, Alhalabi Z, González J, Swyter S, Gan J, Schmidtkunz K, Zhang L, Vaquero A, Ovaa H, Einsle O, Sippl W, Jung M. Sirtuin 1 Inhibiting Thiocyanates (S1th)-A New Class of Isotype Selective Inhibitors of NAD + Dependent Lysine Deacetylases. Front Oncol 2020; 10:657. [PMID: 32426286 PMCID: PMC7203344 DOI: 10.3389/fonc.2020.00657] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Sirtuin 1 (Sirt1) is a NAD+ dependent lysine deacetylase associated with the pathogenesis of various diseases including cancer. In many cancer types Sirt1 expression is increased and higher levels have been associated with metastasis and poor prognosis. However, it was also shown, that Sirt1 can have tumor suppressing properties and in some instances even a dual role for the same cancer type has been reported. Increased Sirt1 activity has been linked to extension of the life span of cells, respectively, organisms by promoting DNA repair processes and downregulation of tumor suppressor proteins. This may have the downside of enhancing tumor growth and metastasis. In mice embryonic fibroblasts depletion of Sirt1 was shown to decrease levels of the DNA damage sensor histone H2AX. Impairment of DNA repair mechanisms by Sirt1 can promote tumorigenesis but also lower chemoresistance toward DNA targeting therapies. Despite many biological studies, there is currently just one small molecule Sirt1 inhibitor in clinical trials. Selisistat (EX-527) reached phase III clinical trials for treatment of Huntington's Disease. New small molecule Sirt1 modulators are crucial for further investigation of the contradicting roles of Sirt1 in cancer. We tested a small library of commercially available compounds that were proposed by virtual screening and docking studies against Sirt1, 2 and 3. A thienopyrimidone featuring a phenyl thiocyanate moiety was found to selectively inhibit Sirt1 with an IC50 of 13 μM. Structural analogs lacking the thiocyanate function did not show inhibition of Sirt1 revealing this group as key for the selectivity and affinity toward Sirt1. Further analogs with higher solubility were identified through iterative docking studies and in vitro testing. The most active compounds (down to 5 μM IC50) were further studied in cells. The ratio of phosphorylated γH2AX to unmodified H2AX is lower when Sirt1 is depleted or inhibited. Our new Sirtuin 1 inhibiting thiocyanates (S1th) lead to similarly lowered γH2AX/H2AX ratios in mouse embryonic fibroblasts as Sirt1 knockout and treatment with the reference inhibitor EX-527. In addition to that we were able to show antiproliferative activity, inhibition of migration and colony forming as well as hyperacetylation of Sirt1 targets p53 and H3 by the S1th in cervical cancer cells (HeLa). These results reveal thiocyanates as a promising new class of selective Sirt1 inhibitors.
Collapse
Affiliation(s)
- Nathalie Wössner
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg im Breisgau, Germany
| | - Zayan Alhalabi
- Department of Medicinal Chemistry, Institute of Pharmacy, University of Halle-Wittenberg, Halle, Germany
| | - Jessica González
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Sören Swyter
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jin Gan
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Karin Schmidtkunz
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg im Breisgau, Germany
| | - Lin Zhang
- Department of Protein Crystallography, Institute of Biochemistry, University of Freiburg, Freiburg im Breisgau, Germany
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Oliver Einsle
- Department of Protein Crystallography, Institute of Biochemistry, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, University of Halle-Wittenberg, Halle, Germany
| | - Manfred Jung
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
44
|
Mautone N, Zwergel C, Mai A, Rotili D. Sirtuin modulators: where are we now? A review of patents from 2015 to 2019. Expert Opin Ther Pat 2020; 30:389-407. [PMID: 32228181 DOI: 10.1080/13543776.2020.1749264] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In recent years, sirtuins (SIRTs) gained an increasing consideration because of their multiple key roles in several biological settings such as the regulation of transcription, energetic metabolism, cell cycle progression, and cytodifferentiation, apoptosis, neuro- and cardio-protection, inflammation, cancer onset and progression. Since there is mounting evidence in favor of potential therapeutic applications of SIRT modulators in various age-related disorders, the search about them is quite active. Areas covered: This review includes the patents regarding SIRT modulators released from 2015 to 2019 and provides an overview of the most relevant SIRT modulators.Expert opinion: Despite the knowledge about this family of broad-spectrum protein lysine deacylases has recently massively increased, there are still open questions, first of all, the exact nature of their involvement in various age-related conditions. The search for isoform-specific SIRT activators and inhibitors is still at its infancy, a limited number of patents describing them has been released, and not many clinical trials are ongoing. However, it is extremely likely that the successes obtained in the structural elucidation and structure-based design approaches that very recently have led to potent and specific SIRT modulators will pave the way for the development of further compounds selective for every single isoform.
Collapse
Affiliation(s)
- Nicola Mautone
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| | - Clemens Zwergel
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy.,Dipartimento di Medicina di Precisione, "Luigi Vanvitelli", Università della Campania, Naples, Italy
| | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| | - Dante Rotili
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| |
Collapse
|
45
|
Özer B, Dürüst Y. Synthesis of Some Azamacrocycles Bearing 1,2,4-Oxadiazole and
1,2,3-Triazole Moieties. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020040193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Structural basis for the activation and inhibition of Sirtuin 6 by quercetin and its derivatives. Sci Rep 2019; 9:19176. [PMID: 31844103 PMCID: PMC6914789 DOI: 10.1038/s41598-019-55654-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
Mammalian Sirtuin 6 (Sirt6) is an NAD+-dependent protein deacylase regulating metabolism and chromatin homeostasis. Sirt6 activation protects against metabolic and aging-related diseases, and Sirt6 inhibition is considered a cancer therapy. Available Sirt6 modulators show insufficient potency and specificity, and even partially contradictory Sirt6 effects were reported for the plant flavone quercetin. To understand Sirt6 modulation by quercetin-based compounds, we analysed their binding and activity effects on Sirt6 and other Sirtuin isoforms and solved crystal structures of compound complexes with Sirt6 and Sirt2. We find that quercetin activates Sirt6 via the isoform-specific binding site for pyrrolo[1,2-a]quinoxalines. Its inhibitory effect on other isoforms is based on an alternative binding site at the active site entrance. Based on these insights, we identified isoquercetin as a ligand that can discriminate both sites and thus activates Sirt6 with increased specificity. Furthermore, we find that quercetin derivatives that inhibit rather than activate Sirt6 exploit the same general Sirt6 binding site as the activators, identifying it as a versatile allosteric site for Sirt6 modulation. Our results thus provide a structural basis for Sirtuin effects of quercetin-related compounds and helpful insights for Sirt6-targeted drug development.
Collapse
|
47
|
M L CR, Nawaz Khan FR, Saravanan V. Facile synthesis of N-1,2,4-oxadiazole substituted sulfoximines from N-cyano sulfoximines. Org Biomol Chem 2019; 17:9187-9199. [PMID: 31595935 DOI: 10.1039/c9ob01931f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A divergent approach has been successfully developed for the synthesis of N-1,2,4-oxadiazole substituted sulfoximines starting from N-cyano sulfoximines. This method has a wide degree of substrate scope that includes aryl, heteroaryl, alkyl, fluoroalkyl and saturated heterocyclic compounds. Excellent functional group tolerability was also observed. Extension of this methodology to nucleosides, amino acids and dipeptides was found to be successful. A gram scale reaction was also established. The major part of this method is metal free and the utility of environmentally friendly solvents such as 2-methyl THF and ionic liquids is an added advantage.
Collapse
Affiliation(s)
- Chenna Reddy M L
- Medicinal Chemistry, Jubilant Biosys Ltd, #96, Industrial, Suburb, 2nd Stage, Yeshwanthpur, Bangalore, 560022, India.
| | | | | |
Collapse
|
48
|
The Roles of Sirtuin Family Proteins in Cancer Progression. Cancers (Basel) 2019; 11:cancers11121949. [PMID: 31817470 PMCID: PMC6966446 DOI: 10.3390/cancers11121949] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Sirtuin family members are characterized by either mono-ADP-ribosyltransferase or deacylase activity and are linked to various cancer-related biological pathways as regulators of transcriptional progression. Sirtuins play fundamental roles in carcinogenesis and maintenance of the malignant phenotype, mainly participating in cancer cell viability, apoptosis, metastasis, and tumorigenesis. Although sirtuin family members have a high degree of homology, they may play different roles in various kinds of cancer. This review highlights their fundamental roles in tumorigenesis and cancer development and provides a critical discussion of their dual roles in cancer, namely, as tumor promoters or tumor suppressors.
Collapse
|
49
|
Wang Y, Yang J, Hong T, Chen X, Cui L. SIRT2: Controversy and multiple roles in disease and physiology. Ageing Res Rev 2019; 55:100961. [PMID: 31505260 DOI: 10.1016/j.arr.2019.100961] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/11/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022]
Abstract
Sirtuin 2 (SIRT2) is an NAD+-dependent deacetylase that was under studied compared to other sirtuin family members. SIRT2 is the only sirtuin protein which is predominantly found in the cytoplasm but is also found in the mitochondria and in the nucleus. Recently, accumulating evidence has uncovered a growing number of substrates and additional detailed functions of SIRT2 in a wide range of biological processes, marking its crucial role. Here, we give a comprehensive profile of the crucial physiological functions of SIRT2 and its role in neurological diseases, cancers, and other diseases. This review summarizes the functions of SIRT2 in the nervous system, mitosis regulation, genome integrity, cell differentiation, cell homeostasis, aging, infection, inflammation, oxidative stress, and autophagy. SIRT2 inhibition rescues neurodegenerative disease symptoms and hence SIRT2 is a potential therapeutic target for neurodegenerative disease. SIRT2 is undoubtedly dysfunctional in cancers and plays a dual-faced role in different types of cancers, and although its mechanism is unresolved, SIRT2 remains a promising therapeutic target for certain cancers. In future, the continued rapid growth in SIRT2 research will help clarify its role in human health and disease, and promote the progress of this target in clinical practice.
Collapse
Affiliation(s)
- Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jingqi Yang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingting Hong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
50
|
Antiproliferative S-Trityl-l-Cysteine -Derived Compounds as SIRT2 Inhibitors: Repurposing and Solubility Enhancement. Molecules 2019; 24:molecules24183295. [PMID: 31510043 PMCID: PMC6766826 DOI: 10.3390/molecules24183295] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
S-trityl-l-cysteine (STLC) is a well-recognized lead compound known for its anticancer activity owing to its potent inhibitory effect on human mitotic kinesin Eg5. STLC contains two free terminal amino and carboxyl groups that play pivotal roles in binding to the Eg5 pocket. On the other hand, such a zwitterion structure complicates the clinical development of STLC because of the solubility issues. Masking either of these radicals reduces or abolishes STLC activity against Eg5. We recently identified and characterized a new class of nicotinamide adenine dinucleotide-dependent deacetylase isoform 2 of sirtuin protein (SIRT2) inhibitors that can be utilized as cytotoxic agents based on an S-trityl-l-histidine scaffold. Herein, we propose new STLC-derived compounds that possess pronounced SIRT2 inhibition effects. These derivatives contain modified amino and carboxyl groups, which conferred STLC with SIRT2 bioactivity, representing an explicit repurposing approach. Compounds STC4 and STC11 exhibited half maximal inhibitory concentration values of 10.8 ± 1.9 and 9.5 ± 1.2 μM, respectively, against SIRT2. Additionally, introduction of the derivatizations in this study addressed the solubility limitations of free STLC, presumably due to interruption of the zwitterion structure. Therefore, we could obtain drug-like STLC derivatives that work by a new mechanism of action. The new derivatives were designed, synthesized, and their structure was confirmed using different spectroscopic approaches. In vitro and cellular bioassays with various cancer cell lines and in silico molecular docking and solubility calculations of the synthesized compounds demonstrated that they warrant attention for further refinement of their bioactivity.
Collapse
|