1
|
Taheri M, Moradi MH, Koraee Y, Moghadam FH, Ershad Nedaei S, Veisi M, Ghafouri H. Neuroprotective properties of a thiazolidine-2,4-dione derivative as an inhibitory agent against memory impairment and phosphorylated tau: In vitro and in vivo investigations. Neuroscience 2024; 562:227-238. [PMID: 39489476 DOI: 10.1016/j.neuroscience.2024.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) is the most common form of neurodegeneration that results in memory disorders and cognitive impairment. The present study investigated the neuroprotective effects of the synthesized thiazolidine-2,4-dione derivative, (E)-5-(4-chlorobenzylidene)-3-(2-oxo-2-phenylethyl)thiazolidine-2,4-dione (TZ4C), an inhibitor of p-Tau and memory impairment, using a SH-SY5Y cell model of methamphetamine-induced tauopathy and a scopolamine-induced memory impairment model in Wistar rats. In the present study, the neuroprotective effect of TZ4C was studied in a SH-SY5Y cellular model of methamphetamine-induced (2 mM) tauopathy and a scopolamine-induced (1.5 mg/kg/day) memory impairment model in male Wistar rats (n = 48). The memory functions and learning abilities of the rats were evaluated using the Morris water maze (MWM) and passive avoidance tests. Additionally, AChE activity in the rat hippocampus was quantified, and the expression of p-Tau, HSP70, and caspase-3 in both in vitro and in vivo samples was evaluated through Western blot analysis. TZ4C (0.1-1000 µM) did not exhibit significantly toxic effects on SH-SY5Y cell viability. Western blot results indicated that TZ4C led to reduced expression of p-Tau, HSP70, and cleaved caspase-3 in SH-SY5Y cells (3 and 10 µM) and the rat hippocampus (2 and 4 mg/kg). Additionally, the findings suggested that TZ4C enhanced memory function in rats with scopolamine-induced impairment and decreased acetylcholinesterase (AChE) specific activity. The comprehensive analysis of in vitro and in vivo experiments underscores the neuroprotective potential (improved neuropathology and reduced memory impairment) of TZ4C. These findings highlight the promise of TZ4C as a candidate for drug discovery programs to identify effective therapies for AD.
Collapse
Affiliation(s)
- Maryam Taheri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Mohammad Hadi Moradi
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Yasaman Koraee
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Farshad Homayouni Moghadam
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Seyed Ershad Nedaei
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojgan Veisi
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran.
| |
Collapse
|
2
|
Mayo P, Pascual J, Crisman E, Domínguez C, López MG, León R. Innovative pathological network-based multitarget approaches for Alzheimer's disease treatment. Med Res Rev 2024; 44:2367-2419. [PMID: 38678582 DOI: 10.1002/med.22045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/02/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and is a major health threat globally. Its prevalence is forecasted to exponentially increase during the next 30 years due to the global aging population. Currently, approved drugs are merely symptomatic, being ineffective in delaying or blocking the relentless disease advance. Intensive AD research describes this disease as a highly complex multifactorial disease. Disclosure of novel pathological pathways and their interconnections has had a major impact on medicinal chemistry drug development for AD over the last two decades. The complex network of pathological events involved in the onset of the disease has prompted the development of multitarget drugs. These chemical entities combine pharmacological activities toward two or more drug targets of interest. These multitarget-directed ligands are proposed to modify different nodes in the pathological network aiming to delay or even stop disease progression. Here, we review the multitarget drug development strategy for AD during the last decade.
Collapse
Affiliation(s)
- Paloma Mayo
- Departamento de desarrollo preclínico, Fundación Teófilo Hernando, Las Rozas, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Jorge Pascual
- Departamento de desarrollo preclínico, Fundación Teófilo Hernando, Las Rozas, Madrid, Spain
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Enrique Crisman
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Cristina Domínguez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| |
Collapse
|
3
|
Shankar G, Praveen Kumar C, Yadav M, Ghosh A, Panda SR, Banerjee A, Tiwari A, Rai S, Kumar S, Garg P, Naidu VGM, Kulkarni O, Modi G. Discovery of novel substituted (Z)-N'-hydroxy-3-(3-phenylureido)benzimidamide derivatives as multifunctional molecules targeting pathological hallmarks of Alzheimer's disease. Eur J Med Chem 2024; 280:116959. [PMID: 39461036 DOI: 10.1016/j.ejmech.2024.116959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/30/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder marked by significant loss of central cholinergic neurons. This progressive deterioration leads to cognitive dysfunction and impaired motor activity, culminating in the brain cell's death at the later stages of the disease. The approved drugs for AD are limited to providing symptomatic relief for an initial period due to the multifaceted etiology of the disease. Several studies have demonstrated that rivastigmine (RIV) is a selectively potent inhibitor of butyrylcholinesterase and devoid of antioxidant, Aβ, and tau protein aggregation inhibition and anti-inflammatory properties. Therefore, to address these issues associated with RIV, novel rivastigmine-based molecules were rationally designed, synthesized, and evaluated in various in-vitro and in-vivo AD models. In in-vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition studies revealed that 3q & 6e as promising leads (AChE, IC50 1.72 ± 0.15, 0.91 ± 0.016 μM, BChE, IC50 6.69 ± 0.28 μM, 1.19 ± 0.026 μM, for 3q & 6e, respectively). The computational studies (molecular docking and dynamics) further corroborated the in-vitro studies. Further, 3q and 6e were found to be potent antioxidants in the DPPH assay (IC50 16.15 ± 1.05 & 15.17 ± 0.07 μM, for 3q & 6e, respectively). Interestingly, 3q, and 6e could effectively inhibit self-induced full-length tau and Aβ1-42 aggregation. Treatment with 3q & 6e inhibited microglial activation by attenuating ROS release and mitochondrial damage. Further, 3q & 6e also suppressed NLRP3 inflammasome and NF-κB expression levels in microglial cells and halted the release of pro-inflammatory cytokines in human microglial cells. Finally, 3q & 6e were found to be efficacious in reversing the scopolamine-induced memory impairment in the Morris water maze test. The expression of various neuroprotection markers, such as BDNF and TRKB, was significantly overexpressed compared to the disease control group.
Collapse
Affiliation(s)
- Gauri Shankar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India
| | - C Praveen Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India
| | - Meenu Yadav
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India
| | - Aparajita Ghosh
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawaharnagar Shamirpet Mandal, 500078, Hyderabad, India
| | - Samir Ranjan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India
| | - Aritra Banerjee
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Ankit Tiwari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India
| | - Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India; Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India
| | - Onkar Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawaharnagar Shamirpet Mandal, 500078, Hyderabad, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India.
| |
Collapse
|
4
|
Luo XF, Zhou H, Deng P, Zhang SY, Wang YR, Ding YY, Wang GH, Zhang ZJ, Wu ZR, Liu YQ. Current development and structure-activity relationship study of berberine derivatives. Bioorg Med Chem 2024; 112:117880. [PMID: 39216382 DOI: 10.1016/j.bmc.2024.117880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/28/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Berberine is a quaternary ammonium isoquinoline alkaloid derived from traditional Chinese medicines Coptis chinensis and Phellodendron chinense. It has many pharmacological activities such as hypoglycemic, hypolipidemic, anti-tumor, antimicrobial and anti-inflammatory. Through structural modifications at various sites of berberine, the introduction of different groups can change berberine's physical and chemical properties, thereby improving the biological activity and clinical efficacy, and expanding the scope of application. This paper reviews the research progress and structure-activity relationships of berberine in recent years, aiming to provide valuable insights for the exploration of novel berberine derivatives.
Collapse
Affiliation(s)
- Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Han Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Peng Deng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China.
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yan-Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Guang-Han Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zheng-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
5
|
Sukanya S, Bellver-Sanchis A, Singh Choudhary B, Kumar S, Pérez B, Leandro Martínez Rodríguez A, Brea J, Griñán-Ferré C, Malik R. Design, synthesis, and biological evaluation of tetrahydropyrimidine analogue as GSK-3β/Aβ aggregation inhibitor and anti-Alzheimer's agent. Bioorg Chem 2024; 153:107811. [PMID: 39270527 DOI: 10.1016/j.bioorg.2024.107811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
The complex nature of Alzheimer's disease (AD) etiopathology is among the principal hurdles to developing effective anti-Alzheimer agents. Tau pathology and Amyloid-β (Aβ) accumulation are hallmarks and validated therapeutic strategies of AD. GSK-3β is a serine/threonine kinase involved in tau phosphorylation. Its excessive activity also contributes to the production of Aβ plaques, making GSK-3β an attractive AD target. Taking this into account, In this article, we outline the design, synthesis, and biological validation of a focused library of 1,2,3,4-tetrahydropyrimidine based derivatives as inhibitors of GSK-3β, tau phosphorylation, and Aβ accumulation. The inhibitory activity of forty nine synthetic compounds was tested against GSK-3β and other AD-relevant kinases. The kinetic experiments revealed the mode of GSK-3β inhibition by the most potent compound 44. The in- vitro drug metabolism and pharmacokinetic studies were thereafter performed. The anti-aggregation activity of the most potent GSK-3β inhibitor was tested using AD transgenic Caenorhabditis elegans (C. elegans) strain CL2006 for quantification of Aβ plaques and BR5706 C. elegans strain for tau pathology evaluation. We then evaluated the blood-brain barrier permeability and got promising results. Therefore, we present compound 44 as a potential ATP-competitive GSK-3β inhibitor with good metabolism and pharmacokinetic profile, anti-aggregation properties for amyloid beta protein, and reduction in tau-phosphorylation levels. We recommend more investigation into compound 44-based small molecules as possible targets for AD disease-modifying treatments.
Collapse
Affiliation(s)
- Sukanya Sukanya
- Department of Pharmacy, Central University of Rajasthan, Bandarsindari, Ajmer, Rajasthan 305817, India
| | - Aina Bellver-Sanchis
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Bhanwar Singh Choudhary
- Department of Pharmacy, Central University of Rajasthan, Bandarsindari, Ajmer, Rajasthan 305817, India
| | - Sunil Kumar
- Department of Pharmacy, Central University of Rajasthan, Bandarsindari, Ajmer, Rajasthan 305817, India
| | - Belén Pérez
- Department of Pharmacology, Therapeutics and Toxicology, Institute of Neuroscience, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Antón Leandro Martínez Rodríguez
- Innopharma screening platform, Biofarma research group. Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Brea
- Innopharma screening platform, Biofarma research group. Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Institute of Health Carlos III, Madrid, Spain
| | - Ruchi Malik
- Department of Pharmacy, Central University of Rajasthan, Bandarsindari, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
6
|
Sai Varshini M, Aishwarya Reddy R, Thaggikuppe Krishnamurthy P. Unlocking hope: GSK-3 inhibitors and Wnt pathway activation in Alzheimer's therapy. J Drug Target 2024; 32:909-917. [PMID: 38838023 DOI: 10.1080/1061186x.2024.2365263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterised by progressive cognitive decline and the accumulation of amyloid-β plaques and tau tangles. The Wnt signalling pathway known for its crucial role in neurodevelopment and adult neurogenesis has emerged as a potential target for therapeutic intervention in AD. Glycogen synthase kinase-3 beta (GSK-3β), a key regulator of the Wnt pathway, plays a pivotal role in AD pathogenesis by promoting tau hyperphosphorylation and neuroinflammation. Several preclinical studies have demonstrated that inhibiting GSK-3β leads to the activation of Wnt pathway thereby promoting neuroprotective effects, and mitigating cognitive deficits in AD animal models. The modulation of Wnt signalling appears to have multifaceted benefits including the reduction of amyloid-β production, tau hyperphosphorylation, enhancement of synaptic plasticity, and inhibition of neuroinflammation. These findings suggest that targeting GSK-3β to activate Wnt pathway may represent a novel approach for slowing or halting the progression of AD. This hypothesis reviews the current state of research exploring the activation of Wnt pathway through the inhibition of GSK-3β as a promising therapeutic strategy in AD.
Collapse
Affiliation(s)
- Magham Sai Varshini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | - Ramakkamma Aishwarya Reddy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | | |
Collapse
|
7
|
Kumar J, Shankar G, Kumar S, Thomas J, Singh N, Srikrishna S, Satija J, Krishnamurthy S, Modi G, Mishra SK. Extraction, isolation, synthesis, and biological evaluation of novel piperic acid derivatives for the treatment of Alzheimer's disease. Mol Divers 2024; 28:1439-1458. [PMID: 37351693 DOI: 10.1007/s11030-023-10667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
In this paper, we developed a series of piperic acid (PA) analogs with the aim of overcoming the limitations associated with the natural products for the management of Alzheimer's disease (AD). A comprehensive SAR study was performed to enhance cholinesterase inhibition of PA. The acetylcholinesterase inhibition and its kinetic data suggested 6j as the lead molecule (AChE IC50 = 2.13 ± 0.015 µM, BChE = 28.19 ± 0.20%), in comparison to PA (AChE = 7.14 ± 0.98%) which was further selected for various biological studies in AD models. 6j, exhibited interaction with the peripheral anionic site of AChE, BBB permeability (Pe = 7.98), and antioxidant property (% radical scavenging activity = 35.41 ± 1.09, 2.43 ± 1.65, for 6j and PA at 20 M μ , respectively). The result from the metal chelation study suggests that 6j did not effectively chelate iron. The molecular modeling studies suggested that 6j could effectively interact with Ser293, Phe295, Arg296, and Tyr34 of AChE. In the cell-based cytotoxicity studies, 6j exhibited cytocompatibility at the different tested concentrations. The acute toxicity data on mice suggested that compound 6j had no renal and hepatotoxicity at 500 mg/kg. Moreover, 6j could effectively reverse scopolamine-induced amnesia by improving spatial and cognitive memory in mice. The above results strongly suggest that compound 6j may act as a novel multi-targeted lead for AD therapy.
Collapse
Affiliation(s)
- Jitendra Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gauri Shankar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sunil Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Jobin Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014, India
| | - Neha Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Saripella Srikrishna
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - Jitendra Satija
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
8
|
Gazdag T, Meiszter E, Mayer PJ, Holczbauer T, Ottosson H, Maurer AB, Abrahamsson M, London G. An Exploration of Substituent Effects on the Photophysical Properties of Monobenzopentalenes. Chemphyschem 2024; 25:e202300737. [PMID: 38284145 DOI: 10.1002/cphc.202300737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
Monobenzopentalenes have received moderate attention compared to dibenzopentalenes, yet their accessibility as stable, non-symmetric structures with diverse substituents could be interesting for materials applications, including molecular photonics. Recently, monobenzopentalene was considered computationally as a potential chromophore for singlet fission (SF) photovoltaics. To advance this compound class towards photonics applications, the excited state energetics must be characterized, computationally and experimentally. In this report we synthesized a series of stable substituted monobenzopentalenes and provided the first experimental exploration of their photophysical properties. Structural and opto-electronic characterization revealed that all derivatives showed 1H NMR shifts in the olefinic region, bond length alternation in the pentalene unit, low-intensity absorptions reflecting the ground-state antiaromatic character and in turn the symmetry forbidden HOMO-to-LUMO transitions of ~2 eV and redox amphotericity. This was also supported by computed aromaticity indices (NICS, ACID, HOMA). Accordingly, substituents did not affect the fulfilment of the energetic criterion of SF, as the computed excited-state energy levels satisfied the required E(S1)/E(T1)>2 relationship. Further spectroscopic measurements revealed a concentration dependent quenching of the excited state and population of the S2 state on the nanosecond timescale, providing initial evidence for unusual photophysics and an alternative entry point for singlet fission with monobenzopentalenes.
Collapse
Affiliation(s)
- Tamás Gazdag
- MTA TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 1117, Budapest, Magyar tudósok krt. 2, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/a, Budapest, 1117, Hungary
| | - Enikő Meiszter
- MTA TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 1117, Budapest, Magyar tudósok krt. 2, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary
| | - Péter J Mayer
- MTA TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 1117, Budapest, Magyar tudósok krt. 2, Hungary
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, Uppsala, 751 20, Sweden
| | - Tamás Holczbauer
- Chemical Crystallography Research Laboratory and Stereochemistry Research Group, Institute for Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 1117, Budapest, Magyar tudósok krt. 2, Hungary
| | - Henrik Ottosson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, Uppsala, 751 20, Sweden
| | - Andrew B Maurer
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Maria Abrahamsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Gábor London
- MTA TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 1117, Budapest, Magyar tudósok krt. 2, Hungary
| |
Collapse
|
9
|
Francisco T, Malafaia D, Melo L, Silva AMS, Albuquerque HMT. Recent Advances in Fluorescent Theranostics for Alzheimer's Disease: A Comprehensive Survey on Design, Synthesis, and Properties. ACS OMEGA 2024; 9:13556-13591. [PMID: 38559945 PMCID: PMC10975685 DOI: 10.1021/acsomega.3c10417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative dementia that is rapidly becoming a major health problem, especially in developed countries because of their increasing life expectancy. Two main problems are often associated with the disease: (i) the absence of a widely accessible "gold-standard" for early diagnosis and (ii) lack of effective therapies with disease-modifying effects. The recent success of the monoclonal antibody lecanemab played an important role not only in clarifying a possible druggable pathway but also in spelling the revival of small molecule drug discovery. Unlike bulky biologics, small molecules are structurally less complex, generally cheaper, and compatible with at-home oral consumption, making it feasible for people to start their drug regimen early and stay on it longer. In this sense, small-molecule near-infrared fluorescent theranostics have been gaining more and more attention from the scientific community, as they have the potential to simultaneously provide diagnostic outputs and deliver therapeutic action, paving the way toward personalized medicine in AD patients. They also have the potential to shift the diagnostic "status-quo" from expensive and limited-access PET radiotracers toward inexpensive and handy imaging tools widely available for primary patient screening and preclinical animal studies. Herein, we review the most recent advances in the field of fluorescent theranostics for Alzheimer's disease, detailing their design strategies, synthetic approaches and imaging and therapeutic properties in vitro and in vivo. With this Review, we intend to provide a milestone in the acquired knowledge in the field of AD theranostics, encouraging the future development of properly designed theranostic compounds with improved chances to reach clinical applications.
Collapse
Affiliation(s)
- Telmo
N. Francisco
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus
de Santiago, 3810-193 Aveiro, Portugal
| | - Daniela Malafaia
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus
de Santiago, 3810-193 Aveiro, Portugal
| | - Lúcia Melo
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus
de Santiago, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus
de Santiago, 3810-193 Aveiro, Portugal
| | - Hélio M. T. Albuquerque
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus
de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Cheng Z, Han T, Yao J, Wang K, Dong X, Yu F, Huang H, Han M, Liao Q, He S, Lyu W, Li Q. Targeting glycogen synthase kinase-3β for Alzheimer's disease: Recent advances and future Prospects. Eur J Med Chem 2024; 265:116065. [PMID: 38160617 DOI: 10.1016/j.ejmech.2023.116065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Senile plaques induced by β-amyloid (Aβ) abnormal aggregation and neurofibrillary tangles (NFT) caused by tau hyperphosphorylation are important pathological manifestations of Alzheimer's disease (AD). Glycogen synthase kinase-3 (GSK-3) is a conserved kinase; one member GSK-3β is highly expressed in the AD brain and involved in the formation of NFT. Hence, pharmacologically inhibiting GSK-3β activity and expression is a good approach to treat AD. As summarized in this article, multiple GSK-3β inhibitors has been comprehensively summarized over recent five years. However, only lithium carbonate and Tideglusib have been studied in clinical trials of AD. Besides ATP-competitive and non-ATP-competitive inhibitors, peptide inhibitors, allosteric inhibitors and other types of inhibitors have gradually attracted more interest. Moreover, considering the close relationship between GSK-3β and other targets involved in cholinergic hypothesis, Aβ aggregation hypothesis, tau hyperphosphorylation hypothesis, oxidative stress hypothesis, neuro-inflammation hypothesis, etc., diverse multifunctional molecules and multi-target directed ligands (MTDLs) have also been disclosed. We hope that these recent advances and critical perspectives will facilitate the discovery of safe and effective GSK-3β inhibitors for AD treatment.
Collapse
Affiliation(s)
- Zimeng Cheng
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Tianyue Han
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Jingtong Yao
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Kaixuan Wang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Xue Dong
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Fan Yu
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - He Huang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Menglin Han
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Qinghong Liao
- Shandong Kangqiao Biotechnology Co., Ltd, Qingdao, 266033, Shandong, People's Republic of China
| | - Siyu He
- Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Weiping Lyu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China.
| |
Collapse
|
11
|
Abdollahi Z, Nejabat M, Abnous K, Hadizadeh F. The therapeutic value of thiazole and thiazolidine derivatives in Alzheimer's disease: a systematic literature review. Res Pharm Sci 2024; 19:1-12. [PMID: 39006977 PMCID: PMC11244712 DOI: 10.4103/1735-5362.394816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 04/19/2023] [Accepted: 12/23/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Alzheimer's disease (AD) is a common neurodegenerative disease and the fifth leading cause of death among the elderly. The development of drugs for AD treatment is based on inhibiting cholinesterase (ChE) activity and inhibiting amyloid-beta peptide and tau protein aggregations. Many in vitro findings have demonstrated that thiazole-and thiazolidine-based compounds have a good inhibitory effect on ChE and other elements involved in the AD pathogenicity cascade. Experimental approach In the present review, we collected available documents to verify whether these synthetic compounds can be a step forward in developing new medications for AD. A systematic literature search was performed in major electronic databases in April 2021. Twenty-eight relevant in vitro and in vivo studies were found and used for data extraction. Findings/Results Findings demonstrated that thiazole-and thiazolidine-based compounds could ameliorate AD's pathologic condition by affecting various targets, including inhibition of ChE activity, amyloid-beta, and tau aggregation in addition to cyclin-dependent kinase 5/p25, beta-secretase-1, cyclooxygenase, and glycogen synthase kinase-3β. Conclusion and implications Due to multitarget effects at micromolar concentration, this review demonstrated that these synthetic compounds could be considered promising candidates for developing anti-Alzheimer drugs.
Collapse
Affiliation(s)
- Zahra Abdollahi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Nejabat
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Qiu J, Feng X, Chen H, Liu W, Liu W, Wu L, Gao X, Liu Y, Huang Y, Gong H, Qi Y, Xu Z, Zhao Q. Discovery of novel harmine derivatives as GSK-3β/DYRK1A dual inhibitors for Alzheimer's disease treatment. Arch Pharm (Weinheim) 2024; 357:e2300404. [PMID: 38010470 DOI: 10.1002/ardp.202300404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/22/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
Multitarget-directed ligands (MTDLs) have recently attracted significant interest due to their superior effectiveness in multifactorial Alzheimer's disease (AD). Combined inhibition of two important AD targets, glycogen synthase kinase-3β (GSK-3β) and dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), may be a breakthrough in the treatment of AD. Based on our previous work, we have designed and synthesized a series of novel harmine derivatives, investigated their inhibition of GSK-3β and DYRK1A, and evaluated a variety of biological activities. The results of the experiments showed that most of these compounds exhibited good activity against GSK-3β and DYRK1A in vitro. ZLQH-5 was selected as the best compound due to the most potent inhibitory effect against GSK-3β and DYRK1A. Molecular docking studies demonstrated that ZLQH-5 could form stable interactions with the ATP binding pocket of GSK-3β and DYRK1A. In addition, ZLQH-5 showed low cytotoxicity against SH-SY5Y and HL-7702, good blood-brain barrier permeability, and favorable pharmacokinetic properties. More importantly, ZLQH-5 also attenuated the tau hyperphosphorylation in the okadaic acid SH-SY5Y cell model. These results indicated that ZLQH-5 could be a promising dual-target drug candidate for the treatment of AD.
Collapse
Affiliation(s)
- Jingsong Qiu
- Bei Fang Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiangling Feng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Huanhua Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenwu Liu
- Bei Fang Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang, China
| | - Wenjie Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Limeng Wu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xudong Gao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Yanfang Liu
- Department of Clinical Trial Center, General Hospital of Northern Theater Command, Shenyang, China
| | - Yaoguang Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Hao Gong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yiming Qi
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Zihua Xu
- Bei Fang Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qingchun Zhao
- Bei Fang Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
13
|
Bayraktar G, Alptüzün V. Recent Molecular Targets and their Ligands for the Treatment of Alzheimer Disease. Curr Top Med Chem 2024; 24:2447-2464. [PMID: 39171472 DOI: 10.2174/0115680266318722240809050235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/16/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024]
Abstract
Alzheimer's disease is a multifaceted neurodegenerative disease. Cholinergic dysfunction, amyloid β toxicity, tauopathies, oxidative stress, neuroinflammation are among the main pathologies of the disease. Ligands targeting more than one pathology, multi-target directed ligands, attract attention in the recent years to tackle Alzheimer's disease. In this review, we aimed to cover different biochemical pathways, that are revealed in recent years for the pathology of the disease, as druggable targets such as cannabinoid receptors, matrix metalloproteinases, histone deacetylase and various kinases including, glycogen synthase kinase-3, mitogen-activated protein kinase and c-Jun N-terminal kinase, and their ligands for the treatment of Alzheimer's disease in the hope of providing more realistic insights into the field.
Collapse
Affiliation(s)
- Gülşah Bayraktar
- Department of Pharmaceutical Chemistry, Ege University, Faculty of Pharmacy, Izmir, 35040, Turkey
| | - Vildan Alptüzün
- Department of Pharmaceutical Chemistry, Ege University, Faculty of Pharmacy, Izmir, 35040, Turkey
| |
Collapse
|
14
|
Bernard PJ, Bellili D, Ismaili L. Calcium channel blockers' contribution to overcoming Current drug discovery challenges in Alzheimer's disease. Expert Opin Drug Discov 2024; 19:21-32. [PMID: 37800853 DOI: 10.1080/17460441.2023.2266994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a progressive, irreversible, and multifactorial brain disorder that gradually and insidiously destroys individual's memory, thinking, and other cognitive abilities. AREAS COVERED In this perspective, the authors examine the complex and multifactorial nature of Alzheimer's disease and believe that the best approach to develop new drugs is the MTDL strategy, which obviously faces several challenges. These challenges include identifying the key combination of targets and their suitability for coordinated actions, as well as developing an acceptable pharmacokinetic and toxicological profile to deliver a drug candidate. EXPERT OPINION Since calcium plays a crucial role in the pathology of AD, a polypharmacological approach with calcium channel blockers reinforced by activities targeting other factors involved in AD is a serious option in our opinion. This is exemplified by a phase III clinical trial using a drug combination approach with Losartan, Amlodipine (a calcium channel blocker), and Atorvastatin, as well as several MTDL-based calcium channel blockade approaches with a promising in vitro and in vivo profile.
Collapse
Affiliation(s)
- Paul J Bernard
- Université de Franche-Comté, LINC, UFR Santé, Pôle de Chimie Médicinale, Besançon, France
| | - Djamila Bellili
- Université de Franche-Comté, LINC, UFR Santé, Pôle de Chimie Médicinale, Besançon, France
| | - Lhassane Ismaili
- Université de Franche-Comté, LINC, UFR Santé, Pôle de Chimie Médicinale, Besançon, France
| |
Collapse
|
15
|
Kumar S, Mahajan A, Ambatwar R, Khatik GL. Recent Advancements in the Treatment of Alzheimer's Disease: A Multitarget-directed Ligand Approach. Curr Med Chem 2024; 31:6032-6062. [PMID: 37861025 DOI: 10.2174/0109298673264076230921065945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and one of the leading causes of progressive dementia, affecting 50 million people worldwide. Many pathogenic processes, including amyloid β aggregation, tau hyperphosphorylation, oxidative stress, neuronal death, and deterioration of the function of cholinergic neurons, are associated with its progression. The one-compound-one-target treatment paradigm was unsuccessful in treating AD due to the multifaceted nature of Alzheimer's disease. The recent development of multitarget-directed ligand research has been explored to target the complementary pathways associated with the disease. We aimed to find the key role and progress of MTDLs in treating AD; thus, we searched for the past ten years of literature on "Pub- Med", "ScienceDirect", "ACS" and "Bentham Science" using the keywords neurodegenerative diseases, Alzheimer's disease, and multitarget-directed ligands. The literature was further filtered based on the quality of work and relevance to AD. Thus, this review highlights the current advancement and advantages of multitarget-directed ligands over traditional single-targeted drugs and recent progress in their development to treat AD.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Amol Mahajan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Ramesh Ambatwar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Gopal L Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| |
Collapse
|
16
|
Hedna R, DiMaio A, Robin M, Allegro D, Tatoni M, Peyrot V, Barbier P, Kovacic H, Breuzard G. 2-Aminothiazole-Flavonoid Hybrid Derivatives Binding to Tau Protein and Responsible for Antitumor Activity in Glioblastoma. Int J Mol Sci 2023; 24:15050. [PMID: 37894731 PMCID: PMC10606064 DOI: 10.3390/ijms242015050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Tau protein has been described for several decades as a promoter of tubulin assembly into microtubules. Dysregulation or alterations in Tau expression have been related to various brain cancers, including the highly aggressive and lethal brain tumor glioblastoma multiform (GBM). In this respect, Tau holds significant promise as a target for the development of novel therapies. Here, we examined the structure-activity relationship of a new series of seventeen 2-aminothiazole-fused to flavonoid hybrid compounds (TZF) on Tau binding, Tau fibrillation, and cellular effects on Tau-expressing cancer cells. By spectrofluorometric approach, we found that two compounds, 2 and 9, demonstrated high affinity for Tau and exhibited a strong propensity to inhibit Tau fibrillation. Then, the biological activity of these compounds was evaluated on several Tau-expressing cells derived from glioblastoma. The two lead compounds displayed a high anti-metabolic activity on cells related to an increased fission of the mitochondria network. Moreover, we showed that both compounds induced microtubule bundling within newly formed neurite-like protrusions, as well as with defection of cell migration. Taken together, our results provide a strong experimental basis to develop new potent molecules targeting Tau-expressing cancer cells, such as GBM.
Collapse
Affiliation(s)
- Rayane Hedna
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| | - Attilio DiMaio
- Faculté de Pharmacie, Institut Méditerranéen de Biodiversité et Ecologie Marine et Continentale (IMBE), UMR 7263, CNRS, IRD 237, Aix-Marseille Université, 13005 Marseille, France; (A.D.); (M.R.)
| | - Maxime Robin
- Faculté de Pharmacie, Institut Méditerranéen de Biodiversité et Ecologie Marine et Continentale (IMBE), UMR 7263, CNRS, IRD 237, Aix-Marseille Université, 13005 Marseille, France; (A.D.); (M.R.)
| | - Diane Allegro
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| | - Mario Tatoni
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| | - Vincent Peyrot
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| | - Pascale Barbier
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| | - Hervé Kovacic
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| | - Gilles Breuzard
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| |
Collapse
|
17
|
Taheri M, Ghafoori H, Sepehri H, Mohammadi A. Neuroprotective Effect of Thiazolidine-2,4-dione Derivatives on Memory Deficits and Neuropathological Symptoms of Dementia on a Scopolamine-Induced Alzheimer's Model in Adult Male Wistar Rats. ACS Chem Neurosci 2023; 14:3156-3172. [PMID: 37561907 DOI: 10.1021/acschemneuro.3c00294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with a decline in memory deficits and neuropathological diagnosis with loss of cholinergic neurons in the brains of older adults. Based on these facts and an increasing number of involved people worldwide, this investigation aimed to study the improvement of memory and cognitive impairments via an anticholinergic approach of thiazolidine-2,4-diones (TZDs) in the scopolamine-induced model of Alzheimer type in adult male Wistar rats (n = 40). The results indicated data analysis obtained from in vivo and in vitro tests for (E)-5-(3-hydroxybenzylidene)-3-(2-oxo-2-phenylethyl)thiazolidine-2,4-dione (TZ3O) (2 and 4 mg/kg) with the meta-hydroxy group and (E)-5-(4-methoxybenzylidene)-3-(2-oxo-2-phenylethyl)thiazolidine-2,4-dione (TZ4M) (2 and 3 mg/kg) with the para-methoxy group showed a neuroprotective effect. TZ3O and TZ4M alleviated the scopolamine-induced cognitive decline of the Alzheimer model in adult male Wistar rats. These initial and noteworthy results could be assumed as a starting point for the evolution of new anti-Alzheimer agents.
Collapse
Affiliation(s)
- Maryam Taheri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht 4193833697, Iran
| | - Hossein Ghafoori
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht 4193833697, Iran
| | - Hamid Sepehri
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan 4913815739, Iran
| | - Asadollah Mohammadi
- Department of Chemistry, Faculty of Basic Sciences, University of Guilan, Rasht 4193833697, Iran
| |
Collapse
|
18
|
Dakhlaoui I, Bernard PJ, Pietrzak D, Simakov A, Maj M, Refouvelet B, Béduneau A, Cornu R, Jozwiak K, Chabchoub F, Iriepa I, Martin H, Marco-Contelles J, Ismaili L. Exploring the Potential of Sulfonamide-Dihydropyridine Hybrids as Multitargeted Ligands for Alzheimer's Disease Treatment. Int J Mol Sci 2023; 24:ijms24119742. [PMID: 37298693 DOI: 10.3390/ijms24119742] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease that has a heavy social and economic impact on all societies and for which there is still no cure. Multitarget-directed ligands (MTDLs) seem to be a promising therapeutic strategy for finding an effective treatment for this disease. For this purpose, new MTDLs were designed and synthesized in three steps by simple and cost-efficient procedures targeting calcium channel blockade, cholinesterase inhibition, and antioxidant activity. The biological and physicochemical results collected in this study allowed us the identification two sulfonamide-dihydropyridine hybrids showing simultaneous cholinesterase inhibition, calcium channel blockade, antioxidant capacity and Nrf2-ARE activating effect, that deserve to be further investigated for AD therapy.
Collapse
Affiliation(s)
- Imen Dakhlaoui
- Laboratoire LINC UR 481, Pôle de Chimie Médicinale, Université de Franche-Comté, F-25000 Besançon, France
- Laboratory of Applied Chemistry, Heterocycles, Lipids and Polymers, Faculty of Sciences of Sfax, University of Sfax, B. P 802, Sfax 3000, Tunisia
| | - Paul J Bernard
- Laboratoire LINC UR 481, Pôle de Chimie Médicinale, Université de Franche-Comté, F-25000 Besançon, France
| | - Diana Pietrzak
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, 20-093 Lublin, Poland
| | - Alexey Simakov
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, 20-093 Lublin, Poland
| | - Bernard Refouvelet
- Laboratoire LINC UR 481, Pôle de Chimie Médicinale, Université de Franche-Comté, F-25000 Besançon, France
| | - Arnaud Béduneau
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France
| | - Raphaël Cornu
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France
| | - Krzysztof Jozwiak
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, 20-093 Lublin, Poland
| | - Fakher Chabchoub
- Laboratory of Applied Chemistry, Heterocycles, Lipids and Polymers, Faculty of Sciences of Sfax, University of Sfax, B. P 802, Sfax 3000, Tunisia
| | - Isabel Iriepa
- Department of Organic Chemistry and Inorganic Chemistry, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33,6, 28871 Alcalá de Henares, Spain
| | - Helene Martin
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Lhassane Ismaili
- Laboratoire LINC UR 481, Pôle de Chimie Médicinale, Université de Franche-Comté, F-25000 Besançon, France
| |
Collapse
|
19
|
Madhav H, Abdel-Rahman SA, Hashmi MA, Rahman MA, Rehan M, Pal K, Nayeem SM, Gabr MT, Hoda N. Multicomponent Petasis reaction for the identification of pyrazine based multi-target directed anti-Alzheimer's agents: In-silico design, synthesis, and characterization. Eur J Med Chem 2023; 254:115354. [PMID: 37043996 DOI: 10.1016/j.ejmech.2023.115354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
Multi-target directed ligands (MTDLs) have recently attracted significant interest due to their exceptional effectiveness against multi-factorial Alzheimer's disease. The present work described the development of pyrazine-based MTDLs using multicomponent Petasis reaction for the dual inhibition of tau-aggregation and human acetylcholinesterase (hAChE). The molecular structure of synthesized ligands was validated by 1H & 13C NMR and mass spectrometry. The screened compounds were shown to have a strong inhibitory effect at 10 μM concentration against tau-oligomerization and hAChE, but only moderate inhibitory activity against Aβ42. Among all the compounds, the half-maximal inhibitory concentration (IC50) for 21 and 24 against hAChE were 0.71 μM and 1.09 μM, respectively, while they displayed half-maximal effective concentrations (EC50) values of 2.21 μM and 2.71 μM for cellular tau-oligomerization, respectively. Additionally, an MTT experiment using tau-expressing SH-SY5Y neuroblastoma cells revealed that 21 was more neuroprotective than the FDA-approved medication donepezil. Furthermore, an MD simulation study was performed to investigate the dynamics and stability of AChE-21 and AChE-24 complexes in an aqueous environment. The MM-PBSA calculations were performed to evaluate the binding of 21 and 24 with AChE, and the relative binding energy was calculated as -870.578 and -875.697 kJ mol-1, respectively. As a result, the study offered insight into the design of new MTDLs and highlighted 21 as a potential roadblock to the development of anti-AD medications.
Collapse
Affiliation(s)
- Hari Madhav
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Somaya A Abdel-Rahman
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Md Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Md Ataur Rahman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Mohammad Rehan
- Max-Planck-Institute für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Kavita Pal
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Moustafa T Gabr
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
20
|
Tonelli M, Catto M, Sabaté R, Francesconi V, Laurini E, Pricl S, Pisani L, Miniero DV, Liuzzi GM, Gatta E, Relini A, Gavín R, Del Rio JA, Sparatore F, Carotti A. Thioxanthenone-based derivatives as multitarget therapeutic leads for Alzheimer's disease. Eur J Med Chem 2023; 250:115169. [PMID: 36753881 DOI: 10.1016/j.ejmech.2023.115169] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
A set of twenty-five thioxanthene-9-one and xanthene-9-one derivatives, that were previously shown to inhibit cholinesterases (ChEs) and amyloid β (Aβ40) aggregation, were evaluated for the inhibition of tau protein aggregation. All compounds exhibited a good activity, and eight of them (5-8, 10, 14, 15 and 20) shared comparable low micromolar inhibitory potency versus Aβ40 aggregation and human acetylcholinesterase (AChE), while inhibiting human butyrylcholinesterase (BChE) even at submicromolar concentration. Compound 20 showed outstanding biological data, inhibiting tau protein and Aβ40 aggregation with IC50 = 1.8 and 1.3 μM, respectively. Moreover, at 0.1-10 μM it also exhibited neuroprotective activity against tau toxicity induced by okadoic acid in human neuroblastoma SH-SY5Y cells, that was comparable to that of estradiol and PD38. In preliminary toxicity studies, these interesting results for compound 20 are somewhat conflicting with a narrow safety window. However, compound 10, although endowed with a little lower potency for tau and Aβ aggregation inhibition additionally demonstrated good inhibition of ChEs and rather low cytotoxicity. Compound 4 is also worth of note for its high potency as hBChE inhibitor (IC50 = 7 nM) and for the three order of magnitude selectivity versus hAChE. Molecular modelling studies were performed to explain the different behavior of compounds 4 and 20 towards hBChE. The observed balance of the inhibitory potencies versus the relevant targets indicates the thioxanthene-9-one derivatives as potential MTDLs for AD therapy, provided that the safety window will be improved by further structural variations, currently under investigation.
Collapse
Affiliation(s)
- Michele Tonelli
- Department of Pharmacy, University of Genoa, 16132, Genoa, Italy.
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125, Bari, Italy.
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain.
| | | | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| | - Leonardo Pisani
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Daniela Valeria Miniero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Elena Gatta
- Department of Physics, University of Genoa, 16146, Genoa, Italy
| | - Annalisa Relini
- Department of Physics, University of Genoa, 16146, Genoa, Italy
| | - Rosalina Gavín
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain; Institute of Neuroscience, University of Barcelona, 08028, Barcelona, Spain
| | - Jose Antonio Del Rio
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain; Institute of Neuroscience, University of Barcelona, 08028, Barcelona, Spain
| | - Fabio Sparatore
- Department of Pharmacy, University of Genoa, 16132, Genoa, Italy
| | - Angelo Carotti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125, Bari, Italy
| |
Collapse
|
21
|
Liu X, Lai LY, Chen JX, Li X, Wang N, Zhou LJ, Jiang XW, Hu XL, Liu WW, Jiao XM, Qi ZT, Liu WJ, Wu LM, Huang YG, Xu ZH, Zhao QC. An inhibitor with GSK3β and DYRK1A dual inhibitory properties reduces Tau hyperphosphorylation and ameliorates disease in models of Alzheimer's disease. Neuropharmacology 2023; 232:109525. [PMID: 37004752 DOI: 10.1016/j.neuropharm.2023.109525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Since Alzheimer's disease (AD) is a complex and multifactorial neuropathology, the discovery of multi-targeted inhibitors has gradually demonstrated greater therapeutic potential. Neurofibrillary tangles (NFTs), the main neuropathologic hallmarks of AD, are mainly associated with hyperphosphorylation of the microtubule-associated protein Tau. The overexpression of GSK3β and DYRK1A has been recognized as an important contributor to hyperphosphorylation of Tau, leading to the strategy of using dual-targets inhibitors for the treatment of this disorder. ZDWX-12 and ZDWX-25, as harmine derivatives, were found good inhibition on dual targets in our previous study. Here, we firstly evaluated the inhibition effect of Tau hyperphosphorylation using two compounds by HEK293-Tau P301L cell-based model and okadaic acid (OKA)-induced mouse model. We found that ZDWX-25 was more effective than ZDWX-12. Then, based on comprehensively investigations on ZDWX-25 in vitro and in vivo, 1) the capability of ZDWX-25 to show a reduction in phosphorylation of multiple Tau epitopes in OKA-induced neurodegeneration cell models, and 2) the effect of reduction on NFTs by 3xTg-AD mouse model under administration of ZDWX-25, an orally bioavailable, brain-penetrant dual-targets inhibitor with low toxicity. Our data highlight that ZDWX-25 is a promising drug for treating AD.
Collapse
|
22
|
Gandini A, Gonçalves AE, Strocchi S, Albertini C, Janočková J, Tramarin A, Grifoni D, Poeta E, Soukup O, Muñoz-Torrero D, Monti B, Sabaté R, Bartolini M, Legname G, Bolognesi ML. Discovery of Dual Aβ/Tau Inhibitors and Evaluation of Their Therapeutic Effect on a Drosophila Model of Alzheimer's Disease. ACS Chem Neurosci 2022; 13:3314-3329. [PMID: 36445009 PMCID: PMC9732823 DOI: 10.1021/acschemneuro.2c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia, currently represents an extremely challenging and unmet medical need worldwide. Amyloid-β (Aβ) and Tau proteins are prototypical AD hallmarks, as well as validated drug targets. Accumulating evidence now suggests that they synergistically contribute to disease pathogenesis. This could not only help explain negative results from anti-Aβ clinical trials but also indicate that therapies solely directed at one of them may have to be reconsidered. Based on this, herein, we describe the development of a focused library of 2,4-thiazolidinedione (TZD)-based bivalent derivatives as dual Aβ and Tau aggregation inhibitors. The aggregating activity of the 24 synthesized derivatives was tested in intact Escherichia coli cells overexpressing Aβ42 and Tau proteins. We then evaluated their neuronal toxicity and ability to cross the blood-brain barrier (BBB), together with the in vitro interaction with the two isolated proteins. Finally, the most promising (most active, nontoxic, and BBB-permeable) compounds 22 and 23 were tested in vivo, in a Drosophila melanogaster model of AD. The carbazole derivative 22 (20 μM) showed extremely encouraging results, being able to improve both the lifespan and the climbing abilities of Aβ42 expressing flies and generating a better outcome than doxycycline (50 μM). Moreover, 22 proved to be able to decrease Aβ42 aggregates in the brains of the flies. We conclude that bivalent small molecules based on 22 deserve further attention as hits for dual Aβ/Tau aggregation inhibition in AD.
Collapse
Affiliation(s)
- Annachiara Gandini
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy,Department
of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, I-34136Trieste, Italy
| | - Ana Elisa Gonçalves
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy,Pharmaceutical
Sciences Postgraduate Program, Center of Health Sciences, Universidade do Vale do Itajaí, Rua Uruguai 458, 88302-202Itajaí, Santa Catarina, Brazil
| | - Silvia Strocchi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy
| | - Claudia Albertini
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy
| | - Jana Janočková
- Biomedical
Research Center, University Hospital Hradec
Kralove, 500 00Hradec Kralove, Czech Republic
| | - Anna Tramarin
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy
| | - Daniela Grifoni
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy,Department
of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito II, 67100L’Aquila, Italy
| | - Eleonora Poeta
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy
| | - Ondrej Soukup
- Biomedical
Research Center, University Hospital Hradec
Kralove, 500 00Hradec Kralove, Czech Republic
| | - Diego Muñoz-Torrero
- Laboratory
of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy
and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona (UB), Av. Joan XXIII 27-31, E-08028Barcelona, Spain
| | - Barbara Monti
- Pharmaceutical
Sciences Postgraduate Program, Center of Health Sciences, Universidade do Vale do Itajaí, Rua Uruguai 458, 88302-202Itajaí, Santa Catarina, Brazil
| | - Raimon Sabaté
- Department
of Pharmacy and Pharmaceutical Technology and Physical Chemistry,
Faculty of Pharmacy and Food Science, University
of Barcelona, Av Joan
XXIII 27-31, E-08028Barcelona, Spain
| | - Manuela Bartolini
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy
| | - Giuseppe Legname
- Department
of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, I-34136Trieste, Italy
| | - Maria Laura Bolognesi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy,. Tel: +39 0512099718
| |
Collapse
|
23
|
Hedna R, Kovacic H, Pagano A, Peyrot V, Robin M, Devred F, Breuzard G. Tau Protein as Therapeutic Target for Cancer? Focus on Glioblastoma. Cancers (Basel) 2022; 14:5386. [PMID: 36358803 PMCID: PMC9653627 DOI: 10.3390/cancers14215386] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
Despite being extensively studied for several decades, the microtubule-associated protein Tau has not finished revealing its secrets. For long, Tau has been known for its ability to promote microtubule assembly. A less known feature of Tau is its capability to bind to cancer-related protein kinases, suggesting a possible role of Tau in modulating microtubule-independent cellular pathways that are associated with oncogenesis. With the intention of finding new therapeutic targets for cancer, it appears essential to examine the interaction of Tau with these kinases and their consequences. This review aims at collecting the literature data supporting the relationship between Tau and cancer with a particular focus on glioblastoma tumors in which the pathological significance of Tau remains largely unexplored. We will first treat this subject from a mechanistic point of view showing the pivotal role of Tau in oncogenic processes. Then, we will discuss the involvement of Tau in dysregulating critical pathways in glioblastoma. Finally, we will outline promising strategies to target Tau protein for the therapy of glioblastoma.
Collapse
Affiliation(s)
- Rayane Hedna
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Hervé Kovacic
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Alessandra Pagano
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Vincent Peyrot
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Maxime Robin
- Faculté de Pharmacie, Institut Méditerranéen de Biodiversité et Ecologie marine et continentale (IMBE), UMR 7263, CNRS, IRD 237, Aix-Marseille Université, 13005 Marseille, France
| | - François Devred
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Gilles Breuzard
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| |
Collapse
|
24
|
Targeting neuronal calcium channels and GSK3β for Alzheimer's disease with naturally-inspired Diels-Alder adducts. Bioorg Chem 2022; 129:106152. [PMID: 36155094 DOI: 10.1016/j.bioorg.2022.106152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/22/2022]
Abstract
The complexity of neurodegenerative diseases, among which Alzheimer's disease plays a pivotal role, poses one of the tough therapeutic challenges of present time. In this perspective, a multitarget approach appears as a promising strategy to simultaneously interfere with different defective pathways. In this paper, a structural simplification plan was performed on our previously reported multipotent polycyclic compounds, in order to obtain a simpler pharmacophoric central core with improved pharmacokinetic properties, while maintaining the modulating activity on neuronal calcium channels and glycogen synthase kinase 3-beta (GSK-3β), as validated targets to combat Alzheimer's disease. The molecular pruning approach applied here led to tetrahydroisoindole-dione (1), tetrahydromethanoisoindole-dione (2) and tetrahydroepoxyisoindole-dione (3) structures, easily affordable by Diels-Alder cycloaddition. Preliminary data indicated structure 3 as the most appropriate, thus a SAR study was performed by introducing different substituents, selected on the basis of the commercial availability of the furan derivatives required for the synthetic procedure. The results indicated compound 10 as a promising, structurally atypical, safe and BBB-penetrating Cav modulator, inhibiting both L- and N-calcium channels, likely responsible for the Ca2+ overload observed in Alzheimer's disease. In a multitarget perspective, compound 11 appeared as an effective prototype, endowed with improved Cav inhibitory activity, with respect to the reference drug nifedipine, and encouraging modulating activity on GSK-3β.
Collapse
|
25
|
Cheng C, Li G, Zheng G, Yu C. Design and synthesis of cinnamic acid triptolide ester derivatives as potent antitumor agents and their biological evaluation. Bioorg Med Chem Lett 2022; 67:128760. [PMID: 35476958 DOI: 10.1016/j.bmcl.2022.128760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
Abstract
A series of novel cinnamic acid triptolide ester derivatives were synthesized, and their growth inhibitory properties against human hepatoma HepG2 cells were assessed as the measure of cytotoxicity with triptolide as the positive control. One of the phenolic hydroxyl phosphorylated products, CL20 was found to possess the best cytotoxicity and surpassed the parent natural triptolide, suggesting that compound CL20 is a promising antitumor lead compound and deserves further research of pharmacological activity. In addition, the structure-activity relationship for these compounds was also investigated.
Collapse
Affiliation(s)
- Chenglong Cheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Gudong Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Guojun Zheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
26
|
Yang XC, Hu CF, Zhang PL, Li S, Hu CS, Geng RX, Zhou CH. Coumarin thiazoles as unique structural skeleton of potential antimicrobial agents. Bioorg Chem 2022; 124:105855. [DOI: 10.1016/j.bioorg.2022.105855] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/19/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
|
27
|
Pal S, Roy R, Paul S. Deciphering the Role of ATP on PHF6 Aggregation. J Phys Chem B 2022; 126:4761-4775. [PMID: 35759245 DOI: 10.1021/acs.jpcb.2c01768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aggregation of Tau protein, which are involved in Alzheimer's disease, are associated with the self-assembly of the hexapeptide sequence, paired helical filament 6 (PHF6) from repeat 3 of Tau. In order to treat Alzheimer's disease and other such tauopathies, one of the therapeutic strategies is to inhibit aggregation of Tau and its nucleating segments. Therefore, we have studied the effect of adenosine triphosphate (ATP) on the aggregation of PHF6. ATP has, interestingly, demonstrated its ability to inhibit and dissolve protein aggregates. Using classical molecular dynamics simulations, we observed that the hydrophobic core of PHF6 segment displays extended β-sheet conformation, which stabilizes PHF6 aggregates. However, the distribution of ATP around the vicinity of the peptides enables PHF6 to remain discrete and attain random coil conformers. The interpeptide interactions are substituted by PHF6-ATP interactions through hydrogen bonding and hydrophobic interactions (including π-π stacking). Furthermore, the adenosine moiety of ATP contributes more than the triphosphate chain toward PHF6-ATP interaction. Ultimately, this work establishes the inhibitory activity of ATP against Tau aggregation; hence, the therapeutic effect of ATP should be explored further in regard to the effective treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Saikat Pal
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
28
|
Naz S, Al Kury LT, Nadeem H, Shah FA, Ullah A, Paracha RZ, Imran M, Li S. Synthesis, In Silico and Pharmacological Evaluation of New Thiazolidine-4-Carboxylic Acid Derivatives Against Ethanol-Induced Neurodegeneration and Memory Impairment. J Inflamm Res 2022; 15:3643-3660. [PMID: 35783245 PMCID: PMC9241999 DOI: 10.2147/jir.s357082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Several studies revealed that alcohol utilization impairs memory in adults; however, the underlying mechanism is still unclear. The production of inflammatory markers and reactive oxygen species (ROS) plays a major role in neurodegeneration, which leads to memory impairment. Therefore, targeting neuroinflammation and oxidative distress could be a useful strategy for abrogating the hallmarks of ethanol-induced neurodegeneration. Moreover, several studies have demonstrated multiple biological activities of thiazolidine derivatives including neuroprotection. Methods In the current study, we synthesized ten (10) new thiazolidine-4-carboxylic acid derivatives (P1-P10), characterized their synthetic properties using proton nuclear magnetic resonance (1H-NMR) and carbon-13 NMR, and further investigated the neuroprotective potential of these compounds in an ethanol-induced neuroinflammation model. Results Our results suggested altered levels of antioxidant enzymes associated with an elevated level of tumor necrosis factor-alpha (TNF-α), nuclear factor-κB (p-NF-κB), pyrin domain-containing protein 3 (NLRP3), and cyclooxygenase-2 (COX-2) in ethanol-treated animals. Ethanol treatment also led to memory impairment in rats, as assessed by behavioral tests. To further support our notion, we performed molecular docking studies, and all synthetic compounds exhibited a good binding affinity with a fair bond formation with selected targets (NF-κB, TLR4, NLRP3, and COX-2). Discussion Overall, our results revealed that these derivatives may be beneficial in reducing neuroinflammation by acting on different stages of inflammation. Moreover, P8 and P9 treatment attenuated the neuroinflammation, oxidative stress, and memory impairment caused by ethanol.
Collapse
Affiliation(s)
- Shagufta Naz
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, People’s Republic of China
| | - Lina Tariq Al Kury
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, 49153, United Arab Emirates
| | - Humaira Nadeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
- Correspondence: Humaira Nadeem, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan, Tel +92 51-2891835, Fax +92 51-8350180, Email
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Aman Ullah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Rehan Zafar Paracha
- Research Center for Modeling & Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Muhammad Imran
- Department of Pharmacy, IQRA University, Islamabad, 44000, Pakistan
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, People’s Republic of China
- Shupeng Li, State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, People’s Republic of China, Email
| |
Collapse
|
29
|
Ali TFS, Ciftci HI, Radwan MO, Roshdy E, Shawky AM, Abourehab MAS, Tateishi H, Otsuka M, Fujita M. Discovery of Azaindolin-2-One as a Dual Inhibitor of GSK3β and Tau Aggregation with Potential Neuroprotective Activity. Pharmaceuticals (Basel) 2022; 15:ph15040426. [PMID: 35455423 PMCID: PMC9029746 DOI: 10.3390/ph15040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022] Open
Abstract
The inhibition of glycogen synthase kinase 3β (GSK3β) activity through pharmacological intervention represents a promising approach for treating challenging neurodegenerative disorders like Alzheimer’s disease. Similarly, abnormal tau aggregate accumulation in neurons is a hallmark of various neurodegenerative diseases. We introduced new dual GSK3β/tau aggregation inhibitors due to the excellent clinical outcome of multitarget drugs. Compound (E)-2f stands out among the synthesized inhibitors as a promising GSK3β inhibitor (IC50 1.7 µM) with a pronounced tau anti-aggregation effect in a cell-based model of tauopathy. Concurrently, (E)-2f was demonstrated to be non-toxic to normal cells, making it a promising neuroprotective lead compound that needs further investigation.
Collapse
Affiliation(s)
- Taha F. S. Ali
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.I.C.); (M.O.R.); (H.T.); (M.O.)
- Correspondence: (T.F.S.A.); (M.F.); Tel.: +20-10-6983-5295 (T.F.S.A.); +81-96-371-4622 (M.F.)
| | - Halil I. Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.I.C.); (M.O.R.); (H.T.); (M.O.)
- Department of Drug Discovery, Science Farm, Ltd., Kumamoto 862-0976, Japan
| | - Mohamed O. Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.I.C.); (M.O.R.); (H.T.); (M.O.)
- National Research Centre, Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, Dokki, Cairo 12622, Egypt
| | - Eslam Roshdy
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
- Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Ahmed M. Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Central Laboratory for Micro-Analysis, Minia University, Minia 61519, Egypt
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.I.C.); (M.O.R.); (H.T.); (M.O.)
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.I.C.); (M.O.R.); (H.T.); (M.O.)
- Department of Drug Discovery, Science Farm, Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.I.C.); (M.O.R.); (H.T.); (M.O.)
- Correspondence: (T.F.S.A.); (M.F.); Tel.: +20-10-6983-5295 (T.F.S.A.); +81-96-371-4622 (M.F.)
| |
Collapse
|
30
|
Delehouzé C, Comte A, Leon-Icaza SA, Cougoule C, Hauteville M, Goekjian P, Bulinski JC, Dimanche-Boitrel MT, Meunier E, Rousselot M, Bach S. Nigratine as dual inhibitor of necroptosis and ferroptosis regulated cell death. Sci Rep 2022; 12:5118. [PMID: 35332201 PMCID: PMC8944179 DOI: 10.1038/s41598-022-09019-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Nigratine (also known as 6E11), a flavanone derivative of a plant natural product, was characterized as highly specific non-ATP competitive inhibitor of RIPK1 kinase, one of the key components of necroptotic cell death signaling. We show here that nigratine inhibited both necroptosis (induced by Tumor Necrosis Factor-α) and ferroptosis (induced by the small molecules glutamate, erastin, RSL3 or cumene hydroperoxide) with EC50 in the µM range. Taken together, our data showed that nigratine is a dual inhibitor of necroptosis and ferroptosis cell death pathways. These findings open potential new therapeutic avenues for treating complex necrosis-related diseases.
Collapse
Affiliation(s)
- Claire Delehouzé
- SeaBeLife Biotech, Place Georges Teissier, 29680, Roscoff, France
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680, Roscoff, France
| | - Arnaud Comte
- Université de Lyon, CNRS UMR 5246, ICBMS, Chimiothèque, Université Claude Bernard Lyon 1, 69622, Villeurbanne, France
| | - Stephen Adonai Leon-Icaza
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Céline Cougoule
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marcelle Hauteville
- Laboratoire de Biochimie Analytique et Synthèse Bioorganique, Université de Lyon, Université Claude Bernard Lyon 1, 69622, Villeurbanne, France
| | - Peter Goekjian
- Université de Lyon, CNRS UMR 5246, ICBMS, Laboratoire Chimie Organique 2-Glycosciences, Université Claude Bernard Lyon 1, 69622, Villeurbanne, France
| | - Jeannette Chloë Bulinski
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680, Roscoff, France
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Marie-Thérèse Dimanche-Boitrel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Etienne Meunier
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Stéphane Bach
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680, Roscoff, France.
- Sorbonne Université, CNRS, FR 2424, Plateforme de Criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, 29680, Roscoff Cedex, France.
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
31
|
Gianferrara T, Cescon E, Grieco I, Spalluto G, Federico S. Glycogen Synthase Kinase 3β Involvement in Neuroinflammation and Neurodegenerative Diseases. Curr Med Chem 2022; 29:4631-4697. [PMID: 35170406 DOI: 10.2174/0929867329666220216113517] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND GSK-3β activity has been strictly related to neuroinflammation and neurodegeneration. Alzheimer's disease is the most studied neurodegenerative disease, but GSK-3β seems to be involved in almost all neurodegenerative diseases including Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease and the autoimmune disease multiple sclerosis. OBJECTIVE The aim of this review is to help researchers both working on this research topic or not to have a comprehensive overview on GSK-3β in the context of neuroinflammation and neurodegeneration. METHOD Literature has been searched using PubMed and SciFinder databases by inserting specific keywords. A total of more than 500 articles have been discussed. RESULTS First of all, the structure and regulation of the kinase were briefly discussed and then, specific GSK-3β implications in neuroinflammation and neurodegenerative diseases were illustrated also with the help of figures, to conclude with a comprehensive overview on the most important GSK-3β and multitarget inhibitors. For all discussed compounds, the structure and IC50 values at the target kinase have been reported. CONCLUSION GSK-3β is involved in several signaling pathways both in neurons as well as in glial cells and immune cells. The fine regulation and interconnection of all these pathways are at the base of the rationale use of GSK-3β inhibitors in neuroinflammation and neurodegeneration. In fact, some compounds are now under clinical trials. Despite this, pharmacodynamic and ADME/Tox profiles of the compounds were often not fully characterized and this is deleterious in such a complex system.
Collapse
Affiliation(s)
- Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Eleonora Cescon
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
32
|
Identification of a Quinone Derivative as a YAP/TEAD Activity Modulator from a Repurposing Library. Pharmaceutics 2022; 14:pharmaceutics14020391. [PMID: 35214125 PMCID: PMC8878929 DOI: 10.3390/pharmaceutics14020391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 01/25/2023] Open
Abstract
The transcriptional regulators YAP (Yes-associated protein) and TAZ (transcriptional co-activator with PDZ-binding motif) are the major downstream effectors in the Hippo pathway and are involved in cancer progression through modulation of the activity of TEAD (transcriptional enhanced associate domain) transcription factors. To exploit the advantages of drug repurposing in the search of new drugs, we developed a similar approach for the identification of new hits interfering with TEAD target gene expression. In our study, a 27-member in-house library was assembled, characterized, and screened for its cancer cell growth inhibition effect. In a secondary luciferase-based assay, only seven compounds confirmed their specific involvement in TEAD activity. IA5 bearing a p-quinoid structure reduced the cytoplasmic level of phosphorylated YAP and the YAP–TEAD complex transcriptional activity and reduced cancer cell growth. IA5 is a promising hit compound for TEAD activity modulator development.
Collapse
|
33
|
Meirelles LV, de Castro PP, Passos STA, Carvalho BBPP, Franco CHJ, Correa JR, Neto BAD, Amarante GW. Diverse 3-Methylthio-4-Substituted Maleimides through a Novel Rearrangement Reaction: Synthesis and Selective Cell Imaging. J Org Chem 2022; 87:2809-2820. [PMID: 35108004 DOI: 10.1021/acs.joc.1c02714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A transition metal-free protocol for the preparation of fluorescent and non-fluoresent 3-methylthio-4-arylmaleimides in a single step through a new rearrangement from thiazolidine-2,4-diones is described. By employing the optimized reaction conditions, a broad scope of derivatives was prepared in ≤97% yield. The reaction tolerated several substituted aryl groups, including the challenging preparation of pyridyl-containing derivatives. A series of control experiments strongly suggested that the new rearrangement involves a key isocyanate intermediate and a further reaction with in situ-generated methylthiomethyl acetate. The photophysical properties of some of the synthesized derivatives as well as their use in live cell imaging were also investigated, revealing that some of the substituted maleimides are capable of selectively staining different regions of the cells.
Collapse
Affiliation(s)
- Luan V Meirelles
- Chemistry Department, Federal University of Juiz de Fora, Campus Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Pedro P de Castro
- Chemistry Department, Federal University of Juiz de Fora, Campus Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Saulo T A Passos
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, P.O. Box 4478, Brasília, Distrito Federal 70904-900, Brazil
| | - Bernardo B P P Carvalho
- Chemistry Department, Federal University of Juiz de Fora, Campus Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Chris H J Franco
- Chemistry Department, Federal University of Juiz de Fora, Campus Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - José R Correa
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, P.O. Box 4478, Brasília, Distrito Federal 70904-900, Brazil
| | - Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, P.O. Box 4478, Brasília, Distrito Federal 70904-900, Brazil
| | - Giovanni W Amarante
- Chemistry Department, Federal University of Juiz de Fora, Campus Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| |
Collapse
|
34
|
Christoff RM, Soares da Costa TP, Bayat S, Holien JK, Perugini MA, Abbott BM. Synthesis and structure-activity relationship studies of 2,4-thiazolidinediones and analogous heterocycles as inhibitors of dihydrodipicolinate synthase. Bioorg Med Chem 2021; 52:116518. [PMID: 34826680 DOI: 10.1016/j.bmc.2021.116518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS), responsible for the first committed step of the diaminopimelate pathway for lysine biosynthesis, has become an attractive target for the development of new antibacterial and herbicidal agents. Herein, we report the discovery and exploration of the first inhibitors of E. coli DHDPS which have been identified from screening lead and are not based on substrates from the lysine biosynthesis pathway. Over 50 thiazolidinediones and related analogues have been prepared in order to thoroughly evaluate the structure-activity relationships against this enzyme of significant interest.
Collapse
Affiliation(s)
- Rebecca M Christoff
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Saadi Bayat
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jessica K Holien
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
35
|
Berenguer E, Carneros E, Pérez-Pérez Y, Gil C, Martínez A, Testillano PS. Small molecule inhibitors of mammalian GSK-3β promote in vitro plant cell reprogramming and somatic embryogenesis in crop and forest species. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7808-7825. [PMID: 34338766 PMCID: PMC8664590 DOI: 10.1093/jxb/erab365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/30/2021] [Indexed: 05/10/2023]
Abstract
Plant in vitro regeneration systems, such as somatic embryogenesis, are essential in breeding; they permit propagation of elite genotypes, production of doubled-haploids, and regeneration of whole plants from gene editing or transformation events. However, in many crop and forest species, somatic embryogenesis is highly inefficient. We report a new strategy to improve in vitro embryogenesis using synthetic small molecule inhibitors of mammalian glycogen synthase kinase 3β (GSK-3β), never used in plants. These inhibitors increased in vitro embryo production in three different systems and species, microspore embryogenesis of Brassica napus and Hordeum vulgare, and somatic embryogenesis of Quercus suber. TDZD-8, a representative compound of the molecules tested, inhibited GSK-3 activity in microspore cultures, and increased expression of embryogenesis genes FUS3, LEC2, and AGL15. Plant GSK-3 kinase BIN2 is a master regulator of brassinosteroid (BR) signalling. During microspore embryogenesis, BR biosynthesis and signalling genes CPD, GSK-3-BIN2, BES1, and BZR1 were up-regulated and the BAS1 catabolic gene was repressed, indicating activation of the BR pathway. TDZD-8 increased expression of BR signalling elements, mimicking BR effects. The findings support that the small molecule inhibitors promoted somatic embryogenesis by activating the BR pathway, opening up the way for new strategies using GSK-3β inhibitors that could be extended to other species.
Collapse
Affiliation(s)
- Eduardo Berenguer
- Pollen Biotechnology of Crop Plants group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Elena Carneros
- Pollen Biotechnology of Crop Plants group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Yolanda Pérez-Pérez
- Pollen Biotechnology of Crop Plants group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carmen Gil
- Translational Medicinal and Biological Chemistry group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martínez
- Translational Medicinal and Biological Chemistry group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Pilar S Testillano
- Pollen Biotechnology of Crop Plants group, Margarita Salas Center of Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
36
|
Aboushady Y, Gabr M, ElHady AK, Salah M, Abadi AH, Wilms G, Becker W, Abdel-Halim M, Engel M. Discovery of Hydroxybenzothiazole Urea Compounds as Multitargeted Agents Suppressing Major Cytotoxic Mechanisms in Neurodegenerative Diseases. ACS Chem Neurosci 2021; 12:4302-4318. [PMID: 34726394 DOI: 10.1021/acschemneuro.1c00475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Multiple factors are causally responsible and/or contribute to the progression of Alzheimer's and Parkinson's diseases. The protein kinase Dyrk1A was identified as a promising target as it phosphorylates tau protein, α-synuclein, and parkin. The first goal of our study was to optimize our previously identified Dyrk1A inhibitors of the 6-hydroxy benzothiazole urea chemotype in terms of potency and selectivity. Our efforts led to the development of the 3-fluorobenzyl amide derivative 16b, which displayed the highest potency against Dyrk1A (IC50 = 9.4 nM). In general, the diversification of the benzylamide moiety led to an enhanced selectivity over the most homologous isoform, Dyrk1B, which was a meaningful indicator, as the high selectivity could be confirmed in an extended selectivity profiling of 3b and 16b. Eventually, we identified the novel phenethyl amide derivative 24b as a triple inhibitor of Dyrk1A kinase activity (IC50 = 119 nM) and the aggregation of tau and α-syn oligomers. We provide evidence that the novel combination of selective Dyrk1A inhibition and suppression of tau and α-syn aggregations of our new lead compound confers efficacy in several established cellular models of neurotoxic mechanisms relevant to neurodegenerative diseases, including α-syn- and 6-hydroxydopamine-induced cytotoxicities.
Collapse
Affiliation(s)
- Youssef Aboushady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Moustafa Gabr
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Ahmed K. ElHady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, Cairo 11311, Egypt
| | - Mohamed Salah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Cairo 12451, Egypt
| | - Ashraf H. Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Gerrit Wilms
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, Aachen 52074, Germany
| | - Walter Becker
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, Aachen 52074, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3 Saarbrücken D-66123, Germany
| |
Collapse
|
37
|
Discovery of thiazolidin-4-one analogue as selective GSK-3β inhibitor through structure based virtual screening. Bioorg Med Chem Lett 2021; 52:128375. [PMID: 34560262 DOI: 10.1016/j.bmcl.2021.128375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 11/21/2022]
Abstract
GSK-3β directly phosphorylate tubulin binding site of tau protein, indicating its importance in tau aggregation and, therefore, in Alzheimer's disease pathology. New GSK-3β inhibitors were identified using a structure-based screening, ADMET analysis. These studies revealed that ZINC09036109, ZINC72371723, ZINC72371725, and ZINC01373165 approached optimal ADMET properties along with good MM-GBSA dG binding. Protein kinase assays of these compounds against eight disease-relevant kinases were performed. During disease-relevant kinase profiling, ZINC09036109 ((E)-2-((3,4-dimethylphenyl)imino)-5-(3-methoxy-4-(naphthalen-2-ylmethoxy)benzyl)thiazolidin-4-one) emerged as a selective GSK-3β inhibitor with more than 10-fold selectivity over other disease-relevant kinases. Molecular dynamics study of ZINC09036109 molecule revealed interactions with Ile62, Phe67, Val135, Leu188, Asp200 amino acid residues of the binding site of GSK-3β, which were highly comparable to the co-crystallized molecule and hence validating comparative better activity of this compound compared to overall screened molecules.
Collapse
|
38
|
Liu H, Zhong H, Liu H, Yao X. Molecular dynamics simulations reveal the disruption mechanism of a 2,4-thiazolidinedione derivative C30 against tau hexapeptide (PHF6) oligomer. Proteins 2021; 90:142-154. [PMID: 34331342 DOI: 10.1002/prot.26196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 11/08/2022]
Abstract
Derivatives of 2,4-thiazolidinedione have been reported to inhibit the aggregation of tau protein, in which compound 30 (C30) not only inhibit 80% of paired helical filament 6 (PHF6) aggregation, but also inhibit K18 and full-length tau aggregation. However, its inhibitory mechanism is unclear. In this study, to investigate the effect of C30 on tau protein, all-atom molecular dynamics simulation was performed on the PHF6 oligomer with and without C30. The results show that C30 can cause significant conformational changes in the PHF6 oligomer. The nematic order parameter P2 and secondary structure analyses show that C30 destroys the ordered structure of PHF6 oligomer, reduces the content of β-sheet structure, and transforms β-sheet into random coil structure. By clustering analysis, it was found that C30 has four possible binding sites on the PFH6 oligomer, and the binding ability order is S1 > S2 > S4 > S3. Following a more in-depth analyses of each site, it was determined that the S1 site is the most possible binding site mainly located between layers of L1 and L3. The hydrophobic interaction is the driving force for the binding of C30 to PHF6 oligomer. In addition, L1P4_Y310, L1P5_Y310, L3P1_V309, and L3P2_V309 are key residues for C30 binding to oligomer. Moreover, π-π interaction formed by L1P4_Y310 and L1P5_Y310 with C30 and the hydrogen bonding interaction formed by C30 with L3P3_Q307 are beneficial to the combination of C30 and oligomer. The fully understanding disrupt the mechanism of 2,4-thiazolidinedione derivative on PHF6 oligomer and the identification of binding sites will help design and discover new AD inhibitors in the future.
Collapse
Affiliation(s)
- Hongli Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Haiyang Zhong
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
39
|
P P, Justin A, Ananda Kumar TD, Chinaswamy M, Kumar BRP. Glitazones Activate PGC-1α Signaling via PPAR-γ: A Promising Strategy for Antiparkinsonism Therapeutics. ACS Chem Neurosci 2021; 12:2261-2272. [PMID: 34125534 DOI: 10.1021/acschemneuro.1c00085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Understanding various aspects of Parkinson's disease (PD) by researchers could lead to a better understanding of the disease and provide treatment alternatives that could significantly improve the quality of life of patients suffering from neurodegenerative disorders. Significant progress has been made in recent years toward this goal, but there is yet no available treatment with confirmed neuroprotective effects. Recent studies have shown the potential of PPARγ agonists, which are the ligand activated transcriptional factor of the nuclear hormone superfamily, as therapeutic targets for various neurodegenerative disorders. The activation of central PGC-1α mediates the potential role against neurogenerative diseases like PD, Huntington's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. Further understanding the mechanism of neurodegeneration and the role of glitazones in the activation of PGC-1α signaling could lead to a novel therapeutic interventions against PD. Keeping this aspect in focus, the present review highlights the pathogenic mechanism of PD and the role of glitazones in the activation of PGC-1α via PPARγ for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Prabitha P
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka 570 015, India
| | - Antony Justin
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu 643 001, India
| | - T. Durai Ananda Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka 570 015, India
| | - Mithuna Chinaswamy
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka 570 015, India
| | - B. R. Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka 570 015, India
| |
Collapse
|
40
|
Bisavenathramide Analogues as Nrf2 Inductors and Neuroprotectors in In Vitro Models of Oxidative Stress and Hyperphosphorylation. Antioxidants (Basel) 2021; 10:antiox10060941. [PMID: 34200859 PMCID: PMC8230565 DOI: 10.3390/antiox10060941] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is crucial to the outbreak and advancement of neurodegenerative diseases and is a common factor to many of them. We describe the synthesis of a library of derivatives of the 4-arylmethylen-2-pyrrolin-5-one framework by sequential application of a three-component reaction of primary amines, β-dicarbonyl compounds, and α-haloketones and a Knoevenagel condensation. These compounds can be viewed as cyclic amides of caffeic and ferulic acids, and are also structurally related to the bisavenanthramide family of natural antioxidants. Most members of the library showed low cytotoxicity and good activity as inductors of Nrf2, a transcription factor that acts as the master regulator of the antioxidant response associated with activation of the antioxidant response element (ARE). Nrf2-dependent protein expression was also proved by the significant increase in the levels of the HMOX1 and NQO1 proteins. Some compounds exerted neuroprotective properties in oxidative stress situations, such as rotenone/oligomycin-induced toxicity, and also against protein hyperphosphorylation induced by the phosphatase inhibitor okadaic acid. Compound 3i, which can be considered a good candidate for further hit-to-lead development against neurodegenerative diseases due to its well-balanced multitarget profile, was further characterized by proving its ability to reduce phosphorylated Tau levels.
Collapse
|
41
|
Jankowska A, Satała G, Bojarski AJ, Pawłowski M, Chłoń-Rzepa G. Multifunctional Ligands with Glycogen Synthase Kinase 3 Inhibitory Activity as a New Direction in Drug Research for Alzheimer's Disease. Curr Med Chem 2021; 28:1731-1745. [PMID: 32338201 DOI: 10.2174/0929867327666200427100453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) belongs to the most common forms of dementia that causes a progressive loss of brain cells and leads to memory impairment and decline of other thinking skills. There is yet no effective treatment for AD; hence, the search for new drugs that could improve memory and other cognitive functions is one of the hot research topics worldwide. Scientific efforts are also directed toward combating behavioral and psychological symptoms of dementia, which are an integral part of the disease. Several studies have indicated that glycogen synthase kinase 3 beta (GSK3β) plays a crucial role in the pathogenesis of AD. Moreover, GSK3β inhibition provided beneficial effects on memory improvement in multiple animal models of AD. The present review aimed to update the most recent reports on the discovery of novel multifunctional ligands with GSK3β inhibitory activity as potential drugs for the symptomatic and disease-modifying therapy of AD. Compounds with GSK3β inhibitory activity seem to be an effective pharmacological approach for treating the causes and symptoms of AD as they reduced neuroinflammation and pathological hallmarks in animal models of AD and provided relief from cognitive and neuropsychiatric symptoms. These compounds have the potential to be used as drugs for the treatment of AD, but their precise pharmacological, pharmacokinetic, toxicological and clinical profiles need to be defined.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Maciej Pawłowski
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, 30-688 Krakow, Poland
| | - GraŻyna Chłoń-Rzepa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
42
|
Gorecki L, Uliassi E, Bartolini M, Janockova J, Hrabinova M, Hepnarova V, Prchal L, Muckova L, Pejchal J, Karasova JZ, Mezeiova E, Benkova M, Kobrlova T, Soukup O, Petralla S, Monti B, Korabecny J, Bolognesi ML. Phenothiazine-Tacrine Heterodimers: Pursuing Multitarget Directed Approach in Alzheimer's Disease. ACS Chem Neurosci 2021; 12:1698-1715. [PMID: 33852284 DOI: 10.1021/acschemneuro.1c00184] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Since 2002, no clinical candidate against Alzheimer's disease has reached the market; hence, an effective therapy is urgently needed. We followed the so-called "multitarget directed ligand" approach and designed 36 novel tacrine-phenothiazine heterodimers which were in vitro evaluated for their anticholinesterase properties. The assessment of the structure-activity relationships of such derivatives highlighted compound 1dC as a potent and selective acetylcholinesterase inhibitor with IC50 = 8 nM and 1aA as a potent butyrylcholinesterase inhibitor with IC50 = 15 nM. Selected hybrids, namely, 1aC, 1bC, 1cC, 1dC, and 2dC, showed a significant inhibitory activity toward τ(306-336) peptide aggregation with percent inhibition ranging from 50.5 to 62.1%. Likewise, 1dC and 2dC exerted a remarkable ability to inhibit self-induced Aβ1-42 aggregation. Notwithstanding, in vitro studies displayed cytotoxicity toward HepG2 cells and cerebellar granule neurons; no pathophysiological abnormality was observed when 1dC was administered to mice at 14 mg/kg (i.p.). 1dC was also able to permeate to the CNS as shown by in vitro and in vivo models. The maximum brain concentration was close to the IC50 value for acetylcholinesterase inhibition with a relatively slow elimination half-time. 1dC showed an acceptable safety and good pharmacokinetic properties and a multifunctional biological profile.
Collapse
Affiliation(s)
- Lukas Gorecki
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6/Selmi 3, 40126 Bologna, Italy
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6/Selmi 3, 40126 Bologna, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6/Selmi 3, 40126 Bologna, Italy
| | - Jana Janockova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Martina Hrabinova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Lubica Muckova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jana Z. Karasova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Marketa Benkova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Tereza Kobrlova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6/Selmi 3, 40126 Bologna, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6/Selmi 3, 40126 Bologna, Italy
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6/Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
43
|
Ismaili L, Monnin J, Etievant A, Arribas RL, Viejo L, Refouvelet B, Soukup O, Janockova J, Hepnarova V, Korabecny J, Kucera T, Jun D, Andrys R, Musilek K, Baguet A, García-Frutos EM, De Simone A, Andrisano V, Bartolini M, de los Ríos C, Marco-Contelles J, Haffen E. (±)- BIGI-3h: Pentatarget-Directed Ligand combining Cholinesterase, Monoamine Oxidase, and Glycogen Synthase Kinase 3β Inhibition with Calcium Channel Antagonism and Antiaggregating Properties for Alzheimer's Disease. ACS Chem Neurosci 2021; 12:1328-1342. [PMID: 33797877 DOI: 10.1021/acschemneuro.0c00803] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multitarget-directed ligands (MTDLs) are considered a promising therapeutic strategy to address the multifactorial nature of Alzheimer's disease (AD). Novel MTDLs have been designed as inhibitors of human acetylcholinesterases/butyrylcholinesterases, monoamine oxidase A/B, and glycogen synthase kinase 3β and as calcium channel antagonists via the Biginelli multicomponent reaction. Among these MTDLs, (±)-BIGI-3h was identified as a promising new hit compound showing in vitro balanced activities toward the aforementioned recognized AD targets. Additional in vitro studies demonstrated antioxidant effects and brain penetration, along with the ability to inhibit the aggregation of both τ protein and β-amyloid peptide. The in vivo studies have shown that (±)-BIGI-3h (10 mg/kg intraperitoneally) significantly reduces scopolamine-induced cognitive deficits.
Collapse
Affiliation(s)
- Lhassane Ismaili
- Neurosciences intégratives et cliniques EA 481, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Julie Monnin
- Neurosciences intégratives et cliniques EA 481, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Adeline Etievant
- Neurosciences intégratives et cliniques EA 481, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Raquel L. Arribas
- Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/Diego de León, 62, 28006 Madrid, Spain
- Instituto Teofilo Hernando, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Lucía Viejo
- Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/Diego de León, 62, 28006 Madrid, Spain
- Instituto Teofilo Hernando, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Bernard Refouvelet
- Neurosciences intégratives et cliniques EA 481, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Czech Republic, University of Defence, 50003 Hradec Kralove, Czech Republic
| | - Jana Janockova
- Biomedical Research Center, University Hospital Hradec Kralove, Czech Republic, University of Defence, 50003 Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, 66210 Brno, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Czech Republic, University of Defence, 50003 Hradec Kralove, Czech Republic
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, 66210 Brno, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, 66210 Brno, Czech Republic
| | - Rudolf Andrys
- Faculty of Science, Department of Chemistry, University Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Faculty of Science, Department of Chemistry, University Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Aurelie Baguet
- Université Bourgogne Franche Comté, INSERM, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Eva M. García-Frutos
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Angela De Simone
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Corso di Augusto, 237, 47921 Rimini, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Corso di Augusto, 237, 47921 Rimini, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Cristóbal de los Ríos
- Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/Diego de León, 62, 28006 Madrid, Spain
- Instituto Teofilo Hernando, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Emmanuel Haffen
- Neurosciences intégratives et cliniques EA 481, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| |
Collapse
|
44
|
Design and synthesis of novel tacrine-indole hybrids as potential multitarget-directed ligands for the treatment of Alzheimer's disease. Future Med Chem 2021; 13:785-804. [PMID: 33829876 DOI: 10.4155/fmc-2020-0184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The authors report on the synthesis and biological evaluation of new compounds whose structure combines tacrine and indole moieties. Tacrine-indole heterodimers were designed to inhibit cholinesterases and β-amyloid formation, and to cross the blood-brain barrier. The most potent new acetylcholinesterase inhibitors were compounds 3c and 4d (IC50 = 25 and 39 nM, respectively). Compound 3c displayed considerably higher selectivity for acetylcholinesterase relative to human plasma butyrylcholinesterase in comparison to compound 4d (selectivity index: IC50 [butyrylcholinesterase]/IC50 [acetylcholinesterase] = 3 and 0.6, respectively). Furthermore, compound 3c inhibited β-amyloid-dependent amyloid nucleation in the yeast-based prion nucleation assay and displayed no dsDNA destabilizing interactions with DNA. Compounds 3c and 4d displayed a high probability of crossing the blood-brain barrier. The results support the potential of 3c for future development as a dual-acting therapeutic agent in the prevention and/or treatment of Alzheimer's disease.
Collapse
|
45
|
Gabr MT, Barbault F. First dual binder of microRNA-146a and monomeric tau: a novel approach for multitargeted therapeutics for neurodegenerative diseases. Chem Commun (Camb) 2021; 56:9695-9698. [PMID: 32699863 DOI: 10.1039/d0cc04249h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report a new approach for the development of multitargeted therapeutics for Alzheimer's disease (AD) based on dual targeting of monomeric tau and biogenesis of microRNA-146a. Compound MG-1102 displayed a superior neuroprotective activity, in comparison to mono-targeted therapeutics, which validates the likelihood of the success of this approach in AD drug development.
Collapse
Affiliation(s)
- Moustafa T Gabr
- Department of Radiology, Stanford University, Stanford, CA, USA.
| | - Florent Barbault
- Universite de Paris, ITODYS, CNRS, UMR 7086, 15 Rue J-A de Baïf, F-75013, Paris, France
| |
Collapse
|
46
|
Pasieka A, Panek D, Jończyk J, Godyń J, Szałaj N, Latacz G, Tabor J, Mezeiova E, Chantegreil F, Dias J, Knez D, Lu J, Pi R, Korabecny J, Brazzolotto X, Gobec S, Höfner G, Wanner K, Więckowska A, Malawska B. Discovery of multifunctional anti-Alzheimer's agents with a unique mechanism of action including inhibition of the enzyme butyrylcholinesterase and γ-aminobutyric acid transporters. Eur J Med Chem 2021; 218:113397. [PMID: 33838585 DOI: 10.1016/j.ejmech.2021.113397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/31/2022]
Abstract
Looking for an effective anti-Alzheimer's agent is very challenging; however, a multifunctional ligand strategy may be a promising solution for the treatment of this complex disease. We herein present the design, synthesis and biological evaluation of novel hydroxyethylamine derivatives displaying unique, multiple properties that have not been previously reported. The original mechanism of action combines inhibitory activity against disease-modifying targets: β-secretase enzyme (BACE1) and amyloid β (Aβ) aggregation, along with an effect on targets associated with symptom relief - inhibition of butyrylcholinesterase (BuChE) and γ-aminobutyric acid transporters (GATs). Among the obtained molecules, compound 36 exhibited the most balanced and broad activity profile (eeAChE IC50 = 2.86 μM; eqBuChE IC50 = 60 nM; hBuChE IC50 = 20 nM; hBACE1 IC50 = 5.9 μM; inhibition of Aβ aggregation = 57.9% at 10 μM; mGAT1 IC50 = 10.96 μM; and mGAT2 IC50 = 19.05 μM). Moreover, we also identified 31 as the most potent mGAT4 and hGAT3 inhibitor (IC50 = 5.01 μM and IC50 = 2.95 μM, respectively), with high selectivity over other subtypes. Compounds 36 and 31 represent new anti-Alzheimer agents that can ameliorate cognitive decline and modify the progress of disease.
Collapse
Affiliation(s)
- Anna Pasieka
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Dawid Panek
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Jakub Jończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Justyna Godyń
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Natalia Szałaj
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Julia Tabor
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Fabien Chantegreil
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - José Dias
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Junfeng Lu
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Rongbiao Pi
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Georg Höfner
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377, Munich, Germany
| | - Klaus Wanner
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377, Munich, Germany
| | - Anna Więckowska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| |
Collapse
|
47
|
Zhu H, Dronamraju V, Xie W, More SS. Sulfur-containing therapeutics in the treatment of Alzheimer's disease. Med Chem Res 2021; 30:305-352. [PMID: 33613018 PMCID: PMC7889054 DOI: 10.1007/s00044-020-02687-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
Sulfur is widely existent in natural products and synthetic organic compounds as organosulfur, which are often associated with a multitude of biological activities. OBenzothiazole, in which benzene ring is fused to the 4,5-positions of the thiazolerganosulfur compounds continue to garner increasing amounts of attention in the field of medicinal chemistry, especially in the development of therapeutic agents for Alzheimer's disease (AD). AD is a fatal neurodegenerative disease and the primary cause of age-related dementia posing severe societal and economic burdens. Unfortunately, there is no cure for AD. A lot of research has been conducted on sulfur-containing compounds in the context of AD due to their innate antioxidant potential and some are currently being evaluated in clinical trials. In this review, we have described emerging trends in the field, particularly the concept of multi-targeting and formulation of disease-modifying strategies. SAR, pharmacological targets, in vitro/vivo ADMET, efficacy in AD animal models, and applications in clinical trials of such sulfur compounds have also been discussed. This article provides a comprehensive review of organosulfur-based AD therapeutic agents and provides insights into their future development.
Collapse
Affiliation(s)
- Haizhou Zhu
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Venkateshwara Dronamraju
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
48
|
Jiang B, Luo J, Guo S, Wang L. Discovery of 5-(3-bromo-2-(2,3-dibromo-4,5-dimethoxybenzyl)-4,5-dimethoxybenzylidene)thiazolidine-2,4-dione as a novel potent protein tyrosine phosphatase 1B inhibitor with antidiabetic properties. Bioorg Chem 2021; 108:104648. [PMID: 33493928 DOI: 10.1016/j.bioorg.2021.104648] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/15/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a well-validated target in therapeutic interventions for type 2 diabetes mellitus (T2DM), however, PTP1B inhibitors containing negatively charged nonhydrolyzable pTyr mimetics are difficult to convert to the corresponding in vivo efficacy owing to poor cell permeability and oral bioavailability. In this work, molecules bearing less acidic heterocycle 2,4-thiazolidinedione and hydantoin were designed, synthesized and evaluated for PTP1B inhibitory potency, selectivity and in vivo antidiabetic efficacy. Among them, compound 5a was identified as a potent PTP1B inhibitor (IC50 = 0.86 μM) with 5-fold selectivity over the highly homologous TCPTP. Long-term oral administration of 5a at a dose of 50 mg/kg not only significantly reduced blood glucose levels, triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) levels but also ameliorated insulin sensitivity in diabetic BKS db mice. Moreover, 5a enhanced the insulin-stimulated phosphorylation of IRβ, IRS-1 and Akt in C2C12 myotubes. A histopathological evaluation of liver and pancreas demonstrated that 5a increased liver glycogen storage and improved islet architecture with more β-cells and fewer α-cells in diabetic mice. Thus, our work demonstrated that compound 5a could serve as a lead compound for the discovery of new antidiabetic drugs.
Collapse
Affiliation(s)
- Bo Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jiao Luo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shuju Guo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Lijun Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
49
|
Izmest'ev AN, Gazieva GA, Anikina LV, Pukhov SA, Karnoukhova VA, Kolotyrkina NG, Kravchenko AN. Synthesis and evaluation of the antiproliferative activity of new heterylmethylidene derivatives of imidazothiazolotriazinones. NEW J CHEM 2021. [DOI: 10.1039/d1nj02163j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two series of regioisomeric heterylmethylidene derivatives of imidazo[4,5-e]thiazolo[3,2-b]-1,2,4-triazines and imidazo[4,5-e]thiazolo[2,3-c]-1,2,4-triazines were synthesized. Several compounds exhibiting high antiproliferative activity were found.
Collapse
Affiliation(s)
- Alexei N. Izmest'ev
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow 119991
- Russian Federation
| | - Galina A. Gazieva
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow 119991
- Russian Federation
| | - Lada V. Anikina
- Institute of Physiologically Active Compounds
- Russian Academy of Sciences
- Chernogolovka 142432
- Russian Federation
| | - Sergey A. Pukhov
- Institute of Physiologically Active Compounds
- Russian Academy of Sciences
- Chernogolovka 142432
- Russian Federation
| | - Valentina A. Karnoukhova
- A. N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow 119991
- Russian Federation
| | - Natalya G. Kolotyrkina
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow 119991
- Russian Federation
| | - Angelina N. Kravchenko
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow 119991
- Russian Federation
- Plekhanov Russian University of Economics
| |
Collapse
|
50
|
Recent advances on drug development and emerging therapeutic agents for Alzheimer's disease. Mol Biol Rep 2021; 48:5629-5645. [PMID: 34181171 PMCID: PMC8236749 DOI: 10.1007/s11033-021-06512-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative old age disease that is complex, multifactorial, unalterable, and progressive in nature. The currently approved therapy includes cholinesterase inhibitors, NMDA-receptor antagonists and their combination therapy provides only temporary symptomatic relief. Sincere efforts have been made by the researchers globally to identify new targets, discover, and develop novel therapeutic agents for the treatment of AD. This brief review article is intended to cover the recent advances in drug development and emerging therapeutic agents for AD acting at different targets. The article is compiled using various scientific online databases and by referring to clinicaltrials.gov and ALZFORUM (alzforum.org) websites. The upcoming therapies act on one or more targets including amyloids (secretases, Aβ42 production, amyloid deposition, and immunotherapy), tau proteins (tau phosphorylation/aggregation and immunotherapy) and neuroinflammation in addition to other miscellaneous targets. Despite the tremendous improvement in our understanding of the underlying pathophysiology of AD, only aducanumab was approved by FDA for the treatment of AD in 18 years i.e., since 2003. Hence, it is concluded that novel therapeutic strategies are required to discover and develop therapeutic agents to fight against the century old AD.
Collapse
|