1
|
Barhoosh H, Dixit A, Cochrane WG, Cavett V, Prince RN, Blair BO, Ward FR, McClure KF, Patten PA, Paulick MG, Paegel BM. Activity-Based DNA-Encoded Library Screening for Selective Inhibitors of Eukaryotic Translation. ACS CENTRAL SCIENCE 2024; 10:1960-1968. [PMID: 39463829 PMCID: PMC11503492 DOI: 10.1021/acscentsci.4c01218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024]
Abstract
Small molecule probes exist for only ∼2% of human proteins because most lack functional binding pockets or cannot be assayed for high-throughput screening. Selective translation modulation circumvents canonical druggability and assay development constraints by using in vitro transcription-translation (IVTT) as a universal biochemical screening assay. We developed an IVTT activity assay by fusing a GFP reporter to various target gene sequences and screened the target sequences for inhibitors in microfluidic picoliter-scale droplets using a 5,348-member translation inhibitor DNA-encoded library (DEL). Screening a proof-of-concept PCSK9-GFP reporter yielded many hits; 6/7 hits inhibited PCSK9-GFP IVTT (IC50 1-20 μM), and the lead hit reduced PCSK9 levels in HepG2 cells. Preliminary selectivity was informed by counterscreening the DEL against a frameshift mutant PCSK9-GFP reporter. A plug-and-play approach to assay development and screening was demonstrated by scouting the DEL for activity using reporter genes of targets with difficult-to-assay or even unknown function (RPL27, KRASG12D, MST1, USO1). This microfluidic IVTT DEL screening platform could scale probe discovery to the human proteome and perhaps more broadly across the tree of life.
Collapse
Affiliation(s)
- Huda Barhoosh
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Anjali Dixit
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Wesley G. Cochrane
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Valerie Cavett
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Robin N. Prince
- Initial
Therapeutics, South San Francisco, California 94080, United States
| | - Brooke O. Blair
- Initial
Therapeutics, South San Francisco, California 94080, United States
| | - Fred R. Ward
- Initial
Therapeutics, South San Francisco, California 94080, United States
| | - Kim F. McClure
- Initial
Therapeutics, South San Francisco, California 94080, United States
| | - Phillip A. Patten
- Initial
Therapeutics, South San Francisco, California 94080, United States
| | - Margot G. Paulick
- Initial
Therapeutics, South San Francisco, California 94080, United States
| | - Brian M. Paegel
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
- Departments
of Chemistry & Biomedical Engineering, University of California, Irvine, California 92697, United States
| |
Collapse
|
2
|
Grosche P, Flyer AN, Gattlen R, Xu M, Golosov AA, Vera V, Pickett S, Brousseau ME, Chopra R, Clairmont KB, Koch A, Liu E, Reid P, Perry L, Yang L, Yang Q, Monovich LG. Discovery of Truncated Cyclic Peptides Targeting an Induced-Fit Pocket on PCSK9. ChemMedChem 2024:e202400208. [PMID: 39437016 DOI: 10.1002/cmdc.202400208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/18/2024] [Indexed: 10/25/2024]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates plasma low-density lipoprotein cholesterol (LDL-C) levels by promoting hepatic LDL receptor (LDL-R) degradation. We previously identified and optimized 13-mer cyclic peptides that bind to a novel, induced-fit pocket adjacent to the binding interface of PCSK9 and LDL-R and effectively disrupted the PCSK9/LDL-R protein-protein interaction (PPI) both in vitro and in vivo. However this series of large cyclic peptides required charged groups for function and lacked oral bioavailability in rodents. We describe herein multiple structure-based modifications to these original peptides to yield truncated, neutral molecules with full PPI function in both biochemical and cellular assays. In parallel, new mRNA-peptide display screens identified non-functional 8- and 9-mer compounds which ligand the induced-fit pocket in a distinct manner. Taken together, these studies indicate multiple directions to reduce the size and complexity of this peptide class toward a true small molecule oral agent.
Collapse
Affiliation(s)
- Philipp Grosche
- Novartis Biomedical Research, Fabrikstrasse 2, Novartis Campus, 4056, Basel, Switzerland
| | - Alec N Flyer
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Raphael Gattlen
- Novartis Biomedical Research, Fabrikstrasse 2, Novartis Campus, 4056, Basel, Switzerland
| | - Mei Xu
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Andrei A Golosov
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Victoria Vera
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Stephanie Pickett
- Novartis Biomedical Research, Fabrikstrasse 2, Novartis Campus, 4056, Basel, Switzerland
| | - Margaret E Brousseau
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Rajiv Chopra
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Kevin B Clairmont
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Alexander Koch
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Eugene Liu
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Patrick Reid
- PeptiDream, Inc., KOL Building, Room 405, 4-6-1 Komaba, Meguro-Ku, Tokyo, 153-8904, Japan
| | - Lauren Perry
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Lihua Yang
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Qing Yang
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Lauren G Monovich
- Novartis Biomedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
3
|
Maliwal D, Pissurlenkar RRS, Telvekar V. Comprehensive computational study in the identification of novel potential cholesterol lowering agents targeting proprotein convertase subtilisin/kexin type 9. J Biomol Struct Dyn 2024; 42:4656-4667. [PMID: 37309035 DOI: 10.1080/07391102.2023.2222173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/30/2023] [Indexed: 06/14/2023]
Abstract
The enzymatic target proprotein convertase subtilisin/kexin type 9 (PCSK9) is critically involved in the regulation of the lipoprotein metabolism leading to the degradation of low-density lipoprotein receptors (LDLRs) upon binding. Drugs that lower LDL cholesterol (LDL-C) through the inhibition of PCSK9 are useful in the management of hypercholesterolemia which greatly reduces the associated risk of atherosclerotic cardiovascular disease (CVD). In 2015, anti-PCSK9 monoclonal antibodies (mAbs), alirocumab and evolocumab were approved but owing to their high costs their prior authorization practices were impeded, reducing their long-term adherence. This has drawn considerable attention for the development of small-molecule PCSK9 inhibitors. In this research work, novel and diverse molecules with affinity towards PCSK9 thereby having ability to lower cholesterol. A hierarchical multistep docking was implemented to identify small molecules from chemical libraries with a score cutoff -8.00 kcal/mol, thereby weeding all the non-potential molecules. A set of seven representative molecules Z1139749023, Z1142698190, Z2242867634, Z2242893449, Z2242894417, Z2242909019, and Z2242914794 have been identified from a comprehensive computational study which included assessment of pharmacokinetics and toxicity profiles and binding interactions along with in-depth analysis of structural dynamics and integrity using prolong molecular dynamics (MD) simulation (in-duplicate). Furthermore the binding affinity of these PCSK9 inhibitory candidates molecules was ascertained over 1000 trajectory frames using MM-GBSA calculations. The molecules reported herein are propitious candidates for further development through necessary experimental considerations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Deepika Maliwal
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | | | - Vikas Telvekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
4
|
Giannessi L, Lupo MG, Rossi I, Martina MG, Vilella A, Bodria M, Giuliani D, Zimetti F, Zanotti I, Potì F, Bernini F, Ferri N, Radi M. Identification of 4-amino-2-Pyridones as new potent PCSK9 inhibitors: From phenotypic hit discovery to in vivo tolerability. Eur J Med Chem 2024; 265:116063. [PMID: 38160616 DOI: 10.1016/j.ejmech.2023.116063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Among the strategies to overcome the underperformance of statins in cardiovascular diseases (CVDs), the development of drugs targeting the Proprotein Convertase Subtilisin-like Kexin type 9 (PCSK9) is considered one of the most promising. However, only anti-PCSK9 biological drugs have been approved to date, and orally available small-molecules for the treatment of hypercholesterolemic conditions are still missing on the market. In the present work, we describe the application of a phenotypic approach to the identification and optimization of 4-amino-2-pyridone derivatives as a new chemotype with anti-PCSK9 activity. Starting from an in-house collection of compounds, functional assays on HepG2 cells followed by a chemistry-driven hit optimization campaign, led to the potent anti-PCSK9 candidate 5c. This compound, at 5 μM, totally blocked PCSK9 secretion from HepG2 cells, significantly increased LDL receptor (LDLR) expression, and acted cooperatively with simvastatin by reducing its induction of PCSK9 expression. Finally, compound 5c also proved to be well tolerated in C57BL/6J mice at the tested concentration (40 mg/kg) with no sign of toxicity or behavior modifications.
Collapse
Affiliation(s)
- Lisa Giannessi
- Dipartimento di Scienze Degli Alimenti e Del Farmaco (DipALIFAR), Università Degli Studi di Parma, Viale Delle Scienze, 27/A, 43124, Parma, Italy
| | | | - Ilaria Rossi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 351131, Padova, Italy
| | - Maria Grazia Martina
- Dipartimento di Scienze Degli Alimenti e Del Farmaco (DipALIFAR), Università Degli Studi di Parma, Viale Delle Scienze, 27/A, 43124, Parma, Italy
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Martina Bodria
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Daniela Giuliani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Francesca Zimetti
- Dipartimento di Scienze Degli Alimenti e Del Farmaco (DipALIFAR), Università Degli Studi di Parma, Viale Delle Scienze, 27/A, 43124, Parma, Italy
| | - Ilaria Zanotti
- Dipartimento di Scienze Degli Alimenti e Del Farmaco (DipALIFAR), Università Degli Studi di Parma, Viale Delle Scienze, 27/A, 43124, Parma, Italy
| | - Francesco Potì
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, 43125, Parma, Italy
| | - Franco Bernini
- Dipartimento di Scienze Degli Alimenti e Del Farmaco (DipALIFAR), Università Degli Studi di Parma, Viale Delle Scienze, 27/A, 43124, Parma, Italy
| | - Nicola Ferri
- Department of Medicine, University of Padova, 35128, Padova, Italy; Veneto Institute of Molecular Medicine, Padua, 35129, Italy.
| | - Marco Radi
- Dipartimento di Scienze Degli Alimenti e Del Farmaco (DipALIFAR), Università Degli Studi di Parma, Viale Delle Scienze, 27/A, 43124, Parma, Italy.
| |
Collapse
|
5
|
Macvanin MT, Gluvic ZM, Klisic AN, Manojlovic MS, Suri JS, Rizzo M, Isenovic ER. The Link between miRNAs and PCKS9 in Atherosclerosis. Curr Med Chem 2024; 31:6926-6956. [PMID: 37990898 DOI: 10.2174/0109298673262124231102042914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 11/23/2023]
Abstract
Cardiovascular disease (CDV) represents the major cause of death globally. Atherosclerosis, as the primary cause of CVD, is a chronic immune-inflammatory disorder with complex multifactorial pathophysiology encompassing oxidative stress, enhanced immune-inflammatory cascade, endothelial dysfunction, and thrombosis. An initiating event in atherosclerosis is the subendothelial accumulation of low-density lipoprotein (LDL), followed by the localization of macrophages to fatty deposits on blood vessel walls, forming lipid-laden macrophages (foam cells) that secrete compounds involved in plaque formation. Given the fact that foam cells are one of the key culprits that underlie the pathophysiology of atherosclerosis, special attention has been paid to the investigation of the efficient therapeutic approach to overcome the dysregulation of metabolism of cholesterol in macrophages, decrease the foam cell formation and/or to force its degradation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine proteinase that has emerged as a significant regulator of the lipid metabolism pathway. PCSK9 activation leads to the degradation of LDL receptors (LDLRs), increasing LDL cholesterol (LDL-C) levels in the circulation. PCSK9 pathway dysregulation has been identified as one of the mechanisms involved in atherosclerosis. In addition, microRNAs (miRNAs) are investigated as important epigenetic factors in the pathophysiology of atherosclerosis and dysregulation of lipid metabolism. This review article summarizes the recent findings connecting the role of PCSK9 in atherosclerosis and the involvement of various miRNAs in regulating the expression of PCSK9-related genes. We also discuss PCSK9 pathway-targeting therapeutic interventions based on PCSK9 inhibition, and miRNA levels manipulation by therapeutic agents.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran M Gluvic
- Department of Endocrinology and Diabetes, School of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra N Klisic
- Faculty of Medicine, Center for Laboratory Diagnostic, Primary Health Care Center, University of Montenegro, Podgorica, Montenegro
| | - Mia S Manojlovic
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, Athero- Point™, Roseville, CA95661, USA
| | - Manfredi Rizzo
- Department of Health Promotion, School of Medicine, Mother and Child Care and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Ma Z, Liu H, Jiang S, Li W, Li Y, Liu Y, Wang L, Li W. Identification of benzothiazoles as novel PCSK9 inhibitors. Bioorg Med Chem Lett 2024; 97:129542. [PMID: 37939861 DOI: 10.1016/j.bmcl.2023.129542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) is a clinically validated target on the treatment of cardiovascular disease (CVD). PCSK9 can regulate the hepatocyte surface low density lipoprotein receptor (LDLR) level by binding to LDLR and leading to their degradation in the lysosome. The clinical use of two monoclonal antibodies (alirocumab and evolocumab, approved in 2015) and one small interfering RNA (inclisiran, approved in 2020) which can inhibit PCSK9 function proved that they are very effective in lowering low density lipoprotein cholesterol (LDL-C). However, the high treatment costs and parenteral administration of these drugs prohibited widespread use and reduced their long-term advantage. Comparatively, small molecule drugs have many incomparable advantages of macromolecules, such as lower treatment cost, more drug administration options, superior pharmacokinetic properties, less adverse immunogenic responses and better affordable production. In this paper, we identified a series of benzothiazoles small molecule PCSK9 inhibitors through extensive screening. The structure and activity relationship (SAR) was summarized to facilitate further optimization. Moreover, the primary mechanism of action of the most potent compound was also investigated.
Collapse
Affiliation(s)
- Zhixin Ma
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Hongtao Liu
- Department of Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Shan Jiang
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Wenya Li
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yue Li
- NHC Key Laboratory of Biotechnology of Antibiotics and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Yiting Liu
- NHC Key Laboratory of Biotechnology of Antibiotics and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Li Wang
- NHC Key Laboratory of Biotechnology of Antibiotics and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China.
| | - Wenyan Li
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
7
|
Aspnes GE, Coffey SB, Darout E, Dechert-Schmitt AM, Dullea RG, Kamlet AS, Limberakis C, Londregan AT, McClure KF, Menhaji-Klotz E, Piotrowski DW, Polivkova J, Raymer B, Ruggeri RB, Salatto CT, Tu M, Wei L, Xiao J. Small molecule inhibitors of PCSK9. SAR investigations of head and amine groups. Bioorg Med Chem Lett 2023:129394. [PMID: 37379958 DOI: 10.1016/j.bmcl.2023.129394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/02/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Our previous work on the optimization of a new class of small molecule PCSK9 mRNA translation inhibitors focused on empirical optimization of the amide tail region of the lead PF-06446846 (1). This work resulted in compound 3 that showed an improved safety profile. We hypothesized that this improvement was related to diminished binding of 3 to non-translating ribosomes and an apparent improvement in transcript selectivity. Herein, we describe our efforts to further optimize this series of inhibitors through modulation of the heterocyclic head group and the amine fragment. Some of the effort was guided by an emerging cryo electron microscopy structure of the binding mode of 1 in the ribosome. These efforts led to the identification of 15 that was deemed suitable for evaluation in a humanized PCSK9 mouse model and a rat toxicology study. Compound 15 demonstrated a dose dependent reduction of plasma PCSK9 levels. The rat toxicological profile was not improved over that of 1, which precluded 15 from further consideration as a clinical candidate.
Collapse
Affiliation(s)
- Gary E Aspnes
- Pfizer Medicine Design, Pfizer Inc., Eastern Point Road, Groton, CT 06340, USA
| | - Steven B Coffey
- Pfizer Medicine Design, Pfizer Inc., Eastern Point Road, Groton, CT 06340, USA
| | - Etzer Darout
- Pfizer Medicine Design, Pfizer Inc., Eastern Point Road, Groton, CT 06340, USA
| | | | - Robert G Dullea
- Pfizer Medicine Design, Pfizer Inc., Eastern Point Road, Groton, CT 06340, USA
| | - Adam S Kamlet
- Pfizer Medicine Design, Pfizer Inc., Eastern Point Road, Groton, CT 06340, USA
| | - Chris Limberakis
- Pfizer Medicine Design, Pfizer Inc., Eastern Point Road, Groton, CT 06340, USA
| | - Allyn T Londregan
- Pfizer Medicine Design, Pfizer Inc., Eastern Point Road, Groton, CT 06340, USA
| | - Kim F McClure
- Pfizer Medicine Design, Pfizer Inc., Eastern Point Road, Groton, CT 06340, USA
| | - Elnaz Menhaji-Klotz
- Pfizer Medicine Design, Pfizer Inc., Eastern Point Road, Groton, CT 06340, USA
| | - David W Piotrowski
- Pfizer Medicine Design, Pfizer Inc., Eastern Point Road, Groton, CT 06340, USA.
| | - Jana Polivkova
- Pfizer Medicine Design, Pfizer Inc., Eastern Point Road, Groton, CT 06340, USA
| | - Brian Raymer
- Pfizer Medicine Design, Pfizer Inc., Eastern Point Road, Groton, CT 06340, USA
| | - Roger B Ruggeri
- Pfizer Medicine Design, Pfizer Inc., Eastern Point Road, Groton, CT 06340, USA
| | | | - Meihua Tu
- Pfizer Medicine Design, Pfizer Inc., Eastern Point Road, Groton, CT 06340, USA
| | - Liuqing Wei
- Pfizer Medicine Design, Pfizer Inc., Eastern Point Road, Groton, CT 06340, USA
| | - Jun Xiao
- Pfizer Medicine Design, Pfizer Inc., Eastern Point Road, Groton, CT 06340, USA
| |
Collapse
|
8
|
Dimitrova YN, Gutierrez JA, Huard K. It's ok to be outnumbered - sub-stoichiometric modulation of homomeric protein complexes. RSC Med Chem 2023; 14:22-46. [PMID: 36760737 PMCID: PMC9890894 DOI: 10.1039/d2md00212d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
An arsenal of molecular tools with increasingly diversified mechanisms of action is being developed by the scientific community to enable biological interrogation and pharmaceutical modulation of targets and pathways of ever increasing complexity. While most small molecules interact with the target of interest in a 1 : 1 relationship, a noteworthy number of recent examples were reported to bind in a sub-stoichiometric manner to a homomeric protein complex. This approach requires molecular understanding of the physiologically relevant protein assemblies and in-depth characterization of the compound's mechanism of action. The recent literature examples summarized here were selected to illustrate methods used to identify and characterize molecules with such mechanisms. The concept of one small molecule targeting a homomeric protein assembly is not new but the subject deserves renewed inspection in light of emerging technologies and increasingly diverse target biology, to ensure relevant in vitro systems are used and valuable compounds with potentially novel sub-stoichiometric mechanisms of action aren't overlooked.
Collapse
Affiliation(s)
| | | | - Kim Huard
- Genentech 1 DNA Way South San Francisco CA 94080 USA
| |
Collapse
|
9
|
N → N’ acyl migration in the context of a medicinal chemistry program. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Computational Design and Biological Evaluation of Analogs of Lupin Peptide P5 Endowed with Dual PCSK9/HMG-CoAR Inhibiting Activity. Pharmaceutics 2022; 14:pharmaceutics14030665. [PMID: 35336039 PMCID: PMC8951016 DOI: 10.3390/pharmaceutics14030665] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/16/2022] Open
Abstract
(1) Background: Proprotein convertase subtilisin/kexin 9 (PCSK9) is responsible for the degradation of the hepatic low-density lipoprotein receptor (LDLR), which regulates the circulating cholesterol level. In this field, we discovered natural peptides derived from lupin that showed PCSK9 inhibitory activity. Among these, the most active peptide, known as P5 (LILPHKSDAD), reduced the protein-protein interaction between PCSK9 and LDLR with an IC50 equals to 1.6 µM and showed a dual hypocholesterolemic activity, since it shows complementary inhibition of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR). (2) Methods: In this study, by a computational approach, the P5 primary structure was optimized to obtain new analogs with improved affinity to PCSK9. Then, biological assays were carried out for fully characterizing the dual cholesterol-lowering activity of the P5 analogs by using both biochemical and cellular techniques. (3) Results: A new peptide, P5-Best (LYLPKHSDRD) displayed improved PCSK9 (IC50 0.7 µM) and HMG-CoAR (IC50 88.9 µM) inhibitory activities. Moreover, in vitro biological assays on cells demonstrated that, not only P5-Best, but all tested peptides maintained the dual PCSK9/HMG-CoAR inhibitory activity and remarkably P5-Best exerted the strongest hypocholesterolemic effect. In fact, in the presence of this peptide, the ability of HepG2 cells to absorb extracellular LDL was improved by up to 254%. (4) Conclusions: the atomistic details of the P5-Best/PCSK9 and P5-Best/HMG-CoAR interactions represent a reliable starting point for the design of new promising molecular entities endowed with hypocholesterolemic activity.
Collapse
|
11
|
Lebeau PF, Byun JH, Platko K, Saliba P, Sguazzin M, MacDonald ME, Paré G, Steinberg GR, Janssen LJ, Igdoura SA, Tarnopolsky MA, Wayne Chen SR, Seidah NG, Magolan J, Austin RC. Caffeine blocks SREBP2-induced hepatic PCSK9 expression to enhance LDLR-mediated cholesterol clearance. Nat Commun 2022; 13:770. [PMID: 35140212 PMCID: PMC8828868 DOI: 10.1038/s41467-022-28240-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/05/2022] [Indexed: 01/06/2023] Open
Abstract
Evidence suggests that caffeine (CF) reduces cardiovascular disease (CVD) risk. However, the mechanism by which this occurs has not yet been uncovered. Here, we investigated the effect of CF on the expression of two bona fide regulators of circulating low-density lipoprotein cholesterol (LDLc) levels; the proprotein convertase subtilisin/kexin type 9 (PCSK9) and the low-density lipoprotein receptor (LDLR). Following the observation that CF reduced circulating PCSK9 levels and increased hepatic LDLR expression, additional CF-derived analogs with increased potency for PCSK9 inhibition compared to CF itself were developed. The PCSK9-lowering effect of CF was subsequently confirmed in a cohort of healthy volunteers. Mechanistically, we demonstrate that CF increases hepatic endoplasmic reticulum (ER) Ca2+ levels to block transcriptional activation of the sterol regulatory element-binding protein 2 (SREBP2) responsible for the regulation of PCSK9, thereby increasing the expression of the LDLR and clearance of LDLc. Our findings highlight ER Ca2+ as a master regulator of cholesterol metabolism and identify a mechanism by which CF may protect against CVD.
Collapse
Affiliation(s)
- Paul F Lebeau
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe's Hamilton and the Hamilton Center for Kidney Research, Hamilton, ON, L8N 4A6, Canada
| | - Jae Hyun Byun
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe's Hamilton and the Hamilton Center for Kidney Research, Hamilton, ON, L8N 4A6, Canada
| | - Khrystyna Platko
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe's Hamilton and the Hamilton Center for Kidney Research, Hamilton, ON, L8N 4A6, Canada
| | - Paul Saliba
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Matthew Sguazzin
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Melissa E MacDonald
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe's Hamilton and the Hamilton Center for Kidney Research, Hamilton, ON, L8N 4A6, Canada
| | - Guillaume Paré
- Population Health Research Institute, McMaster University, Hamilton, ON, L8L 2X2, Canada.,The Departments of Medicine, Epidemiology and Pathology, McMaster University, Hamilton, ON, L8L 2X2, Canada.,The Thrombosis and Atherosclerosis Research Institute (TaARI), Department of Medicine, David Braley Research Institute, McMaster University, Hamilton, L8L 2X2, Canada
| | - Gregory R Steinberg
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada.,Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Luke J Janssen
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Hamilton, ON, L8S 4K1, Canada
| | - Suleiman A Igdoura
- Department of Biology and Pathology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Mark A Tarnopolsky
- Department of Medicine/Neurology, McMaster University, Hamilton, ON, L8N 3Z5, Canada.,Department of Pediatrics, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - S R Wayne Chen
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 2T9, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated to the University of Montreal, Montreal, QC, H2W 1R7, Canada
| | - Jakob Magolan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe's Hamilton and the Hamilton Center for Kidney Research, Hamilton, ON, L8N 4A6, Canada. .,The Thrombosis and Atherosclerosis Research Institute (TaARI), Department of Medicine, David Braley Research Institute, McMaster University, Hamilton, L8L 2X2, Canada.
| |
Collapse
|
12
|
Ahamad S, Mathew S, Khan WA, Mohanan K. Development of small-molecule PCSK9 inhibitors for the treatment of hypercholesterolemia. Drug Discov Today 2022; 27:1332-1349. [PMID: 35121175 DOI: 10.1016/j.drudis.2022.01.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/28/2021] [Accepted: 01/26/2022] [Indexed: 12/23/2022]
Abstract
When secreted into the circulation, proprotein convertase subtilisin kexin type 9 (PCSK9) blocks the low-density lipoprotein receptors (LDL-R) and, as a consequence, low-density lipoprotein cholesterol (LDL-C) levels increase. Therefore, PCSK9 has emerged as a potential therapeutic target for lowering LDL-C levels and preventing atherosclerosis. The US Food and Drug Administration (FDA) has approved two monoclonal antibodies (mAbs) against PCSK9, but the expensive manufacturing process limits their use. Subsequently, there have been tremendous efforts to develop cost-effective small molecules specific to PCSK9 over the past few years. These small molecules are promising therapeutics that act by preventing the synthesis of PCSK9, its secretion from cells, or the PCSK9-LDRL interaction. In this review, we summarize recent developments in the discovery of small-molecule PCSK9 inhibitors, focusing on their design, therapeutic effects, specific targets, and mechanisms of action.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002 UP, India.
| | - Shintu Mathew
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Lucknow, 226031 UP, India
| | - Waqas A Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002 UP, India
| | - Kishor Mohanan
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Lucknow, 226031 UP, India.
| |
Collapse
|
13
|
Chappie TA, Abdelmessih M, Ambroise CW, Boehm M, Cai M, Green M, Guilmette E, Steppan CM, Stevens LM, Wei L, Xi S, Hasson SA. Discovery of Small-Molecule CD33 Pre-mRNA Splicing Modulators. ACS Med Chem Lett 2022; 13:55-62. [PMID: 35059124 PMCID: PMC8762744 DOI: 10.1021/acsmedchemlett.1c00396] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/29/2021] [Indexed: 01/16/2023] Open
Abstract
CD33/Siglec 3 is a myeloid lineage cell surface receptor that is known to regulate microglia activity. Multiple genome-wide association studies (GWAS) have identified genetic variants in the CD33 gene that convey protection from late-onset Alzheimer's disease. Furthermore, mechanistic studies into GWAS-linked variants suggest that disease protection is attributed to the alternative splicing of exon 2 of the CD33 pre-mRNA. Using a phenomimetic screen, a series of compounds were found to enhance the exclusion of CD33 exon 2, acting as a chemomimetic of the GWAS-linked gene variants. Additional studies confirmed that meyloid lineage cells treated with several of these compounds have a reduced full-length V-domain containing CD33 protein, while targeted RNA-seq concordantly demonstrated that compound 1 increases exon 2 skipping in cellular mRNA pools. These studies demonstrate how pharmacological interventions can be used to manipulate disease-relevant pre-mRNA splicing and provide a starting point for future efforts to identify small molecules that alter neuroimmune function that is rooted in the human biology of neurodegenerative disease.
Collapse
Affiliation(s)
- Thomas A. Chappie
- Internal
Medicine Medicinal Chemistry, Pfizer, Inc., Cambridge, Massachusetts 02139, United States,
| | - Mario Abdelmessih
- Primary
Pharmacology Group, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Claude W. Ambroise
- Internal
Medicine Research Unit, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Markus Boehm
- Internal
Medicine Medicinal Chemistry, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Mi Cai
- Internal
Medicine Research Unit, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Michael Green
- Internal
Medicine Medicinal Chemistry, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Edward Guilmette
- Internal
Medicine Research Unit, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Claire M. Steppan
- Primary
Pharmacology Group, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Lucy M. Stevens
- Primary
Pharmacology Group, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Liuqing Wei
- Internal
Medicine Medicinal Chemistry, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Simon Xi
- Internal
Medicine Research Unit, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Samuel A. Hasson
- Internal
Medicine Research Unit, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Coppinger C, Movahed MR, Azemawah V, Peyton L, Gregory J, Hashemzadeh M. A Comprehensive Review of PCSK9 Inhibitors. J Cardiovasc Pharmacol Ther 2022; 27:10742484221100107. [PMID: 35593194 DOI: 10.1177/10742484221100107] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the United States and worldwide. A major risk factor for this condition is increased serum low-density lipoprotein cholesterol (LDL-C) levels for which statins have been successful in reducing serum LDL-C to healthy concentrations. However, patients who are statin intolerant or those who do not achieve their treatment goals while on high-intensity statin therapy, such as those with familial hypercholesterolemia, remain at risk. With the discovery of PCSK9 inhibitors, the ability to provide more aggressive treatment for patients with homozygous and heterozygous familial hypercholesterolemia has increased. Ezetimibe reduces LDL-C by 15%-20% when combined with statin.2,3 Protein convertase subtilisin/kexin type 9 (PCSK9) inhibitors have been found to achieve profound reductions in LDL-C (54%-74%) when added to statins. They have shown dramatic effects at lowering major adverse cardiovascular events (MACE) in high-risk patients4 with LDL-C levels ≥70 mg/dL and can be used in populations that are statin intolerant or not at goal levels with maximally tolerated statin therapy. PCSK9 inhibitors also produce minimal side effects. Myopathy, a common side effect for patients on statins, has been rare in patients on PCSK9 inhibitors. Randomized trials have shown that reduction in LDL-C has translated to clinical benefits even in patients who have not achieved their LDL-C target.
Collapse
Affiliation(s)
- Caroline Coppinger
- 8040Pima Community College, Tucson, AZ, USA.,42283University of Arizona, Tucson, AZ, USA
| | - Mohammad Reza Movahed
- 42283University of Arizona, Tucson, AZ, USA.,42283University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Veronica Azemawah
- 8040Pima Community College, Tucson, AZ, USA.,42283University of Arizona, Tucson, AZ, USA
| | - Lee Peyton
- Department of Molecular Pharmacology and Experimental Therapeutics, 12270Mayo Clinic College of Medicine, Rochester, MN, USA
| | - James Gregory
- 8040Pima Community College, Tucson, AZ, USA.,42283University of Arizona, Tucson, AZ, USA
| | - Mehrnoosh Hashemzadeh
- 8040Pima Community College, Tucson, AZ, USA.,42283University of Arizona College of Medicine, Phoenix, AZ, USA
| |
Collapse
|
15
|
Tucker TJ, Embrey MW, Alleyne C, Amin RP, Bass A, Bhatt B, Bianchi E, Branca D, Bueters T, Buist N, Ha SN, Hafey M, He H, Higgins J, Johns DG, Kerekes AD, Koeplinger KA, Kuethe JT, Li N, Murphy B, Orth P, Salowe S, Shahripour A, Tracy R, Wang W, Wu C, Xiong Y, Zokian HJ, Wood HB, Walji A. A Series of Novel, Highly Potent, and Orally Bioavailable Next-Generation Tricyclic Peptide PCSK9 Inhibitors. J Med Chem 2021; 64:16770-16800. [PMID: 34704436 DOI: 10.1021/acs.jmedchem.1c01599] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Proprotein convertase subtilisin-like/kexin type 9 (PCSK9) is a key regulator of plasma LDL-cholesterol (LDL-C) and a clinically validated target for the treatment of hypercholesterolemia and coronary artery disease. Starting from second-generation lead structures such as 2, we were able to refine these structures to obtain extremely potent bi- and tricyclic PCSK9 inhibitor peptides. Optimized molecules such as 44 demonstrated sufficient oral bioavailability to maintain therapeutic levels in rats and cynomolgus monkeys after dosing with an enabled formulation. We demonstrated target engagement and LDL lowering in cynomolgus monkeys essentially identical to those observed with the clinically approved, parenterally dosed antibodies. These molecules represent the first report of highly potent and orally bioavailable macrocyclic peptide PCSK9 inhibitors with overall profiles favorable for potential development as once-daily oral lipid-lowering agents. In this manuscript, we detail the design criteria and multiparameter optimization of this novel series of PCSK9 inhibitors.
Collapse
Affiliation(s)
- Thomas J Tucker
- Department of Medicinal Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Mark W Embrey
- Department of Medicinal Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Candice Alleyne
- Department of Discovery Pharmaceutical Sciences, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Rupesh P Amin
- Department of Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Alan Bass
- Department of Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Bhavana Bhatt
- Department of Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Elisabetta Bianchi
- Peptides and Small Molecule Research and Development Department, IRBM S.p.A., Via Pontina km 30600, 00071 Pomezia (RM), Italy
| | - Danila Branca
- Peptides and Small Molecule Research and Development Department, IRBM S.p.A., Via Pontina km 30600, 00071 Pomezia (RM), Italy
| | - Tjerk Bueters
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Nicole Buist
- Department of Discovery Pharmaceutical Sciences, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Sookhee N Ha
- Department of Modeling and Informatics, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Mike Hafey
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Huaibing He
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - John Higgins
- Department of Discovery Pharmaceutical Sciences, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Douglas G Johns
- Department of Discovery Biology, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Angela D Kerekes
- Department of Medicinal Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Kenneth A Koeplinger
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Jeffrey T Kuethe
- Department of Process Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Nianyu Li
- Department of Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - BethAnn Murphy
- Department of Discovery Biology, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Peter Orth
- Department of Structural Sciences, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Scott Salowe
- Department of Discovery Biology, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Aurash Shahripour
- Department of Medicinal Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Rodger Tracy
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Weixun Wang
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Chengwei Wu
- Department of Medicinal Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Yusheng Xiong
- Department of Medicinal Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Hratch J Zokian
- Department of Discovery Biology, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Harold B Wood
- Department of Medicinal Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Abbas Walji
- Department of Medicinal Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| |
Collapse
|
16
|
Lipshultz JM, Radosevich AT. Uniting Amide Synthesis and Activation by P III/P V-Catalyzed Serial Condensation: Three-Component Assembly of 2-Amidopyridines. J Am Chem Soc 2021; 143:14487-14494. [PMID: 34478308 DOI: 10.1021/jacs.1c07608] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An organophosphorus (PIII/PV redox) catalyzed method for the three-component condensation of amines, carboxylic acids, and pyridine N-oxides to generate 2-amidopyridines via serial dehydration is reported. Whereas amide synthesis and functionalization usually occur under divergent reaction conditions, here a phosphetane catalyst (together with a mild bromenium oxidant and terminal hydrosilane reductant) is shown to drive both steps chemoselectively in an auto-tandem catalytic cascade. The ability to both prepare and functionalize amides under the action of a single organocatalytic reactive intermediate enables new possibilities for the efficient and modular preparation of medicinal targets.
Collapse
Affiliation(s)
- Jeffrey M Lipshultz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Brousseau ME, Clairmont KB, Spraggon G, Flyer AN, Golosov AA, Grosche P, Amin J, Andre J, Burdick D, Caplan S, Chen G, Chopra R, Ames L, Dubiel D, Fan L, Gattlen R, Kelly-Sullivan D, Koch AW, Lewis I, Li J, Liu E, Lubicka D, Marzinzik A, Nakajima K, Nettleton D, Ottl J, Pan M, Patel T, Perry L, Pickett S, Poirier J, Reid PC, Pelle X, Seepersaud M, Subramanian V, Vera V, Xu M, Yang L, Yang Q, Yu J, Zhu G, Monovich LG. Identification of a PCSK9-LDLR disruptor peptide with in vivo function. Cell Chem Biol 2021; 29:249-258.e5. [PMID: 34547225 DOI: 10.1016/j.chembiol.2021.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/13/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates plasma low-density lipoprotein cholesterol (LDL-C) levels by promoting hepatic LDL receptor (LDLR) degradation. Therapeutic antibodies that disrupt PCSK9-LDLR binding reduce LDL-C concentrations and cardiovascular disease risk. The epidermal growth factor precursor homology domain A (EGF-A) of the LDLR serves as a primary contact with PCSK9 via a flat interface, presenting a challenge for identifying small molecule PCSK9-LDLR disruptors. We employ an affinity-based screen of 1013in vitro-translated macrocyclic peptides to identify high-affinity PCSK9 ligands that utilize a unique, induced-fit pocket and partially disrupt the PCSK9-LDLR interaction. Structure-based design led to molecules with enhanced function and pharmacokinetic properties (e.g., 13PCSK9i). In mice, 13PCSK9i reduces plasma cholesterol levels and increases hepatic LDLR density in a dose-dependent manner. 13PCSK9i functions by a unique, allosteric mechanism and is the smallest molecule identified to date with in vivo PCSK9-LDLR disruptor function.
Collapse
Affiliation(s)
- Margaret E Brousseau
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Kevin B Clairmont
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Glen Spraggon
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Alec N Flyer
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Andrei A Golosov
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Philipp Grosche
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, Novartis Campus, 4056 Basel, Switzerland
| | - Jakal Amin
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jerome Andre
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, Novartis Campus, 4056 Basel, Switzerland
| | - Debra Burdick
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Shari Caplan
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Guanjing Chen
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Raj Chopra
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Lisa Ames
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Diana Dubiel
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Li Fan
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Raphael Gattlen
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, Novartis Campus, 4056 Basel, Switzerland
| | - Dawn Kelly-Sullivan
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Alexander W Koch
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ian Lewis
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, Novartis Campus, 4056 Basel, Switzerland
| | - Jingzhou Li
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Eugene Liu
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Danuta Lubicka
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Andreas Marzinzik
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, Novartis Campus, 4056 Basel, Switzerland
| | - Katsumasa Nakajima
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - David Nettleton
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Johannes Ottl
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, Novartis Campus, 4056 Basel, Switzerland
| | - Meihui Pan
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Tajesh Patel
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Lauren Perry
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Stephanie Pickett
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, Novartis Campus, 4056 Basel, Switzerland
| | - Jennifer Poirier
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Patrick C Reid
- PeptiDream, Inc., KOL Building, Room 405, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8904, Japan
| | - Xavier Pelle
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, Novartis Campus, 4056 Basel, Switzerland
| | - Mohindra Seepersaud
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Vanitha Subramanian
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Victoria Vera
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Mei Xu
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Lihua Yang
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Qing Yang
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jinghua Yu
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Guoming Zhu
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Lauren G Monovich
- Novartis Institutes for BioMedical Research, 22 Windsor Street and 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
18
|
Choy J, Kan Y, Cifelli S, Johnson J, Chen M, Shiao LL, Zhou H, Previs S, Lei Y, Johnstone R, Liaw A, Saigal A, Hu L, Ramos R, Visconti R, McElroy WT, Kreamer A, Wildey MJ, Peier A, Shin MK, Imbriglio J, Ren Z, Hoek M, Weinglass A, Ai X. High-Throughput Screening to Identify Small Molecules That Selectively Inhibit APOL1 Protein Level in Podocytes. SLAS DISCOVERY 2021; 26:1225-1237. [PMID: 34218698 DOI: 10.1177/24725552211026245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
High-throughput phenotypic screening is a key driver for the identification of novel chemical matter in drug discovery for challenging targets, especially for those with an unclear mechanism of pathology. For toxic or gain-of-function proteins, small-molecule suppressors are a targeting/therapeutic strategy that has been successfully applied. As with other high-throughput screens, the screening strategy and proper assays are critical for successfully identifying selective suppressors of the target of interest. We executed a small-molecule suppressor screen to identify compounds that specifically reduce apolipoprotein L1 (APOL1) protein levels, a genetically validated target associated with increased risk of chronic kidney disease. To enable this study, we developed homogeneous time-resolved fluorescence (HTRF) assays to measure intracellular APOL1 and apolipoprotein L2 (APOL2) protein levels and miniaturized them to 1536-well format. The APOL1 HTRF assay served as the primary assay, and the APOL2 and a commercially available p53 HTRF assay were applied as counterscreens. Cell viability was also measured with CellTiter-Glo to assess the cytotoxicity of compounds. From a 310,000-compound screening library, we identified 1490 confirmed primary hits with 12 different profiles. One hundred fifty-three hits selectively reduced APOL1 in 786-O, a renal cell adenocarcinoma cell line. Thirty-one of these selective suppressors also reduced APOL1 levels in conditionally immortalized human podocytes. The activity and specificity of seven resynthesized compounds were validated in both 786-O and podocytes.
Collapse
Affiliation(s)
- Jonathan Choy
- Cardio-Metabolic Diseases, Merck & Co., Inc., South San Francisco, CA, USA.,Maze Therapeutics, South San Francisco, CA, USA
| | - Yanqing Kan
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Steve Cifelli
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Josephine Johnson
- Cardio-Metabolic Diseases, Merck & Co., Inc., South San Francisco, CA, USA
| | - Michelle Chen
- Cardio-Metabolic Diseases, Merck & Co., Inc., South San Francisco, CA, USA
| | - Lin-Lin Shiao
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Haihong Zhou
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Stephen Previs
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Ying Lei
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Richard Johnstone
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Andy Liaw
- Biometrics Research, Merck & Co., Inc., Rahway, NJ, USA
| | - Ashmita Saigal
- Cardio-Metabolic Diseases, Merck & Co., Inc., South San Francisco, CA, USA
| | - Lufei Hu
- Cardio-Metabolic Diseases, Merck & Co., Inc., South San Francisco, CA, USA
| | - Robert Ramos
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Richard Visconti
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA.,Bristol Myers Squibb, New York, NY, USA
| | - William T McElroy
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA.,Constellation Pharmaceuticals, Cambridge, MA, USA
| | - Anthony Kreamer
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Mary-Jo Wildey
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Andrea Peier
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Myung K Shin
- Genetics and Pharmacogenomics, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Jason Imbriglio
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Zhao Ren
- Cardio-Metabolic Diseases, Merck & Co., Inc., South San Francisco, CA, USA
| | - Maarten Hoek
- Cardio-Metabolic Diseases, Merck & Co., Inc., South San Francisco, CA, USA.,Maze Therapeutics, South San Francisco, CA, USA
| | - Adam Weinglass
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Xi Ai
- Screening, Target and Compound Profiling, Merck & Co., Inc., Kenilworth, NJ, USA
| |
Collapse
|
19
|
Tombling BJ, Lammi C, Lawrence N, Gilding EK, Grazioso G, Craik DJ, Wang CK. Bioactive Cyclization Optimizes the Affinity of a Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Peptide Inhibitor. J Med Chem 2020; 64:2523-2533. [PMID: 33356222 DOI: 10.1021/acs.jmedchem.0c01766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Peptides are regarded as promising next-generation therapeutics. However, an analysis of over 1000 bioactive peptide candidates suggests that many have underdeveloped affinities and could benefit from cyclization using a bridging linker sequence. Until now, the primary focus has been on the use of inert peptide linkers. Here, we show that affinity can be significantly improved by enriching the linker with functional amino acids. We engineered a peptide inhibitor of PCSK9, a target for clinical management of hypercholesterolemia, to demonstrate this concept. Cyclization linker optimization from library screening produced a cyclic peptide with ∼100-fold improved activity over the parent peptide and efficiently restored low-density lipoprotein (LDL) receptor levels and cleared extracellular LDL. The linker forms favorable interactions with PCSK9 as evidenced by thermodynamics, structure-activity relationship (SAR), NMR, and molecular dynamics (MD) studies. This PCSK9 inhibitor is one of many peptides that could benefit from bioactive cyclization, a strategy that is amenable to broad application in pharmaceutical design.
Collapse
Affiliation(s)
- Benjamin J Tombling
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Carmen Lammi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Nicole Lawrence
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Edward K Gilding
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld 4072, Australia
| |
Collapse
|
20
|
From methylene bridged diindole to carbonyl linked benzimidazoleindole: Development of potent and metabolically stable PCSK9 modulators. Eur J Med Chem 2020; 206:112678. [PMID: 32823006 DOI: 10.1016/j.ejmech.2020.112678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/29/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a recently validated therapeutic target for lowering low-density lipoprotein cholesterol (LDL-C). Through phenotypic screening, we previously discovered a class of small-molecules with a 2,3'-diindolymethane (DIM) skeleton that can decrease the expression of PCSK9. But these compounds have low potency and low metabolically stability. After performing structure-activity relationship (SAR) optimization by nitrogen scan, deuterium substitution and fluorine scan, we identified a series of much more potent and metabolically stable PCSK9 modulators. A preliminary in vivo pharmacokinetic study was performed for representative analogues difluorodiindolyketone (DFDIK) 12 and difluorobenzoimidazolylindolylketone (DFBIIK-1) 13. The in vitro metabolic stability correlate well with the in vivo data. The most potent compound 21 has the EC50 of 0.15 nM. Our SAR studies also indicated that the NH on the indole ring of 21 can tolerate more function groups, which may facilitate the mechanism of action studies and also allow further improvement of the pharmacological properties.
Collapse
|
21
|
Alleyne C, Amin RP, Bhatt B, Bianchi E, Blain JC, Boyer N, Branca D, Embrey MW, Ha SN, Jette K, Johns DG, Kerekes AD, Koeplinger KA, LaPlaca D, Li N, Murphy B, Orth P, Ricardo A, Salowe S, Seyb K, Shahripour A, Stringer JR, Sun Y, Tracy R, Wu C, Xiong Y, Youm H, Zokian HJ, Tucker TJ. Series of Novel and Highly Potent Cyclic Peptide PCSK9 Inhibitors Derived from an mRNA Display Screen and Optimized via Structure-Based Design. J Med Chem 2020; 63:13796-13824. [DOI: 10.1021/acs.jmedchem.0c01084] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Candice Alleyne
- Discovery Pharmaceutical Sciences, Merck & Company, Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Rupesh P. Amin
- Safety Assessment, Merck & Comapny, Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Bhavana Bhatt
- Safety Assessment, Merck & Comapny, Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| | | | - J. Craig Blain
- UCB Ra Pharma, 87 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Nicolas Boyer
- UCB Ra Pharma, 87 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Danila Branca
- IRBM S.p.A., Via Pontina km 30600, Pomezia, Rome 00071, Italy
| | - Mark W. Embrey
- Departments of Medicinal Chemistry, Merck & Company, Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Sookhee N. Ha
- Modeling and Informatics, Merck & Company, Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Kelli Jette
- UCB Ra Pharma, 87 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Douglas G. Johns
- Discovery Biology, Merck & Company, Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Angela D. Kerekes
- Departments of Medicinal Chemistry, Merck & Company, Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Kenneth A. Koeplinger
- Pharmacokinetics Pharmacodynamics and Drug Metabolism, Merck & Company, Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Derek LaPlaca
- UCB Ra Pharma, 87 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Nianyu Li
- Safety Assessment, Merck & Comapny, Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Beth Murphy
- Discovery Biology, Merck & Company, Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Peter Orth
- Structural Sciences, Merck & Company, Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Alonso Ricardo
- UCB Ra Pharma, 87 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Scott Salowe
- Discovery Biology, Merck & Company, Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Kathleen Seyb
- UCB Ra Pharma, 87 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Aurash Shahripour
- Departments of Medicinal Chemistry, Merck & Company, Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Joseph R. Stringer
- UCB Ra Pharma, 87 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Yili Sun
- UCB Ra Pharma, 87 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Rodger Tracy
- Pharmacokinetics Pharmacodynamics and Drug Metabolism, Merck & Company, Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Chengwei Wu
- Departments of Medicinal Chemistry, Merck & Company, Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Yusheng Xiong
- Departments of Medicinal Chemistry, Merck & Company, Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Hyewon Youm
- Departments of Medicinal Chemistry, Merck & Company, Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Hratch J. Zokian
- Discovery Biology, Merck & Company, Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Thomas J. Tucker
- Departments of Medicinal Chemistry, Merck & Company, Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| |
Collapse
|
22
|
Li W, Chang STL, Ward FR, Cate JHD. Selective inhibition of human translation termination by a drug-like compound. Nat Commun 2020; 11:4941. [PMID: 33009412 PMCID: PMC7532171 DOI: 10.1038/s41467-020-18765-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Methods to directly inhibit gene expression using small molecules hold promise for the development of new therapeutics targeting proteins that have evaded previous attempts at drug discovery. Among these, small molecules including the drug-like compound PF-06446846 (PF846) selectively inhibit the synthesis of specific proteins, by stalling translation elongation. These molecules also inhibit translation termination by an unknown mechanism. Using cryo-electron microscopy (cryo-EM) and biochemical approaches, we show that PF846 inhibits translation termination by arresting the nascent chain (NC) in the ribosome exit tunnel. The arrested NC adopts a compact α-helical conformation that induces 28 S rRNA nucleotide rearrangements that suppress the peptidyl transferase center (PTC) catalytic activity stimulated by eukaryotic release factor 1 (eRF1). These data support a mechanism of action for a small molecule targeting translation that suppresses peptidyl-tRNA hydrolysis promoted by eRF1, revealing principles of eukaryotic translation termination and laying the foundation for new therapeutic strategies.
Collapse
Affiliation(s)
- Wenfei Li
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Stacey Tsai-Lan Chang
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
| | - Fred R Ward
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Jamie H D Cate
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
| |
Collapse
|
23
|
Seidah NG, Prat A, Pirillo A, Catapano AL, Norata GD. Novel strategies to target proprotein convertase subtilisin kexin 9: beyond monoclonal antibodies. Cardiovasc Res 2020; 115:510-518. [PMID: 30629143 DOI: 10.1093/cvr/cvz003] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/06/2018] [Accepted: 01/05/2019] [Indexed: 12/15/2022] Open
Abstract
Since the discovery of the role of proprotein convertase subtilisin kexin 9 (PCSK9) in the regulation of low-density lipoprotein cholesterol (LDL-C) in 2003, a paradigm shift in the treatment of hypercholesterolaemia has occurred. The PCSK9 secreted into the circulation is a major downregulator of the low-density lipoprotein receptor (LDLR) protein, as it chaperones it to endosomes/lysosomes for degradation. Humans with loss-of-function of PCSK9 exhibit exceedingly low levels of LDL-C and are protected from atherosclerosis. As a consequence, innovative strategies to modulate the levels of PCSK9 have been developed. Since 2015 inhibitory monoclonal antibodies (evolocumab and alirocumab) are commercially available. When subcutaneously injected every 2-4 weeks, they trigger a ∼60% LDL-C lowering and a 15% reduction in the risk of cardiovascular events. Another promising approach consists of a liver-targetable specific PCSK9 siRNA which results in ∼50-60% LDL-C lowering that lasts up to 6 months (Phases II-III clinical trials). Other strategies under consideration include: (i) antibodies targeting the C-terminal domain of PCSK9, thereby inhibiting the trafficking of PCSK9-LDLR to lysosomes; (ii) small molecules that either prevent PCSK9 binding to the LDLR, its trafficking to lysosomes or its secretion from cells; (iii) complete silencing of PCSK9 by CRISPR-Cas9 strategies; (iv) PCSK9 vaccines that inhibit the activity of circulating PCSK9. Time will tell whether other strategies can be as potent and safe as monoclonal antibodies to lower LDL-C levels.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM; Affiliated to the University of Montreal), Montreal, QC H2W1R7, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM; Affiliated to the University of Montreal), Montreal, QC H2W1R7, Canada
| | - Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy.,IRCCS MultiMedica, Milan, Italy
| | - Alberico Luigi Catapano
- IRCCS MultiMedica, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Danilo Norata
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
24
|
A small molecule inhibitor of PCSK9 that antagonizes LDL receptor binding via interaction with a cryptic PCSK9 binding groove. Bioorg Med Chem 2020; 28:115344. [DOI: 10.1016/j.bmc.2020.115344] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
|
25
|
A small-molecule inhibitor of PCSK9 transcription ameliorates atherosclerosis through the modulation of FoxO1/3 and HNF1α. EBioMedicine 2020; 52:102650. [PMID: 32058941 PMCID: PMC7026728 DOI: 10.1016/j.ebiom.2020.102650] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/26/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Background Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein that down-regulates hepatic low-density lipoprotein receptor (LDLR) by binding and shuttling LDLR to lysosomes for degradation. The development of therapy that inhibits PCSK9 has attracted considerable attention for the management of cardiovascular disease risk. However, only monoclonal antibodies of PCSK9 have reached the clinic use. Oral administration of small-molecule transcriptional inhibitors has the potential to become a therapeutic option. Methods Here, we developed a cell-based small molecule screening platform to identify transcriptional inhibitors of PCSK9. Through high-throughput screening and a series of evaluation, we found several active compounds. After detailed investigation on the pharmacological effect and molecular mechanistic characterization, 7030B-C5 was identified as a potential small-molecule PCSK9 inhibitor. Findings Our data showed that 7030B-C5 down-regulated PCSK9 expression and increased the total cellular LDLR protein and its mediated LDL-C uptake by HepG2 cells. In both C57BL/6 J and ApoE KO mice, oral administration of 7030B-C5 reduced hepatic and plasma PCSK9 level and increased hepatic LDLR expression. Most importantly, 7030B-C5 inhibited lesions in en face aortas and aortic root in ApoE KO mice with a slight amelioration of lipid profiles. We further provide evidences suggesting that transcriptional regulation of PCSK9 by 7030B-C5 mostly depend on the transcriptional factor HNF1α and FoxO3. Furthermore, FoxO1 was found to play an important role in 7030B-C5 mediated integration of hepatic glucose and lipid metabolism. Interpretation 7030B-C5 with potential suppressive effect of PCSK9 expression may serve as a promising lead compound for drug development of cholesterol/glucose homeostasis and cardiovascular disease therapy. Fund This work was supported by grants from the National Natural Science Foundation of China (81473214, 81402929, and 81621064), the Drug Innovation Major Project of China (2018ZX09711001-003-006, 2018ZX09711001-007 and 2018ZX09735001-002), CAMS Innovation Fund for Medical Sciences (2016-I2M-2-002, 2016-I2M-1-011 and 2017-I2M-1-008), Beijing Natural Science Foundation (7162129).
Collapse
|
26
|
Chen B, Shi X, Cui Y, Hou A, Zhao P. A Review of PCSK9 Inhibitors and their Effects on Cardiovascular Diseases. Curr Top Med Chem 2019; 19:1790-1817. [PMID: 31400268 DOI: 10.2174/1568026619666190809094203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/07/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cardiovascular diseases remain the leading cause of morbidity and mortality in the world, with elevated Low-Density Lipoprotein-Cholesterol (LDL-C) levels as the major risk factor. Lower levels of LDL-C can effectively reduce the risk of cardiovascular diseases. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an important role in regulating the degradation of hepatic LDL receptors that remove LDL-C from the circulation. PCSK9 inhibitors are a new class of agents that are becoming increasingly important in the treatment to reduce LDL-C levels. Two PCSK9 inhibitors, alirocumab and evolocumab, have been approved to treat hypercholesterolemia and are available in the United States and the European Union. Through the inhibition of PCSK9 and increased recycling of LDL receptors, serum LDL-C levels can be significantly reduced. OBJECTIVE This review will describe the chemistry, pharmacokinetics, and pharmacodynamics of PCSK9 inhibitors and their clinical effects.
Collapse
Affiliation(s)
- Bo Chen
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 20092, China
| | - Xin Shi
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 20092, China
| | - Yanping Cui
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 20092, China
| | - Aiping Hou
- Department of Pediatric, Shidong Hospital, Shanghai 20092, China
| | - Pengjun Zhao
- Department of Pediatric, Shidong Hospital, Shanghai 20092, China
| |
Collapse
|
27
|
Winston-McPherson GN, Xie H, Yang K, Li X, Shu D, Tang W. Discovery of 2,3'-diindolylmethanes as a novel class of PCSK9 modulators. Bioorg Med Chem Lett 2019; 29:2345-2348. [PMID: 31227343 DOI: 10.1016/j.bmcl.2019.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/20/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes the degradation of low density lipoprotein receptor (LDLR). Anti-PCSK9 agents have been approved for the treatment of hypercholesterolemia. We recently discovered a series of small-molecule PCSK9 modulators that contains a relatively small pharmacophore of 2,3'-diindolylmethane with molecular weights around only 250. These molecules can significantly lower the amount of PCSK9 protein in a cell-based phenotypic assay. Our SAR studies yielded compound 16 with a IC50-value of 200 nM. No obvious cytotoxicity was observed at concentrations below 50 µM.
Collapse
Affiliation(s)
| | - Haibo Xie
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States
| | - Ka Yang
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States
| | - Xiaoxun Li
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States
| | - Dongxu Shu
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States; Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706, United States
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States; Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706, United States.
| |
Collapse
|
28
|
Akin A, Barilla MT, Brandt TA, Brennan J, Henegar KE, Hoagland S, Kumar R, Magano J, McInturff EL, Nematalla A, Piotrowski DW, Van Haitsma J, Wei L, Xiao J, Yu S. Overcoming the Challenges of Making a Single Enantiomer N-1 Substituted Tetrazole Prodrug Using a Tin-Mediated Alkylation and Enzymatic Resolution. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Li W, Ward FR, McClure KF, Chang STL, Montabana E, Liras S, Dullea RG, Cate JHD. Structural basis for selective stalling of human ribosome nascent chain complexes by a drug-like molecule. Nat Struct Mol Biol 2019; 26:501-509. [PMID: 31160784 PMCID: PMC6919564 DOI: 10.1038/s41594-019-0236-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/26/2019] [Indexed: 12/30/2022]
Abstract
The drug-like molecule PF-06446846 (PF846) binds the human ribosome and selectively blocks the translation of a small number of proteins by an unknown mechanism. In structures of PF846-stalled human ribosome nascent chain complexes, PF846 binds in the ribosome exit tunnel in a eukaryotic-specific pocket formed by 28S ribosomal RNA, and alters the path of the nascent polypeptide chain. PF846 arrests the translating ribosome in the rotated state of translocation, in which the peptidyl-transfer RNA 3'-CCA end is improperly docked in the peptidyl transferase center. Selections of messenger RNAs from mRNA libraries using translation extracts reveal that PF846 can stall translation elongation, arrest termination or even enhance translation, depending on nascent chain sequence context. These results illuminate how a small molecule selectively targets translation by the human ribosome, and provides a foundation for developing small molecules that modulate the production of proteins of therapeutic interest.
Collapse
Affiliation(s)
- Wenfei Li
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA.,Molecular Biophysics and Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Fred R Ward
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kim F McClure
- Pfizer Medicinal Chemistry, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Stacey Tsai-Lan Chang
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Elizabeth Montabana
- Molecular Biophysics and Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Spiros Liras
- Pfizer Medicinal Chemistry, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Robert G Dullea
- Cardiovascular, Metabolic and Endocrine Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Jamie H D Cate
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA. .,Molecular Biophysics and Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
30
|
Klein-Szanto AJP, Bassi DE. Keep recycling going: New approaches to reduce LDL-C. Biochem Pharmacol 2019; 164:336-341. [PMID: 30953636 DOI: 10.1016/j.bcp.2019.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Abstract
Hypercholesterolemia represents a leading cause in the development of atherosclerotic plaques, increasing the risk for ACVS. It actually counts as a major cause of cardiovascular disease etiopathogenesis. The causes of hypercholesterolemia are multifactorial, spanning from genetic constitution, age, sex, to sedentary lifestyle and diets rich in sugars and lipids. Although dietary restriction in saturated fats, increased exercise, and other modification in lifestyle represent a first-line approach to treat very initial stages in hypercholesterolemia, most patients will require the addition of pharmacological agents. Pharmacological approaches include inhibition of cholesterol synthesis, decreased fat absorption from the GI tract, and increased degradation of FA. These strategies present a series of side effects, low therapeutic efficiency in some patients, and reduced tolerability. One of the major goals in treatment for hypercholesterolemia is to decrease the levels of low density lipoproteins (LDL), while maintaining those of high density lipoproteins (HDL). LDL particles contain about 80% of lipids, most of it cholesterol and cholesteryl esters, and 20% of the ApoB-100 protein. LDL carries cholesterol to the tissues, to be incorporated to biological membranes, or to be transformed to steroids. Excess of LDL translates into increased levels of circulating cholesterol particles and accumulation in certain tissues, especially vascular tissue, initiating a fatty streak, which may evolve to an atheroma, causing a series of cardiovascular problems, including impaired circulation, high blood pressure, increased cardiac workload, and coronary artery disease. It is essential to prevent LDL accumulation into the bloodstream to avoid the formation of these fatty streaks and the initiation of a cascade that will lead to the development of atherosclerosis. In healthy individuals. Under physiological conditions, LDL is effectively removed from circulation through receptor-mediated endocytosis. LDL clearance involves binding to its receptor, LDLR, which enables the internalization of the LDL particle and drives its degradation in lysosomes. Once the LDL particle is degraded, the free receptor recycles to the plasma membrane, and captures new LDL particles. Adequate levels of LDLR are essential to remove the excess of cholesterol-laden LDL. Proprotein convertase, subtilysin kexin type 9 (PCSK-9), expressed in liver and intestine, binds to LDLR, and internalized. Once inside the cell, PCSK-9 catalyzes the proteolysis of LDLR, preventing its recycling to the cell surface, and effectively decreasing the number of LDLR, notoriously decreasing the ability to clear LDL from circulation. Levels of PCSK-9 varies with age, gender, and levels of insulin, glucose, and triglycerides. Loss-of-function mutations in PCSK-9 gene invariably translates into lower levels of LDL, and decreased risk of developing coronary artery disease. Conversely, increased activity or expression of this enzyme leads to hypercholesterolemia. Inhibition of PCSK9 has proven to be successful in decreasing LDL levels and risk of the development of hypercholesterolemia with its associated higher risk for ASCVD. Patient with gain-of-function mutations in the PCSK9 undoubtedly benefit from therapies based on PCSK-9 inhibitors. However, millions of patients show statin intolerance, or cannot be efficiently controlled by statins alone- the most prevalent therapy for hypeprcholesterolemia. This commentary will evaluate the possibilities, caveats and future directions in the treatment of hypercholesterolemia, and therapies with combination of drugs.
Collapse
Affiliation(s)
| | - Daniel E Bassi
- Fox Chase Cancer Center, 333 Cotman Ave, Philadelphia 19111, United States; Holy Family University, Frankford Ave, Philadelphia 19114, United States.
| |
Collapse
|
31
|
Abstract
Cardiovascular disease is the major cause of death globally, with hypercholesterolemia being an important risk factor. The PCSK9 represents an attractive therapeutic target for hypercholesterolemia treatment and is currently in the spotlight of the scientific community. After autocatalytic activation in the hepatocyte endoplasmic reticulum, this convertase binds to the LDLR and channels it to the degradation pathway. This review gives an overview on the latest developments in the inhibition of PCSK9, including disruption of the protein-protein interaction (PPI) between PCSK9 and LDLR by peptidomimetics, adnectins and monoclonal antibodies and the suppression of PCSK9 expression by small molecules, siRNA and genome editing techniques. In addition, we discuss alternative approaches, such as anti-PCSK9 active vaccination and heparin mimetics.
Collapse
|
32
|
Liaud N, Horlbeck MA, Gilbert LA, Gjoni K, Weissman JS, Cate JHD. Cellular response to small molecules that selectively stall protein synthesis by the ribosome. PLoS Genet 2019; 15:e1008057. [PMID: 30875366 PMCID: PMC6436758 DOI: 10.1371/journal.pgen.1008057] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/27/2019] [Accepted: 02/28/2019] [Indexed: 11/25/2022] Open
Abstract
Identifying small molecules that inhibit protein synthesis by selectively stalling the ribosome constitutes a new strategy for therapeutic development. Compounds that inhibit the translation of PCSK9, a major regulator of low-density lipoprotein cholesterol, have been identified that reduce LDL cholesterol in preclinical models and that affect the translation of only a few off-target proteins. Although some of these compounds hold potential for future therapeutic development, it is not known how they impact the physiology of cells or ribosome quality control pathways. Here we used a genome-wide CRISPRi screen to identify proteins and pathways that modulate cell growth in the presence of high doses of a selective PCSK9 translational inhibitor, PF-06378503 (PF8503). The two most potent genetic modifiers of cell fitness in the presence of PF8503, the ubiquitin binding protein ASCC2 and helicase ASCC3, bind to the ribosome and protect cells from toxic effects of high concentrations of the compound. Surprisingly, translation quality control proteins Pelota (PELO) and HBS1L sensitize cells to PF8503 treatment. In genetic interaction experiments, ASCC3 acts together with ASCC2, and functions downstream of HBS1L. Taken together, these results identify new connections between ribosome quality control pathways, and provide new insights into the selectivity of compounds that stall human translation that will aid the development of next-generation selective translation stalling compounds to treat disease.
Collapse
Affiliation(s)
- Nadège Liaud
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Max A. Horlbeck
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, United States of America
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, United States of America
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA, United States of America
| | - Luke A. Gilbert
- Department of Urology, University of California, San Francisco, San Francisco, CA, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States of America
| | - Ketrin Gjoni
- Department of Chemistry, University of California, Berkeley, Berkeley, California, United States of America
| | - Jonathan S. Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, United States of America
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, United States of America
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA, United States of America
| | - Jamie H. D. Cate
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Chemistry, University of California, Berkeley, Berkeley, California, United States of America
- QB3 Institute, University of California, Berkeley, Berkeley, California, United States of America
- Molecular Biophysics and Integrated Bio-imaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
33
|
Small molecules as inhibitors of PCSK9: Current status and future challenges. Eur J Med Chem 2018; 162:212-233. [PMID: 30448414 DOI: 10.1016/j.ejmech.2018.11.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/13/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an important role in regulating lipoprotein metabolism by binding to low-density lipoprotein receptors (LDLRs), leading to their degradation. LDL cholesterol (LDL-C) lowering drugs that operate through the inhibition of PCSK9 are being pursued for the management of hypercholesterolemia and reducing its associated atherosclerotic cardiovascular disease (CVD) risk. Two PCSK9-blocking monoclonal antibodies (mAbs), alirocumab and evolocumab, were approved in 2015. However, the high costs of PCSK9 antibody drugs impede their prior authorization practices and reduce their long-term adherence. Given the potential of small-molecule drugs, the development of small-molecule PCSK9 inhibitors has attracted considerable attention. This article provides an overview of the recent development of small-molecule PCSK9 inhibitors disclosed in the literature and patent applications, and different approaches that have been pursued to modulate the functional activity of PCSK9 using small molecules are described. Challenges and potential strategies in developing small-molecule PCSK9 inhibitors are also discussed.
Collapse
|
34
|
Londregan AT, Aspnes G, Limberakis C, Loria PM, McClure KF, Petersen DN, Raymer B, Ruggeri RB, Wei L, Xiao J, Piotrowski DW. Discovery of N-(piperidin-3-yl)-N-(pyridin-2-yl)piperidine/piperazine-1-carboxamides as small molecule inhibitors of PCSK9. Bioorg Med Chem Lett 2018; 28:3685-3688. [PMID: 30482620 DOI: 10.1016/j.bmcl.2018.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/17/2018] [Accepted: 10/20/2018] [Indexed: 02/02/2023]
Abstract
A series of N-(piperidin-3-yl)-N-(pyridin-2-yl)piperidine/piperazine-1-carboxamides were identified as small molecule PCSK9 mRNA translation inhibitors. Analogues from this new chemical series, such as 4d and 4g, exhibited improved PCSK9 potency, ADME properties, and in vitro safety profiles when compared to earlier lead structures.
Collapse
Affiliation(s)
- Allyn T Londregan
- Pfizer Medicinal Chemistry, Pfizer Inc., Eastern Point Road, Groton, CT 06340, United States.
| | - Gary Aspnes
- Pfizer Medicinal Chemistry, Pfizer Inc., Eastern Point Road, Groton, CT 06340, United States
| | - Chris Limberakis
- Pfizer Medicinal Chemistry, Pfizer Inc., Eastern Point Road, Groton, CT 06340, United States
| | - Paula M Loria
- Pfizer Medicinal Chemistry, Pfizer Inc., Eastern Point Road, Groton, CT 06340, United States
| | - Kim F McClure
- Pfizer Medicinal Chemistry, Pfizer Inc., Eastern Point Road, Groton, CT 06340, United States
| | - Donna N Petersen
- Pfizer Medicinal Chemistry, Pfizer Inc., Eastern Point Road, Groton, CT 06340, United States
| | - Brian Raymer
- Pfizer Medicinal Chemistry, Pfizer Inc., Eastern Point Road, Groton, CT 06340, United States
| | - Roger B Ruggeri
- Pfizer Medicinal Chemistry, Pfizer Inc., Eastern Point Road, Groton, CT 06340, United States
| | - Liuqing Wei
- Pfizer Medicinal Chemistry, Pfizer Inc., Eastern Point Road, Groton, CT 06340, United States
| | - Jun Xiao
- Pfizer Medicinal Chemistry, Pfizer Inc., Eastern Point Road, Groton, CT 06340, United States
| | - David W Piotrowski
- Pfizer Medicinal Chemistry, Pfizer Inc., Eastern Point Road, Groton, CT 06340, United States
| |
Collapse
|