1
|
Gao P, Tambe M, Chen CZ, Huang W, Tawa GJ, Hirschhorn T, Stockwell BR, Zheng W, Shen M. Identification of Potent ADCK3 Inhibitors through Structure-Based Virtual Screening. J Chem Inf Model 2024; 64:6072-6080. [PMID: 39025788 DOI: 10.1021/acs.jcim.4c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
ADCK3 is a member of the UbiB family of atypical protein kinases in humans, with homologues in archaea, bacteria, and eukaryotes. In lieu of protein kinase activity, ADCK3 plays a role in the biosynthesis of coenzyme Q10 (CoQ10), and inactivating mutations can cause a CoQ10 deficiency and ataxia. However, the exact functions of ADCK3 are still unclear, and small-molecule inhibitors could be useful as chemical probes to elucidate its molecular mechanisms. In this study, we applied structure-based virtual screening (VS) to discover a novel chemical series of ADCK3 inhibitors. Through extensive structural analysis of the active-site residues, we developed a pharmacophore model and applied it to a large-scale VS. Out of ∼170,000 compounds virtually screened, 800 top-ranking candidate compounds were selected and tested in both ADCK3 and p38 biochemical assays for hit validation. In total, 129 compounds were confirmed as ADCK3 inhibitors, and among them, 114 compounds are selective against p38, which was used as a counter-target. Molecular dynamics (MD) simulations were then conducted to predict the binding modes of the most potent compounds within the ADCK3 active site. Through metadynamics analysis, we successfully detected the key amino acid residues that govern intermolecular interactions. The findings provided in this study can serve as a promising starting point for drug development.
Collapse
Affiliation(s)
- Peng Gao
- Therapeutics Development Branch, Division of Preclinical Innovation, National Center for Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States
| | - Mitali Tambe
- Therapeutics Development Branch, Division of Preclinical Innovation, National Center for Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States
| | - Catherine Z Chen
- Therapeutics Development Branch, Division of Preclinical Innovation, National Center for Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States
| | - Wenwei Huang
- Therapeutics Development Branch, Division of Preclinical Innovation, National Center for Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States
| | - Gregory J Tawa
- Therapeutics Development Branch, Division of Preclinical Innovation, National Center for Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States
| | - Tal Hirschhorn
- Department of Biological Sciences, Department of Chemistry and Department of Pathology and Cell Biology, Columbia University, 550 West 120th Street MC 4846, 1208 Northwest Corner Building, New York, New York 10027, United States
| | - Brent R Stockwell
- Department of Biological Sciences, Department of Chemistry and Department of Pathology and Cell Biology, Columbia University, 550 West 120th Street MC 4846, 1208 Northwest Corner Building, New York, New York 10027, United States
| | - Wei Zheng
- Therapeutics Development Branch, Division of Preclinical Innovation, National Center for Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States
| | - Min Shen
- Early Translation Branch, Division of Preclinical Innovation, National Center for Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States
| |
Collapse
|
2
|
Grisez T, Ravi NP, Froeyen M, Schols D, Van Meervelt L, De Jonghe S, Dehaen W. Synthesis of a 3,7-Disubstituted Isothiazolo[4,3- b]pyridine as a Potential Inhibitor of Cyclin G-Associated Kinase. Molecules 2024; 29:954. [PMID: 38474466 DOI: 10.3390/molecules29050954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Disubstituted isothiazolo[4,3-b]pyridines are known inhibitors of cyclin G-associated kinase. Since 3-substituted-7-aryl-isothiazolo[4,3-b]pyridines remain elusive, a strategy was established to prepare this chemotype, starting from 2,4-dichloro-3-nitropyridine. Selective C-4 arylation using ligand-free Suzuki-Miyaura coupling and palladium-catalyzed aminocarbonylation functioned as key steps in the synthesis. The 3-N-morpholinyl-7-(3,4-dimethoxyphenyl)-isothiazolo[4,3-b]pyridine was completely devoid of GAK affinity, in contrast to its 3,5- and 3,6-disubstituted congeners. Molecular modeling was applied to rationalize its inactivity as a GAK ligand.
Collapse
Affiliation(s)
- Tom Grisez
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Nitha Panikkassery Ravi
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Mathy Froeyen
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, P.O. Box 1041, B-3000 Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, P.O. Box 1043, B-3000 Leuven, Belgium
| | - Luc Van Meervelt
- Department of Chemistry, Biomolecular Architecture, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, P.O. Box 1043, B-3000 Leuven, Belgium
| | - Wim Dehaen
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
3
|
Riege D, Herschel S, Fenkl T, Schade D. Small-Molecule Probes as Pharmacological Tools for the Bone Morphogenetic Protein Signaling Pathway. ACS Pharmacol Transl Sci 2023; 6:1574-1599. [PMID: 37974621 PMCID: PMC10644459 DOI: 10.1021/acsptsci.3c00170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023]
Abstract
The bone morphogenetic protein (BMP) pathway is highly conserved and plays central roles in health and disease. The quality and quantity of its signaling outputs are regulated at multiple levels, offering pharmacological options for targeted modulation. Both target-centric and phenotypic drug discovery (PDD) approaches were applied to identify small-molecule BMP inhibitors and stimulators. In this Review, we accumulated and systematically classified the different reported chemotypes based on their targets as well as modes-of-action, and herein we illustrate the discovery history of selected candidates. A comprehensive summary of available biochemical, cellular, and in vivo activities is provided for the most relevant BMP modulators, along with recommendations on their preferred use as chemical probes to study BMP-related (patho)physiological processes. There are a number of high-quality probes used as BMP inhibitors that potently and selectively interrogate the kinase activities of distinct type I (16 chemotypes available) and type II receptors (3 chemotypes available). In contrast, only a few high-quality BMP stimulator modalities have been introduced to the field due to a lack of profound target knowledge. FK506-derived macrolides such as calcineurin-sparing FKBP12 inhibitors currently represent the best-characterized chemical tools for direct activation of BMP-SMAD signaling at the receptor level. However, several PDD campaigns succeeded in expanding the druggable space of BMP stimulators. Albeit the majority of them do not entirely fulfill the strict chemical probe criteria, many chemotypes exhibit unique and unrecognized mechanisms as pathway potentiators or synergizers, serving as valuable pharmacological tools for BMP perturbation.
Collapse
Affiliation(s)
- Daniel Riege
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Sven Herschel
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Teresa Fenkl
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Dennis Schade
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
- Partner
Site Kiel, DZHK, German Center for Cardiovascular
Research, 24105 Kiel, Germany
| |
Collapse
|
4
|
Bieberich AA, Asquith CRM. Utilization of Supervised Machine Learning to Understand Kinase Inhibitor Toxophore Profiles. Int J Mol Sci 2023; 24:ijms24065088. [PMID: 36982163 PMCID: PMC10049021 DOI: 10.3390/ijms24065088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
There have been more than 70 FDA-approved drugs to target the ATP binding site of kinases, mainly in the field of oncology. These compounds are usually developed to target specific kinases, but in practice, most of these drugs are multi-kinase inhibitors that leverage the conserved nature of the ATP pocket across multiple kinases to increase their clinical efficacy. To utilize kinase inhibitors in targeted therapy and outside of oncology, a narrower kinome profile and an understanding of the toxicity profile is imperative. This is essential when considering treating chronic diseases with kinase targets, including neurodegeneration and inflammation. This will require the exploration of inhibitor chemical space and an in-depth understanding of off-target interactions. We have developed an early pipeline toxicity screening platform that uses supervised machine learning (ML) to classify test compounds’ cell stress phenotypes relative to a training set of on-market and withdrawn drugs. Here, we apply it to better understand the toxophores of some literature kinase inhibitor scaffolds, looking specifically at a series of 4-anilinoquinoline and 4-anilinoquinazoline model libraries.
Collapse
Affiliation(s)
- Andrew A. Bieberich
- AsedaSciences Inc., 1281 Win Hentschel Boulevard, West Lafayette, IN 47906, USA
| | - Christopher R. M. Asquith
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Correspondence: ; Tel.: +358-50-400-3138; Fax: +358-82-944-4091
| |
Collapse
|
5
|
Murray NH, Asquith CRM, Fang Z, East MP, Ptak N, Smith RW, Vasta JD, Zimprich CA, Corona CR, Robers MB, Johnson GL, Bingman CA, Pagliarini DJ. Small-molecule inhibition of the archetypal UbiB protein COQ8. Nat Chem Biol 2023; 19:230-238. [PMID: 36302899 PMCID: PMC9898131 DOI: 10.1038/s41589-022-01168-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/08/2022] [Indexed: 02/06/2023]
Abstract
Small-molecule tools have enabled mechanistic investigations and therapeutic targeting of the protein kinase-like (PKL) superfamily. However, such tools are still lacking for many PKL members, including the highly conserved and disease-related UbiB family. Here, we sought to develop and characterize an inhibitor for the archetypal UbiB member COQ8, whose function is essential for coenzyme Q (CoQ) biosynthesis. Guided by crystallography, activity assays and cellular CoQ measurements, we repurposed the 4-anilinoquinoline scaffold to selectively inhibit human COQ8A in cells. Our chemical tool promises to lend mechanistic insights into the activities of these widespread and understudied proteins and to offer potential therapeutic strategies for human diseases connected to their dysfunction.
Collapse
Affiliation(s)
- Nathan H Murray
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher R M Asquith
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Zixiang Fang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael P East
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Naomi Ptak
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert W Smith
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | - Gary L Johnson
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Pagliarini
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Morgridge Institute for Research, Madison, WI, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Wells CI, Drewry DH. Developing a Kinase Chemogenomic Set: Facilitating Investigation into Kinase Biology by Linking Phenotypes to Targets. Methods Mol Biol 2023; 2706:11-24. [PMID: 37558938 DOI: 10.1007/978-1-0716-3397-7_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Advances in increasingly complex phenotypic screening with lower throughput have necessitated the screening of smaller more highly annotated sets. One such collection of compounds which has been recently assembled is the kinase chemogenomic set. This is a set of curated kinase inhibitors built upon previous iterations, PKIS and PKIS2, and donations from our partners. Each compound in the set has been carefully selected based on selectivity, potency, and kinome coverage. These compounds as a set have been made available to the scientific community, enabling phenotypic screens to identify kinases that drive novel biology. Additionally, the associated data deposited in the public domain have also been used to inform new inhibitor design. Further expansion of this set to complete kinome coverage will allow for a greater understanding of kinase biology and its role in disease.
Collapse
Affiliation(s)
- Carrow I Wells
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC, USA.
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC-CH, Chapel Hill, NC, USA.
| | - David H Drewry
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC, USA
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC-CH, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Drewry D, Potjewyd FM, Bayati A, Smith JL, Dickmander RJ, Howell S, Taft-Benz S, Min SM, Hossain MA, Heise M, McPherson PS, Moorman NJ, Axtman AD. Identification and Utilization of a Chemical Probe to Interrogate the Roles of PIKfyve in the Lifecycle of β-Coronaviruses. J Med Chem 2022; 65:12860-12882. [PMID: 36111834 PMCID: PMC9574855 DOI: 10.1021/acs.jmedchem.2c00697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 11/29/2022]
Abstract
From a designed library of indolyl pyrimidinamines, we identified a highly potent and cell-active chemical probe (17) that inhibits phosphatidylinositol-3-phosphate 5-kinase (PIKfyve). Comprehensive evaluation of inhibitor selectivity confirmed that this PIKfyve probe demonstrates excellent kinome-wide selectivity. A structurally related indolyl pyrimidinamine (30) was characterized as a negative control that lacks PIKfyve inhibitory activity and exhibits exquisite selectivity when profiled broadly. Chemical probe 17 disrupts multiple phases of the lifecycle of β-coronaviruses: viral replication and viral entry. The diverse antiviral roles of PIKfyve have not been previously probed comprehensively in a single study or using the same compound set. Our scaffold is a distinct chemotype that lacks the canonical morpholine hinge-binder of classical lipid kinase inhibitors and has a non-overlapping kinase off-target profile with known PIKfyve inhibitors. Our chemical probe set can be used by the community to further characterize the role of PIKfyve in virology.
Collapse
Affiliation(s)
- David
H. Drewry
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC
Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Frances M. Potjewyd
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Armin Bayati
- Structural
Genomics Consortium, Department of Neurology and Neurosurgery, Montreal
Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jeffery L. Smith
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rebekah J. Dickmander
- UNC
Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Rapidly
Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
- Department
of Microbiology & Immunology, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stefanie Howell
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sharon Taft-Benz
- Rapidly
Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
- Department
of Genetics, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sophia M. Min
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mohammad Anwar Hossain
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mark Heise
- Rapidly
Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
- Department
of Genetics, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Peter S. McPherson
- Structural
Genomics Consortium, Department of Neurology and Neurosurgery, Montreal
Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Nathaniel J. Moorman
- UNC
Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Rapidly
Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
- Department
of Microbiology & Immunology, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alison D. Axtman
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
8
|
Johnson RP, Ratnacaram CK, Kumar L, Jose J. Combinatorial approaches of nanotherapeutics for inflammatory pathway targeted therapy of prostate cancer. Drug Resist Updat 2022; 64:100865. [PMID: 36099796 DOI: 10.1016/j.drup.2022.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PC) is the most prevalent male urogenital cancer worldwide. PC patients presenting an advanced or metastatic cancer succumb to the disease, even after therapeutic interventions including radiotherapy, surgery, androgen deprivation therapy (ADT), and chemotherapy. One of the hallmarks of PC is evading immune surveillance and chronic inflammation, which is a major challenge towards designing effective therapeutic formulations against PC. Chronic inflammation in PC is often characterized by tumor microenvironment alterations, epithelial-mesenchymal transition and extracellular matrix modifications. The inflammatory events are modulated by reactive nitrogen and oxygen species, inflammatory cytokines and chemokines. Major signaling pathways in PC includes androgen receptor, PI3K and NF-κB pathways and targeting these inter-linked pathways poses a major therapeutic challenge. Notably, many conventional treatments are clinically unsuccessful, due to lack of targetability and poor bioavailability of the therapeutics, untoward toxicity and multidrug resistance. The past decade witnessed an advancement of nanotechnology as an excellent therapeutic paradigm for PC therapy. Modern nanovectorization strategies such as stimuli-responsive and active PC targeting carriers offer controlled release patterns and superior anti-cancer effects. The current review initially describes the classification, inflammatory triggers and major inflammatory pathways of PC, various PC treatment strategies and their limitations. Subsequently, recent advancement in combinatorial nanotherapeutic approaches, which target PC inflammatory pathways, and the mechanism of action are discussed. Besides, the current clinical status and prospects of PC homing nanovectorization, and major challenges to be addressed towards the advancement PC therapy are also addressed.
Collapse
Affiliation(s)
- Renjith P Johnson
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Chandrahas Koumar Ratnacaram
- Cell Signaling and Cancer Biology Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576 104, India
| | - Jobin Jose
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| |
Collapse
|
9
|
Hluchý M, Gajdušková P, Ruiz de Los Mozos I, Rájecký M, Kluge M, Berger BT, Slabá Z, Potěšil D, Weiß E, Ule J, Zdráhal Z, Knapp S, Paruch K, Friedel CC, Blazek D. CDK11 regulates pre-mRNA splicing by phosphorylation of SF3B1. Nature 2022; 609:829-834. [PMID: 36104565 DOI: 10.1038/s41586-022-05204-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 08/08/2022] [Indexed: 11/09/2022]
Abstract
RNA splicing, the process of intron removal from pre-mRNA, is essential for the regulation of gene expression. It is controlled by the spliceosome, a megadalton RNA-protein complex that assembles de novo on each pre-mRNA intron through an ordered assembly of intermediate complexes1,2. Spliceosome activation is a major control step that requires substantial protein and RNA rearrangements leading to a catalytically active complex1-5. Splicing factor 3B subunit 1 (SF3B1) protein-a subunit of the U2 small nuclear ribonucleoprotein6-is phosphorylated during spliceosome activation7-10, but the kinase that is responsible has not been identified. Here we show that cyclin-dependent kinase 11 (CDK11) associates with SF3B1 and phosphorylates threonine residues at its N terminus during spliceosome activation. The phosphorylation is important for the association between SF3B1 and U5 and U6 snRNAs in the activated spliceosome, termed the Bact complex, and the phosphorylation can be blocked by OTS964, a potent and selective inhibitor of CDK11. Inhibition of CDK11 prevents spliceosomal transition from the precatalytic complex B to the activated complex Bact and leads to widespread intron retention and accumulation of non-functional spliceosomes on pre-mRNAs and chromatin. We demonstrate a central role of CDK11 in spliceosome assembly and splicing regulation and characterize OTS964 as a highly selective CDK11 inhibitor that suppresses spliceosome activation and splicing.
Collapse
Affiliation(s)
- Milan Hluchý
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Pavla Gajdušková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Igor Ruiz de Los Mozos
- The Francis Crick Institute, London, UK
- Department of Personalized Medicine, NASERTIC, Government of Navarra, Pamplona, Spain
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Michal Rájecký
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Michael Kluge
- Institut für Informatik, Ludwig-Maximilians-Universität München, München, Germany
| | - Benedict-Tilman Berger
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Zuzana Slabá
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - David Potěšil
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Elena Weiß
- Institut für Informatik, Ludwig-Maximilians-Universität München, München, Germany
| | - Jernej Ule
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute, King's College London, London, UK
| | - Zbyněk Zdráhal
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Stefan Knapp
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Kamil Paruch
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St Anne's University Hospital in Brno, Brno, Czech Republic
| | - Caroline C Friedel
- Institut für Informatik, Ludwig-Maximilians-Universität München, München, Germany
| | - Dalibor Blazek
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.
| |
Collapse
|
10
|
Obando-Montoya EJ, Zapata-Ocampo PA, Cuesta-Astroz Y, Atehortua L. Impact of light wavelength on the transcriptome of Porphyridium cruentum and culture yield. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
11
|
Karim M, Saul S, Ghita L, Sahoo MK, Ye C, Bhalla N, Lo CW, Jin J, Park JG, Martinez-Gualda B, East MP, Johnson GL, Pinsky BA, Martinez-Sobrido L, Asquith CRM, Narayanan A, De Jonghe S, Einav S. Numb-associated kinases are required for SARS-CoV-2 infection and are cellular targets for antiviral strategies. Antiviral Res 2022; 204:105367. [PMID: 35738348 PMCID: PMC9212491 DOI: 10.1016/j.antiviral.2022.105367] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to pose serious threats to global health. We previously reported that AAK1, BIKE and GAK, members of the Numb-associated kinase family, control intracellular trafficking of multiple RNA viruses during viral entry and assembly/egress. Here, using both genetic and pharmacological approaches, we probe the functional relevance of NAKs for SARS-CoV-2 infection. siRNA-mediated depletion of AAK1, BIKE, GAK, and STK16, the fourth member of the NAK family, suppressed SARS-CoV-2 infection in human lung epithelial cells. Both known and novel small molecules with potent AAK1/BIKE, GAK or STK16 activity suppressed SARS-CoV-2 infection. Moreover, combination treatment with the approved anti-cancer drugs, sunitinib and erlotinib, with potent anti-AAK1/BIKE and GAK activity, respectively, demonstrated synergistic effect against SARS-CoV-2 infection in vitro. Time-of-addition experiments revealed that pharmacological inhibition of AAK1 and BIKE suppressed viral entry as well as late stages of the SARS-CoV-2 life cycle. Lastly, suppression of NAKs expression by siRNAs inhibited entry of both wild type and SARS-CoV-2 pseudovirus. These findings provide insight into the roles of NAKs in SARS-CoV-2 infection and establish a proof-of-principle that pharmacological inhibition of NAKs can be potentially used as a host-targeted approach to treat SARS-CoV-2 with potential implications to other coronaviruses.
Collapse
Affiliation(s)
- Marwah Karim
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, CA, USA
| | - Sirle Saul
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, CA, USA
| | - Luca Ghita
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, CA, USA
| | - Malaya Kumar Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Nishank Bhalla
- National Center for Biodefence and Infectious Disease, Biomedical Research Laboratory, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Chieh-Wen Lo
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, CA, USA
| | - Jing Jin
- Vitalant Research Institute, San Francisco, CA, USA
| | - Jun-Gyu Park
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Belén Martinez-Gualda
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Michael Patrick East
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gary L Johnson
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Benjamin A Pinsky
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Christopher R M Asquith
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Aarthi Narayanan
- National Center for Biodefence and Infectious Disease, Biomedical Research Laboratory, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, CA, USA; Department of Microbiology and Immunology, Stanford University, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
12
|
Optimization of the 4-anilinoquin(az)oline scaffold as epidermal growth factor receptor (EGFR) inhibitors for chordoma utilizing a toxicology profiling assay platform. Sci Rep 2022; 12:12820. [PMID: 35896603 PMCID: PMC9329436 DOI: 10.1038/s41598-022-15552-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
The 4-anilinoquin(az)oline is a well-known kinase inhibitor scaffold incorporated in clinical inhibitors including gefitinib, erlotinib, afatinib, and lapatinib, all of which have previously demonstrated activity against chordoma cell lines in vitro. We screened a focused array of compounds based on the 4-anilinoquin(az)oline scaffold against both U-CH1 and the epidermal growth factor receptor (EGFR) inhibitor resistant U-CH2. To prioritize the hit compounds for further development, we screened the compound set in a multiparameter cell health toxicity assay. The de-risked compounds were then screened against a wider panel of patient derived cell lines and demonstrated low micromolar efficacy in cells. We also investigated the properties that gave rise to the toxophore markers, including the structural and electronic features, while optimizing for EGFR in-cell target engagement. These de-risked leads present a potential new therapeutic avenue for treatment of chordomas and new chemical tools and probe compound 45 (UNC-CA359) to interrogate EGFR mediated disease phenotypes.
Collapse
|
13
|
Egawa J, Arta RK, Lemmon VP, Muños-Barrero M, Shi Y, Igarashi M, Someya T. The cyclin G-associated kinase (GAK) inhibitor SGC-GAK-1 inhibits neurite outgrowth and synapse formation. Mol Brain 2022; 15:68. [PMID: 35883152 PMCID: PMC9327206 DOI: 10.1186/s13041-022-00951-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/09/2022] [Indexed: 11/10/2022] Open
Abstract
Protein kinases are responsible for protein phosphorylation and are involved in important signal transduction pathways; however, a considerable number of poorly characterized kinases may be involved in neuronal development. Here, we considered cyclin G-associated kinase (GAK) as a candidate regulator of neurite outgrowth and synaptogenesis by examining the effects of the selective GAK inhibitor SGC-GAK-1. SGC-GAK-1 treatment of cultured neurons reduced neurite length and decreased synapse number and phosphorylation of neurofilament 200-kDa subunits relative to the control. In addition, the related kinase inhibitor erlotinib, which has distinct specificity and potency from SGC-GAK-1, had no effect on neurite growth, unlike SGC-GAK-1. These results suggest that GAK may be physiologically involved in normal neuronal development, and that decreased GAK function and the resultant impaired neurite outgrowth and synaptogenesis may be related to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jun Egawa
- Department of Psychiatry, School of Medicine, and Graduate School of Medical and Dental Sciences, Niigata University, 757 Asahimachi Dori-Ichibancho, Chuo-ku, Niigata, 951-8510, Japan. .,Department of Neurochemistry and Molecular Cell Biology, School of Medicine, and Graduate School of Medical and Dental Sciences, Niigata University, 757 Asahimachi Dori-Ichibancho, Chuo-ku, Niigata, 951-8510, Japan.
| | - Reza K Arta
- Department of Psychiatry, School of Medicine, and Graduate School of Medical and Dental Sciences, Niigata University, 757 Asahimachi Dori-Ichibancho, Chuo-ku, Niigata, 951-8510, Japan
| | - Vance P Lemmon
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA.,Institute for Data Science and Computing, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Melissa Muños-Barrero
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yan Shi
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine, and Graduate School of Medical and Dental Sciences, Niigata University, 757 Asahimachi Dori-Ichibancho, Chuo-ku, Niigata, 951-8510, Japan.
| | - Toshiyuki Someya
- Department of Psychiatry, School of Medicine, and Graduate School of Medical and Dental Sciences, Niigata University, 757 Asahimachi Dori-Ichibancho, Chuo-ku, Niigata, 951-8510, Japan
| |
Collapse
|
14
|
Yang X, Dickmander RJ, Bayati A, Taft-Benz SA, Smith JL, Wells CI, Madden EA, Brown JW, Lenarcic EM, Yount BL, Chang E, Axtman AD, Baric RS, Heise MT, McPherson PS, Moorman NJ, Willson TM. Host Kinase CSNK2 is a Target for Inhibition of Pathogenic SARS-like β-Coronaviruses. ACS Chem Biol 2022; 17:1937-1950. [PMID: 35723434 PMCID: PMC9236220 DOI: 10.1021/acschembio.2c00378] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inhibition of the protein kinase CSNK2 with any of 30 specific and selective inhibitors representing different chemotypes, blocked replication of pathogenic human, bat, and murine β-coronaviruses. The potency of in-cell CSNK2A target engagement across the set of inhibitors correlated with antiviral activity and genetic knockdown confirmed the essential role of the CSNK2 holoenzyme in β-coronavirus replication. Spike protein endocytosis was blocked by CSNK2A inhibition, indicating that antiviral activity was due in part to a suppression of viral entry. CSNK2A inhibition may be a viable target for the development of anti-SARS-like β-coronavirus drugs.
Collapse
Affiliation(s)
- Xuan Yang
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
| | - Rebekah J Dickmander
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States.,Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Armin Bayati
- Structural Genomics Consortium, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Sharon A Taft-Benz
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jeffery L Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Carrow I Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Emily A Madden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jason W Brown
- Takeda San Diego, San Diego, California 92121, United States
| | - Erik M Lenarcic
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States.,Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Boyd L Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Edcon Chang
- Takeda San Diego, San Diego, California 92121, United States
| | - Alison D Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
| | - Ralph S Baric
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States.,Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mark T Heise
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Peter S McPherson
- Structural Genomics Consortium, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Nathaniel J Moorman
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States.,Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Timothy M Willson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
15
|
Potjewyd FM, Annor‐Gyamfi JK, Aubé J, Chu S, Conlon IL, Frankowski KJ, Guduru SKR, Hardy BP, Hopkins MD, Kinoshita C, Kireev DB, Mason ER, Moerk CT, Nwogbo F, Pearce KH, Richardson TI, Rogers DA, Soni DM, Stashko M, Wang X, Wells C, Willson TM, Frye SV, Young JE, Axtman AD. AD Informer Set: Chemical tools to facilitate Alzheimer's disease drug discovery. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12246. [PMID: 35475262 PMCID: PMC9019904 DOI: 10.1002/trc2.12246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Introduction The portfolio of novel targets to treat Alzheimer's disease (AD) has been enriched by the Accelerating Medicines Partnership Program for Alzheimer's Disease (AMP AD) program. Methods Publicly available resources, such as literature and databases, enabled a data-driven effort to identify existing small molecule modulators for many protein products expressed by the genes nominated by AMP AD and suitable positive control compounds to be included in the set. Compounds contained within the set were manually selected and annotated with associated published, predicted, and/or experimental data. Results We built an annotated set of 171 small molecule modulators targeting 98 unique proteins that have been nominated by AMP AD consortium members as novel targets for the treatment of AD. The majority of compounds included in the set are inhibitors. These small molecules vary in their quality and should be considered chemical tools that can be used in efforts to validate therapeutic hypotheses, but which will require further optimization. A physical copy of the AD Informer Set can be requested on the Target Enablement to Accelerate Therapy Development for Alzheimer's Disease (TREAT-AD) website. Discussion Small molecules that enable target validation are important tools for the translation of novel hypotheses into viable therapeutic strategies for AD.
Collapse
Affiliation(s)
- Frances M. Potjewyd
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryStructural Genomics ConsortiumChapel HillNorth CarolinaUSA
| | - Joel K. Annor‐Gyamfi
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryStructural Genomics ConsortiumChapel HillNorth CarolinaUSA
| | - Jeffrey Aubé
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Shaoyou Chu
- Department of MedicineDivision of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Ivie L. Conlon
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Kevin J. Frankowski
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Shiva K. R. Guduru
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Brian P. Hardy
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Megan D. Hopkins
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Chizuru Kinoshita
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Dmitri B. Kireev
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Emily R. Mason
- Department of MedicineDivision of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Charles T. Moerk
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Felix Nwogbo
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Kenneth H. Pearce
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Timothy I. Richardson
- Department of MedicineDivision of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - David A. Rogers
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Disha M. Soni
- Department of MedicineDivision of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Michael Stashko
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Xiaodong Wang
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Carrow Wells
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryStructural Genomics ConsortiumChapel HillNorth CarolinaUSA
| | - Timothy M. Willson
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryStructural Genomics ConsortiumChapel HillNorth CarolinaUSA
| | - Stephen V. Frye
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Jessica E. Young
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Alison D. Axtman
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryStructural Genomics ConsortiumChapel HillNorth CarolinaUSA
| |
Collapse
|
16
|
Asquith CRM, Temme L, East MP, Laitinen T, Pickett J, Kwarcinski FE, Sinha P, Wells CI, Johnson GL, Zutshi R, Drewry DH. Identification of 4-anilino-quin(az)oline as a cell active Protein Kinase Novel 3 (PKN3) inhibitor chemotype. ChemMedChem 2022; 17:e202200161. [PMID: 35403825 DOI: 10.1002/cmdc.202200161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/08/2022]
Abstract
Deep annotation of a library of 4-anilinoquinolines led to the identification of 7-iodo- N -(3,4,5-trimethoxyphenyl)quinolin-4-amine 16 as a potent inhibitor (IC 50 = 14 nM) of Protein Kinase Novel 3 (PKN3) with micromolar activity in cells. Compound 16 is a potential tool compound to study the cell biology of PKN3 and its role in pancreatic and prostate cancer and T-cell acute lymphoblastic leukemia. These 4-anilinoquinolines may also be useful tools to uncover the therapeutic potential of PKN3 inhibition in a broad range of diseases.
Collapse
Affiliation(s)
| | - Louisa Temme
- University of North Carolina at Chapel Hill, Structural Genomics Consortium, UNC Eshelman School of Pharmacy, UNITED STATES
| | - Michael P East
- University of North Carolina at Chapel Hill, Department of Pharmacology, School of Medicine, UNITED STATES
| | - Tuomo Laitinen
- University of Eastern Finland Faculty of Health Sciences: Ita-Suomen yliopisto Terveystieteiden tiedekunta, School of Pharmacy, FINLAND
| | - Julie Pickett
- University of North Carolina at Chapel Hill, Structural Genomics Consortium, UNC Eshelman School of Pharmacy, UNITED STATES
| | - Frank E Kwarcinski
- Luceome Biotechnologies, LLC, Luceome Biotechnologies, LLC, UNITED STATES
| | - Parvathi Sinha
- Luceome Biotechnologies, LLC, Luceome Biotechnologies, LLC, UNITED STATES
| | - Carrow I Wells
- University of North Carolina at Chapel Hill, Structural Genomics Consortium, UNC Eshelman School of Pharmacy, UNITED STATES
| | - Gary L Johnson
- University of North Carolina at Chapel Hill, Department of Pharmacology, School of Medicine,, UNITED STATES
| | - Reena Zutshi
- Luceome Biotechnologies, LLC, Luceome Biotechnologies, LLC,, UNITED STATES
| | - David H Drewry
- University of North Carolina at Chapel Hill, Structural Genomics Consortium, UNC Eshelman School of Pharmacy, UNITED STATES
| |
Collapse
|
17
|
Bagheri S, Rahban M, Bostanian F, Esmaeilzadeh F, Bagherabadi A, Zolghadri S, Stanek A. Targeting Protein Kinases and Epigenetic Control as Combinatorial Therapy Options for Advanced Prostate Cancer Treatment. Pharmaceutics 2022; 14:515. [PMID: 35335890 PMCID: PMC8949110 DOI: 10.3390/pharmaceutics14030515] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/02/2023] Open
Abstract
Prostate cancer (PC), the fifth leading cause of cancer-related mortality worldwide, is known as metastatic bone cancer when it spreads to the bone. Although there is still no effective treatment for advanced/metastatic PC, awareness of the molecular events that contribute to PC progression has opened up opportunities and raised hopes for the development of new treatment strategies. Androgen deprivation and androgen-receptor-targeting therapies are two gold standard treatments for metastatic PC. However, acquired resistance to these treatments is a crucial challenge. Due to the role of protein kinases (PKs) in the growth, proliferation, and metastases of prostatic tumors, combinatorial therapy by PK inhibitors may help pave the way for metastatic PC treatment. Additionally, PC is known to have epigenetic involvement. Thus, understanding epigenetic pathways can help adopt another combinatorial treatment strategy. In this study, we reviewed the PKs that promote PC to advanced stages. We also summarized some PK inhibitors that may be used to treat advanced PC and we discussed the importance of epigenetic control in this cancer. We hope the information presented in this article will contribute to finding an effective treatment for the management of advanced PC.
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran;
| | - Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran; (M.R.); (F.B.)
| | - Fatemeh Bostanian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran; (M.R.); (F.B.)
| | - Fatemeh Esmaeilzadeh
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | - Arash Bagherabadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran;
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | - Agata Stanek
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St, 41-902 Bytom, Poland
| |
Collapse
|
18
|
Yang X, Dickmander RJ, Bayati A, Taft-Benz SA, Smith JL, Wells CI, Madden EA, Brown JW, Lenarcic EM, Yount BL, Chang E, Axtman AD, Baric RS, Heise MT, McPherson PS, Moorman NJ, Willson TM. Host kinase CSNK2 is a target for inhibition of pathogenic β-coronaviruses including SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.03.474779. [PMID: 35018375 PMCID: PMC8750650 DOI: 10.1101/2022.01.03.474779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inhibition of the protein kinase CSNK2 with any of 30 specific and selective inhibitors representing different chemotypes, blocked replication of pathogenic human and murine β-coronaviruses. The potency of in-cell CSNK2A target engagement across the set of inhibitors correlated with antiviral activity and genetic knockdown confirmed the essential role of the CSNK2 holoenzyme in β-coronavirus replication. Spike protein uptake was blocked by CSNK2A inhibition, indicating that antiviral activity was due in part to a suppression of viral entry. CSNK2A inhibition may be a viable target for development of new broad spectrum anti-β-coronavirus drugs. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Xuan Yang
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, United States
| | - Rebekah J. Dickmander
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, United States
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Armin Bayati
- Structural Genomics Consortium, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Sharon A. Taft-Benz
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeffery L. Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Carrow I. Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Emily A. Madden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Erik M. Lenarcic
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, United States
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Boyd L. Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Edcon Chang
- Takeda San Diego, San Diego, CA 92121, United States
| | - Alison D. Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Ralph S. Baric
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, United States
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Mark T. Heise
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peter S. McPherson
- Structural Genomics Consortium, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Nathaniel J. Moorman
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, United States
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Timothy M. Willson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, United States
| |
Collapse
|
19
|
Optimization of 4-Anilinoquinolines as Dengue Virus Inhibitors. Molecules 2021; 26:molecules26237338. [PMID: 34885921 PMCID: PMC8659069 DOI: 10.3390/molecules26237338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
Emerging viral infections, including those caused by dengue virus (DENV) and Venezuelan Equine Encephalitis virus (VEEV), pose a significant global health challenge. Here, we report the preparation and screening of a series of 4-anilinoquinoline libraries targeting DENV and VEEV. This effort generated a series of lead compounds, each occupying a distinct chemical space, including 3-((6-bromoquinolin-4-yl)amino)phenol (12), 6-bromo-N-(5-fluoro-1H-indazol-6-yl)quinolin-4-amine (50) and 6-((6-bromoquinolin-4-yl)amino)isoindolin-1-one (52), with EC50 values of 0.63–0.69 µM for DENV infection. These compound libraries demonstrated very limited toxicity with CC50 values greater than 10 µM in almost all cases. Additionally, the lead compounds were screened for activity against VEEV and demonstrated activity in the low single-digit micromolar range, with 50 and 52 demonstrating EC50s of 2.3 µM and 3.6 µM, respectively. The promising results presented here highlight the potential to further refine this series in order to develop a clinical compound against DENV, VEEV, and potentially other emerging viral threats.
Collapse
|
20
|
Andac CA, Çakmak O, Ökten S, Çağlar-Andac S, Işıldak İ. In-silico Pharmacokinetic and Affinity Studies of Piperazine/Morpholine Substituted Quinolines in Complex with GAK as Promising Anti-HCV Agent. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s273741652150054x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Piperazine/morpholine derivatives of quinoline substituted at positions C-3, C-6 and C-8 has been previously prepared by SNAr reactions of 3,6,8-tribromoquinoline (1) under microwave or conventional heating reaction conditions. In this study, we evaluated binding interactions between the piperazine/morpholine substituted quinolines and its highly-likely receptor, Cyclin G associated kinase (GAK) involved in hepatitis C virus (HCV) entry into host cells, via docking, molecular dynamics (MD), thermodynamic and pharmacokinetics computations in order to select a possible lead compound, which may be used for lead-optimization in our future studies to develop novel drug candidates against HCV infections. 372 nsec MD simulations followed by MM-PBSA thermodynamic computations revealed that compound 23 ([Formula: see text]= 0.08[Formula: see text]nM) possesses the greatest potential to inhibit GAK. Pharmacokinetics computations suggest that compound 23 is a drug-like molecule as it conforms to the Lipinski filter. We determined that compound 23 could be a lead-like molecule for peripheric and cerebral HCV infections.
Collapse
Affiliation(s)
- Cenk A. Andac
- Department of Pharmaceutical Chemistry, School of Pharmacy, Istinye University, Zeytinburnu, İstanbul 34010, Turkey
- Department of Medical Pharmacology, School of Medicine, Yeditepe University, İstanbul 34755, Turkey
| | - Osman Çakmak
- Department of Gastronomy, Faculty of Arts and Design, İstanbul Rumeli University, Silivri, İstanbul 34570, Turkey
| | - Salih Ökten
- Department of Mathematic and Science Education, Division of Science Education, Faculty of Education, Kırıkkale University, Yahşihan, Kırıkkale 71450, Turkey
| | - Sena Çağlar-Andac
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Fatih, İstanbul 34116, Turkey
| | - İbrahim Işıldak
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Davutpaşa, Istanbul 34210, Turkey
| |
Collapse
|
21
|
Identification and evaluation of 4-anilinoquin(az)olines as potent inhibitors of both dengue virus (DENV) and Venezuelan equine encephalitis virus (VEEV). Bioorg Med Chem Lett 2021; 52:128407. [PMID: 34624490 DOI: 10.1016/j.bmcl.2021.128407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 01/05/2023]
Abstract
There is an urgent need for novel strategies for the treatment of emerging arthropod-borne viral infections, including those caused by dengue virus (DENV) and Venezuelan equine encephalitis virus (VEEV). We prepared and screened focused libraries of 4-anilinoquinolines and 4-anilinoquinazolines for antiviral activity and identified three potent compounds. N-(2,5-dimethoxyphenyl)-6-(trifluoromethyl)quinolin-4-amine (10) inhibited DENV infection with an EC50 = 0.25 µM, N-(3,4-dichlorophenyl)-6-(trifluoromethyl)quinolin-4-amine (27) inhibited VEEV with an EC50 = 0.50 µM, while N-(3-ethynyl-4-fluorophenyl)-6,7-dimethoxyquinazolin-4-amine (54) inhibited VEEV with an EC50 = 0.60 µM. These series of compounds demonstrated nearly no toxicity with CC50 values greater than 10 µM in all cases. These promising results provide a future prospective to develop a clinical compound against these emerging viral threats.
Collapse
|
22
|
Munson MJ, Mathai BJ, Ng MYW, Trachsel-Moncho L, de la Ballina LR, Schultz SW, Aman Y, Lystad AH, Singh S, Singh S, Wesche J, Fang EF, Simonsen A. GAK and PRKCD are positive regulators of PRKN-independent mitophagy. Nat Commun 2021; 12:6101. [PMID: 34671015 DOI: 10.1101/2020.11.05.369496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 09/29/2021] [Indexed: 05/28/2023] Open
Abstract
The mechanisms involved in programmed or damage-induced removal of mitochondria by mitophagy remains elusive. Here, we have screened for regulators of PRKN-independent mitophagy using an siRNA library targeting 197 proteins containing lipid interacting domains. We identify Cyclin G-associated kinase (GAK) and Protein Kinase C Delta (PRKCD) as regulators of PRKN-independent mitophagy, with both being dispensable for PRKN-dependent mitophagy and starvation-induced autophagy. We demonstrate that the kinase activity of both GAK and PRKCD are required for efficient mitophagy in vitro, that PRKCD is present on mitochondria, and that PRKCD facilitates recruitment of ULK1/ATG13 to early autophagic structures. Importantly, we demonstrate in vivo relevance for both kinases in the regulation of basal mitophagy. Knockdown of GAK homologue (gakh-1) in C. elegans or knockout of PRKCD homologues in zebrafish led to significant inhibition of basal mitophagy, highlighting the evolutionary relevance of these kinases in mitophagy regulation.
Collapse
Affiliation(s)
- Michael J Munson
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0372, Oslo, Norway.
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316, Oslo, Norway.
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Benan J Mathai
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0372, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316, Oslo, Norway
| | - Matthew Yoke Wui Ng
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0372, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316, Oslo, Norway
| | - Laura Trachsel-Moncho
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0372, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316, Oslo, Norway
| | - Laura R de la Ballina
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0372, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316, Oslo, Norway
| | - Sebastian W Schultz
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316, Oslo, Norway
- Department of Molecular Cell Biology, The Norwegian Radium Hospital Montebello, N-0379, Oslo, Norway
| | - Yahyah Aman
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Alf H Lystad
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0372, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316, Oslo, Norway
| | - Sakshi Singh
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0372, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316, Oslo, Norway
| | - Sachin Singh
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316, Oslo, Norway
- Department of Tumor Biology, The Norwegian Radium Hospital Montebello, N-0379, Oslo, Norway
| | - Jørgen Wesche
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316, Oslo, Norway
- Department of Tumor Biology, The Norwegian Radium Hospital Montebello, N-0379, Oslo, Norway
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Anne Simonsen
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0372, Oslo, Norway.
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316, Oslo, Norway.
- Department of Molecular Cell Biology, The Norwegian Radium Hospital Montebello, N-0379, Oslo, Norway.
| |
Collapse
|
23
|
Munson MJ, Mathai BJ, Ng MYW, Trachsel-Moncho L, de la Ballina LR, Schultz SW, Aman Y, Lystad AH, Singh S, Singh S, Wesche J, Fang EF, Simonsen A. GAK and PRKCD are positive regulators of PRKN-independent mitophagy. Nat Commun 2021; 12:6101. [PMID: 34671015 PMCID: PMC8528926 DOI: 10.1038/s41467-021-26331-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
The mechanisms involved in programmed or damage-induced removal of mitochondria by mitophagy remains elusive. Here, we have screened for regulators of PRKN-independent mitophagy using an siRNA library targeting 197 proteins containing lipid interacting domains. We identify Cyclin G-associated kinase (GAK) and Protein Kinase C Delta (PRKCD) as regulators of PRKN-independent mitophagy, with both being dispensable for PRKN-dependent mitophagy and starvation-induced autophagy. We demonstrate that the kinase activity of both GAK and PRKCD are required for efficient mitophagy in vitro, that PRKCD is present on mitochondria, and that PRKCD facilitates recruitment of ULK1/ATG13 to early autophagic structures. Importantly, we demonstrate in vivo relevance for both kinases in the regulation of basal mitophagy. Knockdown of GAK homologue (gakh-1) in C. elegans or knockout of PRKCD homologues in zebrafish led to significant inhibition of basal mitophagy, highlighting the evolutionary relevance of these kinases in mitophagy regulation.
Collapse
Affiliation(s)
- Michael J Munson
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0372, Oslo, Norway.
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316, Oslo, Norway.
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Benan J Mathai
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0372, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316, Oslo, Norway
| | - Matthew Yoke Wui Ng
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0372, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316, Oslo, Norway
| | - Laura Trachsel-Moncho
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0372, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316, Oslo, Norway
| | - Laura R de la Ballina
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0372, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316, Oslo, Norway
| | - Sebastian W Schultz
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316, Oslo, Norway
- Department of Molecular Cell Biology, The Norwegian Radium Hospital Montebello, N-0379, Oslo, Norway
| | - Yahyah Aman
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Alf H Lystad
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0372, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316, Oslo, Norway
| | - Sakshi Singh
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0372, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316, Oslo, Norway
| | - Sachin Singh
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316, Oslo, Norway
- Department of Tumor Biology, The Norwegian Radium Hospital Montebello, N-0379, Oslo, Norway
| | - Jørgen Wesche
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316, Oslo, Norway
- Department of Tumor Biology, The Norwegian Radium Hospital Montebello, N-0379, Oslo, Norway
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Anne Simonsen
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0372, Oslo, Norway.
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316, Oslo, Norway.
- Department of Molecular Cell Biology, The Norwegian Radium Hospital Montebello, N-0379, Oslo, Norway.
| |
Collapse
|
24
|
Ling Y, Hao ZY, Liang D, Zhang CL, Liu YF, Wang Y. The Expanding Role of Pyridine and Dihydropyridine Scaffolds in Drug Design. Drug Des Devel Ther 2021; 15:4289-4338. [PMID: 34675489 PMCID: PMC8520849 DOI: 10.2147/dddt.s329547] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Pyridine-based ring systems are one of the most extensively used heterocycles in the field of drug design, primarily due to their profound effect on pharmacological activity, which has led to the discovery of numerous broad-spectrum therapeutic agents. In the US FDA database, there are 95 approved pharmaceuticals that stem from pyridine or dihydropyridine, including isoniazid and ethionamide (tuberculosis), delavirdine (HIV/AIDS), abiraterone acetate (prostate cancer), tacrine (Alzheimer's), ciclopirox (ringworm and athlete's foot), crizotinib (cancer), nifedipine (Raynaud's syndrome and premature birth), piroxicam (NSAID for arthritis), nilvadipine (hypertension), roflumilast (COPD), pyridostigmine (myasthenia gravis), and many more. Their remarkable therapeutic applications have encouraged researchers to prepare a larger number of biologically active compounds decorated with pyridine or dihydropyridine, expandeing the scope of finding a cure for other ailments. It is thus anticipated that myriad new pharmaceuticals containing the two heterocycles will be available in the forthcoming decade. This review examines the prospects of highly potent bioactive molecules to emphasize the advantages of using pyridine and dihydropyridine in drug design. We cover the most recent developments from 2010 to date, highlighting the ever-expanding role of both scaffolds in the field of medicinal chemistry and drug development.
Collapse
Affiliation(s)
- Yong Ling
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Zhi-You Hao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
| | - Dong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, People’s Republic of China
| | - Chun-Lei Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yan-Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yan Wang
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
25
|
Serafim RAM, Elkins JM, Zuercher WJ, Laufer SA, Gehringer M. Chemical Probes for Understudied Kinases: Challenges and Opportunities. J Med Chem 2021; 65:1132-1170. [PMID: 34477374 DOI: 10.1021/acs.jmedchem.1c00980] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over 20 years after the approval of the first-in-class protein kinase inhibitor imatinib, the biological function of a significant fraction of the human kinome remains poorly understood while most research continues to be focused on few well-validated targets. Given the strong genetic evidence for involvement of many kinases in health and disease, the understudied fraction of the kinome holds a large and unexplored potential for future therapies. Specific chemical probes are indispensable tools to interrogate biology enabling proper preclinical validation of novel kinase targets. In this Perspective, we highlight recent case studies illustrating the development of high-quality chemical probes for less-studied kinases and their application in target validation. We spotlight emerging techniques and approaches employed in the generation of chemical probes for protein kinases and beyond and discuss the associated challenges and opportunities.
Collapse
Affiliation(s)
- Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Jonathan M Elkins
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - William J Zuercher
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
26
|
Drewry DH, Annor-Gyamfi JK, Wells CI, Pickett JE, Dederer V, Preuss F, Mathea S, Axtman AD. Identification of Pyrimidine-Based Lead Compounds for Understudied Kinases Implicated in Driving Neurodegeneration. J Med Chem 2021; 65:1313-1328. [PMID: 34333981 PMCID: PMC8802302 DOI: 10.1021/acs.jmedchem.1c00440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The pyrimidine core has been utilized extensively to construct kinase inhibitors, including eight FDA-approved drugs. Because the pyrimidine hinge-binding motif is accommodated by many human kinases, kinome-wide selectivity of resultant molecules can be poor. This liability was seen as an advantage since it is well tolerated by many understudied kinases. We hypothesized that nonexemplified aminopyrimidines bearing side chains from well-annotated pyrimidine-based inhibitors with off-target activity on understudied kinases would provide us with useful inhibitors of these lesser studied kinases. Our strategy paired mixing and matching the side chains from the 2- and 4-positions of the parent compounds with modifications at the 5-position of the pyrimidine core, which is situated near the gatekeeper residue of the binding pocket. Utilizing this approach, we imparted improved kinome-wide selectivity to most members of the resultant library. Importantly, we also identified potent biochemical and cell-active lead compounds for understudied kinases like DRAK1, BMP2K, and MARK3/4.
Collapse
Affiliation(s)
- David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joel K Annor-Gyamfi
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Carrow I Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Julie E Pickett
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Verena Dederer
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Franziska Preuss
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sebastian Mathea
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Alison D Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
27
|
Abstract
Viral infections are a major health problem; therefore, there is an urgent need for novel therapeutic strategies. Antivirals used to target proteins encoded by the viral genome usually enhance drug resistance generated by the virus. A potential solution may be drugs acting at host-based targets since viruses are dependent on numerous cellular proteins and phosphorylation events that are crucial during their life cycle. Repurposing existing kinase inhibitors as antiviral agents would help in the cost and effectiveness of the process, but this strategy usually does not provide much improvement, and specific medicinal chemistry programs are needed in the field. Anyway, extensive use of FDA-approved kinase inhibitors has been quite useful in deciphering the role of host kinases in viral infection. The present perspective aims to review the state of the art of kinase inhibitors that target viral infections in different development stages.
Collapse
Affiliation(s)
- Javier García-Cárceles
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Elena Caballero
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
28
|
Wells CI, Drewry DH, Pickett JE, Tjaden A, Krämer A, Müller S, Gyenis L, Menyhart D, Litchfield DW, Knapp S, Axtman AD. Development of a potent and selective chemical probe for the pleiotropic kinase CK2. Cell Chem Biol 2021; 28:546-558.e10. [PMID: 33484635 DOI: 10.1016/j.chembiol.2020.12.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022]
Abstract
Building on the pyrazolopyrimidine CK2 (casein kinase 2) inhibitor scaffold, we designed a small targeted library. Through comprehensive evaluation of inhibitor selectivity, we identified inhibitor 24 (SGC-CK2-1) as a highly potent and cell-active CK2 chemical probe with exclusive selectivity for both human CK2 isoforms. Remarkably, despite years of research pointing to CK2 as a key driver in cancer, our chemical probe did not elicit a broad antiproliferative phenotype in >90% of >140 cell lines when tested in dose-response. While many publications have reported CK2 functions, CK2 biology is complex and an available high-quality chemical tool such as SGC-CK2-1 will be indispensable in deciphering the relationships between CK2 function and phenotypes.
Collapse
Affiliation(s)
- Carrow I Wells
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC 27599, USA; Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC-CH, Chapel Hill, NC 27599, USA
| | - David H Drewry
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC 27599, USA; Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC-CH, Chapel Hill, NC 27599, USA
| | - Julie E Pickett
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC 27599, USA; Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC-CH, Chapel Hill, NC 27599, USA
| | - Amelie Tjaden
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Buchman Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Andreas Krämer
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Buchman Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Susanne Müller
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Buchman Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Laszlo Gyenis
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Daniel Menyhart
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - David W Litchfield
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada; Department of Oncology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Buchman Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Alison D Axtman
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC 27599, USA; Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC-CH, Chapel Hill, NC 27599, USA.
| |
Collapse
|
29
|
Martinez-Gualda B, Saul S, Froeyen M, Schols D, Herdewijn P, Einav S, De Jonghe S. Discovery of 3-phenyl- and 3-N-piperidinyl-isothiazolo[4,3-b]pyridines as highly potent inhibitors of cyclin G-associated kinase. Eur J Med Chem 2021; 213:113158. [PMID: 33497888 DOI: 10.1016/j.ejmech.2021.113158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 01/26/2023]
Abstract
Structural modifications at position 3 of the isothiazolo[4,3-b]pyridine scaffold afforded a new series of cyclin G-associated kinase (GAK) inhibitors. It was shown that the insertion of a carboxamide residue at position 3 of a phenyl or piperidinyl moiety generated potent GAK inhibitors with IC50 values in a low nanomolar range. This potent GAK binding affinity was rationalized by molecular modelling demonstrating that the carboxamide moiety engages in an extra hydrogen bond with GAK. Moreover, this new series of compounds was also endowed with antiviral activity against dengue virus, highlighting the potential utility of GAK as a target for the development of antiviral drugs.
Collapse
Affiliation(s)
- Belén Martinez-Gualda
- KU Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Herestraat 49, 3000, Leuven, Belgium
| | - Sirle Saul
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Mathy Froeyen
- KU Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Herestraat 49, 3000, Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Piet Herdewijn
- KU Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Herestraat 49, 3000, Leuven, Belgium
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
30
|
Abstract
A routine synthesis was performed to furnish the title compound which incorporates a versatile difluoromethyl group on the aniline substitution of a 4-anilinoquinoline kinase inhibitor motif. In addition, the small molecule crystal structure (of the HCl salt) was solved, which uncovered that the difluoromethyl group was disordered within the packing arrangement and also a 126.08(7)° out of plane character between the respective ring systems within the molecule. The compound was fully characterized with 1H/13C-NMR and high-resolution mass spectra (HRMS), with the procedures described.
Collapse
|
31
|
Krahn AI, Wells C, Drewry DH, Beitel LK, Durcan TM, Axtman AD. Defining the Neural Kinome: Strategies and Opportunities for Small Molecule Drug Discovery to Target Neurodegenerative Diseases. ACS Chem Neurosci 2020; 11:1871-1886. [PMID: 32464049 DOI: 10.1021/acschemneuro.0c00176] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Kinases are highly tractable drug targets that have reached unparalleled success in fields such as cancer but whose potential has not yet been realized in neuroscience. There are currently 55 approved small molecule kinase-targeting drugs, 48 of which have an anticancer indication. The intrinsic complexity linked to central nervous system (CNS) drug development and a lack of validated targets has hindered progress in developing kinase inhibitors for CNS disorders when compared to other therapeutic areas such as oncology. Identification and/or characterization of new kinases as potential drug targets for neurodegenerative diseases will create opportunities for the development of CNS drugs in the future. The track record of kinase inhibitors in other disease indications supports the idea that with the best targets identified small molecule kinase modulators will become impactful therapeutics for neurodegenerative diseases. This Review highlights the imminent need for new therapeutics to treat the most prevalent neurodegenerative diseases as well as the promise of kinase inhibitors to address this need. With a focus on kinases that remain largely unexplored after decades of dedicated research in the kinase field, we offer specific examples of understudied kinases that are supported by patient-derived data as linked to Alzheimer's disease, Parkinson's disease, and/or amyotrophic lateral sclerosis. Finally, we show literature-reported high-quality inhibitors for several understudied kinases and suggest other kinases that merit additional medicinal chemistry efforts to elucidate their therapeutic potential.
Collapse
Affiliation(s)
- Andrea I. Krahn
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada H3A 2B4
| | - Carrow Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lenore K. Beitel
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada H3A 2B4
| | - Thomas M. Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada H3A 2B4
| | - Alison D. Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
32
|
Zhang X, Zegar T, Weiser T, Hamdan FH, Berger BT, Lucas R, Balourdas DII, Ladigan S, Cheung PF, Liffers ST, Trajkovic-Arsic M, Scheffler B, Joerger AC, Hahn SA, Johnsen SA, Knapp S, Siveke JT. Characterization of a dual BET/HDAC inhibitor for treatment of pancreatic ductal adenocarcinoma. Int J Cancer 2020; 147:2847-2861. [PMID: 32599645 DOI: 10.1002/ijc.33137] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/03/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is resistant to virtually all chemo- and targeted therapeutic approaches. Epigenetic regulators represent a novel class of drug targets. Among them, BET and HDAC proteins are central regulators of chromatin structure and transcription, and preclinical evidence suggests effectiveness of combined BET and HDAC inhibition in PDAC. Here, we describe that TW9, a newly generated adduct of the BET inhibitor (+)-JQ1 and class I HDAC inhibitor CI994, is a potent dual inhibitor simultaneously targeting BET and HDAC proteins. TW9 has a similar affinity to BRD4 bromodomains as (+)-JQ1 and shares a conserved binding mode, but is significantly more active in inhibiting HDAC1 compared to the parental HDAC inhibitor CI994. TW9 was more potent in inhibiting tumor cell proliferation compared to (+)-JQ1, CI994 alone or combined treatment of both inhibitors. Sequential administration of gemcitabine and TW9 showed additional synergistic antitumor effects. Microarray analysis revealed that dysregulation of a FOSL1-directed transcriptional program contributed to the antitumor effects of TW9. Our results demonstrate the potential of a dual chromatin-targeting strategy in the treatment of PDAC and provide a rationale for further development of multitarget inhibitors.
Collapse
Affiliation(s)
- Xin Zhang
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Medicine Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site University Hospital Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Tim Zegar
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Medicine Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site University Hospital Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Tim Weiser
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Frankfurt, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.,German Cancer Network (DKTK), Frankfurt, Germany
| | - Feda H Hamdan
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.,Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Benedict-Tilman Berger
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Frankfurt, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Romain Lucas
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Frankfurt, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.,German Cancer Network (DKTK), Frankfurt, Germany
| | - Dimitrios-IIias Balourdas
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Frankfurt, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Swetlana Ladigan
- Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, Bochum, Germany.,Department of Internal Medicine, Knappschaftskrankenhaus Bochum, Ruhr-University of Bochum, Bochum, Germany
| | - Phyllis F Cheung
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Medicine Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site University Hospital Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Sven-Thorsten Liffers
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Medicine Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site University Hospital Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Marija Trajkovic-Arsic
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Medicine Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site University Hospital Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Bjoern Scheffler
- DKFZ Division of Translational Neurooncology, West German Cancer Center, DKTK partner site University Hospital Essen, Essen, Germany
| | - Andreas C Joerger
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Frankfurt, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.,German Cancer Network (DKTK), Frankfurt, Germany
| | - Stephan A Hahn
- Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, Bochum, Germany
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.,Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stefan Knapp
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Frankfurt, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.,German Cancer Network (DKTK), Frankfurt, Germany
| | - Jens T Siveke
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Medicine Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site University Hospital Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| |
Collapse
|
33
|
Saul S, Pu SY, Zuercher WJ, Einav S, Asquith CRM. Potent antiviral activity of novel multi-substituted 4-anilinoquin(az)olines. Bioorg Med Chem Lett 2020; 30:127284. [PMID: 32631507 DOI: 10.1016/j.bmcl.2020.127284] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/31/2022]
Abstract
Screening a series of 4-anilinoquinolines and 4-anilinoquinazolines enabled identification of potent novel inhibitors of dengue virus (DENV). Preparation of focused 4-anilinoquinoline/quinazoline scaffold arrays led to the identification of a series of high potency 6-substituted bromine and iodine derivatives. The most potent compound 6-iodo-4-((3,4,5-trimethoxyphenyl)amino)quinoline-3-carbonitrile (47) inhibited DENV infection with an EC50 = 79 nM. Crucially, these compounds showed very limited toxicity with CC50 values >10 µM in almost all cases. This new promising series provides an anchor point for further development to optimize compound properties.
Collapse
Affiliation(s)
- Sirle Saul
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Szu-Yuan Pu
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William J Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Christopher R M Asquith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
34
|
Asquith CRM, Tizzard GJ, Bennett JM, Wells CI, Elkins JM, Willson TM, Poso A, Laitinen T. Targeting the Water Network in Cyclin G‐Associated Kinase (GAK) with 4‐Anilino‐quin(az)oline Inhibitors. ChemMedChem 2020; 15:1200-1215. [DOI: 10.1002/cmdc.202000150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Christopher R. M. Asquith
- Department of Pharmacology, School of MedicineUniversity of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
- Structural Genomics Consortium, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Graham J. Tizzard
- UK National Crystallography Service, School of ChemistryUniversity of Southampton Southampton SO17 1BJ UK
| | - James M. Bennett
- Structural Genomics Consortium and Target Discovery Institute Nuffield Department of Clinical MedicineUniversity of Oxford Old Road Campus Research Building Oxford OX3 7DQ UK)
| | - Carrow I. Wells
- Structural Genomics Consortium, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Jonathan M. Elkins
- Structural Genomics Consortium and Target Discovery Institute Nuffield Department of Clinical MedicineUniversity of Oxford Old Road Campus Research Building Oxford OX3 7DQ UK)
- Structural Genomics ConsortiumUniversidade Estadual de Campinas – UNICAMP Campinas São Paulo 13083-886 Brazil
| | - Timothy M. Willson
- Structural Genomics Consortium, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Antti Poso
- School of Pharmacy, Faculty of Health SciencesUniversity of Eastern Finland 70211 Kuopio Finland
- University Hospital Tübingen Department of Internal Medicine VIIIUniversity of Tübingen 72076 Tübingen Germany
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health SciencesUniversity of Eastern Finland 70211 Kuopio Finland
| |
Collapse
|
35
|
New Insights into 4-Anilinoquinazolines as Inhibitors of Cardiac Troponin I-Interacting Kinase (TNNi3K). Molecules 2020; 25:molecules25071697. [PMID: 32272798 PMCID: PMC7180948 DOI: 10.3390/molecules25071697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022] Open
Abstract
We report the synthesis of several related 4-anilinoquinazolines as inhibitors of cardiac troponin I-interacting kinase (TNNi3K). These close structural analogs of 3-((6,7-dimethoxyquinazolin-4-yl)amino)-4-(dimethylamino)-N-methylbenzenesulfonamide (GSK114) provide new understanding of structure-activity relationships between the 4-anilinoquinazoline scaffold and TNNi3K inhibition. Through a small focused library of inhibitors, we observed that the N-methylbenzenesulfonamide was driving the potency in addition to the more traditional quinazoline hinge-binding motif. We also identified a compound devoid of TNNi3K kinase activity due to the addition of a methyl group in the hinge binding region. This compound could serve as a negative control in the study of TNNi3K biology. Small molecule crystal structures of several quinazolines have been solved, supporting observations made about overall conformation and TNNi3K inhibition.
Collapse
|
36
|
Robers MB, Friedman-Ohana R, Huber KVM, Kilpatrick L, Vasta JD, Berger BT, Chaudhry C, Hill S, Müller S, Knapp S, Wood KV. Quantifying Target Occupancy of Small Molecules Within Living Cells. Annu Rev Biochem 2020; 89:557-581. [PMID: 32208767 DOI: 10.1146/annurev-biochem-011420-092302] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The binding affinity and kinetics of target engagement are fundamental to establishing structure-activity relationships (SARs) for prospective therapeutic agents. Enhancing these binding parameters for operative targets, while minimizing binding to off-target sites, can translate to improved drug efficacy and a widened therapeutic window. Compound activity is typically assessed through modulation of an observed phenotype in cultured cells. Quantifying the corresponding binding properties under common cellular conditions can provide more meaningful interpretation of the cellular SAR analysis. Consequently, methods for assessing drug binding in living cells have advanced and are now integral to medicinal chemistry workflows. In this review, we survey key technological advancements that support quantitative assessments of target occupancy in cultured cells, emphasizing generalizable methodologies able to deliver analytical precision that heretofore required reductionist biochemical approaches.
Collapse
Affiliation(s)
- M B Robers
- Promega Corporation, Madison, Wisconsin 53711, USA; , ,
| | | | - K V M Huber
- Target Discovery Institute and Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom; .,Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - L Kilpatrick
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom; , .,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, United Kingdom
| | - J D Vasta
- Promega Corporation, Madison, Wisconsin 53711, USA; , ,
| | - B-T Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany; ,
| | - C Chaudhry
- Lead Discovery and Optimization, Bristol-Myers Squibb, Princeton, New Jersey 08648, USA;
| | - S Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom; , .,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, United Kingdom
| | - S Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany; , .,Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, 60438 Frankfurt, Germany;
| | - S Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany; , .,Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, 60438 Frankfurt, Germany; .,German Cancer Network (DKTK), Frankfurt/Mainz, 60438 Frankfurt, Germany.,Frankfurt Cancer Institute (FCI), Goethe University, 60596 Frankfurt am Main, Germany
| | - K V Wood
- Promega Corporation, Madison, Wisconsin 53711, USA; , , .,Current affiliation: Light Bio, Inc., Mount Horeb, Wisconsin 53572, USA;
| |
Collapse
|
37
|
Wells C, Couñago RM, Limas JC, Almeida TL, Cook JG, Drewry DH, Elkins JM, Gileadi O, Kapadia NR, Lorente-Macias A, Pickett JE, Riemen A, Ruela-de-Sousa RR, Willson TM, Zhang C, Zuercher WJ, Zutshi R, Axtman AD. SGC-AAK1-1: A Chemical Probe Targeting AAK1 and BMP2K. ACS Med Chem Lett 2020; 11:340-345. [PMID: 32184967 DOI: 10.1021/acsmedchemlett.9b00399] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
Inhibitors based on a 3-acylaminoindazole scaffold were synthesized to yield potent dual AAK1/BMP2K inhibitors. Optimization furnished a small molecule chemical probe (SGC-AAK1-1, 25) that is potent and selective for AAK1/BMP2K over other NAK family members, demonstrates narrow activity in a kinome-wide screen, and is functionally active in cells. This inhibitor represents one of the best available small molecule tools to study the functions of AAK1 and BMP2K.
Collapse
Affiliation(s)
- Carrow Wells
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC−CH), Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC−CH, Chapel Hill, North Carolina 27599, United States
| | - Rafael M. Couñago
- SGC, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-886, Brazil
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, UNICAMP, Campinas, SP 13083-875, Brazil
| | - Juanita C. Limas
- Department of Pharmacology, UNC−CH, Chapel Hill, North Carolina 27599, United States
| | - Tuanny L. Almeida
- SGC, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-886, Brazil
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, UNICAMP, Campinas, SP 13083-875, Brazil
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, UNC−CH, Chapel Hill, North Carolina 27599, United States
| | - David H. Drewry
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC−CH), Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC−CH, Chapel Hill, North Carolina 27599, United States
| | - Jonathan M. Elkins
- SGC, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-886, Brazil
- SGC, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, U.K
| | - Opher Gileadi
- SGC, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-886, Brazil
- SGC, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, U.K
| | - Nirav R. Kapadia
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC−CH), Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC−CH, Chapel Hill, North Carolina 27599, United States
| | - Alvaro Lorente-Macias
- Departamento de Química Farmacéutica y Orgánica, University of Granada, Granada, 18071, Spain
| | - Julie E. Pickett
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC−CH), Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC−CH, Chapel Hill, North Carolina 27599, United States
| | - Alexander Riemen
- Luceome Biotechnologies, LLC, Tucson, Arizona 85719, United States
| | - Roberta R. Ruela-de-Sousa
- SGC, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-886, Brazil
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, UNICAMP, Campinas, SP 13083-875, Brazil
| | - Timothy M. Willson
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC−CH), Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC−CH, Chapel Hill, North Carolina 27599, United States
| | - Cunyu Zhang
- Platform Technology Sciences, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - William J. Zuercher
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC−CH), Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC−CH, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center (LCCC), UNC−CH, Chapel Hill, North Carolina 27599, United States
| | - Reena Zutshi
- Luceome Biotechnologies, LLC, Tucson, Arizona 85719, United States
| | - Alison D. Axtman
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC−CH), Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC−CH, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
38
|
Ji X, Li Z. Medicinal chemistry strategies toward host targeting antiviral agents. Med Res Rev 2020; 40:1519-1557. [PMID: 32060956 PMCID: PMC7228277 DOI: 10.1002/med.21664] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Direct‐acting antiviral agents (DAAs) represent a class of drugs targeting viral proteins and have been demonstrated to be very successful in combating viral infections in clinic. However, DAAs suffer from several inherent limitations, including narrow‐spectrum antiviral profiles and liability to drug resistance, and hence there are still unmet needs in the treatment of viral infections. In comparison, host targeting antivirals (HTAs) target host factors for antiviral treatment. Since host proteins are probably broadly required for various viral infections, HTAs are not only perceived, but also demonstrated to exhibit broad‐spectrum antiviral activities. In addition, host proteins are not under the genetic control of viral genome, and hence HTAs possess much higher genetic barrier to drug resistance as compared with DAAs. In recent years, much progress has been made to the development of HTAs with the approval of chemokine receptor type 5 antagonist maraviroc for human immunodeficiency virus treatment and more in the pipeline for other viral infections. In this review, we summarize various host proteins as antiviral targets from a medicinal chemistry prospective. Challenges and issues associated with HTAs are also discussed.
Collapse
Affiliation(s)
- Xingyue Ji
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
39
|
Quinazoline-Based Antivirulence Compounds Selectively Target Salmonella PhoP/PhoQ Signal Transduction System. Antimicrob Agents Chemother 2019; 64:AAC.01744-19. [PMID: 31611347 DOI: 10.1128/aac.01744-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/27/2019] [Indexed: 01/06/2023] Open
Abstract
The rapid emergence of multidrug resistance among bacterial pathogens has become a significant challenge to human health in our century. Therefore, development of next-generation antibacterial compounds is an urgent need. Two-component signal transduction systems (TCS) are stimulus-response coupling devices that allow bacteria to sense and elaborate adaptive responses to changing environmental conditions, including the challenges that pathogenic bacteria face inside the host. The differential presence of TCS, present in bacteria but absent in the animal kingdom, makes them attractive targets in the search for new antibacterial compounds. In Salmonella enterica, the PhoP/PhoQ two-component system controls the expression of crucial phenotypes that define the ability of the pathogen to establish infection in the host. We now report the screening of 686 compounds from a GlaxoSmithKline published kinase inhibitor set in a high-throughput whole-cell assay that targets Salmonella enterica serovar Typhimurium PhoP/PhoQ. We identified a series of quinazoline compounds that showed selective and potent downregulation of PhoP/PhoQ-activated genes and define structural attributes required for their efficacy. We demonstrate that their bioactivity is due to repression of the PhoQ sensor autokinase activity mediated by interaction with its catalytic domain, acting as competitive inhibitors of ATP binding. While noncytotoxic, the hit molecules exhibit antivirulence effect by blockage of S Typhimurium intramacrophage replication. Together, these features make these quinazoline compounds stand out as exciting leads to develop a therapeutic intervention to fight salmonellosis.
Collapse
|
40
|
Asquith CRM, Laitinen T, Bennett JM, Wells CI, Elkins JM, Zuercher WJ, Tizzard GJ, Poso A. Design and Analysis of the 4-Anilinoquin(az)oline Kinase Inhibition Profiles of GAK/SLK/STK10 Using Quantitative Structure-Activity Relationships. ChemMedChem 2019; 15:26-49. [PMID: 31675459 DOI: 10.1002/cmdc.201900521] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Indexed: 01/01/2023]
Abstract
The 4-anilinoquinoline and 4-anilinoquinazoline ring systems have been the focus of significant efforts in prior kinase drug discovery programs, which have led to approved medicines. Broad kinome profiles of these compounds have now been assessed with the advent of advanced screening technologies. These ring systems, while originally designed for specific targets including epidermal growth factor receptor (EGFR), but actually display a number of potent collateral kinase targets, some of which have been associated with negative clinical outcomes. We have designed and synthesized a series of 4-anilinoquin(az)olines in order to better understand the structure-activity relationships of three main collateral kinase targets of quin(az)oline-based kinase inhibitors: cyclin G associated kinase (GAK), STE20-like serine/threonine-protein kinase (SLK) and serine/threonine-protein kinase 10 (STK10). This was achieved through a series of quantitative structure-activity relationship (QSAR) analysis, water mapping of the kinase ATP binding sites and extensive small-molecule X-ray structural analysis.
Collapse
Affiliation(s)
- Christopher R M Asquith
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - James M Bennett
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Carrow I Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan M Elkins
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.,Structural Genomics Consortium, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-886 (Brazil)
| | - William J Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Graham J Tizzard
- UK National Crystallography Service, School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,University Hospital Tübingen, Deparment of Internal Medicine VIII, University of Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
41
|
Martinez-Gualda B, Pu SY, Froeyen M, Herdewijn P, Einav S, De Jonghe S. Structure-activity relationship study of the pyridine moiety of isothiazolo[4,3-b]pyridines as antiviral agents targeting cyclin G-associated kinase. Bioorg Med Chem 2019; 28:115188. [PMID: 31757682 DOI: 10.1016/j.bmc.2019.115188] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 11/26/2022]
Abstract
Previously, we reported the discovery of 3,6-disubstituted isothiazolo[4,3-b]pyridines as potent and selective cyclin G-associated kinase (GAK) inhibitors with promising antiviral activity. In this manuscript, the structure-activity relationship study was expanded to synthesis of isothiazolo[4,3-b]pyridines with modifications of the pyridine moiety. This effort led to the discovery of an isothiazolo[4,3-b]pyridine derivative with a 3,4-dimethoxyphenyl residue at position 5 that displayed low nanomolar GAK binding affinity and antiviral activity against dengue virus.
Collapse
Affiliation(s)
- Belén Martinez-Gualda
- KU Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Herestraat 49, 3000 Leuven, Belgium
| | - Szu-Yuan Pu
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mathy Froeyen
- KU Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Herestraat 49, 3000 Leuven, Belgium
| | - Piet Herdewijn
- KU Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Herestraat 49, 3000 Leuven, Belgium
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
42
|
Towards the Development of an In vivo Chemical Probe for Cyclin G Associated Kinase (GAK). Molecules 2019; 24:molecules24224016. [PMID: 31698822 PMCID: PMC6891286 DOI: 10.3390/molecules24224016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 12/15/2022] Open
Abstract
SGC-GAK-1 (1) is a potent, selective, cell-active chemical probe for cyclin G-associated kinase (GAK). However, 1 was rapidly metabolized in mouse liver microsomes by cytochrome P450-mediated oxidation, displaying rapid clearance in liver microsomes and in mice, which limited its utility in in vivo studies. Chemical modifications of 1 that improved metabolic stability, generally resulted in decreased GAK potency. The best analog in terms of GAK activity in cells was 6-bromo-N-(1H-indazol-6-yl)quinolin-4-amine (35) (IC50 = 1.4 μM), showing improved stability in liver microsomes while still maintaining a narrow spectrum activity across the kinome. As an alternative to scaffold modifications we also explored the use of the broad-spectrum cytochrome P450 inhibitor 1-aminobenzotriazole (ABT) to decrease intrinsic clearance of aminoquinoline GAK inhibitors. Taken together, these approaches point towards the development of an in vivo chemical probe for the dark kinase GAK.
Collapse
|
43
|
Abstract
We describe a straightforward synthesis of the title compound, incorporating a relatively rare 2-methyl-2H-1,2,3-triazole heterocylic motif as a potential kinase inhibitor motif. The small molecule crystal structure has been resolved, revealing an interesting packing arrangement and overall conformation. We also performed routine characterization with 1H/13C-NMR and liquid chromatography (LC) and high-resolution mass spectra (HRMS).
Collapse
|
44
|
Asquith CRM, Maffuid KA, Laitinen T, Torrice CD, Tizzard GJ, Crona DJ, Zuercher WJ. Targeting an EGFR Water Network with 4‐Anilinoquin(az)oline Inhibitors for Chordoma. ChemMedChem 2019; 14:1693-1700. [DOI: 10.1002/cmdc.201900428] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/06/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Christopher R. M. Asquith
- Department of PharmacologySchool of MedicineUniversity of North Carolina Chapel Hill NC 27599 USA
- Structural Genomics Consortium, UNC Eshelman School of PharmacyUniversity of North Carolina Chapel Hill NC 27599 USA
| | - Kaitlyn A. Maffuid
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyUniversity of North Carolina Chapel Hill NC 27599 USA
| | - Tuomo Laitinen
- School of PharmacyFaculty of Health SciencesUniversity of Eastern Finland 70211 Kuopio Finland
| | - Chad D. Torrice
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyUniversity of North Carolina Chapel Hill NC 27599 USA
| | - Graham J. Tizzard
- School of ChemistryUniversity of Southampton Southampton SO17 1BJ UK
| | - Daniel J. Crona
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyUniversity of North Carolina Chapel Hill NC 27599 USA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina Chapel Hill NC 27599 USA
| | - William J. Zuercher
- Structural Genomics Consortium, UNC Eshelman School of PharmacyUniversity of North Carolina Chapel Hill NC 27599 USA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina Chapel Hill NC 27599 USA
| |
Collapse
|
45
|
Asquith CR, Treiber DK, Zuercher WJ. Utilizing comprehensive and mini-kinome panels to optimize the selectivity of quinoline inhibitors for cyclin G associated kinase (GAK). Bioorg Med Chem Lett 2019; 29:1727-1731. [DOI: 10.1016/j.bmcl.2019.05.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 11/25/2022]
|
46
|
Asquith CRM, Naegeli KM, East MP, Laitinen T, Havener TM, Wells CI, Johnson GL, Drewry DH, Zuercher WJ, Morris DC. Design of a Cyclin G Associated Kinase (GAK)/Epidermal Growth Factor Receptor (EGFR) Inhibitor Set to Interrogate the Relationship of EGFR and GAK in Chordoma. J Med Chem 2019; 62:4772-4778. [DOI: 10.1021/acs.jmedchem.9b00350] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Christopher R. M. Asquith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kaleb M. Naegeli
- UNC Catalyst for Rare Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Michael P. East
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Tammy M. Havener
- UNC Catalyst for Rare Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Carrow I. Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gary L. Johnson
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - William J. Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David C. Morris
- UNC Catalyst for Rare Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|