1
|
van de Wetering R, Bibi R, Biggerstaff A, Hong S, Pengelly B, Prisinzano TE, La Flamme AC, Kivell BM. Nalfurafine promotes myelination in vitro and facilitates recovery from cuprizone + rapamycin-induced demyelination in mice. Glia 2024; 72:1801-1820. [PMID: 38899723 DOI: 10.1002/glia.24583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
The kappa opioid receptor has been identified as a promising therapeutic target for promoting remyelination. In the current study, we evaluated the ability of nalfurafine to promote oligodendrocyte progenitor cell (OPC) differentiation and myelination in vitro, and its efficacy in an extended, cuprizone-induced demyelination model. Primary mouse (C57BL/6J) OPC-containing cultures were treated with nalfurafine (0.6-200 nM), clemastine (0.01-100 μM), T3 (30 ng/mL), or vehicle for 5 days. Using immunocytochemistry and confocal microscopy, we found that nalfurafine treatment increased OPC differentiation, oligodendrocyte (OL) morphological complexity, and myelination of nanofibers in vitro. Adult male mice (C57BL/6J) were given a diet containing 0.2% cuprizone and administered rapamycin (10 mg/kg) once daily for 12 weeks followed by 6 weeks of treatment with nalfurafine (0.01 or 0.1 mg/kg), clemastine (10 mg/kg), or vehicle. We quantified the number of OLs using immunofluorescence, gross myelination using black gold staining, and myelin thickness using electron microscopy. Cuprizone + rapamycin treatment produced extensive demyelination and was accompanied by a loss of mature OLs, which was partially reversed by therapeutic administration of nalfurafine. We also assessed these mice for functional behavioral changes in open-field, horizontal bar, and mouse motor skill sequence tests (complex wheel running). Cuprizone + rapamycin treatment resulted in hyperlocomotion, poorer horizontal bar scores, and less distance traveled on the running wheels. Partial recovery was observed on both the horizontal bar and complex running wheel tests over time, which was facilitated by nalfurafine treatment. Taken together, these data highlight the potential of nalfurafine as a remyelination-promoting therapeutic.
Collapse
Affiliation(s)
- Ross van de Wetering
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Rabia Bibi
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Andy Biggerstaff
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Sheein Hong
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Bria Pengelly
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Thomas E Prisinzano
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Anne C La Flamme
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Bronwyn M Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
2
|
Zhao P, Li L, Shi F, Su Y, Lv T, Huo X, Wang X. Synthesis of 1,2-Disubstituted C-Aryl Glycosides via Palladium/Norbornene Cooperative Catalysis. Org Lett 2024. [PMID: 38809207 DOI: 10.1021/acs.orglett.4c01491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The Catellani reaction offers an opportunity to address multiple chemical bonds in a single pot. However, it is still quite a challenge to construct fully substituted olefins via this strategy, especially in electron-rich, unstable, and highly functionalized glycals. Herein we report the first palladium-catalyzed Catellani reaction for the direct preparation of 1,2-disubstituted C-aryl glycosides from easily available 2-iodoglycals, bromoaryl, and alkene/alkyne substrates. This transformation exhibits a wide substrate scope, accommodating diverse functional groups and intricate molecular frameworks. This innovative reactivity offers an efficient pathway to valuable 1,2-disubstituted carbohydrate analogues and molecular building blocks, facilitating novel strategic bond disconnections and broadening the reactivity landscape of palladium catalysis.
Collapse
Affiliation(s)
- Penggang Zhao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
- Department State Key Laboratory of Applied Organic Chemistry, Department of Chemistry Institution, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lili Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
- Department State Key Laboratory of Applied Organic Chemistry, Department of Chemistry Institution, Lanzhou University, Lanzhou 730000, P. R. China
| | - Fang Shi
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Yingpeng Su
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Tinghong Lv
- Department State Key Laboratory of Applied Organic Chemistry, Department of Chemistry Institution, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xing Huo
- Department State Key Laboratory of Applied Organic Chemistry, Department of Chemistry Institution, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaolei Wang
- Department State Key Laboratory of Applied Organic Chemistry, Department of Chemistry Institution, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
3
|
Schrader TO, Lorrain KI, Bagnol D, Edu GC, Broadhead A, Baccei C, Poon MM, Stebbins KJ, Xiong Y, Lorenzana AO, Chan JR, Green AJ, Lorrain DS, Chen A. Identification and In Vivo Evaluation of Myelination Agent PIPE-3297, a Selective Kappa Opioid Receptor Agonist Devoid of β-Arrestin-2 Recruitment Efficacy. ACS Chem Neurosci 2024; 15:685-698. [PMID: 38265210 DOI: 10.1021/acschemneuro.3c00807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Structure-activity relationship studies led to the discovery of PIPE-3297, a fully efficacious and selective kappa opioid receptor (KOR) agonist. PIPE-3297, a potent activator of G-protein signaling (GTPγS EC50 = 1.1 nM, 91% Emax), did not elicit a β-arrestin-2 recruitment functional response (Emax < 10%). Receptor occupancy experiments performed with the novel KOR radiotracer [3H]-PIPE-3113 revealed that subcutaneous (s.c.) administration of PIPE-3297 at 30 mg/kg in mice achieved 90% occupancy of the KOR in the CNS 1 h post dose. A single subcutaneous dose of PIPE-3297 in healthy mice produced a statistically significant increase of mature oligodendrocytes (P < 0.0001) in the KOR-enriched striatum, an effect that was not observed in animals predosed with the selective KOR antagonist norbinaltorphimine. An equivalent dose given to mice in an open-field activity-monitoring system revealed a small KOR-independent decrease in total locomotor activity versus vehicle measured between 60 and 75 min post dose. Daily doses of PIPE-3297 at both 3 and 30 mg/kg s.c. reduced the disease score in the mouse experimental autoimmune encephalomyelitis (EAE) model. Visually evoked potential (VEP) N1 latencies were also significantly improved versus vehicle in both dose groups, and latencies matched those of untreated animals. Taken together, these findings highlight the potential therapeutic value of functionally selective G-protein KOR agonists in demyelinating disease, which may avoid the sedating side effects typically associated with classical nonbiased KOR agonists.
Collapse
Affiliation(s)
- Thomas O Schrader
- Contineum Therapeutics, Suite 200, 10578 Science Center Drive, San Diego, California 92121, United States
| | - Kym I Lorrain
- Contineum Therapeutics, Suite 200, 10578 Science Center Drive, San Diego, California 92121, United States
| | - Didier Bagnol
- Contineum Therapeutics, Suite 200, 10578 Science Center Drive, San Diego, California 92121, United States
| | - Geraldine C Edu
- Contineum Therapeutics, Suite 200, 10578 Science Center Drive, San Diego, California 92121, United States
| | - Alexander Broadhead
- Contineum Therapeutics, Suite 200, 10578 Science Center Drive, San Diego, California 92121, United States
| | - Christopher Baccei
- Contineum Therapeutics, Suite 200, 10578 Science Center Drive, San Diego, California 92121, United States
| | - Michael M Poon
- Contineum Therapeutics, Suite 200, 10578 Science Center Drive, San Diego, California 92121, United States
| | - Karin J Stebbins
- Contineum Therapeutics, Suite 200, 10578 Science Center Drive, San Diego, California 92121, United States
| | - Yifeng Xiong
- Contineum Therapeutics, Suite 200, 10578 Science Center Drive, San Diego, California 92121, United States
| | - Ariana O Lorenzana
- Contineum Therapeutics, Suite 200, 10578 Science Center Drive, San Diego, California 92121, United States
| | - Jonah R Chan
- Department of Neurology, University of California, San Francisco, San Francisco, California 94143, United States
| | - Ari J Green
- Department of Neurology, University of California, San Francisco, San Francisco, California 94143, United States
| | - Daniel S Lorrain
- Contineum Therapeutics, Suite 200, 10578 Science Center Drive, San Diego, California 92121, United States
| | - Austin Chen
- Contineum Therapeutics, Suite 200, 10578 Science Center Drive, San Diego, California 92121, United States
| |
Collapse
|
4
|
Zheng P, Wei X, Cao X, Ma P, Dong R, Tang H, Meng X, Liu X, Zhang C, Zhang S, Ming L. Antigen clearance at the peak of the primary immune response induces experimental autoimmune encephalomyelitis. Eur J Immunol 2023; 53:e2250122. [PMID: 36597350 DOI: 10.1002/eji.202250122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Autoimmune demyelinating diseases can be induced by an immune response against myelin peptides; however, the exact mechanism underlying the development of such diseases remains unclear. In experimental autoimmune encephalomyelitis, we found that the clearance of exogenous myelin antigen at the peak of the primary immune response is key to the pathogenesis of the disease. The generation of effector T cells requires continuous antigen stimulation, whereas redundant antigen traps and exhausts effector T cells in the periphery, which induces resistance to the disease. Moreover, insufficient antigenic stimulation fails to induce disease efficiently owing to insufficient numbers of effector T cells. When myelin antigen is entirely cleared, the number of effector T cells reaches a peak, which facilitates infiltration of more effector T cells into the central nervous system. The peripheral antigen clearance initiates the first wave of effector T cell entry into the central nervous system and induces chronic inflammation. The inflamed central nervous system recruits the second wave of effector T cells that worsen inflammation, resulting in loss of self-tolerance. These findings provide new insights into the mechanism underlying the development of autoimmune demyelinating diseases, which may potentially impact future treatments.
Collapse
Affiliation(s)
- Peiguo Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, P. R. China
| | - Xufeng Wei
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, P. R. China
| | - Xuezhen Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, P. R. China
| | - Panhong Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, P. R. China
| | - Rui Dong
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, P. R. China
| | - Hongwei Tang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery & Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Xianchun Meng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, P. R. China
| | - Xinjing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Cai Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, P. R. China
| | - Shuijun Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery & Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, P. R. China
| |
Collapse
|
5
|
Kocsis M, Baán K, Ötvös SB, Kukovecz Á, Kónya Z, Sipos P, Pálinkó I, Varga G. Sustainable synthesis of azobenzenes, quinolines and quinoxalines via oxidative dehydrogenative couplings catalysed by reusable transition metal oxide–Bi( iii) cooperative catalysts. Catal Sci Technol 2023; 13:3069-3083. [DOI: 10.1039/d3cy00327b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Heterogeneous catalytic oxidative dehydrogenative processes for N-heterocycles are presented, which enable waste-minimized (additive-, oxidant-, base-free), efficient cyclisations/couplings via transition metal oxide–Bi(iii) cooperative catalysis.
Collapse
Affiliation(s)
- Marianna Kocsis
- Department of Organic Chemistry and Materials and Solution Structure Research Group, University of Szeged, Dóm tér 8, Szeged, H-6720 Hungary
| | - Kornélia Baán
- Department of Applied and Environmental Chemistry and Interdisciplinary Excellence Centre, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720 Hungary
| | - Sándor B. Ötvös
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, Graz, A-8010 Austria
| | - Ákos Kukovecz
- Department of Applied and Environmental Chemistry and Interdisciplinary Excellence Centre, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720 Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry and Interdisciplinary Excellence Centre, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720 Hungary
| | - Pál Sipos
- Department of Inorganic and Analytical Chemistry and Materials and Solution Structure Research Group, University of Szeged, Dóm tér 7, Szeged, H-6720 Hungary
| | - István Pálinkó
- Department of Organic Chemistry and Materials and Solution Structure Research Group, University of Szeged, Dóm tér 8, Szeged, H-6720 Hungary
| | - Gábor Varga
- Department of Physical Chemistry and Materials Science and Materials and Solution Structure Research Group, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720 Hungary
| |
Collapse
|
6
|
Dalefield ML, Scouller B, Bibi R, Kivell BM. The Kappa Opioid Receptor: A Promising Therapeutic Target for Multiple Pathologies. Front Pharmacol 2022; 13:837671. [PMID: 35795569 PMCID: PMC9251383 DOI: 10.3389/fphar.2022.837671] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Kappa-opioid receptors (KOR) are widely expressed throughout the central nervous system, where they modulate a range of physiological processes depending on their location, including stress, mood, reward, pain, inflammation, and remyelination. However, clinical use of KOR agonists is limited by adverse effects such as dysphoria, aversion, and sedation. Within the drug-development field KOR agonists have been extensively investigated for the treatment of many centrally mediated nociceptive disorders including pruritis and pain. KOR agonists are potential alternatives to mu-opioid receptor (MOR) agonists for the treatment of pain due to their anti-nociceptive effects, lack of abuse potential, and reduced respiratory depressive effects, however, dysphoric side-effects have limited their widespread clinical use. Other diseases for which KOR agonists hold promising therapeutic potential include pruritis, multiple sclerosis, Alzheimer's disease, inflammatory diseases, gastrointestinal diseases, cancer, and ischemia. This review highlights recent drug-development efforts targeting KOR, including the development of G-protein-biased ligands, mixed opioid agonists, and peripherally restricted ligands to reduce side-effects. We also highlight the current KOR agonists that are in preclinical development or undergoing clinical trials.
Collapse
Affiliation(s)
| | | | | | - Bronwyn M. Kivell
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
7
|
French AR, van Rijn RM. An updated assessment of the translational promise of G-protein-biased kappa opioid receptor agonists to treat pain and other indications without debilitating adverse effects. Pharmacol Res 2022; 177:106091. [PMID: 35101565 PMCID: PMC8923989 DOI: 10.1016/j.phrs.2022.106091] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 01/22/2023]
Abstract
Kappa opioid receptor (κOR) agonists lack the abuse liability and respiratory depression effects of clinically used mu opioid receptor (μOR) analgesics and are hypothesized to be safer alternatives. However, κOR agonists have limiting adverse effects of their own, including aversion, sedation, and mood effects, that have hampered their clinical translation. Studies performed over the last 15 years have suggested that these adverse effects could result from activation of distinct intracellular signaling pathways that are dependent on β-arrestin, whereas signaling downstream of G protein activation produces antinociception. This led to the hypothesis that agonists biased away from β-arrestin signaling would have improved therapeutic windows over traditional unbiased agonists and allow for clinical development of analgesic G-protein-biased κOR agonists. Given a recent controversy regarding the benefits of G-protein-biased μOR agonists, it is timely to reassess the therapeutic promise of G-protein-biased κOR agonists. Here we review recent discoveries from preclinical κOR studies and critically evaluate the therapeutic windows of G-protein-biased κOR agonists in each of the adverse effects above. Overall, we find that G-protein-biased κOR agonists generally have improved therapeutic window relative to unbiased agonists, although frequently study design limits strong conclusions in this regard. However, a steady flow of newly developed biased κOR agonists paired with recently engineered behavioral and molecular tools puts the κOR field in a prime position to make major advances in our understanding of κOR function and fulfill the promise of translating a new generation of biased κOR agonists to the clinic.
Collapse
Affiliation(s)
- Alexander R French
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
8
|
Misilimu D, Li W, Chen D, Wei P, Huang Y, Li S, Grothusen J, Gao Y. Intranasal Salvinorin A Improves Long-term Neurological Function via Immunomodulation in a Mouse Ischemic Stroke Model. J Neuroimmune Pharmacol 2022; 17:350-366. [PMID: 34596819 PMCID: PMC9726789 DOI: 10.1007/s11481-021-10025-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022]
Abstract
Salvinorin A (SA), a highly selective kappa opioid receptor agonist, has been shown to reduce brain infarct volume and improve neurological function after ischemic stroke. However, the underlying mechanisms have not been fully understood yet. Therefore, we explored whether SA provides neuroprotective effects by regulating the immune response after ischemic stroke both in the central nervous system (CNS) and peripheral circulation. In this study, adult male mice were subjected to transient Middle Cerebral Artery Occlusion (tMCAO) and then were treated intranasally with SA (50 μg/kg) or with the vehicle dimethyl sulfoxide (DMSO). Multiple behavioral tests were used to evaluate neurofunction. Flow cytometry and immunofluorescence staining were used to evaluate the infiltration of peripheral immune cells into the brain. The tracer cadaverine and endogenous immunoglobulin G (IgG) extravasation were used to detect blood brain barrier leakage. We observed that SA intranasal administration after ischemic stroke decreased the expression of pro-inflammatory factors in the brain. SA promoted the polarization of microglia/macrophages into a transitional phenotype and decreased the pro-inflammatory phenotype in the brain after tMCAO. Interestingly, SA treatment scarcely altered the number of peripheral immune cells but decreased the macrophage and neutrophil infiltration into the brain at 24 h after tMCAO. Furthermore, SA treatment also preserved BBB integrity, reduced long-term brain atrophy and white matter injury, as well as improved the long-term neurofunctional outcome in mice. In this study, intranasal administration of SA improved long-term neurological function via immuno-modulation and by preserving blood-brain barrier integrity in a mouse ischemic stroke model, suggesting that SA could potentially serve as an alternative treatment strategy for ischemic stroke.
Collapse
Affiliation(s)
- Dilidaer Misilimu
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wei Li
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Di Chen
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Pengju Wei
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yichen Huang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Sicheng Li
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - John Grothusen
- grid.25879.310000 0004 1936 8972Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104 USA
| | - Yanqin Gao
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Paton KF, Robichon K, Templeton N, Denny L, Al Abadey A, Luo D, Prisinzano TE, La Flamme AC, Kivell BM. The Salvinorin Analogue, Ethoxymethyl Ether Salvinorin B, Promotes Remyelination in Preclinical Models of Multiple Sclerosis. Front Neurol 2021; 12:782190. [PMID: 34987466 PMCID: PMC8721439 DOI: 10.3389/fneur.2021.782190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis is a neurodegenerative disease associated with demyelination and neuroinflammation in the central nervous system. There is an urgent need to develop remyelinating therapies to better treat multiple sclerosis and other demyelinating diseases. The kappa opioid receptor (KOR) has been identified as a potential target for the development of remyelinating therapies; however, prototypical KOR agonists, such as U50,488 have side effects, which limit clinical use. In the current study, we investigated a Salvinorin A analog, ethoxymethyl ether Salvinorin B (EOM SalB) in two preclinical models of demyelination in C57BL/6J mice. We showed that in cellular assays EOM SalB was G-protein biased, an effect often correlated with fewer KOR-mediated side effects. In the experimental autoimmune encephalomyelitis model, we found that EOM SalB (0.1-0.3 mg/kg) effectively decreased disease severity in a KOR-dependent manner and led to a greater number of animals in recovery compared to U50,488 treatment. Furthermore, EOM SalB treatment decreased immune cell infiltration and increased myelin levels in the central nervous system. In the cuprizone-induced demyelination model, we showed that EOM SalB (0.3 mg/kg) administration led to an increase in the number of mature oligodendrocytes, the number of myelinated axons and the myelin thickness in the corpus callosum. Overall, EOM SalB was effective in two preclinical models of multiple sclerosis and demyelination, adding further evidence to show KOR agonists are a promising target for remyelinating therapies.
Collapse
Affiliation(s)
- Kelly F. Paton
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Katharina Robichon
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Nikki Templeton
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Lisa Denny
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Afnan Al Abadey
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Dan Luo
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Thomas E. Prisinzano
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Anne C. La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Bronwyn M. Kivell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
10
|
Dworsky-Fried Z, Chadwick CI, Kerr BJ, Taylor AMW. Multiple Sclerosis and the Endogenous Opioid System. Front Neurosci 2021; 15:741503. [PMID: 34602975 PMCID: PMC8484329 DOI: 10.3389/fnins.2021.741503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/26/2021] [Indexed: 01/10/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by chronic inflammation, neuronal degeneration and demyelinating lesions within the central nervous system. The mechanisms that underlie the pathogenesis and progression of MS are not fully known and current therapies have limited efficacy. Preclinical investigations using the murine experimental autoimmune encephalomyelitis (EAE) model of MS, as well as clinical observations in patients with MS, provide converging lines of evidence implicating the endogenous opioid system in the pathogenesis of this disease. In recent years, it has become increasingly clear that endogenous opioid peptides, binding μ- (MOR), κ- (KOR) and δ-opioid receptors (DOR), function as immunomodulatory molecules within both the immune and nervous systems. The endogenous opioid system is also well known to play a role in the development of chronic pain and negative affect, both of which are common comorbidities in MS. As such, dysregulation of the opioid system may be a mechanism that contributes to the pathogenesis of MS and associated symptoms. Here, we review the evidence for a connection between the endogenous opioid system and MS. We further explore the mechanisms by which opioidergic signaling might contribute to the pathophysiology and symptomatology of MS.
Collapse
Affiliation(s)
- Zoë Dworsky-Fried
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Caylin I. Chadwick
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Bradley J. Kerr
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Anna M. W. Taylor
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Muratspahić E, Tomašević N, Nasrollahi-Shirazi S, Gattringer J, Emser FS, Freissmuth M, Gruber CW. Plant-Derived Cyclotides Modulate κ-Opioid Receptor Signaling. JOURNAL OF NATURAL PRODUCTS 2021; 84:2238-2248. [PMID: 34308635 PMCID: PMC8406418 DOI: 10.1021/acs.jnatprod.1c00301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 05/03/2023]
Abstract
Cyclotides are plant-derived disulfide-rich peptides comprising a cyclic cystine knot, which confers remarkable stability against thermal, proteolytic, and chemical degradation. They represent an emerging class of G protein-coupled receptor (GPCR) ligands. In this study, utilizing a screening approach of plant extracts and pharmacological analysis we identified cyclotides from Carapichea ipecacuanha to be ligands of the κ-opioid receptor (KOR), an attractive target for developing analgesics with reduced side effects and therapeutics for multiple sclerosis (MS). This prompted us to verify whether [T20K]kalata B1, a cyclotide in clinical development for the treatment of MS, is able to modulate KOR signaling. T20K bound to and fully activated KOR in the low μM range. We then explored the ability of T20K to allosterically modulate KOR. Co-incubation of T20K with KOR ligands resulted in positive allosteric modulation in functional cAMP assays by altering either the efficacy of dynorphin A1-13 or the potency and efficacy of U50,488 (a selective KOR agonist), respectively. In addition, T20K increased the basal response upon cotreatment with U50,488. In the bioluminescence resonance energy transfer assay T20K negatively modulated the efficacy of U50,488. This study identifies cyclotides capable of modulating KOR and highlights the potential of plant-derived peptides as an opportunity to develop cyclotide-based KOR modulators.
Collapse
Affiliation(s)
- Edin Muratspahić
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Nataša Tomašević
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Shahrooz Nasrollahi-Shirazi
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Gaston
H. Glock Research Laboratories for Exploratory Drug Development, Center
for Physiology and Pharmacology, Medical
University of Vienna, 1090 Vienna, Austria
| | - Jasmin Gattringer
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Fabiola Susanna Emser
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Freissmuth
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Gaston
H. Glock Research Laboratories for Exploratory Drug Development, Center
for Physiology and Pharmacology, Medical
University of Vienna, 1090 Vienna, Austria
| | - Christian W. Gruber
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
12
|
Reddy MVK, Rao KY, Anusha G, Kumar GM, Damu AG, Reddy KR, Shetti NP, Aminabhavi TM, Reddy PVG. In-vitro evaluation of antioxidant and anticholinesterase activities of novel pyridine, quinoxaline and s-triazine derivatives. ENVIRONMENTAL RESEARCH 2021; 199:111320. [PMID: 33991570 DOI: 10.1016/j.envres.2021.111320] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
Cholinesterase enzymes such as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) cause hydrolysis of acetylcholine (ACh), a neurotransmitter responsible for the cognitive functions of the brain such as acquiring knowledge and comprehension. Therefore, inhibition of these enzymes is an effective process to curb the progressive and fatal neurological Alzheimer's disease (AD). Herein, we explored the potential inhibitory activities of various pyridine, quinoxaline, and triazine derivatives (3a-k, 6a-j and 11a-h) against AChE and BuChE enzymes by following the modified Ellman's method. Further, anti-oxidant property of these libraries was monitored using DPPH (2,2'-diphenyl-1-picryl-hydrazylhydrate) radical scavenging analysis. From the studies, we identified that compounds 6e, 6f, 11b and 11f behaved as selective AChE inhibitors with IC50 values ranging from 7.23 to 10.35 μM. Further studies revealed good anti-oxidant activity by these compounds with IC50 values in the range of 14.80-27.22 μM. The kinetic studies of the active analogues demonstrated mixed-type of inhibition due to their interaction with both the catalytic active sites (CAS) and peripheral anionic sites (PAS) of the AChE. Additionally, molecular simulation in association with fluorescence and circular dichroism (CD) spectroscopic analyses explained strong affinities of inhibitors to bind with AChE enzyme at the physiological pH of 7.2. Binding constant values of 5.4 × 104, 4.3 × 104, 3.2 × 104 and 4.9 × 104 M-1 corresponding to free energy changes -5.593, -6.799, -6.605 and -8.104 KcalM-1 were obtained at 25 °C from fluorescence emission spectroscopic studies of 6e, 6f, 11b and 11f, respectively. Besides, CD spectroscopy deliberately explained the secondary structure of AChE partly unfolded upon binding with these dynamic molecules. Excellent in vitro profiles of distinct quinoxaline and triazine compounds highlighted them as the potential leads compared to pyridine derivatives, suggesting a path towards developing preventive or therapeutic targets to treat the Alzheimer's disease.
Collapse
Affiliation(s)
- M V K Reddy
- Department of Chemistry, Organic and Biomolecular Chemistry Laboratories, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - K Y Rao
- Department of Chemistry, Natural Products Laboratories, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - G Anusha
- Department of Chemistry, Organic and Biomolecular Chemistry Laboratories, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - G M Kumar
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - A G Damu
- Department of Chemistry, Natural Products Laboratories, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Nagaraj P Shetti
- School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580031, Karnataka, India
| | | | - Peddiahgari Vasu Govardhana Reddy
- Department of Chemistry, Organic and Biomolecular Chemistry Laboratories, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India.
| |
Collapse
|
13
|
Zaidi SA, Katritch V. Structural Characterization of KOR Inactive and Active States for 3D Pharmacology and Drug Discovery. Handb Exp Pharmacol 2021; 271:41-64. [PMID: 33945028 DOI: 10.1007/164_2021_461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The structure of the human kappa opioid receptor (KOR) in complex with the long-acting antagonist JDTic was solved crystallographically in 2012 and, along with structures of other opioid receptors, revolutionized our understanding of opioid system function and pharmacology. More recently, active state KOR structure was also determined, giving important insights into activation mechanisms of the receptor. In this review, we will discuss how the understanding of atomistic structures of KOR established a key platform for deciphering details of subtype and functional selectivity of KOR-targeting ligands and for discovery of new chemical probes with potentially beneficial pharmacological profiles.
Collapse
Affiliation(s)
- Saheem A Zaidi
- Department of Quantitative and Computational Biology, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA. .,Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Boziki M, Grigoriadis N, Papaefthymiou A, Doulberis M, Polyzos SA, Gavalas E, Deretzi G, Karafoulidou E, Kesidou E, Taloumtzis C, Theotokis P, Sofou E, Katsinelos P, Vardaka E, Fludaras I, Touloumtzi M, Koukoufiki A, Simeonidou C, Liatsos C, Kountouras J. The trimebutine effect on Helicobacter pylori-related gastrointestinal tract and brain disorders: A hypothesis. Neurochem Int 2021; 144:104938. [PMID: 33535070 DOI: 10.1016/j.neuint.2020.104938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
The localization of bacterial components and/or metabolites in the central nervous system may elicit neuroinflammation and/or neurodegeneration. Helicobacter pylori (a non-commensal symbiotic gastrointestinal pathogen) infection and its related metabolic syndrome have been implicated in the pathogenesis of gastrointestinal tract and central nervous system disorders, thus medications affecting the nervous system - gastrointestinal tract may shape the potential of Helicobacter pylori infection to trigger these pathologies. Helicobacter pylori associated metabolic syndrome, by impairing gut motility and promoting bacterial overgrowth and translocation, might lead to brain pathologies. Trimebutine maleate is a prokinetic drug that hastens gastric emptying, by inducing the release of gastrointestinal agents such as motilin and gastrin. Likewise, it appears to protect against inflammatory signal pathways, involved in inflammatory disorders including brain pathologies. Trimebutine maleate also acts as an antimicrobial agent and exerts opioid agonist effect. This study aimed to investigate a hypothesis regarding the recent advances in exploring the potential role of gastrointestinal tract microbiota dysbiosis-related metabolic syndrome and Helicobacter pylori in the pathogenesis of gastrointestinal tract and brain diseases. We hereby proposed a possible neuroprotective role for trimebutine maleate by altering the dynamics of the gut-brain axis interaction, thus suggesting an additional effect of trimebutine maleate on Helicobacter pylori eradication regimens against these pathologies.
Collapse
Affiliation(s)
- Marina Boziki
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Nikolaos Grigoriadis
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Apostolis Papaefthymiou
- Department of Gastroenterology, University Hospital of Larissa, Larissa, 41110, Greece; Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece; First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Michael Doulberis
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece; First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece; Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, Aarau, 5001, Switzerland
| | - Stergios A Polyzos
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece; First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Emmanuel Gavalas
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece
| | - Georgia Deretzi
- Department of Neurology, Papageorgiou General Hospital, Thessaloniki, 56429, Macedonia, Greece
| | - Eleni Karafoulidou
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Evangelia Kesidou
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Charilaos Taloumtzis
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece; 424 General Military Hospital of Thessaloniki, Department of Gastroenterology, Thessaloniki, 56429, Macedonia, Greece
| | - Paschalis Theotokis
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Electra Sofou
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Panagiotis Katsinelos
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece
| | - Elisabeth Vardaka
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece; Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, Alexander Campus, 574 00, Thessaloniki, Macedonia, Greece
| | - Ioannis Fludaras
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece
| | - Maria Touloumtzi
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece
| | - Argiro Koukoufiki
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece
| | - Constantina Simeonidou
- Laboratory of Experimental Physiology, Department of Physiology and Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54124, Macedonia, Greece
| | - Christos Liatsos
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece; Department of Gastroenterology, 401 Army General Hospital of Athens, Athens, 115 25, Greece
| | - Jannis Kountouras
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece.
| |
Collapse
|
15
|
Denny L, Al Abadey A, Robichon K, Templeton N, Prisinzano TE, Kivell BM, La Flamme AC. Nalfurafine reduces neuroinflammation and drives remyelination in models of CNS demyelinating disease. Clin Transl Immunology 2021; 10:e1234. [PMID: 33489124 PMCID: PMC7811802 DOI: 10.1002/cti2.1234] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
Objectives Multiple sclerosis (MS) is a neurodegenerative disease characterised by inflammation and damage to the myelin sheath, resulting in physical and cognitive disability. There is currently no cure for MS, and finding effective treatments to prevent disease progression has been challenging. Recent evidence suggests that activating kappa opioid receptors (KOR) has a beneficial effect on the progression of MS. Although many KOR agonists like U50,488 are not suitable for clinical use because of a poor side‐effect profile, nalfurafine is a potent, clinically used KOR agonist with a favorable side‐effect profile. Methods Using the experimental autoimmune encephalomyelitis (EAE) model, the effect of therapeutically administered nalfurafine or U50,488 on remyelination, CNS infiltration and peripheral immune responses were compared. Additionally, the cuprizone model was used to compare the effects on non‐immune demyelination. Results Nalfurafine enabled recovery and remyelination during EAE. Additionally, it was more effective than U50,488 and promoted disease reduction when administered after chronic demyelination. Blocking KOR with the antagonist, nor‐BNI, impaired full recovery by nalfurafine, indicating that nalfurafine mediates recovery from EAE in a KOR‐dependent fashion. Furthermore, nalfurafine treatment reduced CNS infiltration (especially CD4+ and CD8+ T cells) and promoted a more immunoregulatory environment by decreasing Th17 responses. Finally, nalfurafine was able to promote remyelination in the cuprizone demyelination model, supporting the direct effect on remyelination in the absence of peripheral immune cell invasion. Conclusions Overall, our findings support the potential of nalfurafine to promote recovery and remyelination and highlight its promise for clinical use in MS.
Collapse
Affiliation(s)
- Lisa Denny
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,Centre for Biodiscovery Victoria University of Wellington Wellington New Zealand
| | - Afnan Al Abadey
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,Centre for Biodiscovery Victoria University of Wellington Wellington New Zealand
| | - Katharina Robichon
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,Centre for Biodiscovery Victoria University of Wellington Wellington New Zealand
| | - Nikki Templeton
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,Centre for Biodiscovery Victoria University of Wellington Wellington New Zealand
| | - Thomas E Prisinzano
- Department of Pharmaceutical Sciences University of Kentucky Lexington KY 40536 USA
| | - Bronwyn M Kivell
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,Centre for Biodiscovery Victoria University of Wellington Wellington New Zealand
| | - Anne C La Flamme
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,Centre for Biodiscovery Victoria University of Wellington Wellington New Zealand.,Malaghan Institute of Medical Research Wellington New Zealand
| |
Collapse
|
16
|
Varshney V, Osborn J, Chaturvedi R, Shah V, Chakravarthy K. Advances in the interventional management of neuropathic pain. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:187. [PMID: 33569489 PMCID: PMC7867895 DOI: 10.21037/atm-20-6190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The management of neuropathic pain, defined as pain as a result of a lesion or disease in the somatosensory nervous system, continues to be researched and explored. As conventional methods demonstrate limited long-term efficacy, there is a significant need to discover therapies that offer both longitudinal and sustained management of this highly prevalent disease, which can be offered through interventional therapies. Tricyclic antidepressants (TCAs), gabapentinoids, lidocaine, serotonin norepinephrine reuptake inhibitors (SNRIs), and capsaicin have been shown to be the most efficacious pharmacologic agents for neuropathic pain relief. With respect to infusion therapies, the use of intravenous (IV) ketamine could be useful for complex regional pain syndrome, fibromyalgia, and traumatic spinal cord injury. Interventional approaches such as lumbar epidurals are a reasonable treatment choice for up to 3 months of pain relief for patients who failed to respond to conservative treatment, with a “B” strength of recommendation and moderate certainty. Neuroablative procedures like pulsed radiofrequency ablation work by delivering electrical field and heat bursts to targeted nerves or tissues without permanently damaging these structures, and have been recently explored for neuropathic pain relief. Alternatively, neuromodulation therapy is now recommended as the fourth line treatment of neuropathic pain after failed pharmacological therapy but prior to low dose opioids. Finally, the intrathecal delivery of various pharmacologic agents, such as quinoxaline-based kappa-opioid receptor agonists, can be utilized for neuropathic pain relief. In this review article, we aim to highlight advances and novel methods of interventional management of neuropathic pain.
Collapse
Affiliation(s)
- Vishal Varshney
- Department of Anesthesia, Providence Healthcare, Vancouver, BC, Canada.,Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Jill Osborn
- Department of Anesthesia, Providence Healthcare, Vancouver, BC, Canada.,Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Rahul Chaturvedi
- School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Vrajesh Shah
- School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Krishnan Chakravarthy
- Division of Pain Medicine, Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA.,VA San Diego Health Care, San Diego, CA, USA
| |
Collapse
|
17
|
Vieyra-Garcia PA, Wolf P. A deep dive into UV-based phototherapy: Mechanisms of action and emerging molecular targets in inflammation and cancer. Pharmacol Ther 2020; 222:107784. [PMID: 33316286 DOI: 10.1016/j.pharmthera.2020.107784] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
UV-based phototherapy (including psoralen plus UVA (PUVA), UVB and UVA1) has a long, successful history in the management of numerous cutaneous disorders. Photoresponsive diseases are etiologically diverse, but most involve disturbances in local (and occasionally systemic) inflammatory cells and/or abnormalities in keratinocytes that trigger inflammation. UV-based phototherapy works by regulating the inflammatory component and inducing apoptosis of pathogenic cells. This results in a fascinating and complex network of simultaneous events-immediate transcriptional changes in keratinocytes, immune cells, and pigment cells; the emergence of apoptotic bodies; and the trafficking of antigen-presenting cells in skin-that quickly transform the microenvironment of UV-exposed skin. Molecular elements in this system of UV recognition and response include chromophores, metabolic byproducts, innate immune receptors, neurotransmitters and mediators such as chemokines and cytokines, antimicrobial peptides, and platelet activating factor (PAF) and PAF-like molecules that simultaneously shape the immunomodulatory effects of UV and their interplay with the microbiota of the skin and beyond. Phototherapy's key effects-proapoptotic, immunomodulatory, antipruritic, antifibrotic, propigmentary, and pro-prebiotic-promote clinical improvement in various skin diseases such as psoriasis, atopic dermatitis (AD), graft-versus-host disease (GvHD), vitiligo, scleroderma, and cutaneous T-cell lymphoma (CTCL) as well as prevention of polymorphic light eruption (PLE). As understanding of phototherapy improves, new therapies (UV- and non-UV-based) are being developed that will modify regulatory T-cells (Treg), interact with (resident) memory T-cells and /or utilize agonists and antagonists as well as antibodies targeting soluble molecules such as cytokines and chemokines, transcription factors, and a variety of membrane-associated receptors.
Collapse
Affiliation(s)
- Pablo A Vieyra-Garcia
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| |
Collapse
|
18
|
Cifani C, Micioni Di Bonaventura E, Botticelli L, Del Bello F, Giorgioni G, Pavletić P, Piergentili A, Quaglia W, Bonifazi A, Schepmann D, Wünsch B, Vistoli G, Micioni Di Bonaventura MV. Novel Highly Potent and Selective Sigma1 Receptor Antagonists Effectively Block the Binge Eating Episode in Female Rats. ACS Chem Neurosci 2020; 11:3107-3116. [PMID: 32886484 PMCID: PMC8011929 DOI: 10.1021/acschemneuro.0c00456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
![]()
In
this paper, the benzo-cracking approach was applied to the potent
sigma1 (σ1) receptor antagonist 1 to
afford the less conformationally constrained 1,3-dioxane derivatives 2 and 3. To evaluate the effect of the increase
in the distance between the two hydrophobic structural elements that
flank the basic function, the cis and trans diastereomers of 4 and 5 were also prepared
and studied. Compounds 2 and 3 showed affinity
values at the σ1 receptor significantly higher than
that of the lead compound 1. In particular, 3 displayed unprecedented selectivity over the σ2 receptor, the phencyclidine site of the NMDA receptor, and opioid
receptor subtypes, as well as over the dopamine transporter. Docking
results supported the structure–activity relationship studies.
Due to its interesting biological profile, derivative 3, selected for an in vivo study in a validated preclinical
model of binge eating, was able to counteract the overeating of palatable
food only in binging rats, without affecting palatable food intake
in the control group and anxiety-like and depression-related behaviors
in female rats. This result strengthened the involvement of the σ1 receptor in the compulsive-like eating behavior and supported
the σ1 receptor as a promising target for the management
of eating disorders.
Collapse
Affiliation(s)
- Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | | | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Pegi Pavletić
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Alessandro Bonifazi
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milano, Italy
| | | |
Collapse
|
19
|
Tangherlini G, Börgel F, Schepmann D, Slocum S, Che T, Wagner S, Schwegmann K, Hermann S, Mykicki N, Loser K, Wünsch B. Synthesis and Pharmacological Evaluation of Fluorinated Quinoxaline-Based κ-Opioid Receptor (KOR) Agonists Designed for PET Studies. ChemMedChem 2020; 15:1834-1853. [PMID: 33448685 PMCID: PMC7589326 DOI: 10.1002/cmdc.202000502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 12/19/2022]
Abstract
κ-Opioid receptors (KORs) play a predominant role in pain alleviation, itching skin diseases, depression and neurodegenerative disorders such as multiple sclerosis. Therefore, imaging of KOR by a fluorinated PET tracer was envisaged. Two strategies were followed to introduce a F atom into the very potent class of cis,trans-configured perhydroquinoxalines. Whereas the synthesis of fluoroethyltriazole 2 has already been reported, fluoropyrrolidines 14 (1-[2-(3,4-dichlorophenyl)acetyl]-8-[(R)-3-fluoropyrrolidin-1-yl]-perhydroquinoxalines) were prepared by SN2 substitution of a cyclic sulfuric acid derivative with hydroxypyrrolidine and subsequent transformation of the OH moiety into a F substituent. Fluoropyrrolidines 14 showed similar low-nanomolar KOR affinity and selectivity to the corresponding pyrrolidines, but the corresponding alcohols were slightly less active. In the cAMP and β-arrestin assay, 14b (proton at the 4-position) exhibited similar KOR agonistic activity as U-50,488. The fluoro derivatives 14b and 14c (CO2CH3 at the 4-position) revealed KOR-mediated anti-inflammatory activity as CD11c and the IFN-γ production were reduced significantly in mouse and human dendritic cells. Compounds 14b and 14-c also displayed anti-inflammatory and immunomodulatory activity in mouse and human T cells. The PET tracer [18F]-2 was prepared by 1,3-dipolar cycloaddition. In vivo, [18F]-2 did not label KOR due to very fast elimination kinetics. Nucleophilic substitution of a mesylate precursor provided [18F]-14c. Unfortunately, defluorination of [18F]-14c occurred in vivo, which was analyzed in detail by in vitro studies.
Collapse
Affiliation(s)
- Giovanni Tangherlini
- Institut für Pharmazeutische und Medizinische ChemieUniversität MünsterCorrensstraße 4848149MünsterGermany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM)Westfälische Wilhelms-Universität Münster48149MünsterGermany
| | - Frederik Börgel
- Institut für Pharmazeutische und Medizinische ChemieUniversität MünsterCorrensstraße 4848149MünsterGermany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische ChemieUniversität MünsterCorrensstraße 4848149MünsterGermany
| | - Samuel Slocum
- Department of PharmacologyUniversity of North Carolina at Chapel Hill School of MedicineChapel HillNC 27599USA
| | - Tao Che
- Department of AnesthesiologyWashington University School of Medicine660 S. Euclid Ave.St. LouisMO 63110USA
| | - Stefan Wagner
- Department of Nuclear MedicineUniversity Hospital MünsterAlbert-Schweitzer-Campus 1, Building A148149MünsterGermany
| | - Katrin Schwegmann
- European Institute for Molecular Imaging (EIMI)University of MünsterWaldeyerstraße 1548149MünsterGermany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI)University of MünsterWaldeyerstraße 1548149MünsterGermany
| | - Nadine Mykicki
- Department of DermatologyUniversity of Münstervon-Esmarch-Str. 5848149MünsterGermany
| | - Karin Loser
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM)Westfälische Wilhelms-Universität Münster48149MünsterGermany
- Department of DermatologyUniversity of Münstervon-Esmarch-Str. 5848149MünsterGermany
- CRC1009 Breaking Barriers and CRC-TR 128 Multiple SclerosisUniversity of Münstervon-Esmarch-Str. 5848149MünsterGermany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische ChemieUniversität MünsterCorrensstraße 4848149MünsterGermany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM)Westfälische Wilhelms-Universität Münster48149MünsterGermany
| |
Collapse
|
20
|
Martin B, Schepmann D, Bernal FA, Schmidt TJ, Che T, Loser K, Wünsch B. Enantiomerically Pure Quinoline-Based κ-Opioid Receptor Agonists: Chemoenzymatic Synthesis and Pharmacological Evaluation. ChemMedChem 2020; 15:1408-1420. [PMID: 32492288 PMCID: PMC7496650 DOI: 10.1002/cmdc.202000300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 12/13/2022]
Abstract
Racemic K -opioid receptor (KOR) agonist 2-(3,4-dichlorophenyl)-1-[(4aRS,8SR,8aSR)-8-(pyrrolidin-1-yl)-3,4,4a,5,6,7,8,8a-octahydroquinolin-1(2H)-yl]ethan-1-one ((±)-4) was prepared in a diastereoselective synthesis. The first key step of the synthesis was the diastereoselective hydrogenation of the silyl ether of 1,2,3,4-tetrahydroquinoin-8-ol ((±)-9) to afford cis,cis-configured perhydroquinoline derivative (±)-10. Removal of the TBDMS protecting group led to a β-aminoalcohol that reacted with SO2 Cl2 to form an oxathiazolidine. Nucleophilic substitution with pyrrolidine resulted in the desired cis,trans-configured perhydroquinoline upon inversion of the configuration. In order to obtain enantiomerically pure KOR agonists 4 (99.8 % ee) and ent-4 (99.0 % ee), 1,2,3,4-tetrahydroquinolin-8-ols (R)-8 (99.1 % ee) and (S)-8 (98.4 % ee) were resolved by an enantioselective acetylation catalyzed by Amano lipase PS-IM. The absolute configuration was determined by CD spectroscopy. The 4aR,8S,8aS-configured enantiomer 4 showed sub-nanomolar KOR affinity (Ki =0.81 nM), which is more than 200 times higher than the KOR affinity of its enantiomer ent-4. In the cAMP assay and the Tango β-arrestin-2 recruitment assay, 4 behaved as a KOR agonist. Upon incubation of human macrophages, human dendritic cells, and mouse myeloid immune cells with 4, the number of cells expressing co-stimulatory receptor CD86 and proinflammatory cytokines interleukin 6 and tumor necrosis factor α was significantly reduced; this indicates the strong anti-inflammatory activity of 4. The anti-inflammatory effects correlated well with the KOR affinity: (4aR,8S,8aS)-4 was slightly more potent than the racemic mixture (±)-4, and the distomer ent-4 was almost inactive.
Collapse
Affiliation(s)
- Benedikt Martin
- Institut für Pharmazeutische und Medizinische Chemie der Universität MünsterCorrensstraße 4848149MünsterGermany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Universität MünsterCorrensstraße 4848149MünsterGermany
| | - Freddy A. Bernal
- Institut für Pharmazeutische Biologie und Phytochemie der Universität MünsterCorrensstraße 4848149MünsterGermany
| | - Thomas J. Schmidt
- Institut für Pharmazeutische Biologie und Phytochemie der Universität MünsterCorrensstraße 4848149MünsterGermany
| | - Tao Che
- Department of AnesthesiologyWashington University School of Medicine660 S. Euclid Ave.St. LouisMO 63110USA
| | - Karin Loser
- Department of DermatologyUniversity of Münstervon-Esmarch-Street 5848149MünsterGermany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM)Westfälische Wilhelms-Universität Münster48149MünsterGermany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Universität MünsterCorrensstraße 4848149MünsterGermany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM)Westfälische Wilhelms-Universität Münster48149MünsterGermany
| |
Collapse
|
21
|
Wu CC, Chang CY, Shih KC, Hung CJ, Wang YY, Lin SY, Chen WY, Kuan YH, Liao SL, Wang WY, Chen CJ. β-Funaltrexamine Displayed Anti-inflammatory and Neuroprotective Effects in Cells and Rat Model of Stroke. Int J Mol Sci 2020; 21:3866. [PMID: 32485857 PMCID: PMC7313048 DOI: 10.3390/ijms21113866] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic treatment involving opioids exacerbates both the risk and severity of ischemic stroke. We have provided experimental evidence showing the anti-inflammatory and neuroprotective effects of the μ opioid receptor antagonist β-funaltrexamine for neurodegenerative diseases in rat neuron/glia cultures and a rat model of cerebral Ischemia/Reperfusion (I/R) injury. Independent of in vitro Lipopolysaccharide (LPS)/interferon (IFN-γ)-stimulated neuron/glia cultures and in vivo cerebral I/R injury in Sprague-Dawley rats, β-funaltrexamine downregulated neuroinflammation and ameliorated neuronal degeneration. Alterations in microglia polarization favoring the classical activation state occurred in LPS/IFN-γ-stimulated neuron/glia cultures and cerebral I/R-injured cortical brains. β-funaltrexamine shifted the polarization of microglia towards the anti-inflammatory phenotype, as evidenced by decreased nitric oxide, tumor necrosis factor-α, interleukin-1β, and prostaglandin E2, along with increased CD163 and arginase 1. Mechanistic studies showed that the suppression of microglia pro-inflammatory polarization by β-funaltrexamine was accompanied by the reduction of NF-κB, AP-1, cyclic AMP response element-binding protein, along with signal transducers and activators of transcription transcriptional activities and associated upstream activators. The effects of β-funaltrexamine are closely linked with its action on neuroinflammation by switching microglia polarization from pro-inflammatory towards anti-inflammatory phenotypes. These findings provide new insights into the anti-inflammatory and neuroprotective mechanisms of β-funaltrexamine in combating neurodegenerative diseases, such as stroke.
Collapse
Affiliation(s)
- Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City 407, Taiwan; (C.-C.W.); (C.-J.H.)
- Department of Financial Engineering, Providence University, Taichung City 433, Taiwan
- Department of Data Science and Big Data Analytics, Providence University, Taichung City 433, Taiwan
| | - Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City 420, Taiwan;
| | - Kuei-Chung Shih
- Department of Computer Science and Information Management, Providence University, Taichung City 433, Taiwan;
| | - Chih-Jen Hung
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City 407, Taiwan; (C.-C.W.); (C.-J.H.)
| | - Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Institute of Clinical Medicine, National Yang Ming University, Taipei City 112, Taiwan;
| | - Shih-Yi Lin
- Institute of Clinical Medicine, National Yang Ming University, Taipei City 112, Taiwan;
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung City 402, Taiwan;
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung City 402, Taiwan;
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Wen-Yi Wang
- Department of Nursing, Hung Kuang University, Taichung City 433, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
| |
Collapse
|
22
|
Schepmann D, Neue C, Westphälinger S, Müller C, Bracher F, Lange C, Bednarski P, Almansa C, Friedland K, Räbiger V, Düfer M, Wünsch B. Pharmacological characterization of high-affinity σ 1 receptor ligands with spirocyclic thienopyran and thienofuran scaffold. J Pharm Pharmacol 2020; 72:236-248. [PMID: 31743446 DOI: 10.1111/jphp.13196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/21/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVES In this study, the pharmacological properties of six spirocyclic piperidines 1-6 showing very high σ1 receptor affinity (Ki = 0.2-16 nm) were investigated. METHODS In vitro receptor binding studies, retinal ganglion assay and in vivo capsaicin assay were used to determine the affinity, selectivity and activity. Influence on human tumour cell growth (cell lines A427, LCLC-103H, 5637 and DAN-G) was determined in different assays. The effect on the ergosterol and cholesterol biosynthesis was determined by GLC/MS analysis. KEY FINDINGS Receptor binding studies demonstrated high selectivity for the σ1 receptor. The increased Ca2+ influx mediated by 2 and the analgesic activity of 1, 4, 5 and 6 confirm σ1 receptor antagonistic activity. Inhibition of human tumour cell growth further supports the σ1 antagonistic effects. Treatment of A427 tumour cells with 2 led to cell detachment and cell degradation. Whereas the ergosterol biosynthesis was not affected, the sterol C14-reductase, a key enzyme in the cholesterol biosynthesis, was weakly inhibited. CONCLUSIONS Due to the high selectivity, off-target effects are not expected. The antiallodynic activity underlines the clinical potential of the spirocyclic piperidines for the treatment of neuropathic pain. Due to the antiproliferative activity, the spirocyclic σ1 antagonists represent promising antitumour agents.
Collapse
Affiliation(s)
- Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Münster, Germany
| | - Christina Neue
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Münster, Germany
| | - Stefanie Westphälinger
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Münster, Germany
| | - Christoph Müller
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Carsten Lange
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Patrick Bednarski
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | | | - Kristina Friedland
- Pharmacology and Toxicology, Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Vivien Räbiger
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Münster, Germany
| | - Martina Düfer
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
23
|
Katayama K, Arai Y, Murata K, Saito S, Nagata T, Takashima K, Yoshida A, Masumura M, Koda S, Okada H, Muto T. Discovery and structure-activity relationships of spiroindolines as novel inducers of oligodendrocyte progenitor cell differentiation. Bioorg Med Chem 2020; 28:115348. [PMID: 32046916 DOI: 10.1016/j.bmc.2020.115348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 12/21/2022]
Abstract
A novel series of spiroindoline derivatives was discovered for use as inducers of oligodendrocyte progenitor cell (OPC) differentiation, resulting from optimization of screening hit 1. Exploration of structure-activity relationships led to compound 18, which showed improved potency (rOPC EC50 = 0.0032 μM). Furthermore, oral administration of compound 18 significantly decreased clinical severity in an experimental autoimmune encephalomyelitis (EAE) model.
Collapse
Affiliation(s)
- Katsushi Katayama
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Yoshikazu Arai
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kenji Murata
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shoichi Saito
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tsutomu Nagata
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kouhei Takashima
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Ayako Yoshida
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Makoto Masumura
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shuichi Koda
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hiroyuki Okada
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tsuyoshi Muto
- Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
24
|
Deer TR, Malinowski M, Varshney V, Pope J. Choice of intrathecal drug in the treatment of neuropathic pain – new research and opinion. Expert Rev Clin Pharmacol 2019; 12:1003-1007. [DOI: 10.1080/17512433.2019.1659724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Timothy R. Deer
- Spine and Nerve Center of the Virginias, Charleston, WV, USA
| | | | - Vishal Varshney
- Pain Medicine, Department of Anesthesiology, University of Calgary, Calgary, AB, Canada
| | - Jason Pope
- Evolve Restorative Center, Santa Rosa, CA, USA
| |
Collapse
|