1
|
Covelli V, Buonocore M, Grimaldi M, Scrima M, Santoro A, Marino C, De Simone V, van Baarle L, Biscu F, Scala MC, Sala M, Matteoli G, D'Ursi AM, Rodriquez M. Peptides as modulators of FPPS enzyme: A multifaceted evaluation from the design to the mechanism of action. Eur J Med Chem 2024; 279:116871. [PMID: 39303514 DOI: 10.1016/j.ejmech.2024.116871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Bone diseases are medical conditions caused by the loss of bone homeostasis consecutive to increased osteoclast activity and diminished osteoblast activity. The mevalonate pathway (MVA) is crucial for maintaining this balance since it drives the post-translational prenylation of small guanosine triphosphatases (GTPases) proteins. Farnesyl pyrophosphate synthase (FPPS) plays a crucial role in the MVA pathway. Consequently, in the treatment of bone-related diseases, FPPS is the target of FDA-approved nitrogen-containing bisphosphonates (N-BPs), which have tropism mainly for bone tissue due to their poor penetration in soft tissues. The development of inhibitors targeting the FPPS enzyme has garnered significant interest in recent decades due to FPPS's role in the biosynthesis of cholesterol and other isoprenoids, which are implicated in cancer, bone diseases, and other conditions. In this study, we describe a multidisciplinary approach to designing novel FPPS inhibitors, combining computational modeling, biochemical assays, and biophysical techniques. A series of peptides and phosphopeptides were designed, synthesized, and evaluated for their ability to inhibit FPPS activity. Molecular docking was employed to predict the binding modes of these compounds to FPPS, while Surface Plasmon Resonance (SPR) and Nuclear Magnetic Resonance (NMR) spectroscopy experiments - based on Saturation Transfer Difference (STD) and an enzymatic NMR assay - were used to measure their binding affinities and kinetics. The biological activity of the most promising compounds was further assessed in cellular assays using murine colorectal cancer (CRC) cells. Additionally, genomics and metabolomics profiling allowed to unravel the possible mechanisms underlying the activity of the peptides, confirming their involvement in the modulation of the MVA pathway. Our findings demonstrate that the designed peptides and phosphopeptides exhibit significant inhibitory activity against FPPS and possess antiproliferative effects on CRC cells, suggesting their potential as therapeutic agents for cancer.
Collapse
Affiliation(s)
- Verdiana Covelli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131, Naples, Italy.
| | - Michela Buonocore
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy; Department of Chemical Sciences and Research Centre on Bioactive Peptides (CIRPEB), University of Naples Federico II, Strada Comunale Cintia, 80126, Naples, Italy.
| | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| | - Mario Scrima
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| | - Angelo Santoro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy; Department of Pharmacy, Scuola di Specializzazione in Farmacia Ospedaliera, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| | - Carmen Marino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| | - Veronica De Simone
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA)-Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat, 49, 3000, Leuven, Belgium.
| | - Lies van Baarle
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA)-Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat, 49, 3000, Leuven, Belgium.
| | - Francesca Biscu
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA)-Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat, 49, 3000, Leuven, Belgium.
| | - Maria Carmina Scala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| | - Marina Sala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| | - Gianluca Matteoli
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA)-Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat, 49, 3000, Leuven, Belgium.
| | - Anna Maria D'Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| | - Manuela Rodriquez
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131, Naples, Italy.
| |
Collapse
|
2
|
Zanocco-Marani T, Ricchiuto S, Caselli L, Lorenzi E, Lettucci E, Grande A. Local re-activation of osteoclast differentiation as a novel therapeutic strategy for osteonecrosis of the jaw. Front Endocrinol (Lausanne) 2024; 15:1447314. [PMID: 39099667 PMCID: PMC11294117 DOI: 10.3389/fendo.2024.1447314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024] Open
Affiliation(s)
| | - Silvia Ricchiuto
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorenzo Caselli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Eleonora Lorenzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elia Lettucci
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alexis Grande
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
3
|
Bangay G, Brauning FZ, Rosatella A, Díaz-Lanza AM, Domínguez-Martín EM, Goncalves B, Hussein AA, Efferth T, Rijo P. Anticancer diterpenes of African natural products: Mechanistic pathways and preclinical developments. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155634. [PMID: 38718637 DOI: 10.1016/j.phymed.2024.155634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/07/2024] [Accepted: 04/11/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND The African continent is home to five biodiversity hotspots, boasting an immense wealth of medicinal flora, fungi and marine life. Diterpenes extracted from such natural products have compelling cytotoxic activities that warrant further exploration for the drug market, particularly in cancer therapy, where mortality rates remain elevated worldwide. PURPOSE To demonstrate the potential of African natural products on the global stage for cancer therapy development and provide an in-depth analysis of the current literature on the activity of cancer cytotoxic diterpenes from African natural sources (to our knowledge, the first of its kind); not only to reveal the most promising candidates for clinical development, but to demonstrate the importance of preserving the threatened ecosystems of Africa. METHODS A comprehensive search by means of the PRISMA strategy was conducted using electronic databases, namely Web of Science, PubMed, Google Scholar and ScienceDirect. The search terms employed were 'diterpene & mechanism & cancer' and 'diterpene & clinical & cancer'. The selection process involved assessing titles in English, Portuguese and Spanish, adhering to predefined eligibility criteria. The timeframe for inclusion spanned from 2010 to 2023, resulting in 218 relevant papers. Chemical structures were visualized using ChemDraw 21.0, PubChem was utilized to search for CID numbers. RESULTS Despite being one of the richest biodiverse zones in the world, African natural products are proportionally underreported compared to Asian countries or otherwise. The diterpenes andrographolide (Andrographis paniculata), forskolin (Coleus forskohlii), ent-kauranes from Isodon spp., euphosorophane A (Euphorbia sororia), cafestol & kahweol (Coffea spp.), macrocylic jolkinol D derivatives (Euphorbia piscatoria) and cyathane erinacine A (Hericium erinaceus) illustrated the most encouraging data for further cancer therapy exploration and development. CONCLUSIONS Diterpenes from African natural products have the potential to be economically significant active pharmaceutical and medicinal ingredients, specifically focussed on anticancer therapeutics.
Collapse
Affiliation(s)
- Gabrielle Bangay
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Florencia Z Brauning
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Andreia Rosatella
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Ana María Díaz-Lanza
- Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Eva María Domínguez-Martín
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Bruno Goncalves
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Ahmed A Hussein
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Patricia Rijo
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
4
|
Zhou T, Wang J, Lin Z, Zhu H, Hu W, Zhang R, Chen X. Abietane diterpenoids with anti-neuroinflammation activity from Rosmarinus officinalis. Fitoterapia 2024; 174:105866. [PMID: 38378134 DOI: 10.1016/j.fitote.2024.105866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024]
Abstract
A total of 12 abietane diterpenoids were isolated and identified from Rosmarinus officinalis in which 6 ones were undescribed compounds. Their structures were illuminated by the HRESIMS, NMR, and ECD methods and named as rosmarinusin Q-V (1-6). It worthy mentioned that rosmarinusin Q was a novel abietane diterpenoid with 6/6/5 skeleton whose C ring was an α,β-unsaturated five-element ketone. All the compounds and four compounds (13-16) reported in our previous paper were evaluated their anti-neuroinflammatory activities on the LPS-induced BV2 cells. Compounds 5, 8, 9, 11, and 15 displayed significant anti-neuroinflammatory activity at the concentration of 10, 20, and 40 μM respectively. These results confirmed that R. officinalis contained abundant abietane diterpenoids and these compounds showed potential values of anti-neuroinflammation which could be developed as neuroprotective agents for the treatment of nerve damage caused by inflammation.
Collapse
Affiliation(s)
- Tang Zhou
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Ji Wang
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Zhiqi Lin
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Hongbo Zhu
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Weiyan Hu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, PR China
| | - Rongping Zhang
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Xinglong Chen
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, PR China.
| |
Collapse
|
5
|
FitzGerald EA, Vagrys D, Opassi G, Klein HF, Hamilton DJ, Talibov VO, Abramsson M, Moberg A, Lindgren MT, Holmgren C, Davis B, O'Brien P, Wijtmans M, Hubbard RE, de Esch IJP, Danielson UH. Multiplexed experimental strategies for fragment library screening against challenging drug targets using SPR biosensors. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:40-51. [PMID: 37714432 DOI: 10.1016/j.slasd.2023.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023]
Abstract
Surface plasmon resonance (SPR) biosensor methods are ideally suited for fragment-based lead discovery. However, generally applicable experimental procedures and detailed protocols are lacking, especially for structurally or physico-chemically challenging targets or when tool compounds are not available. Success depends on accounting for the features of both the target and the chemical library, purposely designing screening experiments for identification and validation of hits with desired specificity and mode-of-action, and availability of orthogonal methods capable of confirming fragment hits. The range of targets and libraries amenable to an SPR biosensor-based approach for identifying hits is considerably expanded by adopting multiplexed strategies, using multiple complementary surfaces or experimental conditions. Here we illustrate principles and multiplexed approaches for using flow-based SPR biosensor systems for screening fragment libraries of different sizes (90 and 1056 compounds) against a selection of challenging targets. It shows strategies for the identification of fragments interacting with 1) large and structurally dynamic targets, represented by acetyl choline binding protein (AChBP), a Cys-loop receptor ligand gated ion channel homologue, 2) targets in multi protein complexes, represented by lysine demethylase 1 and a corepressor (LSD1/CoREST), 3) structurally variable or unstable targets, represented by farnesyl pyrophosphate synthase (FPPS), 4) targets containing intrinsically disordered regions, represented by protein tyrosine phosphatase 1B (PTP1B), and 5) aggregation-prone proteins, represented by an engineered form of human tau (tau K18M). Practical considerations and procedures accounting for the characteristics of the proteins and libraries, and that increase robustness, sensitivity, throughput and versatility are highlighted. The study shows that the challenges for addressing these types of targets is not identification of potentially useful fragments per se, but establishing methods for their validation and evolution into leads.
Collapse
Affiliation(s)
- Edward A FitzGerald
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden; Beactica Therapeutics AB, Virdings allé 2, Uppsala, Sweden
| | - Darius Vagrys
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge, United Kingdom; YSBL, Department of Chemistry, University of York, York, United Kingdom
| | - Giulia Opassi
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Hanna F Klein
- Department of Chemistry, University of York, York, United Kingdom
| | - David J Hamilton
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | | | - Mia Abramsson
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | | | | | | | - Ben Davis
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge, United Kingdom
| | - Peter O'Brien
- Department of Chemistry, University of York, York, United Kingdom
| | - Maikel Wijtmans
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Roderick E Hubbard
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge, United Kingdom; YSBL, Department of Chemistry, University of York, York, United Kingdom
| | - Iwan J P de Esch
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - U Helena Danielson
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Ricchiuto S, Palumbo R, Lami F, Gavioli F, Caselli L, Montanari M, Zappavigna V, Anesi A, Zanocco-Marani T, Grande A. The Capacity of Magnesium to Induce Osteoclast Differentiation Is Greatly Enhanced by the Presence of Zoledronate. BIOLOGY 2023; 12:1297. [PMID: 37887007 PMCID: PMC10604702 DOI: 10.3390/biology12101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Bisphosphonates (BPs) are successfully used to cure a number of diseases characterized by a metabolic reduction in bone density, such as Osteoporosis, or a neoplastic destruction of bone tissue, such as multiple myeloma and bone metastases. These drugs exert their therapeutic effect by causing a systemic osteoclast depletion that, in turn, is responsible for reduced bone resorption. Unfortunately, in addition to their beneficial activity, BPs can also determine a frightening side effect known as osteonecrosis of the jaw (ONJ). It is generally believed that the inability of osteoclasts to dispose of inflamed/necrotic bone represents the main physiopathological aspect of ONJ. In principle, a therapeutic strategy able to elicit a local re-activation of osteoclast production could counteract ONJ and promote the healing of its lesions. Using an experimental model of Vitamin D3-dependent osteoclastogenesis, we have previously demonstrated that Magnesium is a powerful inducer of osteoclast differentiation. Here we show that, surprisingly, this effect is greatly enhanced by the presence of Zoledronate, chosen for our study because it is the most effective and dangerous of the BPs. This finding allows us to hypothesize that Magnesium might play an important role in the topical therapy of ONJ.
Collapse
Affiliation(s)
- Silvia Ricchiuto
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.R.)
| | - Rossella Palumbo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.R.)
| | - Francesca Lami
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.R.)
| | - Francesca Gavioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.R.)
| | - Lorenzo Caselli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.R.)
| | - Monica Montanari
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Vincenzo Zappavigna
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Alexandre Anesi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Tommaso Zanocco-Marani
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Alexis Grande
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.R.)
| |
Collapse
|
7
|
Manville RW, Baldwin SN, Eriksen EØ, Jepps TA, Abbott GW. Medicinal plant rosemary relaxes blood vessels by activating vascular smooth muscle KCNQ channels. FASEB J 2023; 37:e23125. [PMID: 37535015 PMCID: PMC10437472 DOI: 10.1096/fj.202301132r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
The evergreen plant rosemary (Salvia rosmarinus) has been employed medicinally for centuries as a memory aid, analgesic, spasmolytic, vasorelaxant and antihypertensive, with recent preclinical and clinical evidence rationalizing some applications. Voltage-gated potassium (Kv) channels in the KCNQ (Kv7) subfamily are highly influential in the nervous system, muscle and epithelia. KCNQ4 and KCNQ5 regulate vascular smooth muscle excitability and contractility and are implicated as antihypertensive drug targets. Here, we found that rosemary extract potentiates homomeric and heteromeric KCNQ4 and KCNQ5 activity, resulting in membrane hyperpolarization. Two rosemary diterpenes, carnosol and carnosic acid, underlie the effects and, like rosemary, are efficacious KCNQ-dependent vasorelaxants, quantified by myography in rat mesenteric arteries. Sex- and estrous cycle stage-dependence of the vasorelaxation matches sex- and estrous cycle stage-dependent KCNQ expression. The results uncover a molecular mechanism underlying rosemary vasorelaxant effects and identify new chemical spaces for KCNQ-dependent vasorelaxants.
Collapse
Affiliation(s)
- Rían W. Manville
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Samuel N. Baldwin
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emil Ørnberg Eriksen
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas A. Jepps
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Geoffrey W. Abbott
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
8
|
Manville RW, Hogenkamp D, Abbott GW. Ancient medicinal plant rosemary contains a highly efficacious and isoform-selective KCNQ potassium channel opener. Commun Biol 2023; 6:644. [PMID: 37322081 PMCID: PMC10272180 DOI: 10.1038/s42003-023-05021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
Voltage-gated potassium (Kv) channels in the KCNQ subfamily serve essential roles in the nervous system, heart, muscle and epithelia. Different heteromeric KCNQ complexes likely serve distinct functions in the brain but heteromer subtype-specific small molecules for research or therapy are lacking. Rosemary (Salvia rosmarinus) is an evergreen plant used medicinally for millennia for neurological and other disorders. Here, we report that rosemary extract is a highly efficacious opener of heteromeric KCNQ3/5 channels, with weak effects on KCNQ2/3. Using functional screening we find that carnosic acid, a phenolic diterpene from rosemary, is a potent, highly efficacious, PIP2 depletion-resistant KCNQ3 opener with lesser effects on KCNQ5 and none on KCNQ1 or KCNQ2. Carnosic acid is also highly selective for KCNQ3/5 over KCNQ2/3 heteromers. Medicinal chemistry, in silico docking, and mutagenesis reveal that carboxylate-guanidinium ionic bonding with an S4-5 linker arginine underlies the KCNQ3 opening proficiency of carnosic acid, the effects of which on KCNQ3/5 suggest unique therapeutic potential and a molecular basis for ancient neurotherapeutic use of rosemary.
Collapse
Affiliation(s)
- Rían W Manville
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Derk Hogenkamp
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
9
|
Aksenov NA, Aksenov DA, Ganusenko DD, Kurenkov IA, Aksenov AV. A Diastereoselective Assembly of Tetralone Derivatives via a Tandem Michael Reaction and ipso-Substitution of the Nitro Group. J Org Chem 2023; 88:5639-5651. [PMID: 37068176 DOI: 10.1021/acs.joc.3c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
A highly diastereoselective tandem reaction of 2'-nitrochalcones is reported, involving Michael addition and a subsequent ipso-substitution of the nitro group to produce 1-tetralones with two contiguous chiral centers. A related annulation reaction of 2'-nitrochalcones with potassium cyanide affording 1-indanones with a C3-quaternary chiral center is also demonstrated.
Collapse
Affiliation(s)
- Nicolai A Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russian Federation
| | - Dmitrii A Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russian Federation
| | - Daniil D Ganusenko
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russian Federation
| | - Igor A Kurenkov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russian Federation
| | - Alexander V Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russian Federation
| |
Collapse
|
10
|
Phaeosphamides A and B, Cytotoxic Cyclodecadepsipeptides from the Mangrove-Derived Fungus Phaeosphaeriopsis sp. S296. Mar Drugs 2022; 20:md20100591. [PMID: 36286415 PMCID: PMC9604837 DOI: 10.3390/md20100591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Chemical examination of the fermented broth of the mangrove-derived fungus Phaeosphaeriopsis sp. S296 resulted in the isolation of two new cyclodecadepsipeptides, namely phaeosphamides A (1) and B (2), as well as one known congener Sch 217048 (3). The structures of new metabolites, including absolute configurations, were established on the basis of extensive spectroscopic data analyses, chemical conversion, and Marfey’s method. The 2-hydroxy-3-methylpentanoic acid (Hmp) moiety and pipecolic acid (Pip) unit in structures were rarely discovered in nature. Interestingly, compounds 1–3 are examples of peptides discovered from the fungal genus Phaeosphaeriopsis for the first time. All identified compounds were evaluated for their cytotoxicity against five tumor cell lines of AGS, BEL-7402, HepG2, B16, and BIU87. Among them, compound 1 showed inhibitory activities against these tumor cell lines with IC50 values ranging from 5.14 to 66.38 μM. A further mechanistic investigation found that 1 arrested AGS cells in the G2 phase and induced their apoptosis in a dose-dependent manner.
Collapse
|
11
|
Kamal MA, Siddiqui I, Belgiovine C, Barbagallo M, Paleari V, Pistillo D, Chiabrando C, Schiarea S, Bottazzi B, Leone R, Avigni R, Migliore R, Spaggiari P, Gavazzi F, Capretti G, Marchesi F, Mantovani A, Zerbi A, Allavena P. Oncogenic KRAS-Induced Protein Signature in the Tumor Secretome Identifies Laminin-C2 and Pentraxin-3 as Useful Biomarkers for the Early Diagnosis of Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14112653. [PMID: 35681634 PMCID: PMC9179463 DOI: 10.3390/cancers14112653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
KRAS mutations characterize pancreatic cell transformation from the earliest stages of carcinogenesis, and are present in >95% of pancreatic ductal adenocarcinoma (PDAC) cases. In search of novel biomarkers for the early diagnosis of PDAC, we identified the proteins secreted by the normal human pancreatic cell line (HPDE) recently transformed by inducing the overexpression of the KRASG12V oncogene. We report a proteomic signature of KRAS-induced secreted proteins, which was confirmed in surgical tumor samples from resected PDAC patients. The putative diagnostic performance of three candidates, Laminin-C2 (LAMC2), Tenascin-C (TNC) and Pentraxin-3 (PTX3), was investigated by ELISA quantification in two cohorts of PDAC patients (n = 200) eligible for surgery. Circulating levels of LAMC2, TNC and PTX3 were significantly higher in PDAC patients compared to the healthy individuals (p < 0.0001). The Receiver Operating Characteristics (ROC) curve showed good sensitivity (1) and specificity (0.63 and 0.85) for LAMC2 and PTX3, respectively, but not for TNC, and patients with high levels of LAMC2 had significantly shorter overall survival (p = 0.0007). High levels of LAMC2 and PTX3 were detected at early stages (I−IIB) and in CA19-9-low PDAC patients. In conclusion, pancreatic tumors release LAMC2 and PTX3, which can be quantified in the systemic circulation, and may be useful in selecting patients for further diagnostic imaging.
Collapse
Affiliation(s)
- Mohammad Azhar Kamal
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Imran Siddiqui
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Cristina Belgiovine
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Marialuisa Barbagallo
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Valentina Paleari
- Biobank, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (V.P.); (D.P.)
| | - Daniela Pistillo
- Biobank, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (V.P.); (D.P.)
| | - Chiara Chiabrando
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (C.C.); (S.S.)
| | - Silvia Schiarea
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (C.C.); (S.S.)
| | - Barbara Bottazzi
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Roberto Leone
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Roberta Avigni
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Roberta Migliore
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Paola Spaggiari
- Department of Pathology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy;
| | - Francesca Gavazzi
- Pancreatic Surgery Unit, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (F.G.); (G.C.); (A.Z.)
| | - Giovanni Capretti
- Pancreatic Surgery Unit, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (F.G.); (G.C.); (A.Z.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Federica Marchesi
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Alberto Mantovani
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
- The William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Alessandro Zerbi
- Pancreatic Surgery Unit, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (F.G.); (G.C.); (A.Z.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Paola Allavena
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
- Correspondence:
| |
Collapse
|
12
|
Solans MM, Basistyi VS, Law JA, Bartfield NM, Frederich JH. Programmed Polyene Cyclization Enabled by Chromophore Disruption. J Am Chem Soc 2022; 144:6193-6199. [PMID: 35377634 PMCID: PMC10559755 DOI: 10.1021/jacs.2c02144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new polyene cyclization strategy exploiting β-ionyl derivatives was developed. Photoinduced deconjugation of the extended π-system within these chromophores unveils a contrathermodynamic polyene that engages in a Heck bicyclization to afford [4.4.1]-propellanes. This cascade improves upon the limited regioselectivity achieved using existing biomimetic tactics and tolerates both electron-rich and electron-deficient (hetero)aryl groups. The utility of this approach was demonstrated with the diverted total synthesis of taxodione and salviasperanol, two isomeric abietane diterpenes that were previously inaccessible along the same synthetic pathway.
Collapse
Affiliation(s)
- Megan M Solans
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Vitalii S Basistyi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - James A Law
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Noah M Bartfield
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - James H Frederich
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
13
|
Lešnik S, Bren U. Mechanistic Insights into Biological Activities of Polyphenolic Compounds from Rosemary Obtained by Inverse Molecular Docking. Foods 2021; 11:67. [PMID: 35010191 PMCID: PMC8750736 DOI: 10.3390/foods11010067] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 01/18/2023] Open
Abstract
Rosemary (Rosmarinus officinalis L.) represents a medicinal plant known for its various health-promoting properties. Its extracts and essential oils exhibit antioxidative, anti-inflammatory, anticarcinogenic, and antimicrobial activities. The main compounds responsible for these effects are the diterpenes carnosic acid, carnosol, and rosmanol, as well as the phenolic acid ester rosmarinic acid. However, surprisingly little is known about the molecular mechanisms responsible for the pharmacological activities of rosemary and its compounds. To discern these mechanisms, we performed a large-scale inverse molecular docking study to identify their potential protein targets. Listed compounds were separately docked into predicted binding sites of all non-redundant holo proteins from the Protein Data Bank and those with the top scores were further examined. We focused on proteins directly related to human health, including human and mammalian proteins as well as proteins from pathogenic bacteria, viruses, and parasites. The observed interactions of rosemary compounds indeed confirm the beforementioned activities, whereas we also identified their potential for anticoagulant and antiparasitic actions. The obtained results were carefully checked against the existing experimental findings from the scientific literature as well as further validated using both redocking procedures and retrospective metrics.
Collapse
Affiliation(s)
- Samo Lešnik
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia;
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia;
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
| |
Collapse
|
14
|
Johnson LK, Niman SW, Vrubliauskas D, Vanderwal CD. Stereocontrolled Synthesis and Structural Revision of Plebeianiol A. Org Lett 2021; 23:9569-9573. [PMID: 34851132 PMCID: PMC8766249 DOI: 10.1021/acs.orglett.1c03791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We report the structural revision via synthesis of the abietane diterpenoid plebeianiol A. The synthesis was accomplished by a short and convergent sequence that featured our previously established cobalt-catalyzed hydrogen-atom-transfer-induced radical bicyclization. We further connected plebeianiol A as the likely biogenetic precursor to another previously reported ether-bridged abietane. Finally, we demonstrated that the key cyclization event is efficient with the A-ring diol protected as two different cyclic acetals or in unprotected form.
Collapse
Affiliation(s)
- Lucas K. Johnson
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, CA 92697-2025, USA
| | - Scott W. Niman
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, CA 92697-2025, USA
| | - Darius Vrubliauskas
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, CA 92697-2025, USA
| | - Christopher D. Vanderwal
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, CA 92697-2025, USA
- Department of Pharmaceutical Sciences, 101 Theory #100, University of California, Irvine, CA 92617, USA
| |
Collapse
|
15
|
Towards an Improvement of Anticancer Activity of Benzyl Adenosine Analogs. Molecules 2021; 26:molecules26237146. [PMID: 34885721 PMCID: PMC8658949 DOI: 10.3390/molecules26237146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
N6-Isopentenyladenosine (i6A) is a naturally occurring modified nucleoside displaying in vitro and in vivo antiproliferative and pro-apoptotic properties. In our previous studies, including an in silico inverse virtual screening, NMR experiments and in vitro enzymatic assays, we demonstrated that i6A targeted farnesyl pyrophosphate synthase (FPPS), a key enzyme involved in the mevalonate (MVA) pathway and prenylation of downstream proteins, which are aberrant in several cancers. Following our interest in the anticancer effects of FPPS inhibition, we developed a panel of i6A derivatives bearing bulky aromatic moieties in the N6 position of adenosine. With the aim of clarifying molecular action of N6-benzyladenosine analogs on the FPPS enzyme inhibition and cellular toxicity and proliferation, herein we report the evaluation of the N6-benzyladenosine derivatives’ (compounds 2a–m) effects on cell viability and proliferation on HCT116, DLD-1 (human) and MC38 (murine) colorectal cancer cells (CRC). We found that compounds 2, 2a and 2c showed a persistent antiproliferative effect on human CRC lines and compound 2f exerted a significant effect in impairing the prenylation of RAS and Rap-1A proteins, confirming that the antitumor activity of 2f was related to the ability to inhibit FPPS activity.
Collapse
|
16
|
Guo Y, Xiao Y, Guo H, Zhu H, Chen D, Wang J, Deng J, Lan J, Liu X, Zhang Q, Bai Y. The anti-dysenteric drug fraxetin enhances anti-tumor efficacy of gemcitabine and suppresses pancreatic cancer development by antagonizing STAT3 activation. Aging (Albany NY) 2021; 13:18545-18563. [PMID: 34320467 PMCID: PMC8351699 DOI: 10.18632/aging.203301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Fraxetin, a natural product isolated and purified from the bark of Fraxinus bungeana A.DC., has anti-inflammatory, analgesic, and anti-dysenteric activities. This study aimed to investigate the anti-tumor effects of fraxetin in pancreatic ductal adenocarcinoma (PDA). The effects of fraxetin on the malignant biological behavior of PDA were evaluated. Besides, the effects of fraxetin on the sensitivity of PCCs to gemcitabine, angiogenesis, the epithelial-mesenchymal transition (EMT), glucose metabolism, reactive oxygen species (ROS), and STAT3 activity were analyzed. By reversing the EMT, fraxetin suppressed proliferation, invasion, and migration, and induced mitochondrial-dependent apoptosis in PCCs. Also, treatment with fraxetin inhibited PDA growth and metastasis in nude mouse models. Furthermore, fraxetin made PCCs more sensitive to the chemotherapy drug gemcitabine. Mechanically, fraxetin treatment suppressed oncogenic KRAS-triggered STAT3 activation in PCCs and PDA tissues. Fraxetin shows significant interactions with STAT3 Src Homology 2 (SH2) domain residues, thereby preventing its homo-dimer formation, which then blocks the activation of downstream signal pathways. The anti-tumor activity of fraxetin in PDA was functionally rescued by a STAT3 activator colivelin. As a result, fraxetin hindered hypoxia-induced angiogenesis by decreasing HIF-1α and VEGFA expression, controlled glucose metabolism by reducing GLUT1 expression, inhibited the EMT by blocking the Slug-E-cadherin axis, and drove ROS-mediated apoptosis by regulating the STAT3-Ref1 axis. In conclusion, fraxetin enhances the anti-tumor activity of gemcitabine and suppresses pancreatic cancer development by antagonizing STAT3 activation.
Collapse
Affiliation(s)
- Yangyang Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yanyi Xiao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hangcheng Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hengyue Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Dong Chen
- The Sixth People’s Hospital of Wenzhou City, Wenzhou 325000, China
| | - Jilong Wang
- Engineering Research Center of Clinical Functional Materials and Diagnosis and Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy Sciences, Wenzhou 325000, China
| | - Junjie Deng
- Engineering Research Center of Clinical Functional Materials and Diagnosis and Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy Sciences, Wenzhou 325000, China
| | - Junjie Lan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361000, China
| | - Xiaodong Liu
- Platform for Radiation Protection and Emergency Preparedness, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325000, China
- Center for Health Assessment, Wenzhou Medical University, Wenzhou 325000, China
| | - Qiyu Zhang
- Department for Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Platform for Radiation Protection and Emergency Preparedness, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325000, China
- Department for Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
17
|
Ershov P, Kaluzhskiy L, Mezentsev Y, Yablokov E, Gnedenko O, Ivanov A. Enzymes in the Cholesterol Synthesis Pathway: Interactomics in the Cancer Context. Biomedicines 2021; 9:biomedicines9080895. [PMID: 34440098 PMCID: PMC8389681 DOI: 10.3390/biomedicines9080895] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
A global protein interactome ensures the maintenance of regulatory, signaling and structural processes in cells, but at the same time, aberrations in the repertoire of protein-protein interactions usually cause a disease onset. Many metabolic enzymes catalyze multistage transformation of cholesterol precursors in the cholesterol biosynthesis pathway. Cancer-associated deregulation of these enzymes through various molecular mechanisms results in pathological cholesterol accumulation (its precursors) which can be disease risk factors. This work is aimed at systematization and bioinformatic analysis of the available interactomics data on seventeen enzymes in the cholesterol pathway, encoded by HMGCR, MVK, PMVK, MVD, FDPS, FDFT1, SQLE, LSS, DHCR24, CYP51A1, TM7SF2, MSMO1, NSDHL, HSD17B7, EBP, SC5D, DHCR7 genes. The spectrum of 165 unique and 21 common protein partners that physically interact with target enzymes was selected from several interatomic resources. Among them there were 47 modifying proteins from different protein kinases/phosphatases and ubiquitin-protein ligases/deubiquitinases families. A literature search, enrichment and gene co-expression analysis showed that about a quarter of the identified protein partners was associated with cancer hallmarks and over-represented in cancer pathways. Our results allow to update the current fundamental view on protein-protein interactions and regulatory aspects of the cholesterol synthesis enzymes and annotate of their sub-interactomes in term of possible involvement in cancers that will contribute to prioritization of protein targets for future drug development.
Collapse
|
18
|
Cao W, Liu T, Yang S, Liu M, Pan Z, Zhou Y, Deng X. Efficient Synthesis of Icetexane Diterpenes and Apoptosis Inducing Effect by Upregulating BiP-ATF4-CHOP Axis in Colorectal Cells. JOURNAL OF NATURAL PRODUCTS 2021; 84:2012-2019. [PMID: 34170142 DOI: 10.1021/acs.jnatprod.1c00310] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We herein present an efficient and robust synthetic strategy toward 12 icetexane diterpenes and their derivatives, which features a PPh3/DIAD-mediated rearrangement of the reduced carnosic acid derivative (2) to give (-)-barbatusol (3) in a regioselective and scalable way. MTT assay led to the identification of (+)-grandione (11) and (-)-demethylsalvicanol o-quinone derivative (9) as highly cytotoxic agents against HCT-116, COLO-205, and Caco-2 cells. Interestingly, (+)-grandione (11) induced the HCT-116 cell apoptosis in a dose-dependent manner, which might be attributed to the upregulation of the BiP-ATF4-CHOP axis and promotion of the BiP-ATF4 interactions, thereby leading to endoplasmic reticulum (ER) stress. This work not only paves an efficient and scalable pathway to access icetexane diterpenes but also provides new leads for the development of anticolorectal agents with a unique mode of action.
Collapse
Affiliation(s)
- Wei Cao
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410013 Hunan, China
| | - Tingting Liu
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410013 Hunan, China
| | - Shuting Yang
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410013 Hunan, China
| | - Moude Liu
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410013 Hunan, China
| | - Zhenghong Pan
- Guangxi Key laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Yingjun Zhou
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410013 Hunan, China
- Hunan Key laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013 Hunan, China
| | - Xu Deng
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410013 Hunan, China
- Hunan Key laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013 Hunan, China
| |
Collapse
|
19
|
Song J, Malwal SR, Baig N, Schurig-Briccio LA, Gao Z, Vaidya GS, Yang K, Abutaleb NS, Seleem MN, Gennis RB, Pogorelov TV, Oldfield E, Feng X. Discovery of Prenyltransferase Inhibitors with In Vitro and In Vivo Antibacterial Activity. ACS Infect Dis 2020; 6:2979-2993. [PMID: 33085463 DOI: 10.1021/acsinfecdis.0c00472] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cis-prenyltransferases such as undecaprenyl diphosphate synthase (UPPS) and decaprenyl diphosphate synthase (DPPS) are essential enzymes in bacteria and are involved in cell wall biosynthesis. UPPS and DPPS are absent in the human genome, so they are of interest as targets for antibiotic development. Here, we screened a library of 750 compounds from National Cancer Institute Diversity Set V for the inhibition of Mycobacterium tuberculosis DPPS and found 17 hits, and then IC50s were determined using dose-response curves. Compounds were tested for growth inhibition against a panel of bacteria, for in vivo activity in a Staphylococcus aureus/Caenorhabditis elegans model, and for mammalian cell toxicity. The most active DPPS inhibitor was the dicarboxylic acid redoxal (compound 10), which also inhibited undecaprenyl diphosphate synthase (UPPS) as well as farnesyl diphosphate synthase. 10 was active against S. aureus, Clostridiodes difficile, Bacillus anthracis Sterne, and Bacillus subtilis, and there was a 3.4-fold increase in IC50 on addition of a rescue agent, undecaprenyl monophosphate. We found that 10 was also a weak protonophore uncoupler, leading to the idea that it targets both isoprenoid biosynthesis and the proton motive force. In an S. aureus/C. elegans in vivo model, 10 reduced the S. aureus burden 3 times more effectively than did ampicillin.
Collapse
Affiliation(s)
- Junfeng Song
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and Department of Chemistry, Hunan University, Changsha 410082, China
| | | | | | | | | | | | - Kailing Yang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and Department of Chemistry, Hunan University, Changsha 410082, China
| | - Nader S. Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mohamed N. Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | | | | | | | - Xinxin Feng
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and Department of Chemistry, Hunan University, Changsha 410082, China
| |
Collapse
|