1
|
Rebollar-Ramos D, Chen SN, Lankin DC, Ray GJ, Kleps RA, Korhonen SP, Lehtivarjo J, Niemitz M, Pauli GF. Identification by HSQC and quantification by qHNMR innovate pharmaceutical amino acid analysis. J Pharm Biomed Anal 2024; 251:116390. [PMID: 39190935 DOI: 10.1016/j.jpba.2024.116390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
This study introduces a new NMR-based methodology for identification (ID) and quantification (purity, strength) assays of widely used amino acids. A detailed analysis of four amino acids and their available salts was performed with both a high-field (600 MHz) and a benchtop (60 MHz) NMR instrument. To assess sensitivity constraints, samples for 1H NMR analysis were initially prepared using only 10 mg of analyte and 1 mg of maleic acid (MA) as an internal calibrant (IC) and secondary chemical shift reference. The characteristic dispersion of the peak patterns indicating the presence or absence of a counterion (mostly chloride) was conserved at both high and low-field strength instruments, showing that the underlying NMR spectroscopic parameters, i.e., chemical shifts and coupling constants, are independent of the magnetic field strength. However, as the verbal descriptions of 1H NMR spectra are challenging in the context of reference materials and pharmaceutical monographs, an alternative method for the identification (ID) of amino acids is proposed that uses 13C NMR patterns from multiplicity-edited HSQC (ed-HSQC), which are both compound-specific and straightforward to document. For ed-HSQC measurements, the sample amount was increased to 30 mg of the analyte and several acquisition parameters were tested, including t1 increments used in the pulse program, number of scans, and repetition time. Excellent congruence with deviations <0.1 ppm was achieved for the 13C chemical shifts from 1D 13C NMR spectra (150 MHz) vs. those extracted from ed-HSQC (15 MHz traces). Finally, all samples of amino acid candidate reference materials were quantified by 1H qNMR (abs-qHNMR) at both 600 and 60 MHz. At high field, both IC and relative quantitations were performed, however, with the low-field instrument, only the IC method was used. The results showed that the analyzed reference material candidates were generally highly pure compounds. To achieve adequately low levels of uncertainty for such high-purity materials, the sample amounts were increased to 100 mg of analytes and 10 mg of the IC and replicates were analyzed for selected amino acids.
Collapse
Affiliation(s)
- Daniela Rebollar-Ramos
- Pharmacognosy Institute & Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, IL 60612, United States
| | - Shao-Nong Chen
- Pharmacognosy Institute & Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, IL 60612, United States
| | - David C Lankin
- Pharmacognosy Institute & Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, IL 60612, United States
| | - G Joseph Ray
- Pharmacognosy Institute & Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, IL 60612, United States
| | - Robert A Kleps
- Pharmacognosy Institute & Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, IL 60612, United States
| | | | | | | | - Guido F Pauli
- Pharmacognosy Institute & Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, IL 60612, United States.
| |
Collapse
|
2
|
Kushwaha M, Shankar S, Goel D, Singh S, Rahul J, Rachna K, Singh J. Microplastics pollution in the marine environment: A review of sources, impacts and mitigation. MARINE POLLUTION BULLETIN 2024; 209:117109. [PMID: 39413476 DOI: 10.1016/j.marpolbul.2024.117109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/22/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024]
Abstract
Over the past few years, microplastics (MPs) pollution in the marine environment has emerged as a significant environmental concern. Poor management practices lead to millions of tons of plastic waste entering oceans annually, primarily from land-based sources like mismanaged waste, urban runoff, and industrial activities. MPs pollution in marine environments poses a significant threat to ecosystems and human health, as it adsorbs pollutants, heavy metals, and leaches additives such as plasticizers and flame retardants, thus contributing to chemical pollution. The review article provides a comprehensive overview of MPs pollution, its sources, and impacts on marine environments, including human health, detection techniques, and strategies for mitigating microplastic contamination in marine environments. The paper provides current information on microplastic pollution in marine environments, offering insights for researchers, policymakers, and the public, as well as promoting sustainable practices to protect the environment.
Collapse
Affiliation(s)
- Manzari Kushwaha
- Department of Applied Chemistry, University School of Vocational Studies and Applied Sciences, Gautam Buddha University (A State University), Greater Noida-201312, Uttar Pradesh, India
| | - Shiv Shankar
- Department of Environmental Science, University School of Vocational Studies and Applied Sciences, Gautam Buddha University (A State University), Greater Noida-201312, Uttar Pradesh, India.
| | - Divya Goel
- Department of Environmental Science, University School of Vocational Studies and Applied Sciences, Gautam Buddha University (A State University), Greater Noida-201312, Uttar Pradesh, India
| | - Shailja Singh
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow - 226025, India
| | - Jitin Rahul
- Sharda School of Basic Sciences & Research, Department of Environmental Sciences, Sharda University, Greater Noida-201310, Uttar Pradesh, India
| | - Km Rachna
- Sharda School of Basic Sciences & Research, Department of Environmental Sciences, Sharda University, Greater Noida-201310, Uttar Pradesh, India
| | - Jaspal Singh
- Department of Environmental Science, Bareilly College, Bareilly- 243001, Uttar Pradesh, India
| |
Collapse
|
3
|
Hu ZX, Li SR, Xia QJ, Wang T, Voglmeir J, Widmalm G, Liu L. Enzymatic synthesis of N-formylated sialosides via a five-enzyme cascade. Org Biomol Chem 2024; 22:7485-7491. [PMID: 39189395 DOI: 10.1039/d4ob00874j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Here we report an enzymatic approach to synthesize N-formylneuraminic acid (Neu5Fo) containing sialosides, through a five-enzyme cascade. This method stands as an alternative to traditional chemical syntheses, aiming for precision and efficiency in generating sialosides with a tailored N-formyl group generated directly from formic acid. The newly synthesized Neu5Fo was characterized using various NMR techniques revealing a conformational equilibrium at the amide bond of the formyl group in slow exchange on the NMR time scale with a trans : cis ratio of ∼2 : 1. This work not only suggests potential for exploring the biological roles of sialosides but also points to the possibility of developing novel therapeutic agents.
Collapse
Affiliation(s)
- Zi-Xuan Hu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| | - Shu-Rui Li
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| | - Qing-Jun Xia
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| | - Ting Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden.
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| |
Collapse
|
4
|
Han Z, Zhao J, Tang Y, Wang Y. Machine learning integration of multi-modal analytical data for distinguishing abnormal botanical drugs and its application in Guhong injection. Chin Med 2024; 19:2. [PMID: 38163913 PMCID: PMC10759515 DOI: 10.1186/s13020-023-00873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Determination of batch-to-batch consistency of botanical drugs (BDs) has long been the bottleneck in quality evaluation primarily due to the chemical diversity inherent in BDs. This diversity presents an obstacle to achieving comprehensive standardization for BDs. Basically, a single detection mode likely leads to substandard analysis results as different classes of structures always possess distinct physicochemical properties. Whereas representing a workaround for multi-target standardization using multi-modal data, data processing for information from diverse sources is of great importance for the accuracy of classification. METHODS In this research, multi-modal data of 78 batches of Guhong injections (GHIs) consisting of 52 normal and 26 abnormal samples were acquired by employing HPLC-UV, -ELSD, and quantitative 1H NMR (q1HNMR), of which data obtained was then individually used for Pearson correlation coefficient (PCC) calculation and partial least square-discriminant analysis (PLS-DA). Then, a mid-level data fusion method with data containing qualitative and quantitative information to establish a support vector machine (SVM) model for evaluating the batch-to-batch consistency of GHIs. RESULTS The resulting outcomes showed that datasets from one detection mode (e.g., data from UV detectors only) are inadequate for accurately assessing the product's quality. The mid-level data fusion strategy for the quality evaluation enabled the classification of normal and abnormal batches of GHIs at 100% accuracy. CONCLUSIONS A quality assessment strategy was successfully developed by leveraging a mid-level data fusion method for the batch-to-batch consistency evaluation of GHIs. This study highlights the promising utility of data from different detection modes for the quality evaluation of BDs. It also reminds manufacturers and researchers about the advantages of involving data fusion to handle multi-modal data. Especially when done jointly, this strategy can significantly increase the accuracy of product classification and serve as a capable tool for studies of other BDs.
Collapse
Affiliation(s)
- Zhu Han
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiandong Zhao
- Tonghua Guhong Pharmaceutical Co., Ltd., 5099 Jianguo Road, Meihekou, 135099, China
| | - Yu Tang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China.
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China.
| |
Collapse
|
5
|
Hitzman R, Malca-Garcia GR, Howell C, Park HY, Friesen JB, Dong H, Dunlap T, McAlpine JB, Vollmer G, Bosland MC, Nikolić D, Lankin DC, Chen SN, Bolton JL, Pauli GF, Dietz BM. DESIGNER fraction concept unmasks minor bioactive constituents in red clover (Trifolium pratense L.). PHYTOCHEMISTRY 2023; 214:113789. [PMID: 37482264 PMCID: PMC10528883 DOI: 10.1016/j.phytochem.2023.113789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023]
Abstract
In botanical extracts, highly abundant constituents can mask or dilute the effects of other, and often, more relevant biologically active compounds. To facilitate the rational chemical and biological assessment of these natural products with wide usage in human health, we introduced the DESIGNER approach of Depleting and Enriching Selective Ingredients to Generate Normalized Extract Resources. The present study applied this concept to clinical Red Clover Extract (RCE) and combined phytochemical and biological methodology to help rationalize the utility of RCE supplements for symptom management in postmenopausal women. Previous work has demonstrated that RCE reduces estrogen detoxification pathways in breast cancer cells (MCF-7) and, thus, may serve to negatively affect estrogen metabolism-induced chemical carcinogenesis. Clinical RCE contains ca. 30% of biochanin A and formononetin, which potentially mask activities of less abundant compounds. These two isoflavonoids are aryl hydrocarbon receptor (AhR) agonists that activate P450 1A1, responsible for estrogen detoxification, and P450 1B1, producing genotoxic estrogen metabolites in female breast cells. Clinical RCE also contains the potent phytoestrogen, genistein, that downregulates P450 1A1, thereby reducing estrogen detoxification. To identify less abundant bioactive constituents, countercurrent separation (CCS) of a clinical RCE yielded selective lipophilic to hydrophilic metabolites in six enriched DESIGNER fractions (DFs 01-06). Unlike solid-phase chromatography, CCS prevented any potential loss of minor constituents or residual complexity (RC) and enabled the polarity-based enrichment of certain constituents. Systematic analysis of estrogen detoxification pathways (ERα-degradation, AhR activation, CYP1A1/CYP1B1 induction and activity) of the DFs uncovered masked bioactivity of minor/less abundant constituents including irilone. These data will allow the optimization of RCE with respect to estrogen detoxification properties. The DFs revealed distinct biological activities between less abundant bioactives. The present results can inspire future carefully designed extracts with phytochemical profiles that are optimized to increase in estrogen detoxification pathways and, thereby, promote resilience in women with high-risk for breast cancer. The DESIGNER approach helps to establish links between complex chemical makeup, botanical safety and possible efficacy parameters, yields candidate DFs for (pre)clinical studies, and reveals the contribution of minor phytoconstituents to the overall safety and bioactivity of botanicals, such as resilience promoting activities relevant to women's health.
Collapse
Affiliation(s)
- Ryan Hitzman
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Gonzalo R Malca-Garcia
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Caitlin Howell
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Hyun-Young Park
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - J Brent Friesen
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; Physical Sciences Department, Rosary College of Arts and Sciences, Dominican University, 7900 Division Street, River Forest, IL, 60305, USA
| | - Huali Dong
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Tareisha Dunlap
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - James B McAlpine
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Guenter Vollmer
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; Technische Universität Dresden, Faculty of Biology, Chair for Molecular Cell Physiology & Endocrinology, D-01062, Dresden, Germany
| | - Maarten C Bosland
- Department of Pathology, College of Medicine, University of Illinois Chicago, 840 S. Wood Street, Chicago, IL, 60612, USA
| | - Dejan Nikolić
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - David C Lankin
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Shao-Nong Chen
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Judy L Bolton
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Guido F Pauli
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA.
| | - Birgit M Dietz
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA.
| |
Collapse
|
6
|
Tang Y, Han Z, Zhang H, Che L, Liao G, Peng J, Lin Y, Wang Y. Characterization of Calculus bovis by principal component analysis assisted qHNMR profiling to distinguish nefarious frauds. J Pharm Biomed Anal 2023; 228:115320. [PMID: 36871364 DOI: 10.1016/j.jpba.2023.115320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
A new approach is developed for the reliable classification of Calculus bovis along with the identification of willfully contaminated C. bovis species and the quantification of unclaimed adulterants. Guided by a principal component analysis, NMR data mining achieved a near-holistic chemical characterization of three types of authenticated C. bovis, including natural C. bovis (NCB), in vitro cultured C. bovis (Ivt-CCB), and artificial C. bovis (ACB). In addition, species-specific markers used for quality evaluation and species classification were confirmed. That is, the content of taurine in NCB is near negligible, while choline and hyodeoxycholic acid are characteristic for identifying Ivt-CCB and ACB, respectively. Besides, the peak shapes and chemical shifts of H2-25 of glycocholic acid could assist in the recognition of the origins of C. bovis. Based on these discoveries, a set of commercial NCB samples, macroscopically identified as problematic species, was examined with deliberately added sugars and outliers discovered. Absolute quantification of the identified sugars was realized by qHNMR using a single, nonidentical internal calibrant (IC). This study represents the first systematic study of C. bovis metabolomics via an NMR-driven methodology, which advances the toolbox for quality control of TCM and provides a more definitive reference point for future chemical and biological studies of C. bovis as a valuable materia medica.
Collapse
Affiliation(s)
- Yu Tang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China.
| | - Zhu Han
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Han Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Li Che
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen 361116, China.
| | - Genjie Liao
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen 361116, China.
| | - Jun Peng
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Yu Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China.
| |
Collapse
|
7
|
Tang Y, Friesen JB, Lankin DC, McAlpine JB, Nikolić D, Chen SN, Pauli GF. Geraniol-Derived Monoterpenoid Glucosides from Rhodiola rosea: Resolving Structures by QM-HifSA Methodology. JOURNAL OF NATURAL PRODUCTS 2023; 86:256-263. [PMID: 36744762 PMCID: PMC10404350 DOI: 10.1021/acs.jnatprod.2c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Monoterpenoids are integral to the chemical composition of the widely used adaptogenic dietary supplement Rhodiola rosea. The present study expands the chemical space and stereochemical information about these taxon-specific constituents from the isolation and characterization of five geraniol-derived glucosides, 1-5. While 1 and 2 exhibited almost identical NMR spectra and shared the same 2D structure ascribed to the 4-hydroxygeraniolglucoside previously described as rosiridin, the NMR-based Mosher ester method revealed the enantiomeric nature of their aglycone moieties. This marks the first report of enantiomeric aglycones among geraniol derivatives. These findings also resolve the long-standing dispute regarding the absolute configuration of rosiridin and congeneric C-4 hydroxylated geraniols and may help explain incongruent bioactivity reports of R. rosea extract. Moreover, the three previously undescribed geranioloids 3-5 were fully characterized by extensive spectroscopic analysis. Quantum mechanics-driven 1H iterative functionalized spin analysis (QM-HifSA) was performed for all isolates and provides detailed NMR spin parameters, with adequate decimal place precision, which enable the distinction of such close congeners exhibiting near identical NMR spectra with high specificity. The outcomes also reinforce the importance of reporting chemical shifts and coupling constants with adequate decimal place precision as a means of achieving specificity and reproducibility in structural analysis.
Collapse
Affiliation(s)
- Yu Tang
- UIC Center for Botanical Dietary Supplements Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - J Brent Friesen
- Center for Natural Product Technologies (CENAPT), Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Physical Sciences Department, Rosary College of Arts and Sciences, Dominican University, River Forest, Illinois 60305, United States
| | - David C Lankin
- UIC Center for Botanical Dietary Supplements Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - James B McAlpine
- UIC Center for Botanical Dietary Supplements Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Dejan Nikolić
- UIC Center for Botanical Dietary Supplements Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Shao-Nong Chen
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies (CENAPT), Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Guido F Pauli
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies (CENAPT), Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
8
|
Kil YS, Nam JW. Quantum-Mechanical Driven 1H Iterative Full Spin Analysis Addresses Complex Peak Patterns of Choline Sulfate. ACS OMEGA 2022; 7:42607-42612. [PMID: 36440115 PMCID: PMC9685754 DOI: 10.1021/acsomega.2c06092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Choline and choline esters are essential nutrients in biological systems for carrying out normal functions, such as the modulation of neurotransmission and the formation and maintenance of cell membranes. Choline sulfate is reportedly involved in the defense mechanism of accumulating sulfur resources against sulfur deficiency. Contrary to expectations, a full assignment of the 1H NMR spectrum of choline sulfate has not been reported. The present study pioneered a full assignment by quantum-mechanical driven 1H iterative full spin analysis. The complex peak patterns were analyzed in terms of heteronuclear and non-first-order coupling. The 1H-14N coupling constants, including two-bond coupling, which can be neglected, were accurately determined by iterative optimization. Non-first-order splitting has been described to be due to the presence of magnetically non-equivalent geminal protons. Moreover, in the comparison of the methylene proton resonance patterns of choline sulfate with choline and choline phosphate, the differences in the geminal and vicinal coupling constants were further examined through spectral simulation excluding the heteronuclear coupling. The precise spectral interpretation provided in this study is expected to contribute to future 1H NMR-based qualitative or quantitative studies of choline sulfate-containing sources.
Collapse
|
9
|
Ngo TH, Uprety A, Ojha M, Kil YS, Choi H, Kim SY, Nam JW. Stability of valeriana-type iridoid glycosides from rhizomes of Nardostachys jatamansi and their protection against H 2O 2-induced oxidative stress in SH-SY5Y cells. PHYTOCHEMISTRY 2022; 203:113375. [PMID: 35973611 DOI: 10.1016/j.phytochem.2022.113375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Nardostachys jatamansi is close to Valerian in consideration of their same psychoactive effects, such as sedation and neuroprotection. Valeriana-type iridoids are major active components of Valerian, but few valeriana-type iridoids have been isolated from N. jatamansi. Iridoid-targeting chemical investigation of the rhizomes of N. jatamansi resulted in the isolation of seven valeriana-type iridoid glycosides, four of which are previously undescribed. Their structures were determined through NMR spectroscopy, high-resolution mass spectrometry, and optical rotation experiments. In addition, the inaccurate configurations of patrinalloside and 6″-acetylpatrinalloside from previous reports were corrected. These compounds, unstable due to alcoholic solvents, were more stable in the mixtures than in purified forms, as monitored by the qNMR method, supporting the use of natural products as mixtures. Furthermore, the isolates, as well as crude and solvent partition extracts, were found to have a protective effect against hydrogen-peroxide-induced toxicity in human neuroblastoma cells, as confirmed by assays for cell viability and antioxidation. These findings suggest the potential therapeutic application of the valeriana-type iridoid glycosides isolated herein with improved biochemical stability.
Collapse
Affiliation(s)
- Trung Huy Ngo
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea.
| | - Ajay Uprety
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Manju Ojha
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Yun-Seo Kil
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Soo Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea.
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea.
| |
Collapse
|
10
|
Ohtsuki T, Friesen JB, Chen SN, McAlpine JB, Pauli GF. Selective Preparation and High Dynamic-Range Analysis of Cannabinoids in "CBD Oil" and Other Cannabis sativa Preparations. JOURNAL OF NATURAL PRODUCTS 2022; 85:634-646. [PMID: 34990123 PMCID: PMC8957589 DOI: 10.1021/acs.jnatprod.1c00976] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Much confusion exists about the chemical composition of widely sold Cannabis sativa products that utilize the cannabidiol (CBD) acronym and related terms such as "CBD oil", "CBD plus hemp oil", "full spectrum CBD", "broad spectrum CBD", and "cannabinoids". Their rational chemical and subsequent biological assessment requires both knowledge of the chemical complexity and the characterization of significant individual constituents. Applicable to hemp preparations in general, this study demonstrates how the combination of liquid-liquid-based separation techniques, NMR analysis, and quantum mechanical-based NMR interpretation facilitates the process of natural product composition analysis by allowing specific structural characterization and absolute quantitation of cannabinoids present in such products with a large dynamic range. Countercurrent separation of a commercial "CBD oil" yielded high-purity CBD plus a more polar cannabinoid fraction containing cannabigerol and cannabidivarin, as well as a less polar cannabinoid fraction containing cannabichromene, trans-Δ9-tetrahydrocannabinol, cis-Δ9-tetrahydrocannabinol, and cannabinol. Representatives of six cannabinoid classes were identified within a narrow range of polarity, which underscores the relevance of residual complexity in biomedical research on cannabinoids. Characterization of the individual components and their quantitation in mixed fractions were undertaken by TLC, HPLC, 1H (q)NMR spectroscopy, 1H iterative full spin analysis (HiFSA), 13C NMR, and 2D NMR. The developed workflow and resulting analytical data enhance the reproducible evaluation of "CBD et al." products, which inevitably represent complex mixtures of varying molecular populations, structures, abundances, and polarity features.
Collapse
Affiliation(s)
- Takashi Ohtsuki
- Pharmacognosy Institute, Center for Natural Product Technologies (CENAPT), and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - J Brent Friesen
- Pharmacognosy Institute, Center for Natural Product Technologies (CENAPT), and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Department of Physical Sciences, Rosary College of Arts and Sciences, Dominican University, River Forest, Illinois 60305, United States
| | - Shao-Nong Chen
- Pharmacognosy Institute, Center for Natural Product Technologies (CENAPT), and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - James B McAlpine
- Pharmacognosy Institute, Center for Natural Product Technologies (CENAPT), and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Guido F Pauli
- Pharmacognosy Institute, Center for Natural Product Technologies (CENAPT), and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
11
|
Thapa P, Kim HM, Hong JP, Kim R, Paudel SB, Choi H, Jang DS, Nam JW. Absolute Quantification of Isoflavones in the Flowers of Pueraria lobata by qHNMR. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040548. [PMID: 35214881 PMCID: PMC8878989 DOI: 10.3390/plants11040548] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 05/08/2023]
Abstract
Pueraria lobata (Willd.) Ohwi. is a widely used medicinal plant in Korea, China, and Japan. The flower of P. lobata (Puerariae Flos) contains various bioactive substances such as triterpenoidal saponins and isoflavonoids. In this study, we developed a quantitative analysis of the isoflavones of Puerariae Flos by quantitative proton nuclear magnetic resonance (qHNMR) spectroscopy using the internal calibrant (IC). From the qHNMR results, the isoflavone content was found to be 7.99% and 10.57% for the MeOH sonication extract (PLs) and the MeOH reflux extract (PLr) of Puerariae Flos, respectively. The quantified isoflavone content was validated using the conventional analytical method, high-performance liquid chromatography with ultraviolet detection (HPLC-UV). The present study shows that validated qHNMR spectroscopy is a reliable method for quantifying and standardizing the isoflavone content in Puerariae Flos.
Collapse
Affiliation(s)
- Punam Thapa
- College of Pharmacy, Yeungnam University, Gyeongsan-si 38541, Korea; (P.T.); (S.B.P.); (H.C.)
| | - Hye Mi Kim
- College of Pharmacy, Kyung Hee University, Seoul 02447, Korea;
| | - Joon-Pyo Hong
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.-P.H.); (R.K.)
| | - Ranhee Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.-P.H.); (R.K.)
| | - Sunil Babu Paudel
- College of Pharmacy, Yeungnam University, Gyeongsan-si 38541, Korea; (P.T.); (S.B.P.); (H.C.)
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan-si 38541, Korea; (P.T.); (S.B.P.); (H.C.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si 38541, Korea
| | - Dae Sik Jang
- College of Pharmacy, Kyung Hee University, Seoul 02447, Korea;
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.-P.H.); (R.K.)
- Correspondence: (D.S.J.); (J.-W.N.)
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si 38541, Korea; (P.T.); (S.B.P.); (H.C.)
- Correspondence: (D.S.J.); (J.-W.N.)
| |
Collapse
|
12
|
Zhao J, Wang M, Saroja SG, Khan IA. NMR technique and methodology in botanical health product analysis and quality control. J Pharm Biomed Anal 2022; 207:114376. [PMID: 34656935 DOI: 10.1016/j.jpba.2021.114376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
Botanicals have played an important role in maintaining human health and well-being throughout history. During the past few decades in particular, the use of botanical health products has gained more popularity. Whereas, quality, safety and efficacy concerns have continuously been critical issues due to the intrinsic chemical complexity of botanicals. Chemical analytical technologies play an imperative role in addressing these issues. Nuclear magnetic resonance (NMR) spectroscopy has proven to be a powerful and useful tool for the investigation of botanical health products. In this review, NMR techniques and methodologies that have been successfully applied to the research and development of botanical health products in all stages, from plants to products, are discussed and summarized. Furthermore, applications of NMR together with other analytical techniques in a variety of domains of botanical health products investigation, such as plant species differentiation, adulteration detection, and bio-activity evaluation, are discussed and illustrated with typical examples. This article provides an overview of the potential uses of NMR techniques and methodologies in an attempt to further promote their recognition and utilization in the field of botanical health products analysis and quality control.
Collapse
Affiliation(s)
- Jianping Zhao
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Mei Wang
- Natural Products Utilization Research Unit, Agricultural Research Service, US Department of Agriculture, University, MS 38677, USA
| | - Seethapathy G Saroja
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, University, MS 38677, USA; Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
13
|
Malca-Garcia GR, Liu Y, Nikolić D, Friesen JB, Lankin DC, McAlpine JB, Chen SN, Pauli GF. Investigation of red clover (Trifolium pratense) isoflavonoid residual complexity by off-line CCS-qHNMR. Fitoterapia 2022; 156:105016. [PMID: 34416305 PMCID: PMC8742771 DOI: 10.1016/j.fitote.2021.105016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/03/2023]
Abstract
The importance of Trifolium pratense L. as a dietary supplement and its use in traditional medicine prompted the preparation of a thorough metabolite profile. This included the identification and quantitation of principal constituents as well as low abundant metabolites that constitute the residual complexity (RC) of T. pratense bioactives. The purity and RC of isoflavonoid fractions from standardized red clover extract (RCE) was determined using an off-line combination of countercurrent separation (CCS) and two orthogonal analytical methodologies: quantitative 1H NMR spectroscopy with external calibration (EC-qHNMR) and LC-MS. A single-step hydrostatic CCS methodology (Centrifugal Partition Chromatography [CPC]) was developed that fractionated the isoflavonoids with a hexanes-ethyl acetate-methanol-water (HEMWat) 5.5/4.5/5/5, v/v solvent system (SS) into 75 fractions containing 3 flavonolignans, 2 isoflavonoid glycosides, as well as 17 isoflavonoids and related compounds. All metabolites were identified and quantified by qHNMR spectroscopy. The data led to the creation of a complete isoflavonoid profile to complement the biological evaluation. For example, fraction 69 afforded 90.5% w/w biochanin A (17), with 0.33% w/w of prunetin (16), and 0.76% w/w of maackiain (15) as residual components. Fraction 27 with 89.4% w/w formononetin (13) as the major component had, in addition, a residual complexity consisting of 3.37%, 0.73%, 0.68% w/w of pseudobaptigenin (11), kaempferol (10) and pratensein (8), respectively. Despite the relatively high resolving power of CPC, and not unexpectedly, the chromatographic fractions retained varying degrees of the original metabolomic diversity. Collectively, the extent of metabolomic diversity should be recognized and used to guide the development of isolation strategies, especially when generating samples for bioactivity evaluation. The simultaneous structural and quantitative characterization enabled by qNMR, supported by LC-MS measurements, enables the evaluation of a relatively large number of individual fractions and, thereby, advances both the chemical and biological evaluation of active principles in complex natural products.
Collapse
Affiliation(s)
- Gonzalo R Malca-Garcia
- UIC Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60612, USA
| | - Yang Liu
- UIC Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60612, USA
| | - Dejan Nikolić
- UIC Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60612, USA
| | - J Brent Friesen
- Center for Natural Product Technologies (CENAPT), Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60612, USA; Physical Sciences Department, Rosary College of Arts and Sciences, Dominican University, 7900 W. Division Street, River Forest, IL 60305, USA
| | - David C Lankin
- UIC Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60612, USA; Center for Natural Product Technologies (CENAPT), Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60612, USA
| | - James B McAlpine
- UIC Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60612, USA; Center for Natural Product Technologies (CENAPT), Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60612, USA
| | - Shao-Nong Chen
- UIC Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60612, USA; Center for Natural Product Technologies (CENAPT), Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60612, USA
| | - Guido F Pauli
- UIC Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60612, USA; Center for Natural Product Technologies (CENAPT), Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, IL 60612, USA.
| |
Collapse
|
14
|
Tang Y, Friesen JB, Nikolić DS, Lankin DC, McAlpine JB, Chen SN, Pauli GF. Tandem of Countercurrent Separation and qHNMR Enables Gravimetric Analyses: Absolute Quantitation of the Rhodiola rosea Metabolome. Anal Chem 2021; 93:11701-11709. [PMID: 34461730 DOI: 10.1021/acs.analchem.1c01554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Off-line combination of countercurrent separation (CCS) and quantitative 1H NMR (qHNMR) methodologies enabled the systematic dissection and gravimetric quantification of a chemically complex Rhodiola rosea crude extract (RCE). The loss-free nature and high selectivity of CCS achieved the quantitative discrimination of fatty acids (FAs), sugars, and proanthocyanidins (PACs) from ten other metabolite classes: phenylpropanoids, phenylethanoids, acyclic monoterpenoid glycosides, pinene derived glycosides, benzyl alcohol glycosides, cyanogenic glycosides, flavonoids, gallic acids, methylparabens, and cuminol glycosides. The ability of CCS to remove ("knockout") PACs completely resolved challenges with baselines that plague NMR and UHPLC analyses and produce inaccurate integral and AUC quantitation, respectively. NMR analysis of the non-PAC fractions enabled unambiguous identification of metabolites and their characteristic resonances for subsequent multitarget absolute quantification by qHNMR using a single, nonidentical internal calibrant (IC). An orthogonal LC-MS/MS method validated the gravimetric nature of the CCS-qHNMR analytical tandem. Underlying this LC-based cross-validation, comprehensive phytochemical isolation and characterization established 19 single-compound reference standards that represented all ten metabolite classes. Finally, quantum mechanical 1H iterative Full Spin Analysis (HiFSA) of each standard provided a blueprint for future structural dereplication, identification, and quantification of Rhodiola marker constituents. The combination of two gravimetric analytical methods, loss-free CCS and IC-qHNMR, realizes the first chemical standardization of a botanical material that comprehensively captures a metabolome and permits absolute quantification.
Collapse
Affiliation(s)
- Yu Tang
- UIC/NIH Center for Botanical Dietary Supplements Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - J Brent Friesen
- Center for Natural Product Technologies (CENAPT), Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States.,Physical Sciences Department, Rosary College of Arts and Sciences, Dominican University, 7900 West Division Street, River Forest, Illinois 60305, United States
| | - Dejan S Nikolić
- UIC/NIH Center for Botanical Dietary Supplements Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - David C Lankin
- UIC/NIH Center for Botanical Dietary Supplements Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - James B McAlpine
- UIC/NIH Center for Botanical Dietary Supplements Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States.,Center for Natural Product Technologies (CENAPT), Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States.,Center for Natural Product Technologies (CENAPT), Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| |
Collapse
|
15
|
Muchiri RN, van Breemen RB. Single-Laboratory Validation of UHPLC-MS/MS Assays for Red Clover Isoflavones in Human Serum and Dietary Supplements. J AOAC Int 2021; 103:1160-1166. [PMID: 33241325 DOI: 10.1093/jaoacint/qsaa033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/23/2020] [Indexed: 11/14/2022]
Abstract
BACKGROUND Extracts of red clover (Trifolium pratense L.) containing estrogenic and pro-estrogenic isoflavones are used in dietary supplements primarily for the management of menopausal symptoms in women. OBJECTIVE A UHPLC-MS/MS assay was developed and validated for the quantitative analysis of the six major red clover isoflavones in dietary supplements and in human serum in support of clinical trials. METHODS Enzymatic deconjugation of isoflavone glucuronides and sulfate conjugates in human serum specimens was carried out followed by protein precipitation. Isoflavones in red clover dietary supplements were acid hydrolyzed to release aglycons from glycosides. UHPLC separations (< 4 min) were combined with MS/MS using collision-induced dissociation, selective reaction monitoring and deuterated internal standards to measure biochanin A, formononetin, daidzein, genistein, irilone, and prunetin. RESULTS The method was validated with respect to selectivity, specificity, accuracy, linearity, precision, LOD, and LOQ. The calibration curves for all analytes were linear (R2 > 0.998). The mean recovery for low-, medium- and high-quality control standards ranged between 80% and 108%. The precision of the method was assessed using coefficients of variation, which were <15%. CONCLUSIONS The UHPLC-MS/MS method is fast, precise, sensitive, selective, accurate, and applicable to the quantitative analysis of red clover isoflavones in different matrices. HIGHLIGHTS This validated UHPLC-MS/MS assay is applicable to the rapid quantitative analysis of red clover isoflavones in human serum and in dietary supplements.
Collapse
Affiliation(s)
- Ruth N Muchiri
- Linus Pauling Institute, Oregon State University, 2900 SW Campus Way, Corvallis, OR 97331, USA
| | - Richard B van Breemen
- Linus Pauling Institute, Oregon State University, 2900 SW Campus Way, Corvallis, OR 97331, USA
| |
Collapse
|
16
|
Ribnicky D, Kim SB, Poulev A, Wang Y, Boudreau A, Raskin I, Bisson J, Ray GJ, Chen SN, Richard A, Stephens JM, Pauli GF. Prenylated Coumaric Acids from Artemisia scoparia Beneficially Modulate Adipogenesis. JOURNAL OF NATURAL PRODUCTS 2021; 84:1078-1086. [PMID: 33830759 PMCID: PMC8132292 DOI: 10.1021/acs.jnatprod.0c01149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two new diprenylated coumaric acid isomers (1a and 1b) and two known congeners, capillartemisin A (2) and B (3), were isolated from Artemisia scoparia as bioactive markers using bioactivity-guided HPLC fractionation. Their structures were determined by spectroscopic means, including 1D and 2D NMR methods and LC-MS, with their purity assessed by 1D 1H pure shift qNMR spectroscopic analysis. The bioactivity of compounds was evaluated by enhanced accumulation of lipids, as measured using Oil Red O staining, and by increased expression of several adipocyte marker genes, including adiponectin in 3T3-L1 adipocytes relative to untreated negative controls. Compared to the plant's 80% EtOH extract, these purified compounds showed significant but still weaker inhibition of TNFα-induced lipolysis in 3T3-L1 adipocytes. This suggests that additional bioactive substances are responsible for the multiple metabolically favorable effects on adipocytes observed with Artemisia scoparia extract.
Collapse
Affiliation(s)
- David Ribnicky
- Corresponding Authors Tel: +1 312 355 1949 Fax: +1 312 413 5894 (David Ribnicky): (Guido Pauli):
| | - Seon Beom Kim
- Corresponding Authors Tel: +1 312 355 1949 Fax: +1 312 413 5894 (David Ribnicky): (Guido Pauli):
| | - Alexander Poulev
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Yang Wang
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Anik Boudreau
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, United States
| | - Ilya Raskin
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Jonathan Bisson
- Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Illinois 60612, United States
| | - G. Joseph Ray
- Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Illinois 60612, United States
| | - Shao-Nong Chen
- Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Illinois 60612, United States
| | - Allison Richard
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, United States
| | - Jacqueline M. Stephens
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, United States
| | - Guido F. Pauli
- Corresponding Authors Tel: +1 312 355 1949 Fax: +1 312 413 5894 (David Ribnicky): (Guido Pauli):
| |
Collapse
|
17
|
New Techniques of Structure Elucidation for Sesquiterpenes. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2021; 114:253-311. [PMID: 33792862 DOI: 10.1007/978-3-030-59444-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The most significant new techniques that have been used in the twenty-first century for the structure elucidation of sesquiterpenes and some derivatives are reviewed in this chapter. A distinctive feature of these methodologies is the combination of accurate experimental measurements with theoretical data obtained by molecular modeling calculations that allow to visualize, understand, and quantify many structural characteristics. This has been the case for NMR spectroscopy, which has expanded its potential for solving complex structural problems by means of comparison with quantum mechanical molecular models. Ab initio and density functional theory calculations of chemical shifts, coupling constants, and residual chemical shift anisotropies have played important roles in the solution of many structures of sesquiterpenes. The assignments of their absolute configurations by evaluation of calculated and experimental chiroptical properties as electronic and vibrational circular dichroism are also reviewed. This chapter also includes the use of X-ray diffraction analysis with emphasis on calculations of the Flack and Hooft parameters, which are applicable to all molecules that crystallize in non-centrosymmetric space groups. The accurate molecular models of sesquiterpenes, validated by concordance with their experimental properties, are nowadays essential for the interpretation of the effects of these natural products on biological systems.
Collapse
|
18
|
Bhavaraju S, Taylor D, Niemitz M, Lankin DC, Bzhelyansky A, Giancaspro GI, Liu Y, Pauli GF. NMR-Based Quantum Mechanical Analysis Builds Trust and Orthogonality in Structural Analysis: The Case of a Bisdesmosidic Triglycoside as Withania somnifera Aerial Parts Marker. JOURNAL OF NATURAL PRODUCTS 2021; 84:836-845. [PMID: 33625215 PMCID: PMC8049857 DOI: 10.1021/acs.jnatprod.0c01131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The present study demonstrates the relationship between conventional and quantum mechanical (QM) NMR spectroscopic analyses, shown here to assist in building a convincingly orthogonal platform for the solution and documentation of demanding structures. Kaempferol-3-O-robinoside-7-O-glucoside, a bisdesmosidic flavonol triglycoside and botanical marker for the aerial parts of Withania somnifera, served as an exemplary case. As demonstrated, QM-based 1H iterative full spin analysis (HiFSA) advances the understanding of both individual nuclear resonance spin patterns and the entire 1H NMR spectrum of a molecule and establishes structurally determinant, numerical HiFSA profiles. The combination of HiFSA with regular 1D 1H NMR spectra allows for simplified yet specific identification tests via comparison of high-quality experimental with QM-calculated spectra. HiFSA accounts for all features encountered in 1H NMR spectra: nonlinear high-order effects, complex multiplets, and their usually overlapped signals. As HiFSA replicates spectrum patterns from field-independent parameters with high accuracy, this methodology can be ported to low-field NMR instruments (40-100 MHz). With its reliance on experimental NMR evidence, the QM approach builds up confidence in structural characterization and potentially reduces identity analyses to simple 1D 1H NMR experiments. This approach may lead to efficient implementation of conclusive identification tests in pharmacopeial and regulatory analyses: from simple organics to complex natural products.
Collapse
Affiliation(s)
- Sitaram Bhavaraju
- United States Pharmacopeial Convention, Rockville, Maryland 20852, United States
| | - David Taylor
- United States Pharmacopeial Convention, Rockville, Maryland 20852, United States
| | | | - David C Lankin
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Anton Bzhelyansky
- United States Pharmacopeial Convention, Rockville, Maryland 20852, United States
| | - Gabriel I Giancaspro
- United States Pharmacopeial Convention, Rockville, Maryland 20852, United States
| | - Yang Liu
- United States Pharmacopeial Convention, Rockville, Maryland 20852, United States
| | - Guido F Pauli
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
19
|
Malca-Garcia GR, Liu Y, Dong H, Nikolić D, Friesen JB, Lankin DC, McAlpine J, Chen SN, Dietz BM, Pauli GF. Auto-hydrolysis of red clover as "green" approach to (iso)flavonoid enriched products. Fitoterapia 2021; 152:104878. [PMID: 33757846 DOI: 10.1016/j.fitote.2021.104878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Optimal parameters for the auto-hydrolysis of (iso)flavone glycosides to aglycones in ground Trifolium pratense L. plant material were established as a "green" method for the production of a reproducible red clover extract (RCE). The process utilized 72-h fermentation in DI water at 25 and 37 °C. The aglycones obtained at 25 °C, as determined by UHPLC-UV and quantitative 1H NMR (qHNMR), increased significantly in the auto-hydrolyzed (ARCE) (6.2-6.7% w/w biochanin A 1, 6.1-9.9% formononetin 2) vs a control ethanol (ERCE) extract (0.24% 1, 0.26% 2). After macerating ARCE with 1:1 (v/v) diethyl ether/hexanes (ARCE-d/h), 1 and 2 increased to 13.1-16.7% and 14.9-18.4% w, respectively, through depletion of fatty components. The final extracts showed chemical profiles similar to that of a previous clinical RCE. Biological standardization revealed that the enriched ARCE-d/h extracts produced the strongest estrogenic activity in ERα positive endometrial cells (Ishikawa cells), followed by the precursor ARCE. The glycoside-rich ERCE showed no estrogenic activity. The estrogenicity of ARCE-d/h was similar to that of the clinical RCE. The lower potency of the ARCE compared to the prior clinical RCE indicated that substantial amounts of fatty acids/matter likely reduce the estrogenicity of crude hydrolyzed preparations. The in vitro dynamic residual complexity of the conversion of biochanin A to genistein was evaluated by LC-MS-MS. The outcomes help advance translational research with red clover and other (iso)flavone-rich botanicals by inspiring the preparation of (iso)flavone aglycone-enriched extracts for the exploration of new in vitro and ex vivo bioactivities that are unachievable with genuine, glycoside-containing extracts.
Collapse
Affiliation(s)
- Gonzalo R Malca-Garcia
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - Yang Liu
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - Huali Dong
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - Dejan Nikolić
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - J Brent Friesen
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States; Physical Sciences Department, Rosary College of Arts and Sciences, Dominican University, 7900 W. Division, River Forest, IL 60305, United States
| | - David C Lankin
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States; Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - James McAlpine
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States; Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - Birgit M Dietz
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States; Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States.
| |
Collapse
|
20
|
Youn I, Wu Z, Papa S, Burdette JE, Oyawaluja BO, Lee H, Che CT. Limonoids and other triterpenoids from Entandrophragma angolense. Fitoterapia 2021; 150:104846. [PMID: 33588006 DOI: 10.1016/j.fitote.2021.104846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/23/2022]
Abstract
Four new compounds (1-4) were isolated from the stem bark of Entandrophragma angolense along with eleven known structures (5-15). The chemical structures were elucidated on the basis of spectroscopic and HRMS data, and the absolute configuration was established with the aid of electronic circular dichroism. Compound 5 displayed moderate cytotoxicity against MDA-MB-231, OVCAR3, MDA-MB-435, and HT29 cell lines, with IC50 values ranging from 2.0-5.9 μM.
Collapse
Affiliation(s)
- Isoo Youn
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Zhenlong Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States; Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Samiya Papa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Bamisaye O Oyawaluja
- Department of Pharmaceutical Chemistry, University of Lagos, 100213, Lagos, Nigeria
| | - Hyun Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Chun-Tao Che
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States.
| |
Collapse
|
21
|
Kaur A, Bhardwaj N, Kaur A, Abida K, Nagaraja TP, Ali A, Prakash R. Proton Nuclear Magnetic Resonance‐Based Method for the Quantification of Epoxidized Methyl Oleate. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Avneet Kaur
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 India
| | - Neha Bhardwaj
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 India
| | - Amanpreet Kaur
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 India
| | - Km Abida
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 India
| | - Tejo Prakash Nagaraja
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 India
| | - Amjad Ali
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 India
| | - Ranjana Prakash
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 India
| |
Collapse
|
22
|
Nishizaki Y, Lankin DC, Chen SN, Pauli GF. Accurate and Precise External Calibration Enhances the Versatility of Quantitative NMR (qNMR). Anal Chem 2021; 93:2733-2741. [PMID: 33481571 DOI: 10.1021/acs.analchem.0c02967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Quantitative 1H nuclear magnetic resonance (qHNMR) is a highly regarded analytical methodology for purity determination as it balances metrological rigor, practicality, and versatility well. While ideal for intrinsically mass-limited samples, external calibration (EC) qHNMR is overshadowed by the prevalence of internal calibration and perceived rather than real practical limitations. To overcome this hurdle, this study applied the principle of reciprocity, certified reference materials (caffeine as analyte, dimethyl sulfone as calibrant), and a systematic evaluation of data acquisition workflows to extract key factors for the achievement of accuracy and precision in EC-qHNMR. Automatic calibration of the 90° pulse width (90 PW) formed the foundation for the principle of reciprocity and used optimized nutation experiments, showing good agreement with values derived from manual high-precision measurement of 360 PW. Employing the automatic 90 PW calibration, EC-qHNMR with automatic vs manual tuning and matching (T&M) yielded the certified purity value within 1% error. The timing of T&M (before vs after shimming) turned out to be critically important: sufficient time is required to achieve full-temperature equilibrium relative to thermal gradients in the air inside the probe and the sample. Achievable accuracy across different NMR solvents varies with differences in thermal conductivity and leads to 2% or greater errors. With matching solvents, the demonstrated accuracy of ∼1.0% underscores the feasibility of EC-qHNMR as a highly practical research tool.
Collapse
Affiliation(s)
- Yuzo Nishizaki
- Division of Food Additives, National Institute of Health Sciences (NIHS), Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | | | | | | |
Collapse
|
23
|
Nam JW, Phansalkar RS, Lankin DC, McAlpine JB, Leme-Kraus AA, Bedran-Russo AK, Chen SN, Pauli GF. Targeting Trimeric and Tetrameric Proanthocyanidins of Cinnamomum verum Bark as Bioactives for Dental Therapies. JOURNAL OF NATURAL PRODUCTS 2020; 83:3287-3297. [PMID: 33151073 PMCID: PMC8041212 DOI: 10.1021/acs.jnatprod.0c00570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The present study elucidated the structures of three A-type tri- and tetrameric proanthocyanidins (PACs) isolated from Cinnamomum verum bark to the level of absolute configuration and determined their dental bioactivity using two therapeutically relevant bioassays. After selecting a PAC oligomer fraction via a biologically diverse bioassay-guided process, in tandem with centrifugal partition chromatography, phytochemical studies led to the isolation of PAC oligomers that represent the main bioactive principles of C. verum: two A-type tetrameric PACs, epicatechin-(2β→O→7,4β→8)-epicatechin-(4β→6)-epicatechin-(2β→O→7,4β→8)-catechin (1) and parameritannin A1 (2), together with a trimer, cinnamtannin B1 (3). Structure determination of the underivatized proanthocyanidins utilized a combination of HRESIMS, ECD, 1D/2D NMR, and 1H iterative full spin analysis data and led to NMR-based evidence for the deduction of absolute configuration in constituent catechin and epicatechin monomeric units.
Collapse
Affiliation(s)
- Joo-Won Nam
- Department of Pharmaceutical Sciences, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), University of Illinois at Chicago, Chicago, IL 60612, United States
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Korea
| | - Rasika S. Phansalkar
- Department of Pharmaceutical Sciences, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), University of Illinois at Chicago, Chicago, IL 60612, United States
| | - David C. Lankin
- Department of Pharmaceutical Sciences, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), University of Illinois at Chicago, Chicago, IL 60612, United States
| | - James B. McAlpine
- Department of Pharmaceutical Sciences, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), University of Illinois at Chicago, Chicago, IL 60612, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Ariene A. Leme-Kraus
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Ana K. Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, United States
- Department of General Dental Sciences, School of Dentistry, Marquette University, Milwaukee, WI 53233, United States
| | - Shao-Nong Chen
- Department of Pharmaceutical Sciences, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), University of Illinois at Chicago, Chicago, IL 60612, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Guido F. Pauli
- Department of Pharmaceutical Sciences, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), University of Illinois at Chicago, Chicago, IL 60612, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| |
Collapse
|
24
|
Matviychuk Y, Steimers E, von Harbou E, Holland DJ. Bayesian approach for automated quantitative analysis of benchtop NMR data. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 319:106814. [PMID: 32950022 DOI: 10.1016/j.jmr.2020.106814] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Low-cost, user-friendly benchtop NMR instruments are often touted as a "one-click" solution for data acquisition, however insufficient peak dispersion in their spectra often reduces the accuracy of quantification and requires user expertise with sophisticated processing tools. Our work aims to facilitate the wide acceptance of benchtop NMR instruments as a viable and effective substitute for cryogenic magnets. We propose an algorithmic approach that completely automates the routine analysis of sets of samples with similar compositions - the problem that often underlies many industrial applications concerned with reaction and process monitoring and quality control. Our solution is rooted in the idea of parametric modelling formulated in terms of Bayesian statistics, which effectively incorporates prior knowledge about the studied system (such as concentration-dependent chemical shift changes) that is usually available in industrial applications. Furthermore, the use of quantum mechanical models for chemical species makes our approach invariant to the spectrometer field strength - a necessary prerequisite for the successful analysis of benchtop data. We demonstrate the performance of our method with two representative sets of samples: mixtures of alcohols and acetates, and aqueous mixtures of biologically relevant species. In these examples, our fully automated analysis of benchtop spectra achieves average errors in concentrations of 0.01 mol/mol and 0.02 mol/mol respectively. Our method is competitive with the traditional processing approaches of well resolved high-field data and has the potential to bring the benefits of NMR even to a small chemistry laboratory.
Collapse
Affiliation(s)
- Yevgen Matviychuk
- University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| | - Ellen Steimers
- Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 44, 67663 Kaiserslautern, Germany
| | - Erik von Harbou
- Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 44, 67663 Kaiserslautern, Germany
| | - Daniel J Holland
- University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
25
|
Mbachu OC, Howell C, Simmler C, Garcia GRM, Skowron KJ, Dong H, Ellis SG, Hitzman RT, Hajirahimkhan A, Chen SN, Nikolic D, Moore TW, Vollmer G, Pauli GF, Bolton JL, Dietz BM. SAR Study on Estrogen Receptor α/β Activity of (Iso)flavonoids: Importance of Prenylation, C-Ring (Un)Saturation, and Hydroxyl Substituents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10651-10663. [PMID: 32945668 PMCID: PMC8294944 DOI: 10.1021/acs.jafc.0c03526] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many botanicals used for women's health contain estrogenic (iso)flavonoids. The literature suggests that estrogen receptor beta (ERβ) activity can counterbalance estrogen receptor alpha (ERα)-mediated proliferation, thus providing a better safety profile. A structure-activity relationship study of (iso)flavonoids was conducted to identify ERβ-preferential structures, overall estrogenic activity, and ER subtype estrogenic activity of botanicals containing these (iso)flavonoids. Results showed that flavonoids with prenylation on C8 position increased estrogenic activity. C8-prenylated flavonoids with C2-C3 unsaturation resulted in increased ERβ potency and selectivity [e.g., 8-prenylapigenin (8-PA), EC50 (ERβ): 0.0035 ± 0.00040 μM], whereas 4'-methoxy or C3 hydroxy groups reduced activity [e.g., icaritin, EC50 (ERβ): 1.7 ± 0.70 μM]. However, nonprenylated and C2-C3 unsaturated isoflavonoids showed increased ERβ estrogenic activity [e.g., genistein, EC50 (ERβ): 0.0022 ± 0.0004 μM]. Licorice (Glycyrrhiza inflata, [EC50 (ERα): 1.1 ± 0.20; (ERβ): 0.60 ± 0.20 μg/mL], containing 8-PA, and red clover [EC50 (ERα): 1.8 ± 0.20; (ERβ): 0.45 ± 0.10 μg/mL], with genistein, showed ERβ-preferential activity as opposed to hops [EC50 (ERα): 0.030 ± 0.010; (ERβ): 0.50 ± 0.050 μg/mL] and Epimedium sagittatum [EC50 (ERα): 3.2 ± 0.20; (ERβ): 2.5 ± 0.090 μg/mL], containing 8-prenylnaringenin and icaritin, respectively. Botanicals with ERβ-preferential flavonoids could plausibly contribute to ERβ-protective benefits in menopausal women.
Collapse
Affiliation(s)
- Obinna C. Mbachu
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Caitlin Howell
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Charlotte Simmler
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Center for Natural Product Technologies (CENAPT), University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Gonzalo R. Malca Garcia
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Kornelia J. Skowron
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Huali Dong
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Sarah G. Ellis
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Ryan T. Hitzman
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Atieh Hajirahimkhan
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Center for Natural Product Technologies (CENAPT), University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Dejan Nikolic
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Terry W. Moore
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- University of Illinois Cancer Center, 1801 W Taylor St., Chicago, Illinois 60612-7231, United States
| | - Günter Vollmer
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Molecular Cell Physiology and Endocrinology, Faculty of Biology, Dresden University of Technology, 01217 Dresden, Germany
| | - Guido F. Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Center for Natural Product Technologies (CENAPT), University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Judy L. Bolton
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| | - Birgit M. Dietz
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
- Department of Pharmaceutical Sciences, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231
| |
Collapse
|
26
|
Quantum mechanical NMR full spin analysis in pharmaceutical identity testing and quality control. J Pharm Biomed Anal 2020; 192:113601. [PMID: 33049645 DOI: 10.1016/j.jpba.2020.113601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 02/03/2023]
Abstract
Issues related to pharmaceutical quality are arising at an alarming rate. Pharmaceutical quality concerns both the Active Pharmaceutical Ingredients (APIs) and the Finished Drug Product/ Formulation. Recently, there has been a significant increase in the number of reports of harmful impurities in marketed drug formulations. Impurities range from solvents, reactants, adulterants, and catalysts to synthetic byproducts. Quality concerns in commercial preparations may also arise due to shelf life stability. Furthermore, a number of falsified and substandard drug cases have been reported. Most of the techniques which are currently in place can, at best, detect the impurities, but cannot identify them unless they are already known and can be compared to a standard. On the other hand, 1H NMR spectroscopy detects all the hydrogen containing species, typically provides information to elucidate structures partially or even completely, and through its absolute quantitative capabilities even can detect the presence hydrogen-free species indirectly. The structural properties that produce 1H NMR signals as characteristic representations of a given molecule are the chemical shifts (δ in ppm) and coupling constants (J in Hz). Along with the line widths (ω1/2 in Hz), these parameters are bound to both the molecule and the NMR experimental conditions by quantum mechanical (QM) principles. This means that the 1H NMR spectra of APIs can be precisely calculated and compared to the experimental data. This review explains how 1H NMR spectroscopy coupled with Full Spin Analysis can contribute towards the quality control of pharmaceuticals by improving structural dereplication and achieving simultaneous quantification of both APIs and their contaminants.
Collapse
|
27
|
Abstract
The major goal in plant metabolomics is to study complex extracts for the purposes of metabolic exploration and natural products discovery. To achieve this goal, plant metabolomics relies on accurate and selective acquisition of all possible chemical information, which includes maximization of the number of detected metabolites and their correct molecular assignment. Nuclear magnetic resonance (NMR) spectroscopy has been recognized as a powerful platform for obtaining the metabolite profiles of plant extracts. In this chapter, we provide a workflow for targeted and untargeted metabolite profiling of plant extracts using both 1D and 2D NMR methods. The protocol includes sample preparation, instrument operation, data processing, multivariate analysis, biomarker elucidation, and metabolite quantitation. It also addresses the annotation of plant metabolite peaks considering NMR's capabilities to cover a broad range of metabolites and elucidate structures for unknown compounds.
Collapse
Affiliation(s)
- Denise Medeiros Selegato
- Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE), Departamento de Química Orgânica, Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, São Paulo, Brazil
| | - Alan Cesar Pilon
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fausto Carnevale Neto
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA.
| |
Collapse
|
28
|
Imai A, Lankin DC, Gödecke T, Chen SN, Pauli GF. NMR based quantitation of cycloartane triterpenes in black cohosh extracts. Fitoterapia 2019; 141:104467. [PMID: 31887327 DOI: 10.1016/j.fitote.2019.104467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/21/2019] [Accepted: 12/27/2019] [Indexed: 01/19/2023]
Abstract
The cycloartane triterpene content in the roots/rhizomes (RR) and aerial parts (PX) of Actaea racemosa (AR), A. podocarpa (AP), and A. cordifolia (AC) have been investigated by quantitative 1H NMR (qHNMR). Thereby, it was demonstrated that qHNMR represents a powerful methodology for the analysis of crude plant extracts as it does not rely on the rarely available identical reference triterpenes. Specifically, the presence of the characteristic C-19 cyclopropane (exo/endo) hydrogen signals made it possible to quantify the less common/not ubiquitously present group of cycloartane triterpenes, directly in extracts. As an example, ARPX and ARRR were shown to contain, 3.8-20.8% ± 8.2% and 7.2-19.3% ± 4.0% of cycloartane triterpenes, respectively. The cycloartane concentration in ACPX and ACRR was 7.5-8.7% ± 0.8% and 13.9-28.5% ± 7.3%, respectively, based on the weight of the extract. AP was shown to contain notably lower amounts of the cycloartane triterpenes as compared to AR and AC in the roots/rhizomes. The content for APPX and APRR was only 2.1-3.3% ± 0.7% and 1.1-4.0% ± 1.5%, respectively. In addition, an example is presented for the identification of specific cycloartanes as marker compounds for AR within crude extracts based on the same qHNMR spectra and 2D NMR methods.
Collapse
Affiliation(s)
- Ayano Imai
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - David C Lankin
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Tanja Gödecke
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States.
| |
Collapse
|
29
|
Phansalkar RS, Nam JW, Leme AA, Gan LS, Zhou B, McAlpine JB, Chen SN, Bedran-Russo AK, Pauli GF. Proanthocyanidin Dimers and Trimers from Vitis vinifera Provide Diverse Structural Motifs for the Evaluation of Dentin Biomodification. JOURNAL OF NATURAL PRODUCTS 2019; 82:2387-2399. [PMID: 31433178 PMCID: PMC6899061 DOI: 10.1021/acs.jnatprod.8b00953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Aimed at exploring the dentin biomodification potential of proanthocyanidins (PACs) for the development of dental biomaterials, this study reports the phytochemical and dental evaluation of nine B-type PACs from grape seed extract (GSE). Out of seven isolated dimers (1-7), four new compounds (2, 3, 5, and 6) involved relatively rare ent-catechin or ent-epicatechin monomeric flavan-3-ol units. Low-temperature NMR analyses conducted along with phloroglucinolysis and electronic circular dichroism enabled unequivocal structural characterization and stereochemical assignment. Additionally, one known (8) and one new (9) B-type trimer were characterized. Differential 13C NMR chemical shifts (Δδ) were used to determine the absolute configuration of 9, relative to the dimers 1 and 2 as the possible constituent subunits. Compared to the dimers, the trimers showed superior dentin biomodification properties. The dimers, 1-7, exhibited pronounced differences in their collagenase inhibitory activity, while enhancing dentin stiffness comparably. This suggests that PAC structural features such as the degree of polymerization, relative and absolute configuration have a differential influence on enhancement of dentin biomechanical and biostability. As mechanical enhancement to dentin and resistance to proteolytic biodegradation are both essential properties functional and stable dentin substrate, the structurally closely related PACs suggest a new metric, the dentin biomodification potential (DBMP) that may rationalize both properties.
Collapse
Affiliation(s)
- Rasika S. Phansalkar
- Department of Medicinal Chemistry and Pharmacognosy, and Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), University of Illinois at Chicago, College of Pharmacy, Chicago, Illinois 60612, United States
| | - Joo-Won Nam
- Department of Medicinal Chemistry and Pharmacognosy, and Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), University of Illinois at Chicago, College of Pharmacy, Chicago, Illinois 60612, United States
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Korea
| | - Ariene A. Leme
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Li-She Gan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 31005, China
| | - Bin Zhou
- Department of Medicinal Chemistry and Pharmacognosy, and Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), University of Illinois at Chicago, College of Pharmacy, Chicago, Illinois 60612, United States
| | - James B. McAlpine
- Department of Medicinal Chemistry and Pharmacognosy, and Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), University of Illinois at Chicago, College of Pharmacy, Chicago, Illinois 60612, United States
| | - Shao-Nong Chen
- Department of Medicinal Chemistry and Pharmacognosy, and Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), University of Illinois at Chicago, College of Pharmacy, Chicago, Illinois 60612, United States
| | - Ana K. Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Guido F. Pauli
- Department of Medicinal Chemistry and Pharmacognosy, and Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), University of Illinois at Chicago, College of Pharmacy, Chicago, Illinois 60612, United States
- Corresponding Author: Tel: +1 (312) 355-1949. Fax: +1 (312) 355-2693.
| |
Collapse
|
30
|
Selegato DM, Freire RT, Pilon AC, Biasetto CR, de Oliveira HC, de Abreu LM, Araujo AR, da Silva Bolzani V, Castro-Gamboa I. Improvement of bioactive metabolite production in microbial cultures-A systems approach by OSMAC and deconvolution-based 1 HNMR quantification. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:458-471. [PMID: 30993742 DOI: 10.1002/mrc.4874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Traditionally, the screening of metabolites in microbial matrices is performed by monocultures. Nonetheless, the absence of biotic and abiotic interactions generally observed in nature still limit the chemical diversity and leads to "poorer" chemical profiles. Nowadays, several methods have been developed to determine the conditions under which cryptic genes are activated, in an attempt to induce these silenced biosynthetic pathways. Among those, the one strain, many compounds (OSMAC) strategy has been applied to enhance metabolic production by a systematic variation of growth parameters. The complexity of the chemical profiles from OSMAC experiments has required increasingly robust and accurate techniques. In this sense, deconvolution-based 1 HNMR quantification have emerged as a promising methodology to decrease complexity and provide a comprehensive perspective for metabolomics studies. Our present work shows an integrated strategy for the increased production and rapid quantification of compounds from microbial sources. Specifically, an OSMAC design of experiments (DoE) was used to optimize the microbial production of bioactive fusaric acid, cytochalasin D and 3-nitropropionic acid, and Global Spectral Deconvolution (GSD)-based 1 HNMR quantification was carried out for their measurement. The results showed that OSMAC increased the production of the metabolites by up to 33% and that GSD was able to extract accurate NMR integrals even in heavily coalescence spectral regions. Moreover, GSD-1 HNMR quantification was reproducible for all species and exhibited validated results that were more selective and accurate than comparative methods. Overall, this strategy up-regulated important metabolites using a reduced number of experiments and provided fast analyte monitor directly in raw extracts.
Collapse
Affiliation(s)
- Denise Medeiros Selegato
- Nucleus of Bioassays, Biosynthesis and Ecophysiology of natural products (NuBBE), Organic Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Alan César Pilon
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Faculdade de Ciências Farmacêuticas, São Paulo University (USP), Ribeirão Preto, São Paulo, Brazil
| | - Carolina Rabal Biasetto
- Nucleus of Bioassays, Biosynthesis and Ecophysiology of natural products (NuBBE), Organic Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Haroldo Cesar de Oliveira
- Laboratório de Micologia Clínica, Núcleo de Proteômica, Faculdade de Ciências Farmacêuticas de Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Angela Regina Araujo
- Nucleus of Bioassays, Biosynthesis and Ecophysiology of natural products (NuBBE), Organic Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Vanderlan da Silva Bolzani
- Nucleus of Bioassays, Biosynthesis and Ecophysiology of natural products (NuBBE), Organic Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Ian Castro-Gamboa
- Nucleus of Bioassays, Biosynthesis and Ecophysiology of natural products (NuBBE), Organic Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
31
|
Farhadi F, Soltani S, Saberi S, Iranshahi M. A qHNMR method for simultaneous quantification of terpenoids from Ferula ovina (Boiss.) Boiss roots. J Pharm Biomed Anal 2019; 172:120-125. [DOI: 10.1016/j.jpba.2019.04.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/10/2019] [Accepted: 04/18/2019] [Indexed: 12/31/2022]
|
32
|
Malca-Garcia GR, Zagal D, Graham J, Nikolić D, Friesen JB, Lankin DC, Chen SN, Pauli GF. Dynamics of the isoflavone metabolome of traditional preparations of Trifolium pratense L. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111865. [PMID: 30981705 PMCID: PMC6549234 DOI: 10.1016/j.jep.2019.111865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/10/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The flowering tops of Trifolium pratense L., popularly known as red clover, are used in ethnic Western and Traditional Chinese medicine, in a variety of preparations, including infusions, decoctions and tinctures. Red clover has been reported to be helpful for treatment of menopausal symptoms, premenstrual syndrome, mastalgia, high cholesterol, and other conditions. AIMS OF THE STUDY The aims were to compare the chemical dynamics between traditional preparations of infusions, decoctions, and tinctures, as well as to identify the chemical variability over time in a traditional red clover tincture. For this purpose, eight isoflavone aglycones as well as two glucosides, ononin and sissotrin, were used as marker compounds. MATERIALS AND METHODS Quantitative NMR (qHNMR), LC-MS-MS, and UHPLC-UV methods were used to identify and quantitate the major phenolic compounds found within each extract. RESULTS Infusions, decoctions and tinctures were shown to produce different chemical profiles. Biochanin A and formononetin were identified and quantified in infusion, decoction, and tinctures of red clover. Both infusion and decoction showed higher concentrations of isoflavonoid glucosides, such as ononin and sissotrin, than 45% ethanolic tinctures. Dynamic chemical variability ("dynamic residual complexity") of the red clover tincture was observed over time (one-month), with biochanin A and formononetin reaching peak concentrations at around six days. CONCLUSIONS Insight was gained into why different formulation methods (infusions, decoctions, and tinctures) are traditionally used to treat different health conditions. Moreover, the outcomes show that tinctures, taken over a period of time, are dynamic medicinal formulations that allow for time-controlled release of bioactive compounds.
Collapse
Affiliation(s)
- Gonzalo R Malca-Garcia
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA
| | - Daniel Zagal
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA
| | - James Graham
- Center for Natural Product Technologies (CENAPT), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA
| | - Dejan Nikolić
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA
| | - J Brent Friesen
- Center for Natural Product Technologies (CENAPT), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA; Physical Sciences Department, Rosary College of Arts and Sciences, Dominican University, River Forest, IL, 60305, USA
| | - David C Lankin
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA; Center for Natural Product Technologies (CENAPT), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA; Center for Natural Product Technologies (CENAPT), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA; Center for Natural Product Technologies (CENAPT), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA.
| |
Collapse
|
33
|
Malca Garcia GR, Friesen JB, Liu Y, Nikolić D, Lankin DC, McAlpine JB, Chen SN, Pauli GF. Preparation of DESIGNER extracts of red clover (Trifolium pratense L.) by centrifugal partition chromatography. J Chromatogr A 2019; 1605:360277. [PMID: 31307793 DOI: 10.1016/j.chroma.2019.05.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 01/04/2023]
Abstract
Starting with an isoflavone-rich red clover extract (RCE), this study expands on the DESIGNER approach to Deplete and Enrich Select Ingredients to Generate Normalized Extract Resources using countercurrent separation (CCS) methodology. A hydrostatic CCS (also known as centrifugal partition chromatography, CPC) technique was used to enrich and deplete selected bioactive isoflavones of RCE extracts. In order to efficiently prepare large enough DESIGNER extracts from RCE for biological testing including in vivo assays, it was necessary to choose a balance between resolution and a loading capacity of at least 1 g per separation for the selected solvent system (SS). Adding 3 mL of DMSO to the sample containing equal amounts of upper and lower phases of hexanes-ethyl acetate-methanol-water (HEMWat 5.5/4.5/5/5, v/v) allowed 1 g of RCE to be dissolved in the sample without disrupting the chromatographic resolution of the target isoflavones. CPC experiments using other solubility modifiers, acetone and acetonitrile indicated that these modifiers increase solubility significantly, even better than DMSO, but the separation of target compounds was sufficiently disturbed to be unacceptable for producing the desired DESIGNER extracts. The preparation of DESIGNER extracts was achieved with two sequential CPC separations. The first produced a biochanin A enriched fraction (93.60% w/w) with only small amounts of other isoflavones: 2.30% w/w prunetin, 1.17% w/w formononetin, and 0.12% w/w irilone. Gravimetric investigations of this step demonstrated the high efficiency of CCS technology for full and unbiased sample recovery, confirmed experimentally to be 99.80%. A formononetin enriched fraction from this first separation was re-chromatographed on a more polar HEMWat (4/6/4/6, v/v) SS to produce a formononetin enriched DESIGNER fraction of 94.70% w/w purity. The presence of the minor (iso)flavonoids: 3.16% w/w pseudobaptigenin, 0.39% w/w kaempferol, and 0.31% w/w genistein was also monitored in these fractions. Chromatographic fractions, combined fractions, and DESIGNER extracts were analyzed with quantitative 1H NMR (qHNMR) spectroscopy which provided purity information, quantitation, and structural identification of the components.
Collapse
Affiliation(s)
- Gonzalo R Malca Garcia
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| | - J Brent Friesen
- Center for Natural Product Technologies (CENAPT), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA; Physical Sciences Department, Rosary College of Arts and Sciences, Dominican University, 7900 W. Division, River Forest, IL 60305, USA
| | - Yang Liu
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| | - Dejan Nikolić
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA; Center for Natural Product Technologies (CENAPT), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| | - David C Lankin
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA; Center for Natural Product Technologies (CENAPT), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| | - James B McAlpine
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA; Center for Natural Product Technologies (CENAPT), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA; Center for Natural Product Technologies (CENAPT), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA; Center for Natural Product Technologies (CENAPT), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA.
| |
Collapse
|
34
|
Friesen JB, Liu Y, Chen SN, McAlpine JB, Pauli GF. Selective Depletion and Enrichment of Constituents in "Curcumin" and Other Curcuma longa Preparations. JOURNAL OF NATURAL PRODUCTS 2019; 82:621-630. [PMID: 30848909 PMCID: PMC6685062 DOI: 10.1021/acs.jnatprod.9b00020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Much uncertainty exists in science and herbal products referencing turmeric (T), turmeric extract (TE), curcuminoid-enriched turmeric extract (CTE), further processed curcuminoid-enriched materials (CEM), or curcumin as a single-chemical entity. To facilitate the rational chemical and biological assessment of turmeric-derived NPs, we introduced the DESIGNER approach of Depleting and Enriching Select Ingredients to Generate Normalized Extract Resources to Curcuma longa preparations. Countercurrent separation of a commercial CTE yielded four key materials-lipophilic metabolites; purified curcumin ("purcumin"); a mixture of curcumin, demethoxycurcumin, and bisdemethoxycurcumin ("purcuminoids"); and hydrophilic metabolites-and enabled production of a curcuminoid-free TE ("nocumin"). Their characterization utilized TLC, 1H (q)NMR spectroscopy, and HPLC.
Collapse
Affiliation(s)
- J. Brent Friesen
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS) and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Department of Physical Sciences, Rosary College of Arts and Sciences, Dominican University, River Forest, Illinois 60305, United States
| | - Yang Liu
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS) and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Shao-Nong Chen
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS) and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - James B. McAlpine
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS) and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Guido F. Pauli
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS) and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Corresponding Author: Tel: +1-312-355-1949. Fax: +1-312-355-2693.
| |
Collapse
|
35
|
Hou W, Li S, Li S, Shi D, Liu C. Screening and isolation of cyclooxygenase-2 inhibitors from Trifolium pratense L. via ultrafiltration, enzyme-immobilized magnetic beads, semi-preparative high-performance liquid chromatography and high-speed counter-current chromatography. J Sep Sci 2019; 42:1133-1143. [PMID: 30620132 DOI: 10.1002/jssc.201800986] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 12/15/2022]
Abstract
Nonsteroidal anti-inflammatory drugs reportedly reduce the risk of developing cancer. One mechanism by which they reduce carcinogenesis involves the inhibition of the activity of cyclooxygenase-2, an enzyme that is overexpressed in various cancer tissues. Its overexpression increases cell proliferation and inhibits apoptosis. However, selected cyclooxygenase-2 inhibitors can also act through cyclooxygenase-independent mechanisms. In this study, using ultrafiltration, enzyme-immobilized magnetic beads, high-performance liquid chromatography, and electrospray-ionization mass spectrometry, several isoflavonoids in Trifolium pratense L. extracts were screened and identified. Semi-preparative high-performance liquid chromatography and high-speed counter-current chromatography were then applied to separate the active constituents. Using these methods, seven major compounds were identified in Trifolium pratense L. As cyclooxygenase-2 inhibitors: rothindin, ononin, daidzein, trifoside, pseudobaptigenin, formononetin, and biochanin A, which were then isolated with >92% purity. This is the first report of the presence of potent cyclooxygenase-2 inhibitors in Trifolium pratense L. extracts. The results of this study demonstrate that the systematic isolation of bioactive components from Trifolium pratense L., by using ultrafiltration, enzyme-immobilized magnetic beads, semi-preparative high-performance liquid chromatography, and high-speed counter-current chromatography, represents a feasible and efficient technique that could be extended for the identification and isolation of other enzyme inhibitors.
Collapse
Affiliation(s)
- Wanchao Hou
- Central Laboratory, Changchun Normal University, Erdao District, Changchun, P. R. China
| | - Senlin Li
- Central Laboratory, Changchun Normal University, Erdao District, Changchun, P. R. China
| | - Sainan Li
- Central Laboratory, Changchun Normal University, Erdao District, Changchun, P. R. China
| | - Dongfang Shi
- Central Laboratory, Changchun Normal University, Erdao District, Changchun, P. R. China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, Erdao District, Changchun, P. R. China
| |
Collapse
|
36
|
Choules MP, Bisson J, Gao W, Lankin DC, McAlpine JB, Niemitz M, Jaki BU, Franzblau SG, Pauli GF. Quality Control of Therapeutic Peptides by 1H NMR HiFSA Sequencing. J Org Chem 2019; 84:3055-3073. [PMID: 30793905 DOI: 10.1021/acs.joc.8b02704] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ensuring identity, purity, and reproducibility are equally essential during synthetic chemistry, drug discovery, and for pharmaceutical product safety. Many peptidic APIs are large molecules that require considerable effort for integrity assurance. This study builds on quantum mechanical 1H iterative Full Spin Analysis (HiFSA) to establish NMR peptide sequencing methodology that overcomes the intrinsic limitations of principal compendial methods in identifying small structural changes or minor impurities that affect effectiveness and safety. HiFSA sequencing yields definitive identity and purity information concurrently, allowing for API quality assurance and control (QA/QC). Achieving full peptide analysis via NMR building blocks, the process lends itself to both research and commercial applications as 1D 1H NMR (HNMR) is the most sensitive and basic NMR experiment. The generated HiFSA profiles are independent of instrument or software tools and work at any magnetic field strength. Pairing with absolute or 100% qHNMR enables quantification of mixtures and/or determination of peptide conformer populations. Demonstration of the methodology uses single amino acids (AAs) and peptides of increasing size, including the octapeptide, angiotensin II, and the nonapeptide, oxytocin. The feasibility of HiFSA coupled with automated NMR and qHNMR for use in QC/QA efforts is established through case-based examples and recommended procedures.
Collapse
|
37
|
Le PM, Milande C, Martineau E, Giraudeau P, Farjon J. Quantification of natural products in herbal supplements: A combined NMR approach applied on goldenseal. J Pharm Biomed Anal 2019; 165:155-161. [DOI: 10.1016/j.jpba.2018.11.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 01/23/2023]
|
38
|
McAlpine JB, Chen SN, Kutateladze A, MacMillan JB, Appendino G, Barison A, Beniddir MA, Biavatti MW, Bluml S, Boufridi A, Butler MS, Capon RJ, Choi YH, Coppage D, Crews P, Crimmins MT, Csete M, Dewapriya P, Egan JM, Garson MJ, Genta-Jouve G, Gerwick WH, Gross H, Harper MK, Hermanto P, Hook JM, Hunter L, Jeannerat D, Ji NY, Johnson TA, Kingston DGI, Koshino H, Lee HW, Lewin G, Li J, Linington RG, Liu M, McPhail KL, Molinski TF, Moore BS, Nam JW, Neupane RP, Niemitz M, Nuzillard JM, Oberlies NH, Ocampos FMM, Pan G, Quinn RJ, Reddy DS, Renault JH, Rivera-Chávez J, Robien W, Saunders CM, Schmidt TJ, Seger C, Shen B, Steinbeck C, Stuppner H, Sturm S, Taglialatela-Scafati O, Tantillo DJ, Verpoorte R, Wang BG, Williams CM, Williams PG, Wist J, Yue JM, Zhang C, Xu Z, Simmler C, Lankin DC, Bisson J, Pauli GF. The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research. Nat Prod Rep 2019; 36:35-107. [PMID: 30003207 PMCID: PMC6350634 DOI: 10.1039/c7np00064b] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 12/20/2022]
Abstract
Covering: up to 2018With contributions from the global natural product (NP) research community, and continuing the Raw Data Initiative, this review collects a comprehensive demonstration of the immense scientific value of disseminating raw nuclear magnetic resonance (NMR) data, independently of, and in parallel with, classical publishing outlets. A comprehensive compilation of historic to present-day cases as well as contemporary and future applications show that addressing the urgent need for a repository of publicly accessible raw NMR data has the potential to transform natural products (NPs) and associated fields of chemical and biomedical research. The call for advancing open sharing mechanisms for raw data is intended to enhance the transparency of experimental protocols, augment the reproducibility of reported outcomes, including biological studies, become a regular component of responsible research, and thereby enrich the integrity of NP research and related fields.
Collapse
Affiliation(s)
- James B McAlpine
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Shao-Nong Chen
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Andrei Kutateladze
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - John B MacMillan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Giovanni Appendino
- Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche, Universita` del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | | | - Mehdi A Beniddir
- Équipe "Pharmacognosie-Chimie des Substances Naturelles" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Maique W Biavatti
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Stefan Bluml
- University of Southern California, Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Asmaa Boufridi
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Mark S Butler
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Young H Choi
- Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - David Coppage
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Michael T Crimmins
- Kenan and Caudill Laboratories of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marie Csete
- University of Southern California, Huntington Medical Research Institutes, 99 N. El Molino Ave., Pasadena, CA 91101, USA
| | - Pradeep Dewapriya
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Joseph M Egan
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Mary J Garson
- School of Chemistry and Molecular Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Grégory Genta-Jouve
- C-TAC, UMR 8638 CNRS, Faculté de Pharmacie de Paris, Paris-Descartes University, Sorbonne, Paris Cité, 4, Aveue de l'Observatoire, 75006 Paris, France
| | - William H Gerwick
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093, USA and Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | - Harald Gross
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Eberhard Karls University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Mary Kay Harper
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Precilia Hermanto
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - James M Hook
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Luke Hunter
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Damien Jeannerat
- University of Geneva, Department of Organic Chemistry, 30 quai E. Ansermet, CH 1211 Geneva 4, Switzerland
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Chunhui Road 17, Yantai 264003, People's Republic of China
| | - Tyler A Johnson
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - David G I Kingston
- Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Hsiau-Wei Lee
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Guy Lewin
- Équipe "Pharmacognosie-Chimie des Substances Naturelles" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Jie Li
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Kerry L McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Tadeusz F Molinski
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Bradley S Moore
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093, USA and Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | - Joo-Won Nam
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Ram P Neupane
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Matthias Niemitz
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Jean-Marc Nuzillard
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Nicholas H Oberlies
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | | | - Guohui Pan
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - D Sai Reddy
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Jean-Hugues Renault
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - José Rivera-Chávez
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Wolfgang Robien
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Carla M Saunders
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Thomas J Schmidt
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Christoph Seger
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Ben Shen
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Christoph Steinbeck
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Hermann Stuppner
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Sonja Sturm
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Orazio Taglialatela-Scafati
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Dean J Tantillo
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Robert Verpoorte
- Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Bin-Gui Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Chunhui Road 17, Yantai 264003, People's Republic of China and Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Craig M Williams
- School of Chemistry and Molecular Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Philip G Williams
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Julien Wist
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Jian-Min Yue
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Chen Zhang
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Zhengren Xu
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Charlotte Simmler
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - David C Lankin
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Jonathan Bisson
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Guido F Pauli
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| |
Collapse
|
39
|
Duffy J, Urbas A, Niemitz M, Lippa K, Marginean I. Differentiation of fentanyl analogues by low-field NMR spectroscopy. Anal Chim Acta 2018; 1049:161-169. [PMID: 30612647 DOI: 10.1016/j.aca.2018.12.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/20/2018] [Accepted: 12/11/2018] [Indexed: 11/26/2022]
Abstract
Forensic laboratories commonly receive new psychoactive substances such as fentanyl analogues and other synthetic opioids that are difficult to identify. Slight changes to chemical structures, e.g. shifting the position of functional groups such as methyl groups or halogens on the aromatic ring, may not be distinguished using traditional methods. NMR is a powerful tool used to elucidate distinctive structural information needed to differentiate regioisomers. However, the cost, size, and cryogen maintenance of superconducting NMR spectrometers can be impractical for some forensic laboratories. Recent studies have shown potential applications of low-field NMR as an alternative in forensic drug analysis. These benchtop, semi-portable instruments are less costly, have a smaller footprint, do not use cryogens, and require little maintenance. In this study, we show that 65 fentanyl and related substances, including various types of positional isomers, were readily differentiated using low-field (62 MHz) 1H NMR spectroscopy. In addition, the use of quantum mechanical spin system analysis was investigated for the purposes of translating experimentally observed high-field 1H spectra to lower field strengths. Spin system analysis of 600 MHz NMR spectra was conducted on a subset (15) of the reference materials analyzed. The results were used to calculate 62 MHz spectra for comparison purposes with the experimental spectra. This was successfully demonstrated, showing that field-strength independent 1H NMR spectral libraries are feasible and can facilitate reference material data dissemination across forensic drug laboratories.
Collapse
Affiliation(s)
- Jonathan Duffy
- Department of Forensic Sciences, George Washington University, Washington, DC, USA
| | - Aaron Urbas
- National Institute of Standards and Technology, Gaithersburg, MD, USA.
| | | | - Katrice Lippa
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Ioan Marginean
- Department of Forensic Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|
40
|
Peez N, Janiska MC, Imhof W. The first application of quantitative 1H NMR spectroscopy as a simple and fast method of identification and quantification of microplastic particles (PE, PET, and PS). Anal Bioanal Chem 2018; 411:823-833. [DOI: 10.1007/s00216-018-1510-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/18/2018] [Accepted: 11/22/2018] [Indexed: 12/14/2022]
|
41
|
Allard PM, Bisson J, Azzollini A, Pauli GF, Cordell GA, Wolfender JL. Pharmacognosy in the digital era: shifting to contextualized metabolomics. Curr Opin Biotechnol 2018; 54:57-64. [PMID: 29499476 PMCID: PMC6110999 DOI: 10.1016/j.copbio.2018.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/26/2018] [Accepted: 02/13/2018] [Indexed: 01/01/2023]
Abstract
Humans have co-evolved alongside numerous other organisms, some having a profound effect on health and nutrition. As the earliest pharmaceutical subject, pharmacognosy has evolved into a meta-discipline devoted to natural biomedical agents and their functional properties. While the acquisition of expanding data volumes is ongoing, contextualization is lagging. Thus, we assert that the establishment of an integrated and open databases ecosystem will nurture the discipline. After proposing an epistemological framework of knowledge acquisition in pharmacognosy, this study focuses on recent computational and analytical approaches. It then elaborates on the flux of research data, where good practices could foster the implementation of more integrated systems, which will in turn help shaping the future of pharmacognosy and determine its constitutional societal relevance.
Collapse
Affiliation(s)
- Pierre-Marie Allard
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland.
| | - Jonathan Bisson
- Center for Natural Product Technologies, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States
| | - Antonio Azzollini
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | - Guido F Pauli
- Center for Natural Product Technologies, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States
| | - Geoffrey A Cordell
- Natural Products Inc., Evanston, IL 60203, United States; Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
42
|
Çiçek SS, Girreser U, Zidorn C. Quantification of the total amount of black cohosh cycloartanoids by integration of one specific 1H NMR signal. J Pharm Biomed Anal 2018; 155:109-115. [PMID: 29627727 DOI: 10.1016/j.jpba.2018.03.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 01/21/2023]
Abstract
Quantitative analysis is an important field in the quality control of medicinal plants, aiming to determine the amount of pharmacologically active constituents in complex matrices. Often biological effects of herbal drugs are not restricted to single compounds, but are rather caused by a number of often biogenetically related plant metabolites. Depending on the complexity of the analyzed plant extract, conflicts between accuracy, such as total content assays using photometric or colorimetric methods, and comprehensiveness, e.g. quantification of one or a few lead compounds can occur. In this study, we present a qHNMR approach determining the total amount of cycloartanoids in black cohosh (Actaea racemosa) rhizomes. Perdeuterated methanol containing 1,2,4,5-tetrachloro-3-nitrobenzene as an internal standard was used for extraction. Amounts of cycloartanoids were then measured by integrating 1H NMR signals of all cycloartenoids' H-19 exo protons. Due to their unusually low chemical shifts, these signals are well separated from all remaining signals in crude extracts. Thus, accurate (recovery rates of 99.5-102.5%) and precise (relative standard deviations below 2.5%) quantification of cycloartanoids was accomplished. To the best of our knowledge, this is the first example of a quantification of the total amount of a pharmacologically relevant compound class by integration of one 1H NMR signal characteristic for all members of this particular compound class. Additionally, we propose a new term and unit for the evaluation of medicinal plants and herbal medicinal products: the "specific partial amount of substance" of pharmacologically active constituents, indicated in mmol/g.
Collapse
Affiliation(s)
- Serhat Sezai Çiçek
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118, Kiel, Germany.
| | - Ulrich Girreser
- Pharmazeutisches Institut, Abteilung Pharmazeutische und Medizinische Chemie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118, Kiel, Germany
| | - Christian Zidorn
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118, Kiel, Germany
| |
Collapse
|
43
|
Jaja-Chimedza A, Graf BL, Simmler C, Kim Y, Kuhn P, Pauli GF, Raskin I. Biochemical characterization and anti-inflammatory properties of an isothiocyanate-enriched moringa (Moringa oleifera) seed extract. PLoS One 2017; 12:e0182658. [PMID: 28792522 PMCID: PMC5549737 DOI: 10.1371/journal.pone.0182658] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022] Open
Abstract
Moringa oleifera Lam. is a tropical plant, used for centuries as food and traditional medicine. The aim of this study was to develop, validate and biochemically characterize an isothiocyanate-enriched moringa seed extract (MSE), and to compare the anti-inflammatory effects of MSE-containing moringa isothiocyanate-1 (MIC-1) with a curcuminoid-enriched turmeric extract (CTE), and a material further enriched in its primary phytochemical, curcumin (curcumin-enriched material; CEM). MSE was prepared by incubating ground moringa seeds with water to allow myrosinase-catalyzed enzymatic formation of bioactive MIC-1, the predominant isothiocyanate in moringa seeds. Optimization of the extraction process yielded an extract of 38.9% MIC-1. Phytochemical analysis of MSE revealed the presence of acetylated isothiocyanates, phenolic glycosides unique to moringa, flavonoids, fats and fatty acids, proteins and carbohydrates. MSE showed a reduction in the carrageenan-induced rat paw edema (33% at 500 mg/kg MIC-1) comparable to aspirin (27% at 300 mg/kg), whereas CTE did not have any significant effect. In vitro, MIC-1 at 1 μM significantly reduced the production of nitric oxide (NO) and at 5 μM, the gene expression of LPS-inducible nitric oxide synthase (iNOS) and interleukins 1β and 6 (IL-1β and IL-6), whereas CEM did not show any significant activity at all concentrations tested. MIC-1 (10μM) was also more effective at upregulating the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) target genes NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione S-transferase pi 1 (GSTP1), and heme oxygenase 1 (HO1) than the CEM. Thus, in contrast to CTE and CEM, MSE and its major isothiocyanate MIC-1 displayed strong anti-inflammatory and antioxidant properties in vivo and in vitro, making them promising botanical leads for the mitigation of inflammatory-mediated chronic disorders.
Collapse
Affiliation(s)
- Asha Jaja-Chimedza
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Brittany L. Graf
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Charlotte Simmler
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Youjin Kim
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, United States of America
- Nutrasorb, LLC, Freehold, New Jersey, United States of America
| | - Peter Kuhn
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Guido F. Pauli
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ilya Raskin
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, United States of America
| |
Collapse
|
44
|
Jaja-Chimedza A, Graf BL, Simmler C, Kim Y, Kuhn P, Pauli GF, Raskin I. Biochemical characterization and anti-inflammatory properties of an isothiocyanate-enriched moringa (Moringa oleifera) seed extract. PLoS One 2017. [PMID: 28792522 DOI: 10.7910/dvn/36wpxs] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Moringa oleifera Lam. is a tropical plant, used for centuries as food and traditional medicine. The aim of this study was to develop, validate and biochemically characterize an isothiocyanate-enriched moringa seed extract (MSE), and to compare the anti-inflammatory effects of MSE-containing moringa isothiocyanate-1 (MIC-1) with a curcuminoid-enriched turmeric extract (CTE), and a material further enriched in its primary phytochemical, curcumin (curcumin-enriched material; CEM). MSE was prepared by incubating ground moringa seeds with water to allow myrosinase-catalyzed enzymatic formation of bioactive MIC-1, the predominant isothiocyanate in moringa seeds. Optimization of the extraction process yielded an extract of 38.9% MIC-1. Phytochemical analysis of MSE revealed the presence of acetylated isothiocyanates, phenolic glycosides unique to moringa, flavonoids, fats and fatty acids, proteins and carbohydrates. MSE showed a reduction in the carrageenan-induced rat paw edema (33% at 500 mg/kg MIC-1) comparable to aspirin (27% at 300 mg/kg), whereas CTE did not have any significant effect. In vitro, MIC-1 at 1 μM significantly reduced the production of nitric oxide (NO) and at 5 μM, the gene expression of LPS-inducible nitric oxide synthase (iNOS) and interleukins 1β and 6 (IL-1β and IL-6), whereas CEM did not show any significant activity at all concentrations tested. MIC-1 (10μM) was also more effective at upregulating the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) target genes NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione S-transferase pi 1 (GSTP1), and heme oxygenase 1 (HO1) than the CEM. Thus, in contrast to CTE and CEM, MSE and its major isothiocyanate MIC-1 displayed strong anti-inflammatory and antioxidant properties in vivo and in vitro, making them promising botanical leads for the mitigation of inflammatory-mediated chronic disorders.
Collapse
Affiliation(s)
- Asha Jaja-Chimedza
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Brittany L Graf
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Charlotte Simmler
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Youjin Kim
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, United States of America
- Nutrasorb, LLC, Freehold, New Jersey, United States of America
| | - Peter Kuhn
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Guido F Pauli
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ilya Raskin
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, United States of America
| |
Collapse
|