1
|
Noor S, Choudhury A, Islam KU, Yousuf M, Raza A, Ansari MA, Ashraf A, Hussain A, Hassan MI. Investigating the chemo-preventive role of noscapine in lung carcinoma via therapeutic targeting of human aurora kinase B. Mol Cell Biochem 2025; 480:1137-1153. [PMID: 38829482 DOI: 10.1007/s11010-024-05036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024]
Abstract
Lung carcinoma is the major contributor to global cancer incidence and one of the leading causes of cancer-related mortality worldwide. Irregularities in signal transduction events, genetic alterations, and mutated regulatory genes trigger cancer development and progression. Selective targeting of molecular modulators has substantially revolutionized cancer treatment strategies with improvised efficacy. The aurora kinase B (AURKB) is a critical component of the chromosomal passenger complex and is primarily involved in lung cancer pathogenesis. Since AURKB is an important therapeutic target, the design and development of its potential inhibitors are attractive strategies. In this study, noscapine was selected and validated as a possible inhibitor of AURKB using integrated computational, spectroscopic, and cell-based assays. Molecular docking analysis showed noscapine occupies the substrate-binding pocket of AURKB with strong binding affinity. Subsequently, MD simulation studies confirmed the formation of a stable AURKB-noscapine complex with non-significant alteration in various trajectories, including RMSD, RMSF, Rg, and SASA. These findings were further experimentally validated through fluorescence binding studies. In addition, dose-dependent noscapine treatment significantly attenuated recombinant AURKB activity with an IC50 value of 26.6 µM. Cell viability studies conducted on A549 cells and HEK293 cells revealed significant cytotoxic features of noscapine on A549 cells. Furthermore, Annexin-PI staining validated that noscapine triggered apoptosis in lung cancer cells, possibly via an intrinsic pathway. Our findings indicate that noscapine-based AURKB inhibition can be implicated as a potential therapeutic strategy in lung cancer treatment and can also provide a novel scaffold for developing next-generation AURKB-specific inhibitors.
Collapse
Affiliation(s)
- Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Khursheed Ul Islam
- Multidisciplinary Centre for Advance Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohd Yousuf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Ali Raza
- Department of Medical Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Mohammad Ahmad Ansari
- Multidisciplinary Research Unit, University College of Medical Sciences, New Delhi, 110095, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Afzal Hussain
- Department of Pharmacognosy College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
2
|
Fredimoses M, Li P, Zhang Y, Jia H, Liu S, Tian J, Nie W, Liu K, Song M, Dong Z. Design, synthesis, and antiproliferative activity evaluation of novel α-mangostin derivatives by ROS/MAPK signaling pathway. Bioorg Chem 2024; 153:107968. [PMID: 39566271 DOI: 10.1016/j.bioorg.2024.107968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Novel hydroxamic acid and 3,6-amide modified α-mangostin derivatives were synthesized and evaluated their antiproliferative activities against KYSE 30 (esophageal cancer), HCT 116 (colon cancer), and HGC 27 (gastric cancer) cell lines. Most of the new derivatives displayed stronger anti-proliferative activities compared to α-mangostin. Among all the derivatives, compound 4a exhibited the most potent activity, with IC50 values of 0.57 ± 0.29 μM, 3.27 ± 0.16 μM, and 2.28 ± 1.02 μM against KYSE 30, HCT 116, and HGC 27 cells, respectively. Subsequent mechanism studies revealed that compound 4a inhibited cancer cells proliferation and colonies formation in a concentration-dependent manner. Additionally, compound 4a caused cell cycle arrest in a p53 dependent manner and induced apoptosis in p53 independent way. Meanwhile, 4a suppressed cell cycle related proteins (Cyclin D1 and cyclin B1) expression, increased pro-apoptotic proteins (cleaved PARP, cleaved caspase-7, and cleaved caspase-9) and decreased anti-apoptotic proteins (Bcl-2) expression. Moreover, 4a increased reactive oxygen species (ROS) levels in KYSE 30 cells and upregulated the expression of proteins related to the ROS related MAPK signaling pathway (p-ERK, p-p38, and p-JNK). These findings suggest that compound 4a holds promising potential as an antiproliferative agent by targeting MAPK signaling pathway to inhibit cell cycle progress, induce apoptosis and produce ROS in cancers.
Collapse
Affiliation(s)
- Mangaladoss Fredimoses
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China
| | - Pan Li
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China
| | - Yunqing Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Huajie Jia
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shihui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jie Tian
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Wenna Nie
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China; Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou 450000, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou 450000, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengqiu Song
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China; The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou 450000, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou 450000, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Majdalawieh AF, Terro TM, Ahari SH, Abu-Yousef IA. α-Mangostin: A Xanthone Derivative in Mangosteen with Potent Anti-Cancer Properties. Biomolecules 2024; 14:1382. [PMID: 39595559 PMCID: PMC11591772 DOI: 10.3390/biom14111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
α-Mangostin, a xanthone derivative extracted from the pericarp of the mangosteen fruit (Garcinia mangostana L.), has garnered significant attention for its potential as a natural anti-cancer agent. This review provides a comprehensive analysis of the current literature on the anti-cancer properties of α-mangostin across various cancer types. Through an extensive analysis of in vitro and in vivo studies, this review elucidates the multifaceted mechanisms underlying α-mangostin's cytotoxicity, apoptosis induction through both intrinsic and extrinsic pathways, and modulation of key cellular processes implicated in cancer progression in a diverse array of cancer cells. It causes mitochondrial dysfunction, activates caspases, and regulates autophagy, endoplasmic reticulum stress, and oxidative stress, enhancing its anti-cancer efficacy. Moreover, α-mangostin exhibits synergistic effects with conventional chemotherapeutic agents, suggesting its utility in combination therapies. The ability of α-mangostin to inhibit cell proliferation, modulate cell cycle progression, and induce apoptosis is linked to its effects on key signaling pathways, including Akt, NF-κB, and p53. Preclinical studies highlight the therapeutic potential and safety profile of α-mangostin, demonstrating significant tumor growth inhibition without adverse effects on normal cells. In summary, understanding the molecular targets and mechanisms of action of α-mangostin is crucial for its development as a novel chemotherapeutic agent, and future clinical investigations are warranted to explore its clinical utility and efficacy in cancer prevention and therapy.
Collapse
Affiliation(s)
- Amin F. Majdalawieh
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (T.M.T.); (S.H.A.); (I.A.A.-Y.)
| | | | | | | |
Collapse
|
4
|
Suhandi C, Wilar G, Narsa AC, Mohammed AFA, El-Rayyes A, Muchtaridi M, Shamsuddin S, Safuan S, Wathoni N. Updating the Pharmacological Effects of α-Mangostin Compound and Unraveling Its Mechanism of Action: A Computational Study Review. Drug Des Devel Ther 2024; 18:4723-4748. [PMID: 39469723 PMCID: PMC11514645 DOI: 10.2147/dddt.s478388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024] Open
Abstract
α-Mangostin, initially identified in 1855, is a xanthone derivative compound predominantly located in the pericarp of the mangosteen fruit (Garcinia mangostana L). This compound is known for its beneficial properties as an antioxidant and anti-inflammatory agent, still holding promise for potential benefits in other related pathologies. In the investigative process, computational studies have proven highly valuable in providing evidence and initial screening before progressing to preclinical and clinical studies. This review aims to present the pharmacological findings and mechanisms of action of α-mangostin based on computational studies. The compilation of this review is founded on the analysis of relevant articles obtained from PubMed, Scopus, and ScienceDirect databases. The study commences with an elucidation of the physicochemical characteristics, drug-likeness, pharmacokinetics, and toxicity profile of α-mangostin, which demonstrates that α-mangostin complies with the Lipinski's Rule of Five, exhibits favorable profiles of absorption, distribution, metabolism, and excretion, and presents low toxicity. Subsequent investigations have revealed that computational studies employing various software tools including ArgusLab, AutoDock, AutoDock Vina, Glide, HEX, and MOE, have been pivotal to comprehend the pharmacology of α-mangostin. Beyond its well established roles as an antioxidant and anti-inflammatory agent, α-mangostin is now recognized for its pharmacological effects in Alzheimer's disease, diabetes, cancer, chronic kidney disease, chronic periodontitis, infectious diseases, and rheumatoid arthritis. Moreover, α-mangostin is projected to have applications in pain management and as a potent mosquito larvicide. All of these findings are based on the attainment of adequate binding affinity to specific target receptors associated with each respective pathological condition. Consequently, it is anticipated that these findings will serve as a foundation for future scientific endeavours, encompassing both in vitro and in vivo studies, as well as clinical investigations, to better understand the pharmacological effects of α-mangostin.
Collapse
Affiliation(s)
- Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Angga Cipta Narsa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mulawarman University, Samarinda, 71157, Indonesia
| | | | - Ali El-Rayyes
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Muchtaridi Muchtaridi
- Department of Analytical Pharmacy and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Sabreena Safuan
- Department of Biomedicine, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| |
Collapse
|
5
|
Ansari MM, Sahu SK, Singh TG, Singh SRJ, Kaur P. Evolving significance of kinase inhibitors in the management of Alzheimer's disease. Eur J Pharmacol 2024; 979:176816. [PMID: 39038637 DOI: 10.1016/j.ejphar.2024.176816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Alzheimer's disease is a neurodegenerative problem with progressive loss of memory and other cognitive function disorders resulting in the imbalance of neurotransmitter activity and signaling progression, which poses the need of the potential therapeutic target to improve the intracellular signaling cascade brought by kinases. Protein kinase plays a significant and multifaceted role in the treatment of Alzheimer's disease, by targeting pathological mechanisms like tau hyperphosphorylation, neuroinflammation, amyloid-beta production and synaptic dysfunction. In this review, we thoroughly explore the essential protein kinases involved in Alzheimer's disease, detailing their physiological roles, regulatory impacts, and the newest inhibitors and compounds that are progressing into clinical trials. All the findings of studies exhibited the promising role of kinase inhibitors in the management of Alzheimer's disease. However, it still poses the need of addressing current challenges and opportunities involved with this disorder for the future perspective of kinase inhibitors in the management of Alzheimer's disease. Further study includes the development of biomarkers, combination therapy, and next-generation kinase inhibitors with increased potency and selectivity for its future prospects.
Collapse
Affiliation(s)
- Md Mustafiz Ansari
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | | | - Sovia R J Singh
- University Language Centre- Chitkara Business School, Chitkara University, Punjab, India
| | - Paranjeet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
6
|
Ma F, Yao J, Niu X, Zhang J, Shi D, Da M. MARK4 promotes the malignant phenotype of gastric cancer through the MAPK/ERK signaling pathway. Pathol Res Pract 2024; 261:155471. [PMID: 39079384 DOI: 10.1016/j.prp.2024.155471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/27/2024] [Accepted: 07/14/2024] [Indexed: 08/18/2024]
Abstract
BACKGROUND Microtubule affinity regulating kinase 4 (MARK4), which is overexpressed in various tumors, is involved in the regulation of cell division, proliferation, migration, and the cell cycle, and has been considered a potential marker for cancer; however, its mechanism of action in gastric cancer (GC) remains unclear. This study aimed to investigate the role of MARK4 in the proliferation, migration, and invasion of GC cell through the MAPK/ERK signaling pathway by targeting MARK4 knockdown. METHODS Using The Cancer Genome Atlas data and clinical information, MARK4 expression and its relationship with prognosis were analyzed. Possible pathways involving MARK4 were explored using enrichment analysis. Western blotting and real-time quantitative polymerase chain reaction were used to detect MARK4 expression in GC. After targeted transfection of siRNA, the transfection efficiency of the experimental group was detected in AGS and HGC-27 cells. The effects of knockdown MARK4 on the proliferation, migration, and invasion of GC cells were verified using CCK-8, colony formation, wound healing, and transwell assays. Finally, the relationship between MARK4, the MAPK/ERK pathway, and epithelial-mesenchymal transition in GC was verified by western blotting. RESULTS MARK4 expression was upregulated in GC and associated with poor prognosis in patients with GC. Enrichment analysis showed that MARK4 was involved in the activation of the MAPK signaling pathway. Western blotting results indicated that MARK4 overexpression promoted the proliferation, migration, and invasion of GC cells through the MAPK/ERK pathway. CONCLUSION MARK4 expression was upregulated in GC and promoted the proliferation, migration, and invasion of GC cells through the MAPK/ERK pathway.
Collapse
Affiliation(s)
- Fubin Ma
- The First School of Clinical Medicine, Ningxia Medical University, Yinchuan, PR China.
| | - Jibin Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, PR China; Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, PR China.
| | - Xingdong Niu
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, PR China.
| | - Junrui Zhang
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, PR China.
| | - Donghai Shi
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, PR China.
| | - Mingxu Da
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, PR China; Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, PR China.
| |
Collapse
|
7
|
Shakeel I, Haider S, Khan S, Ahmed S, Hussain A, Alajmi MF, Chakrabarty A, Afzal M, Imtaiyaz Hassan M. Thymoquinone, artemisinin, and thymol attenuate proliferation of lung cancer cells as Sphingosine kinase 1 inhibitors. Biomed Pharmacother 2024; 177:117123. [PMID: 39004062 DOI: 10.1016/j.biopha.2024.117123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024] Open
Abstract
Sphingosine-1-phosphate (S1P) formed via catalytic actions of sphingosine kinase 1 (SphK1) behaves as a pro-survival substance and activates downstream target molecules associated with various pathologies, including initiation, inflammation, and progression of cancer. Here, we aimed to investigate the SphK1 inhibitory potentials of thymoquinone (TQ), Artemisinin (AR), and Thymol (TM) for the therapeutic management of lung cancer. We implemented docking, molecular dynamics (MD) simulations, enzyme inhibition assay, and fluorescence measurement studies to estimate binding affinity and SphK1 inhibitory potential of TQ, AR, and TM. We further investigated the anti-cancer potential of these compounds on non-small cell lung cancer (NSCLC) cell lines (H1299 and A549), followed by estimation of mitochondrial ROS, mitochondrial membrane potential depolarization, and cleavage of DNA by comet assay. Enzyme activity and fluorescence binding studies suggest that TQ, AR, and TM significantly inhibit the activity of SphK1 with IC50 values of 35.52 µM, 42.81 µM, and 53.68 µM, respectively, and have an excellent binding affinity. TQ shows cytotoxic effect and anti-proliferative potentials on H1299 and A549 with an IC50 value of 27.96 µM and 54.43 µM, respectively. Detection of mitochondrial ROS and mitochondrial membrane potential depolarization shows promising TQ-induced oxidative stress on H1299 and A549 cell lines. Comet assay shows promising TQ-induced oxidative DNA damage. In conclusion, TQ, AR, and TM act as potential inhibitors for SphK1, with a strong binding affinity. In addition, the cytotoxicity of TQ is linked to oxidative stress due to mitochondrial ROS generation. Overall, our study suggests that TQ is a promising inhibitor of SphK1 targeting lung cancer therapy.
Collapse
Affiliation(s)
- Ilma Shakeel
- Department of Zoology, Aligarh Muslim University, Aligarh, UP 202001, India; Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shaista Haider
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Deemed to be University, Gautam Buddha Nagar, UP 201314, India
| | - Shama Khan
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Science, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Shahbaz Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Anindita Chakrabarty
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Deemed to be University, Gautam Buddha Nagar, UP 201314, India
| | - Mohammad Afzal
- Department of Zoology, Aligarh Muslim University, Aligarh, UP 202001, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
8
|
Bhakta A, Mukhtar S, Anwar S, Haider S, Alahmdi MI, Parveen H, Alsharif MA, Wani MY, Chakrabarty A, Hassan MI, Ahmed N. Design, synthesis, molecular docking and anti-proliferative activity of novel phenothiazine containing imidazo[1,2- a]pyridine derivatives against MARK4 protein. RSC Med Chem 2024; 15:1942-1958. [PMID: 38911173 PMCID: PMC11187548 DOI: 10.1039/d4md00059e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/10/2024] [Indexed: 06/25/2024] Open
Abstract
A series of novel phenothiazine-containing imidazo[1,2-a]pyridine derivatives were designed and synthesized under metal-free conditions in excellent yield. These derivatives were effectively transformed further into N-alkyl, sulfoxide, and sulfone derivatives. Derivatives were deployed against human microtubule affinity regulating kinase (MARK4), some molecules play crucial roles in cell-cycle progression such as G1/S transition and regulator of microtubule dynamics. Hence, molecules have shown excellent MARK4 inhibitory potential. Molecules with excellent IC50 values were selected for further studies such as ligand interactions using fluorescence quenching experiments for the binding constant. The highest binding constant was calculated as K = 0.79 × 105 and K = 0.1 × 107 for compounds 6a and 6h, respectively. Molecular docking, cell cytotoxicity, mitochondrial reactive oxygen species measurement and oxidative DNA damage were also studied to understand the mechanism of action of the molecules on cancer cells. It was found that the designed and synthesized compounds played anti-cancer roles by binding and inhibiting MARK4 protein.
Collapse
Affiliation(s)
- Avijit Bhakta
- Department of Chemistry, Indian Institute of Technology Roorkee Roorkee-247 667 U.K. India
| | - Sayeed Mukhtar
- Department of Chemistry, Faculty of Science, University of Tabuk Tabuk 71491 Saudi Arabia
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia New Delhi India
| | - Shaista Haider
- Department of Life Sciences, Shiv Nadar University Uttar Pradesh 201314 India
| | - Mohammed Issa Alahmdi
- Department of Chemistry, Faculty of Science, University of Tabuk Tabuk 71491 Saudi Arabia
| | - Humaira Parveen
- Department of Chemistry, Faculty of Science, University of Tabuk Tabuk 71491 Saudi Arabia
| | - Meshari A Alsharif
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University Makkah Saudi
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah 21589 Jeddah Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia New Delhi India
| | - Naseem Ahmed
- Department of Chemistry, Indian Institute of Technology Roorkee Roorkee-247 667 U.K. India
| |
Collapse
|
9
|
Ahmed S, Queen A, Irfan I, Siddiqui MN, Abdulhameed Almuqdadi HT, Setia N, Ansari J, Hussain A, Hassan MI, Abid M. Vanillin-Isatin Hybrid-Induced MARK4 Inhibition As a Promising Therapeutic Strategy against Hepatocellular Carcinoma. ACS OMEGA 2024; 9:25945-25959. [PMID: 38911744 PMCID: PMC11190929 DOI: 10.1021/acsomega.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024]
Abstract
Microtubule affinity-regulating kinase 4 (MARK4) is a serine-threonine kinase that phosphorylates microtubule-associated proteins (MAPs) and increases the microtubule dynamics. Due to its direct involvement in initiation, cell division, progression, and cancer metastasis, MARK4 is considered a potential therapeutic target. Here, we designed, synthesized, and characterized vanillin-isatin hybrids and evaluated their MARK4 inhibitory potential. All of the compounds strongly bind to MARK4 and interact closely with the active site residues. Finally, the compound VI-9 was selected for further investigation due to its high binding affinity and strong MARK4 inhibitory potential. Tau-phosphorylation assay has further confirmed that VI-9 significantly reduced the activity of MARK4. Compared with vanillin, VI-9 showed a better binding affinity and MARK4 inhibitory potential. Cell viability assays on human hepatocellular carcinoma (HCC) cell lines C3A and SNU-475 revealed that VI-9 inhibited their growth and proliferation. In addition, these compounds were nontoxic (up to 200 μM) for noncancerous (HEK-293) cells. Interestingly, VI-9 induces apoptosis and decreases the metastatic potential of the C3A and SNU-475 cell lines. The present work opens a newer avenue for vanillin-isatin hybrids and their derivatives in developing MARK4-targeted anticancer therapies.
Collapse
Affiliation(s)
- Sarfraz Ahmed
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia
Nagar, New Delhi 110025, India
| | - Aarfa Queen
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia
Nagar, New Delhi 110025, India
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Iram Irfan
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Naseem Siddiqui
- Department
of Orthopaedics, Indira Gandhi Medical College
& Hospital, Shimla, Himachal Pradesh 171001, India
| | - Haider Thaer Abdulhameed Almuqdadi
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Department
of Chemistry, College of Science, Al-Nahrain
University, Baghdad 10070, Iraq
| | - Nisha Setia
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Jaoud Ansari
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia
Nagar, New Delhi 110025, India
| | - Afzal Hussain
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia
Nagar, New Delhi 110025, India
| | - Mohammad Abid
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
10
|
Abdullah KM, Sharma G, Qais FA, Khan I, Takkar S, Kaushal JB, Kanchan RK, Sarwar T, Chakravarti B, Siddiqui JA. Hydroxychloroquine interaction with phosphoinositide 3-kinase modulates prostate cancer growth in bone microenvironment: In vitro and molecular dynamics based approach. Int J Biol Macromol 2024; 266:130912. [PMID: 38513896 DOI: 10.1016/j.ijbiomac.2024.130912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Patients with advanced prostate cancer (PCa) are more likely to develop bone metastases. Tumor cells thrive in the bone microenvironment, interacting with osteoblasts and osteoclasts. Given the PI3K/AKT pathway's metastatic potential and signal integration's ability to modulate cell fates in PCa development, drugs targeting this system have great therapeutic promise. Hydroxychloroquine (HCQ) is an anti-malarial medication commonly used to treat clinical conditions such as rheumatology and infectious disorders. We explored the anti-neoplastic effect of HCQ on PC3 and C4-2B cell lines in the bone microenvironment. Interestingly, HCQ treatment substantially decreases the viability, proliferation, and migration potential of PCa cells in the bone microenvironment. HCQ induces apoptosis and cell cycle arrest, even in the presence of osteoblast-secreted factors. Mechanistically, HCQ inhibited the activity of the PI3K/AKT signaling pathway, which ultimately regulates the proliferation and migration of PCa cells in the bone. The binding energy for docking HCQ with PI3K was -6.7 kcal/mol, and the complex was stabilized by hydrogen bonds, hydrophobic forces, and van der Waals forces. Molecular simulations further validated the structural integrity of the HCQ-PI3K complex without altering PI3K's secondary structure. Our findings underscore the efficacy of HCQ as a potential therapeutic agent in treating PCa.
Collapse
Affiliation(s)
- K M Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Imran Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Simran Takkar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Tarique Sarwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Saudi Arabia
| | - Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE-68198, USA.
| |
Collapse
|
11
|
Sabotič J, Bayram E, Ezra D, Gaudêncio SP, Haznedaroğlu BZ, Janež N, Ktari L, Luganini A, Mandalakis M, Safarik I, Simes D, Strode E, Toruńska-Sitarz A, Varamogianni-Mamatsi D, Varese GC, Vasquez MI. A guide to the use of bioassays in exploration of natural resources. Biotechnol Adv 2024; 71:108307. [PMID: 38185432 DOI: 10.1016/j.biotechadv.2024.108307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/05/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Bioassays are the main tool to decipher bioactivities from natural resources thus their selection and quality are critical for optimal bioprospecting. They are used both in the early stages of compounds isolation/purification/identification, and in later stages to evaluate their safety and efficacy. In this review, we provide a comprehensive overview of the most common bioassays used in the discovery and development of new bioactive compounds with a focus on marine bioresources. We present a comprehensive list of practical considerations for selecting appropriate bioassays and discuss in detail the bioassays typically used to explore antimicrobial, antibiofilm, cytotoxic, antiviral, antioxidant, and anti-ageing potential. The concept of quality control and bioassay validation are introduced, followed by safety considerations, which are critical to advancing bioactive compounds to a higher stage of development. We conclude by providing an application-oriented view focused on the development of pharmaceuticals, food supplements, and cosmetics, the industrial pipelines where currently known marine natural products hold most potential. We highlight the importance of gaining reliable bioassay results, as these serve as a starting point for application-based development and further testing, as well as for consideration by regulatory authorities.
Collapse
Affiliation(s)
- Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
| | - Engin Bayram
- Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - David Ezra
- Department of Plant Pathology and Weed Research, ARO, The Volcani Institute, P.O.Box 15159, Rishon LeZion 7528809, Israel
| | - Susana P Gaudêncio
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Biomolecular Sciences Unit, Department of Chemistry, Blue Biotechnology & Biomedicine Lab, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Berat Z Haznedaroğlu
- Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Nika Janež
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Leila Ktari
- B3Aqua Laboratory, National Institute of Marine Sciences and Technologies, Carthage University, Tunis, Tunisia
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Dina Simes
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; 2GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Evita Strode
- Latvian Institute of Aquatic Ecology, Agency of Daugavpils University, Riga LV-1007, Latvia
| | - Anna Toruńska-Sitarz
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, 81-378 Gdynia, Poland
| | - Despoina Varamogianni-Mamatsi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | | | - Marlen I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 3036 Limassol, Cyprus
| |
Collapse
|
12
|
Anwar S, Choudhury A, Hussain A, AlAjmi MF, Hassan MI, Islam A. Harnessing memantine in Alzheimer's disease therapy through inhibition of microtubule affinity-regulating kinase: Mechanistic insights. Int J Biol Macromol 2024; 262:130090. [PMID: 38342269 DOI: 10.1016/j.ijbiomac.2024.130090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's disease (AD) is one of the neurodegenerative disorder that primarily affects memory, thinking, and behavior, eventually leading to severe cognitive impairment. Therapeutic management of AD is urgently needed to improve the quality and lifestyle of patients. Tau phosphorylating kinases are considered attractive therapeutic targets. Microtubule affinity-regulating kinase 4 (MARK4) is directly linked with pathological phosphorylations of tau, highlighting its role in the therapeutic targeting of AD. The current manuscript shows the MARK4 inhibitory effect of Memantine (MEM), a drug used in treating AD. We have performed fluorescence based binding measurements, enzyme inhibition assay, docking and molecular dynamics (MD) simulations to understand the binding of of MARK4 and MEM and subsequent inhibition in the kinase activity. A 100 ns MD simulations provided a detailed analysis of MARK4-MEM complex and the role of potential critical residues in the binding. Finally, this study provides molecular insights into the therapeutic implication of MEM in AD therapeutics. We propose MEM effectively inhibits MARK4, it may be implicated in the development of targeted and efficient treatments for AD.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
13
|
Khan A, Bealy MA, Alharbi B, Khan S, Alharethi SH, Al-Soud WA, Mohammad T, Hassan MI, Alshammari N, Ahmed Al-Keridis L. Discovering potential inhibitors of Raf proto-oncogene serine/threonine kinase 1: a virtual screening approach towards anticancer drug development. J Biomol Struct Dyn 2024; 42:1846-1857. [PMID: 37104027 DOI: 10.1080/07391102.2023.2204380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/08/2023] [Indexed: 04/28/2023]
Abstract
Raf proto-oncogene serine/threonine kinase 1 (RAF1 or c-Raf) is a serine/threonine protein kinase crucial in regulating cell growth, differentiation, and survival. Any disruption or overexpression of RAF1 can result in neoplastic transformation and other disorders such as cardiomyopathy, Noonan syndrome, leopard syndrome, etc. RAF1 has been identified as a potential therapeutic target in drug development against various complex diseases, including cancer, due to its remarkable role in disease progression. Here, we carried out a multitier virtual screening study involving different in-silico approaches to discover potential inhibitors of RAF1. After applying the Lipinski rule of five, we retrieved all phytocompounds from the IMPPAT database based on their physicochemical properties. We performed a molecular docking-based virtual screening and got top hits with the best binding affinity and ligand efficiency. Then we screened out the selected hits using the PAINS filter, ADMET properties, and other druglike features. Eventually, PASS evaluation identifies two phytocompounds, Moracin C and Tectochrysin, with appreciable anti-cancerous properties. Finally, all-atom molecular dynamics simulation (MDS) followed by interaction analysis was performed on the elucidated compounds in complex with RAF1 for 200 ns to investigate their time-evolution dynamics and interaction mechanism. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and Dynamical Cross-Correlation Matrix (DCCM) analyses then followed these results from the simulated trajectories. According to the results, the elucidated compounds stabilize the RAF1 structure and lead to fewer conformational alterations. The results of the current study indicated that Moracin C and Tectochrysin could serve as potential inhibitors of RAF1 after required validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Afsha Khan
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Mohamed Ahmed Bealy
- Department of Pathology, College of Medicine, University of Ha'il, Hail, Saudi Arabia
| | - Bandar Alharbi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Hail, Saudi Arabia
| | - Shama Khan
- Faculty of Health Science, South Africa Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
14
|
Noor S, Choudhury A, Raza A, Ashraf A, Islam KU, Hussain A, Imtiyaz K, Islam A, Hassan MI. Probing Baicalin as potential inhibitor of Aurora kinase B: A step towards lung cancer therapy. Int J Biol Macromol 2024; 258:128813. [PMID: 38123032 DOI: 10.1016/j.ijbiomac.2023.128813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Cell cycle regulators play pivotal roles as their dysregulation, leads to atypical proliferation and intrinsic genomic instability in cancer cells. Abnormal expression and functioning of Aurora kinase B (AURKB) are associated with cancer pathogenesis and thus exploited as a potential therapeutic target for the development of anti-cancer therapeutics. To identify effective AURKB inhibitors, a series of polyphenols was investigated to check their potential to inhibit recombinant AURKB. Their binding affinities were experimentally validated through fluorescence binding studies. Enzyme inhibition assay revealed that Mangiferin and Baicalin significantly inhibited AURKB activity with an IC50 values of 20.0 μM and 31.1 μM, respectively. To get atomistic insights into the binding mechanism, molecular docking and MD simulations of 100 ns were performed. Both compounds formed many non-covalent interactions with the residues of the active site pocket of AURKB. In addition, minimal conformational changes in the structure and formation of stable AURKB-ligand complex were observed during MD simulation analysis. Finally, cell-based studies suggested that Baicalin exhibited in-vitro cytotoxicity and anti-proliferative effects on lung cancer cell lines. Conclusively, Baicalin may be considered a promising therapeutic molecule against AURKB, adding an additional novel lead to the anti-cancer repertoire.
Collapse
Affiliation(s)
- Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ali Raza
- Department of Medical Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Khursheed Ul Islam
- Multidisciplinary Centre for Advance Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khadija Imtiyaz
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
15
|
Shakeel I, Khan S, Roy S, Sherwani F, Ahmad SF, Sohal SS, Afzal M, Hassan MI. Investigating potential of cholic acid, syringic acid, and mangiferin as cancer therapeutics through sphingosine kinase 1 inhibition. Int J Biol Macromol 2023; 253:127036. [PMID: 37788733 DOI: 10.1016/j.ijbiomac.2023.127036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
The signaling of sphingosine kinase 1 (SphK1) and sphingosine-1-phosphate (S1P) regulates various diseases, including multiple sclerosis, atherosclerosis, rheumatoid arthritis, inflammation-related ailments, diabetes, and cancer. SphK1 is considered an attractive potential drug target and is extensively explored in cancer and other inflammatory diseases. In this study, we have investigated the inhibitory potential and binding affinity of SphK1 with cholic acid (CA), syringic acid (SA), and mangiferin (MF) using a combination of docking and molecular dynamics (MD) simulation studies followed by experimental measurements of binding affinity and enzyme inhibition assays. We observed these compounds bind to SphK1 with a significantly high affinity and eventually inhibit its kinase activity with IC50 values of 28.23 μM, 33.35 μM, and 57.2 μM for CA, SA, and MF, respectively. Further, the docking and 100 ns MD simulation studies showed that CA, SA, and MF bind with the active site residues of SphK1 with favorable energy and strong non-covalent interactions that might be accountable for inhibiting its kinase activity. Our finding indicates that CA, SA, and MF may be implicated in designing novel anti-cancer therapeutics with an improved affinity and lesser side effects by targeting SphK1.
Collapse
Affiliation(s)
- Ilma Shakeel
- Department of Zoology, Aligarh Muslim University, Aligarh, India; Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shama Khan
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Science, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Sonam Roy
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Fakhir Sherwani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7001, Tasmania, Australia
| | - Mohammad Afzal
- Department of Zoology, Aligarh Muslim University, Aligarh, India.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
16
|
Hassan MI, Anjum D, Mohammad T, Alam M, Khan MS, Shahwan M, Shamsi A, Yadav DK. Integrated virtual screening and MD simulation study to discover potential inhibitors of Lyn-kinase: targeting cancer therapy. J Biomol Struct Dyn 2023; 41:10558-10568. [PMID: 36495308 DOI: 10.1080/07391102.2022.2154849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
Tyrosine-protein kinase Lyn (LynK) has emerged as one of the most attractive therapeutic targets for cancer and diabetes. In this study, we used a multistep virtual screening process of natural compounds to discover potential inhibitors of LynK from the IMPPAT database. The primary filters were based on Lipinski rules, ADMET properties, and PAINS patterns. Then, binding affinities and interaction analyses were carried out for the high-affinity selectivity of the compounds towards LynK. Eventually, two natural compounds, Glabrene and Lactupicrin, were identified with high affinity and specificity for the LynK-binding pocket. Both compounds exhibited drug-like properties, as predicted by ADMET analysis and physicochemical parameters. The molecular dynamics (MD) simulation study revealed that these compounds bind to the ATP-binding pocket of LynK and interact with functionally significant residues with stability without inducing any significant structural changes to the protein. Ultimately, the identified compounds may be regarded as promising LynK inhibitors and can be used as lead molecules in the drug development against LynK-related diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Darakshan Anjum
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Moyad Shahwan
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | | |
Collapse
|
17
|
Alam M, Ahmed S, Abid M, Hasan GM, Islam A, Hassan MI. Therapeutic targeting of microtubule affinity-regulating kinase 4 in cancer and neurodegenerative diseases. J Cell Biochem 2023; 124:1223-1240. [PMID: 37661636 DOI: 10.1002/jcb.30468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
Microtubule affinity-regulating kinase 4 (MARK4) is a member of the Ser/Thr protein kinase family, phosphorylates the microtubule-connected proteins and plays a vital role in causing cancers and neurodegenerative diseases. This kinase modulates multiple signaling pathways, including mammalian target of rapamycin, nuclear factor-κB, and Hippo-signaling, presumably responsible for cancer and Alzheimer's. MARK4 acts as a negative controller of the Hippo-kinase cassette for promoting YAP/TAZ action, and the loss of MARK4 detains the tumorigenic properties of cancer cells. MARK4 is involved in tau hyperphosphorylation that consequently affects neurodegeneration. MARK4 is a promising drug target for cancer, diabetes, and Alzheimer's. Developing the potent and selective inhibitors of MAKR4 are promising in the therapeutic management of associated diseases. Despite its great significance, a few reviews are available to discuss its structure, function and clinical significance. In the current review, we aimed to provide detailed information on the structural features of MARK4 targeted in drug development and its role in various signaling pathways related to cancer and neurodegenerative diseases. We further described the therapeutic potential of MARK4 inhibitors in preventing numerous diseases. Finally, the updated information on MARK4 will be helpful in the further development of effective therapeutic molecules.
Collapse
Affiliation(s)
- Manzar Alam
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sarfraz Ahmed
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Asimul Islam
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
18
|
Khatoon F, Ali S, Kumar V, Elasbali AM, Alhassan HH, Alharethi SH, Islam A, Hassan MI. Pharmacological features, health benefits and clinical implications of honokiol. J Biomol Struct Dyn 2023; 41:7511-7533. [PMID: 36093963 DOI: 10.1080/07391102.2022.2120541] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
Honokiol (HNK) is a natural polyphenolic compound extracted from the bark and leaves of Magnolia grandiflora. It has been traditionally used as a medicinal compound to treat inflammatory diseases. HNK possesses numerous health benefits with a minimal level of toxicity. It can cross the blood-brain barrier and blood-cerebrospinal fluid, thus having significant bioavailability in the neurological tissues. HNK is a promising bioactive compound possesses neuroprotective, antimicrobial, anti-tumorigenic, anti-spasmodic, antidepressant, analgesic, and antithrombotic features . HNK can prevent the growth of several cancer types and haematological malignancies. Recent studies suggested its role in COVID-19 therapy. It binds effectively with several molecular targets, including apoptotic factors, chemokines, transcription factors, cell surface adhesion molecules, and kinases. HNK has excellent pharmacological features and a wide range of chemotherapeutic effects, and thus, researchers have increased interest in improving the therapeutic implications of HNK to the clinic as a novel agent. This review focused on the therapeutic implications of HNK, highlighting clinical and pharmacological features and the underlying mechanism of action.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatima Khatoon
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, India
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, India
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Saudi Arabia
| | - Hassan H Alhassan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, Saudia Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
19
|
Ahmed Atto Al-Shuaeeb R, Abd El-Mageed HR, Ahmed S, Mohamed HS, Hamza ZS, Rafi MO, Ahmad I, Patel H. In silico investigation and potential therapeutic approaches of isoquinoline alkaloids for neurodegenerative diseases: computer-aided drug design perspective. J Biomol Struct Dyn 2023; 41:14484-14496. [PMID: 37184133 DOI: 10.1080/07391102.2023.2212778] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/13/2023] [Indexed: 05/16/2023]
Abstract
Microtubule affinity regulating kinase (MARK4) has been proposed as a potential therapeutic target for diabetes, cancer, and neurological diseases. We used a variety of computational studies techniques to examine the binding affinity and MARK4 inhibitory potential of several isoquinoline alkaloids. MARK4 has been associated with tau protein phosphorylation and, consequently, Alzheimer's disease. The three molecules with the highest binding affinities inside the 5ES1 receptor, according to molecular docking experiments, are isoliensinine, liensinine, and methylcorypalline. Isoliensinine had the highest drug score and drug likeness, coming in at 1.17, while Liensinine and Methylcorypalline came in at 1.15 and 1.07, respectively. The thesis claims that three compounds have a better chance than the others of being identified as therapeutic leads. The bulk of the compounds under investigation didn't break any of Lipinski's five rules, especially methylcorypalline, which did and is probably orally active. The majority of the compounds under investigation, particularly Isoliensinine, Liensinine, and Methylcorypalline, show the potential to exhibit drug-like behaviour, which is strongly confirmed by ADMET characteristics estimates. The chemicals Isoliensinine, Liensinine, and Methylcorypalline, especially Methylcorypalline, form the most stable combination with the 5ES1, according to a 100 ns molecular dynamics simulation of these compounds docked inside 5ES1 complexes. Methylcorypalline has a higher binding affinity inside 5ES1, according to additional MM/GBSA experiments using MD trajectories. Overall, research supports the use of the drug development tool methylcolipalin for its ability to inhibit MARK4, which may have implications for the treatment of neurodegenerative diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - H R Abd El-Mageed
- Micro-analysis and Environmental Research and Community Services Center, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Shimaa Ahmed
- Department of chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hussein S Mohamed
- Chemistry of Medicinal and Aromatic Plants Department, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef, Egypt
| | - Zeinab S Hamza
- Chemistry of Medicinal and Aromatic Plants Department, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef, Egypt
| | - Md Oliullah Rafi
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
20
|
Alam M, Rashid S, Fatima K, Adnan M, Shafie A, Akhtar MS, Ganie AH, Eldin SM, Islam A, Khan I, Hassan MI. Biochemical features and therapeutic potential of α-Mangostin: Mechanism of action, medicinal values, and health benefits. Biomed Pharmacother 2023; 163:114710. [PMID: 37141737 DOI: 10.1016/j.biopha.2023.114710] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
α-Mangostin (α-MG) is a natural xanthone obtained from the pericarps of mangosteen. It exhibits excellent potential, including anti-cancer, neuroprotective, antimicrobial, antioxidant, and anti-inflammatory properties, and induces apoptosis. α-MG controls cell proliferation by modulating signaling molecules, thus implicated in cancer therapy. It possesses incredible pharmacological features and modulates crucial cellular and molecular factors. Due to its lesser water solubility and pitiable target selectivity, α-MG has limited clinical application. As a known antioxidant, α-MG has gained significant attention from the scientific community, increasing interest in extensive technical and biomedical applications. Nanoparticle-based drug delivery systems were designed to improve the pharmacological features and efficiency of α-MG. This review is focused on recent developments on the therapeutic potential of α-MG in managing cancer and neurological diseases, with a special focus on its mechanism of action. In addition, we highlighted biochemical and pharmacological features, metabolism, functions, anti-inflammatory, antioxidant effects and pre-clinical applications of α-MG.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, PO Box 173, Al-kharj 11942, Saudi Arabia
| | - Kisa Fatima
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, PO Box 2440, Hail 2440, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mohammad Salman Akhtar
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - A H Ganie
- Basic Sciences Department, College of Science and Theoretical Studies, Saudi Electronic University, Abha Male 61421, Saudi Arabia
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
21
|
Verma AK, Ahmed SF, Hossain MS, Bhojiya AA, Upadhyay SK, Srivastava AK, Singh N, Harina H, Rahaman MM, Bahadur NM. Unlocking SGK1 inhibitor potential of bis-[1-N,7-N, pyrazolo tetraethoxyphthalimido{-4-(3,5-Dimethyl-4-(spiro-3-methylpyazolo)-1,7-dihydro-1H-dipyrazolo[3,4-b;4',3'-e]pyridin-8-yl)}]p-disubstituted phenyl compounds: a computational study. J Biomol Struct Dyn 2022; 40:13412-13431. [PMID: 34696688 DOI: 10.1080/07391102.2021.1988711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SGK1 (Serum and Glucocorticoid Regulated Kinase 1), a serine/threonine kinase that is activated by various stimuli, including serum and glucocorticoids. It controls inflammation, apoptosis, hormone release, neuro-excitability and cell proliferation, all of which play an important role in cancer progression and metastasis. SGK1 was recently proposed as a potential drug target for cancer, diabetes, and neurodegenerative diseases. In this study, molecular docking, physiochemical, toxicological properties and molecular dynamic simulation of the Bis-[1-N,7-N, Pyrazolo tetraethoxyphthalimido{-4-(3,5-Dimethyl-4-(spiro-3-methylpyazolo)-1,7-dihydro-1H-dipyrazolo[3,4-b;4',3'-e]pyridin-8-yl)}]p-disubstituted phenyl compoundsand reference EMD638683 against new SGK1 target protein. Compared to the reference inhibitor EMD638683, we choose the best compounds (series 2-6) based on the binding energy (in the range from -11.0 to -10.6 kcal/mol). With the exception of compounds 2 and 6, none of the compounds posed a risk for AMES toxicity or carcinogenicity due to their toxicological properties. 100 ns MD simulation accompanied by MM/PBSA energy calculations and PCA. According to MD simulation results, the binding of compounds 3, 4 and 5 stabilizes the SGK1 structure and causes febrile conformational changes compared to EMD638683. As a result of this research, the final selected compounds 3, 4 and 5 can be used as scaffolds to develop promising SGK1 inhibitors for the treatment of related diseases such as cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhishek Kumar Verma
- Department of Life Sciences, Faculty of Science and Technology, Mewar University, Gangrar, Chittorgarh, Rajasthan, India
| | - Sk Faisal Ahmed
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
| | - Md Shahadat Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
| | - Ali Asger Bhojiya
- Faculty of Agriculture and Veterinary Sciences, Mewar University, Gangrar, Chittorgarh, Rajasthan, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, Uttar Pradesh, India
| | | | - Nripendra Singh
- Department of Pharmacy, V.B.S, Purvanchal University, Jaunpur, Uttar Pradesh, India
| | - Harina Harina
- Department of Life Sciences, Faculty of Science and Technology, Mewar University, Gangrar, Chittorgarh, Rajasthan, India
| | | | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
| |
Collapse
|
22
|
Fatima U, Roy S, Ahmad S, Al-Keridis LA, Alshammari N, Adnan M, Islam A, Hassan MI. Investigating neuroprotective roles of Bacopa monnieri extracts: Mechanistic insights and therapeutic implications. Biomed Pharmacother 2022; 153:113469. [DOI: 10.1016/j.biopha.2022.113469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/11/2022] [Accepted: 07/23/2022] [Indexed: 12/16/2022] Open
|
23
|
Microtubule-affinity regulating kinase 4: A potential drug target for cancer therapy. Cell Signal 2022; 99:110434. [PMID: 35961526 DOI: 10.1016/j.cellsig.2022.110434] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 12/29/2022]
Abstract
The human genome encodes more than 500 protein kinases that work by transferring the γ-phosphate group from ATP to serine, threonine, or tyrosine (Ser/Thr/Tyr) residues. Various kinases are associated with the onset of cancer and its further progression. The recent advancements in developing small-molecule kinase inhibitors to treat different cancer types have shown noticeable results in clinical therapies. Microtubule-affinity regulating kinase 4 (MARK-4) is a Ser/Thr protein kinase that relates structurally to AMPK/Snf1 subfamily of the CaMK kinases. The protein kinase modulates major signalling pathways such as NF-κB, mTOR and the Hippo-signalling pathway. MARK4 is associated with various cancer types due to its important role in regulating microtubule dynamics and subsequent cell division. Aberrant expression of MARK4 is linked with several pathologies such as cancer, Alzheimer's disease, obesity, etc. This review provides detailed information on structural aspects of MARK4 and its role in various signalling pathways related to cancer. Several therapeutic molecules were designed to inhibit the MARK4 activity from controlling associated diseases. The review further highlights kinase-targeted drug discovery and development in oncology and cancer therapies. Finally, we summarize the latest findings regarding the role of MARK4 in cancer, diabetes, and neurodegenerative disease path to provide a solid rationale for future investigation and therapeutic intervention.
Collapse
|
24
|
Yousuf M, Shamsi A, Khan S, Khan P, Shahwan M, Elasbali AM, Haque QMR, Hassan MI. Naringenin as a potential inhibitor of human cyclin-dependent kinase 6: Molecular and structural insights into anti-cancer therapeutics. Int J Biol Macromol 2022; 213:944-954. [PMID: 35690164 DOI: 10.1016/j.ijbiomac.2022.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/28/2022] [Accepted: 06/05/2022] [Indexed: 12/13/2022]
Abstract
Cancer is one of the major causes of global deaths and needs immediate therapeutic development. So far, several strategies have been undertaken to prevent cancer, including kinase targeting by small-molecule inhibitors. Cyclin dependent kinase 6 (CDK6) plays an essential role in cancer progression and development as its overexpression is associated with tumor development and progression. The present study demonstrated that Naringenin (NAG) binds strongly to CDK6 with a binding affinity of -7.51 kcal/mol. ATPase assay of CDK6 in the presence of NAG shows that it inhibits CDK6 with an IC50 = 3.13 μM. Fluorescence and isothermal titration calorimetry studies demonstrated that NAG binds to CDK6 with the binding constant (K) values of 3.55 × 106 M-1 and 7.06 ± 2.70 × 106 M-1, respectively. The cell-based functional studies showed that NAG decreases the cell viability of human cancer cell lines, induces apoptosis, and reduces their colonization ability. Outcomes of the present in silico and in vitro studies highlighted the significance of NAG for the development of anti-cancer leads in terms of CDK6 inhibitors and provided future implications for combinatorial anti-cancer therapies.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shama Khan
- Vaccines and Infectious Disease Analytics (VIDA), University of the Witwatersrand, Johannesburg, South Africa
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Moyad Shahwan
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka, Saudi Arabia; Department of Pathology, Faculty of Medicine, University of Benghazi, Benghazi-Libya.
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
25
|
Yousuf M, Shamsi A, Mohammad T, Azum N, Alfaifi SYM, Asiri AM, Mohamed Elasbali A, Islam A, Hassan MI, Haque QMR. Inhibiting Cyclin-Dependent Kinase 6 by Taurine: Implications in Anticancer Therapeutics. ACS OMEGA 2022; 7:25844-25852. [PMID: 35910117 PMCID: PMC9330843 DOI: 10.1021/acsomega.2c03479] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Cyclin-dependent kinase 6 (CDK6) is linked with a cyclin partner and plays a crucial role in the early stages of cancer development. It is currently a potential drug target for developing therapeutic molecules targeting cancer therapy. Here, we have identified taurine as an inhibitor of CDK6 using combined in silico and experimental studies. We performed various experiments to find the binding affinity of taurine with CDK6. Molecular docking analysis revealed critical residues of CDK6 that are involved in taurine binding. Fluorescence measurement studies showed that taurine binds to CDK6 with a significant binding affinity, with a binding constant of K = 0.7 × 107 M-1 for the CDK6-taurine complex. Enzyme inhibition assay suggested taurine as a good inhibitor of CDK6 possessing an IC50 value of 4.44 μM. Isothermal titration calorimetry analysis further confirmed a spontaneous binding of taurine with CDK6 and delineated the thermodynamic parameters for the CDK6-taurine system. Altogether, this study established taurine as a CDK6 inhibitor, providing a base for using taurine and its derivatives in CDK6-associated cancer and other diseases.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department
of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anas Shamsi
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Centre
of
Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Taj Mohammad
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Naved Azum
- Center
of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Sulaiman Y. M. Alfaifi
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Abdullah M. Asiri
- Center
of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Clinical
Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka 72388, Saudi Arabia
| | - Asimul Islam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | | |
Collapse
|
26
|
Ahmed S, Mobashir M, Al-Keridis LA, Alshammari N, Adnan M, Abid M, Hassan MI. A Network-Guided Approach to Discover Phytochemical-Based Anticancer Therapy: Targeting MARK4 for Hepatocellular Carcinoma. Front Oncol 2022; 12:914032. [PMID: 35936719 PMCID: PMC9355243 DOI: 10.3389/fonc.2022.914032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/15/2022] [Indexed: 12/15/2022] Open
Abstract
MAP/microtubule affinity-regulating kinase 4 (MARK4) is associated with various biological functions, including neuronal migration, cell polarity, microtubule dynamics, apoptosis, and cell cycle regulation, specifically in the G1/S checkpoint, cell signaling, and differentiation. It plays a critical role in different types of cancers. Hepatocellular carcinoma (HCC) is the one of the most common forms of liver cancer caused due to mutations, epigenetic aberrations, and altered gene expression patterns. Here, we have applied an integrated network biology approach to see the potential links of MARK4 in HCC, and subsequently identified potential herbal drugs. This work focuses on the naturally-derived compounds from medicinal plants and their properties, making them targets for potential anti-hepatocellular treatments. We further analyzed the HCC mutated genes from the TCGA database by using cBioPortal and mapped out the MARK4 targets among the mutated list. MARK4 and Mimosin, Quercetin, and Resveratrol could potentially interact with critical cancer-associated proteins. A set of the hepatocellular carcinoma altered genes is directly the part of infection, inflammation, immune systems, and cancer pathways. Finally, we conclude that among all these drugs, Gingerol and Fisetin appear to be the highly promising drugs against MARK4-based targets, followed by Quercetin, Resveratrol, and Apigenin.
Collapse
Affiliation(s)
- Sarfraz Ahmed
- Department of Biosciences, Faculty of Natural Science, Jamia Millia Islamia, New Delhi, India
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Mobashir
- Department of Biosciences, Faculty of Natural Science, Jamia Millia Islamia, New Delhi, India
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mohammad Abid
- Department of Biosciences, Faculty of Natural Science, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
27
|
Xue B, DasGupta D, Alam M, Khan MS, Wang S, Shamsi A, Islam A, Hassan MI. Investigating binding mechanism of thymoquinone to human transferrin, targeting Alzheimer's disease therapy. J Cell Biochem 2022; 123:1381-1393. [PMID: 35722728 DOI: 10.1002/jcb.30299] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022]
Abstract
Iron deposition in the central nervous system (CNS) is one of the causes of neurodegenerative diseases. Human transferrin (hTf) acts as an iron carrier present in the blood plasma, preventing it from contributing to redox reactions. Plant compounds and their derivatives are frequently being used in preventing or delaying Alzheimer's disease (AD). Thymoquinone (TQ), a natural product has gained popularity because of its broad therapeutic applications. TQ is one of the significant phytoconstituent of Nigella sativa. The binding of TQ to hTf was determined by spectroscopic methods and isothermal titration calorimetry. We have observed that TQ strongly binds to hTf with a binding constant (K) of 0.22 × 106 M-1 and forming a stable complex. In addition, isothermal titration calorimetry revealed the spontaneous binding of TQ with hTf. Molecular docking analysis showed key residues of the hTf that were involved in the binding to TQ. We further performed a 250 ns molecular dynamics simulation which deciphered the dynamics and stability of the hTf-TQ complex. Structure analysis suggested that the binding of TQ doesn't cause any significant alterations in the hTf structure during the course of simulation and a stable complex is formed. Altogether, we have elucidated the mechanism of binding of TQ with hTf, which can be further implicated in the development of a novel strategy for AD therapy.
Collapse
Affiliation(s)
- Bin Xue
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, China
| | - Debarati DasGupta
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shuo Wang
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, China
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.,Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, UAE, Ajman
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
28
|
Anwar S, DasGupta D, Azum N, Alfaifi SY, Asiri AM, Alhumaydhi FA, Alsagaby SA, Sharaf SE, Shahwan M, Hassan MI. Inhibition of PDK3 by artemisinin, a repurposed antimalarial drug in cancer therapy. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Verma AK, Hossain MS, Ahmed SF, Hussain N, Ashid M, Upadhyay SK, Vishvakarma NK, Bhojiya AA, Srivastava SK. " In silico identification of ethoxy phthalimide pyrazole derivatives as IL-17A and IL-18 targeted gouty arthritis agents". J Biomol Struct Dyn 2022:1-15. [PMID: 35532103 DOI: 10.1080/07391102.2022.2071338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Two proinflammatory cytokines, IL17A and IL18, are observed to be elevated in the serum of gout patients and they play a crucial role in the development and worsening of inflammation, which has severe effects. In present study, we have combined molecular docking, molecular dynamics studies and MM-PBSA analysis to study the effectiveness of ethoxy phthalimide pyrazole derivatives (series 3a to 3e) as potential inhibitors against cytokines IL17A and IL18 as a druggable targets. The binding energy of the docked series ranges from -13.5 to -10.0 kcal/mol and extensively interacts with the amino acids in the active pocket of IL17A and IL18. Compound 3e had the lowest binding energy with IL17A at -12.6 kcal/mol compared to control allopurinol (3.32 kcal/mol). With IL18, compound 3a seems to have the lowest binding energy of -9.6 kcal/mol compared to control allopurinol (3.18 kcal/mol). In MD simulation studies, compound 3a forms a stable and energetically stabilized complex with the target protein. Depending on properties of the bound IL17A-3a and IL18-3a complexes was compared by means of MM-PBSA analysis. These derivatives can be used as a scaffold to develop promising IL17A and IL18 inhibitors to assess their potential for gouty arthritis and other related diseases.
Collapse
Affiliation(s)
- Abhishek Kumar Verma
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Off Jaipur-Ajmer Expressway, Jaipur, Rajasthan, India
| | - Md Shahadat Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
| | - Sk Faisal Ahmed
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
| | - Nasir Hussain
- Department of Chemistry, Faculty of Science and Technology, Mewar University, Chittorgarh, Rajasthan, India
| | - Mohammad Ashid
- Department of Chemistry, Faculty of Science and Technology, Mewar University, Chittorgarh, Rajasthan, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, Uttar Pradesh, India
| | | | - Ali Asger Bhojiya
- Department of Science, U.S. Ostwal Science, Arts & Commerce College, Chittorgarh, India
| | - Sandeep Kumar Srivastava
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Off Jaipur-Ajmer Expressway, Jaipur, Rajasthan, India
| |
Collapse
|
30
|
Jonniya NA, Sk MF, Roy R, Kar P. Discovery of potential competitive inhibitors against With-No-Lysine kinase 1 for treating hypertension by virtual screening, inverse pharmacophore-based lead optimization, and molecular dynamics simulations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:63-87. [PMID: 35078380 DOI: 10.1080/1062936x.2021.2023218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The With-No-Lysine (WNK) has received attention because of its involvement in hypertension. Genetic mutation in the genes of WNK, leading to its overexpression, has been reported in Familial Hyperkalaemic Hypertension, and thus WNK is considered a potential drug target. Herein, we have performed a high-throughput virtual screening of ~11,000 compounds, mainly the natural phytochemical compounds and kinase inhibitory libraries, to find potential competitive inhibitors against WNK1. Initially, candidates with a docking score of ~ -10.0 kcal/mol or less were selected to further screen their good pharmacological properties by applying absorption, distribution, metabolism, excretion, and toxicity (ADMET). Finally, six docked compounds bearing appreciable binding affinities and WNK1 selectivity were complimented with 500 ns long all-atom molecular dynamic simulations. Subsequently, the MMPBSA scheme (Molecular Mechanics Poisson Boltzmann Surface Area) suggested three phytochemical compounds, C00000947, C00020451, and C00005031, with favourable binding affinity against WNK1. Among them, C00000947 acts as the most potent competitive inhibitor of WNK1. Further, inverse pharmacophore-based lead optimization of the C00000947 leads to one potential compound, meciadanol, which shows better binding affinity and specificity than C00000947 towards WNK1, which may be further exploited to develop effective therapeutics against WNK1-associated hypertension after in vitro and in vivo validation.
Collapse
Affiliation(s)
- N A Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - M F Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - R Roy
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - P Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
31
|
Wang R, Hu X, Wang J, Zhou L, Hong Y, Zhang Y, Xiong F, Zhang X, Ye WC, Wang H. Proanthocyanidin A1 promotes the production of platelets to ameliorate chemotherapy-induced thrombocytopenia through activating JAK2/STAT3 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153880. [PMID: 34906892 DOI: 10.1016/j.phymed.2021.153880] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chemotherapy-induced thrombocytopenia (CIT) is a severe adverse drug reaction, and the main reason for CIT is the destruction of megakaryocytes (MKs, precursor cells of platelet) in bone marrow by chemotherapy. Peanut skin, the seed coat of Arachis hypogaea L., is a traditional Chinese medicine commonly used to treat thrombocytopenia. However, its active compounds and the mechanisms remain unclear. PURPOSE This study aims to clarify the active compounds of peanut skin to exhibit thrombogenic effects against CIT and their underlying mechanisms in vitro and in vivo. STUDY DESIGN The bioassay-guided isolation based on the proliferation of MKs was used to explore the possible platelet-enhancing ingredients in peanut skin. HSCCC technique coupled with preparative HPLC was used to separate the active compounds. Dami cells and carboplatin-treated mice model were used to evaluate the thrombogenic effects of PS-1. Network pharmacology, molecular docking, dynamics simulation studies, kinase activity, surface plasmon resonance (SPR), cellular thermal shift assay (CETSA), isothermal dose-response fingerprint (ITDRFCETSA) and western blot analysis were performed to investigate the mechanisms of PS-1. RESULTS Proanthocyanidin A1 (PS-1) and its stereoisomers (PS-2-4) were demonstrated to promote the proliferation of MKs (Dami cells), especially PS-1 (EC50 = 8.58 μM). Further studies demonstrated that PS-1 could induce the differentiation of Dami cells in dose/time-dependent manner. Biological target analysis showed that PS-1 directly bound to JAK2 (KD = 2.06 μM) to exert potent activating effect (EC50 = 0.66 μM). Oral administration of PS-1 (25 or 50 mg/kg) significantly improved CIT, but this effect was confirmed to be inhibited by JAK2 inhibitor AG490, indicating that PS-1 exerted its efficacy through JAK2 in vivo. CONCLUSION Proanthocyanins (PS-1-4) derived from peanut skin were first clarified as platelet-enhancing ingredients to improve CIT. The underlying mechanism of PS-1 was proved to promote the proliferation and differentiation of MKs via JAK2/STAT3 pathway both in vitro and in vivo.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaolong Hu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jingjin Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lina Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yu Hong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yuanhao Zhang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215028, People's Republic of China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, People's Republic of China
| | - Xiaoqi Zhang
- Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
32
|
An identification of MARK inhibitors using high throughput MALDI-TOF mass spectrometry. Biomed Pharmacother 2021; 146:112549. [PMID: 34923338 DOI: 10.1016/j.biopha.2021.112549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 01/06/2023] Open
Abstract
MAP/microtubule affinity-regulating kinases (MARKs) were recently identified as potential drug targets for Alzheimer's disease (AD) due to their role in pathological hyperphosphorylation of tau protein. Hyperphosphorylated tau has decreased affinity for microtubule binding, impairing their stability and associated functions. Destabilization of microtubules in neuronal cells leads to neurodegeneration, and microtubule-unbound tau forms neurofibrillary tangles, one of the primary hallmarks of AD. Many phosphorylation sites of tau protein have been identified, but phosphorylation at Ser262, which occurs in early stages of AD, plays a vital role in the pathological hyperphosphorylation of tau. It has been found that Ser262 is phosphorylated by MARK4, which is currently an intensively studied target for treating Alzheimer's disease and other neurodegenerative diseases. Our present study aimed to develop a high throughput compatible assay to directly detect MARK enzymatic activity using echoacoustic transfer and MALDI-TOF mass spectrometer. We optimized the assay for all four isoforms of MARK and validated its use for identifying potential inhibitors by the screening of 1280 compounds from the LOPAC®1280 International (Library Of Pharmacologically Active Compounds). Six MARK4 inhibitors with IC50 < 1 µM were identified. To demonstrate their therapeutic potential, active compounds were further tested for MARK4 selectivity and ability to cross the blood-brain barrier. Lastly, the molecular docking with the most active inhibitors to predict their interaction with MARK4 was performed.
Collapse
|
33
|
Kurniawan YS, Priyangga KTA, Jumina, Pranowo HD, Sholikhah EN, Zulkarnain AK, Fatimi HA, Julianus J. An Update on the Anticancer Activity of Xanthone Derivatives: A Review. Pharmaceuticals (Basel) 2021; 14:1144. [PMID: 34832926 PMCID: PMC8625896 DOI: 10.3390/ph14111144] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
The annual number of cancer deaths continues increasing every day; thus, it is urgent to search for and find active, selective, and efficient anticancer drugs as soon as possible. Among the available anticancer drugs, almost all of them contain heterocyclic moiety in their chemical structure. Xanthone is a heterocyclic compound with a dibenzo-γ-pyrone framework and well-known to have "privileged structures" for anticancer activities against several cancer cell lines. The wide anticancer activity of xanthones is produced by caspase activation, RNA binding, DNA cross-linking, as well as P-gp, kinase, aromatase, and topoisomerase inhibition. This anticancer activity depends on the type, number, and position of the attached functional groups in the xanthone skeleton. This review discusses the recent advances in the anticancer activity of xanthone derivatives, both from natural products isolation and synthesis methods, as the anticancer agent through in vitro, in vivo, and clinical assays.
Collapse
Affiliation(s)
- Yehezkiel Steven Kurniawan
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (Y.S.K.); (K.T.A.P.); (H.D.P.)
| | - Krisfian Tata Aneka Priyangga
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (Y.S.K.); (K.T.A.P.); (H.D.P.)
| | - Jumina
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (Y.S.K.); (K.T.A.P.); (H.D.P.)
| | - Harno Dwi Pranowo
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (Y.S.K.); (K.T.A.P.); (H.D.P.)
| | - Eti Nurwening Sholikhah
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
| | - Abdul Karim Zulkarnain
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (A.K.Z.); (H.A.F.)
| | - Hana Anisa Fatimi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (A.K.Z.); (H.A.F.)
| | - Jeffry Julianus
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Sanata Dharma, Yogyakarta 55282, Indonesia;
| |
Collapse
|
34
|
Anwar S, Khan S, Anjum F, Shamsi A, Khan P, Fatima H, Shafie A, Islam A, Hassan MI. Myricetin inhibits breast and lung cancer cells proliferation via inhibiting MARK4. J Cell Biochem 2021; 123:359-374. [PMID: 34751461 DOI: 10.1002/jcb.30176] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/09/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
Identifying novel molecules as potential kinase inhibitors are gaining significant attention globally. The present study suggests Myricetin as a potential inhibitor of microtubule-affinity regulating kinase (MARK4), adding another molecule to the existing list of anticancer therapeutics. MARK4 regulates initial cell division steps and is a potent druggable target for various cancers. Structure-based docking with 100 ns molecular dynamics simulation depicted activity of Myricetin in the active site pocket of MARK4 and the formation of a stable complex. The fluorescence-based assay showed excellent affinity of Myricetin to MARK4 guided by static and dynamic quenching. Moreover, the assessment of enthalpy change (∆H) and entropy change (∆S) delineated electrostatic interactions as a dominant force in the MARK4-myricetin interaction. Isothermal titration calorimetric measurements revealed spontaneous binding of Myricetin with MARK4. Further, the kinase assay depicted significant inhibition of MARK4 by Myricetin with IC50 = 3.11 µM. Additionally, cell proliferation studies established that Myricetin significantly inhibited the cancer cells (MCF-7 and A549) proliferation, and inducing apoptosis. This study provides a solid rationale for developing Myricetin as a promising anticancer molecule in the MARK4 mediated malignancies.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shama Khan
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, South Africa
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Hera Fatima
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
35
|
Shamsi A, Shahwan M, Alhumaydhi FA, Alwashmi ASS, Aljasir MA, Alsagaby SA, Al Abdulmonem W, Hassan MI, Islam A. Spectroscopic, calorimetric and in silico insight into the molecular interactions of Memantine with human transferrin: Implications of Alzheimer's drugs. Int J Biol Macromol 2021; 190:660-666. [PMID: 34508722 DOI: 10.1016/j.ijbiomac.2021.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
Human transferrin (Tf) is an iron-binding blood plasma glycoprotein that controls free iron in biological fluids. Tf is a liver-produced protein that binds iron very tightly but reversibly and is the most significant iron pool. Memantine is an orally administrative N-methyl-d-aspartate glutamate receptor antagonist used to slow the progression of moderate-to-severe Alzheimer's disease (AD) and dementia. Here, we have investigated the molecular interactions of Memantine with Tf using molecular docking, dynamics simulation and in vitro binding studies. Molecular docking study revealed many close interactions of Memantine towards Tf with an appreciable binding affinity. The docking results were further validated by molecular dynamics (MD) simulation studies, followed by essential dynamics and free energy landscapes analyses. Memantine shows a good binding affinity to the Tf with a binding constant (K) of 105 M-1. Isothermal titration calorimetry (ITC) also advocated the spontaneous binding of memantine to Tf. The study proposed that the Memantine in complex with Tf is stable in the simulated trajectory with minimal structural changes. The study suggested that the Tf-Memantine interactions can be further explored in AD therapy after critical exploration.
Collapse
Affiliation(s)
- Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates.
| | - Moyad Shahwan
- College of Pharmacy & Health Sciences, Ajman University, Ajman, United Arab Emirates; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Suliman A Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11932, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
36
|
Alhumaydhi FA, Aljasir MA, Aljohani AS, Alsagaby SA, Alwashmi AS, Shahwan M, Hassan MI, Islam A, Shamsi A. Probing the interaction of memantine, an important Alzheimer's drug, with human serum albumin: In silico and in vitro approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116888] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Anwar S, Khan S, Shamsi A, Anjum F, Shafie A, Islam A, Ahmad F, Hassan MI. Structure-based investigation of MARK4 inhibitory potential of Naringenin for therapeutic management of cancer and neurodegenerative diseases. J Cell Biochem 2021; 122:1445-1459. [PMID: 34121218 DOI: 10.1002/jcb.30022] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022]
Abstract
MAP/microtubule affinity-regulating kinase 4 (MARK4) is a member of serine/threonine kinase family and considered an attractive drug target for many diseases. Screening of Indian Medicinal Plants, Phytochemistry, and Therapeutics (IMPPAT) using virtual high-throughput screening coupled with enzyme assay suggested that Naringenin (NAG) could be a potent inhibitor of MARK4. Structure-based molecular docking analysis showed that NAG binds to the critical residues found in the active site pocket of MARK4. Furthermore, molecular dynamics (MD) simulation studies for 100 ns have delineated the binding mechanism of NAG to MARK4. Results of MD simulation suggested that binding of NAG further stabilizes the structure of MARK4 by forming a stable complex. In addition, no significant conformational change in the MARK4 structure was observed. Fluorescence binding and isothermal titration calorimetric measurements revealed an excellent binding affinity of NAG to MARK4 with a binding constant (K) = 0.13 × 106 M-1 obtained from fluorescence binding studies. Further, enzyme inhibition studies showed that NAG has an admirable IC50 value of 4.11 µM for MARK4. Together, these findings suggest that NAG could be an effective MARK4 inhibitor that can potentially be used to treat cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Shama Khan
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, South Africa
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| |
Collapse
|
38
|
Yousuf M, Shamsi A, Queen A, Shahbaaz M, Khan P, Hussain A, Alajmi MF, Rizwanul Haque QM, Imtaiyaz Hassan M. Targeting cyclin-dependent kinase 6 by vanillin inhibits proliferation of breast and lung cancer cells: Combined computational and biochemical studies. J Cell Biochem 2021; 122:897-910. [PMID: 33829554 DOI: 10.1002/jcb.29921] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Cyclin-dependent kinase 6 (CDK6) is a member of serine/threonine kinase family, and its overexpression is associated with cancer development. Thus, it is considered as a potential drug target for anticancer therapies. This study showed the CDK6 inhibitory potential of vanillin using combined experimental and computational methods. Structure-based docking and 200 ns molecular dynamics simulation studies revealed that the binding of vanillin stabilizes the CDK6 structure and provides mechanistic insights into the binding mechanism. Enzyme inhibition and fluorescence-binding studies showed that vanillin inhibits CDK6 with an half maximal inhibitory concentration = 4.99 μM and a binding constant (K) 4.1 × 107 M-1 . Isothermal titration calorimetry measurements further complemented our observations. Studies on human cancer cell lines (MCF-7 and A549) showed that vanillin decreases cell viability and colonization properties. The protein expression studies have further revealed that vanillin reduces the CDK6 expression and induces apoptosis in the cancer cells. In conclusion, our study presents the CDK6-mediated therapeutic implications of vanillin for anticancer therapies.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Anas Shamsi
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Aarfa Queen
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Mohd Shahbaaz
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, Cape Town, South Africa.,Laboratory of Computational Modeling of Drugs, South Ural State University, Chelyabinsk, Russia
| | - Parvez Khan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Afzal Hussain
- Department of Pharmacognosy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F Alajmi
- Department of Pharmacognosy, King Saud University, Riyadh, Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| |
Collapse
|
39
|
Shamsi S, Anjum H, Shahbaaz M, Khan MS, Ataya FS, Alamri A, Alhumaydhi FA, Husain FM, Rehman MT, Mohammad T, Islam A, Anjum F, Shamsi A. A computational study on active constituents of Habb-ul-aas and Tabasheer as inhibitors of SARS-CoV-2 main protease. J Biomol Struct Dyn 2021; 40:7702-7713. [PMID: 33759703 DOI: 10.1080/07391102.2021.1900920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A respiratory pandemic known as coronavirus disease-19 (COVID-19) has created havoc since it emerged from Wuhan, China. COVID-19 is caused by a newly emerged SARS coronavirus (SARS-CoV) with increased pathogenicity named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Due to the lack of understanding of the mechanism of pathogenesis, an effective therapeutic option is unavailable. Epidemics described in Unani ancient literature include nazla-e-wabai and humma-e-wabai, and most of the symptoms of COVID-19 resemble nazla-e-wabai. Hence, in light of Unani literature, the treatment of COVID-19 can be managed with the composites prescribed in Unani medicine for nazla-e-wabai. In this study, a structure-based drug design approach was carried out to check the effectiveness of the pharmacologically active constituents of the Unani composites prescribed to treat nazla-e-wabai against SARS-CoV-2. We performed molecular docking of the active constituents of these composites against the main protease (Mpro), a potential drug target in SARS-CoV-2. Using detailed molecular docking analysis, Habb-ul-aas and Tabasheer were identified as potential inhibitors of SARS-CoV-2 Mpro. The active constituents of both these composites bind to the substrate-binding pocket of SARS-CoV-2 Mpro, forming interactions with key residues of the binding pocket. Molecular dynamics (MD) simulation suggested the binding of active constituents of Habb-ul-aas with SARS-CoV-2 Mpro with a strong affinity as compared to the constituents of Tabasheer. Thus, this study sheds light on the use of these Unani composites in COVID-19 therapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shariq Shamsi
- Department of Ilmul Saidla (Unani Pharmacy), National Institute of Unani Medicine, Bengaluru, Ministry of AYUSH, Govt. of India, Bangalore, India
| | - Hina Anjum
- Department of Ilmul Saidla (Unani Pharmacy), National Institute of Unani Medicine, Bengaluru, Ministry of AYUSH, Govt. of India, Bangalore, India
| | - Mohd Shahbaaz
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, Cape Town, South Africa.,Laboratory of Computational Modeling of Drugs, South Ural State University, Chelyabinsk, Russia
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Farid S Ataya
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Alya Alamri
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India.,Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
40
|
Turab Naqvi AA, Hasan GM, Hassan MI. Targeting Tau Hyperphosphorylation via Kinase Inhibition: Strategy to Address Alzheimer's Disease. Curr Top Med Chem 2021; 20:1059-1073. [PMID: 31903881 DOI: 10.2174/1568026620666200106125910] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/27/2019] [Accepted: 12/16/2019] [Indexed: 01/10/2023]
Abstract
Microtubule-associated protein tau is involved in the tubulin binding leading to microtubule stabilization in neuronal cells which is essential for stabilization of neuron cytoskeleton. The regulation of tau activity is accommodated by several kinases which phosphorylate tau protein on specific sites. In pathological conditions, abnormal activity of tau kinases such as glycogen synthase kinase-3 β (GSK3β), cyclin-dependent kinase 5 (CDK5), c-Jun N-terminal kinases (JNKs), extracellular signal-regulated kinase 1 and 2 (ERK1/2) and microtubule affinity regulating kinase (MARK) lead to tau hyperphosphorylation. Hyperphosphorylation of tau protein leads to aggregation of tau into paired helical filaments like structures which are major constituents of neurofibrillary tangles, a hallmark of Alzheimer's disease. In this review, we discuss various tau protein kinases and their association with tau hyperphosphorylation. We also discuss various strategies and the advancements made in the area of Alzheimer's disease drug development by designing effective and specific inhibitors for such kinases using traditional in vitro/in vivo methods and state of the art in silico techniques.
Collapse
Affiliation(s)
- Ahmad Abu Turab Naqvi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi - 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj - 11942, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi - 110025, India
| |
Collapse
|
41
|
Fatima U, Ameen F, Soleja N, Khan P, Almansob A, Ahmad A. A Fluorescence Resonance Energy Transfer-Based Analytical Tool for Nitrate Quantification in Living Cells. ACS OMEGA 2020; 5:30306-30314. [PMID: 33251465 PMCID: PMC7689916 DOI: 10.1021/acsomega.0c04868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/02/2020] [Indexed: 05/11/2023]
Abstract
Nitrate (NO3 -) is a critical source of nitrogen (N) available to microorganisms and plants. Nitrate sensing activates signaling pathways in the plant system that impinges upon, developmental, molecular, metabolic, and physiological responses locally, and globally. To sustain, the high crop productivity and high nutritional value along with the sustainable environment, the study of rate-controlling steps of a metabolic network of N assimilation through fluxomics becomes an attractive strategy. To monitor the flux of nitrate, we developed a non-invasive genetically encoded fluorescence resonance energy transfer (FRET)-based tool named "FLIP-NT" that monitors the real-time uptake of nitrate in the living cells. The developed nanosensor is suitable for real-time monitoring of nitrate flux in living cells at subcellular compartments with high spatio-temporal resolution. The developed FLIP-NT nanosensor was not affected by the pH change and have specificity for nitrate with an affinity constant (K d) of ∼5 μM. A series of affinity mutants have also been generated to expand the physiological detection range of the sensor protein with varying K d values. It has been found that this sensor successfully detects the dynamics of nitrate fluctuations in bacteria and yeast, without the disruption of cellular organization. This FLIP-NT nanosensor could be a very important tool that will help us to advance the understanding of nitrate signaling.
Collapse
Affiliation(s)
- Urooj Fatima
- Department
of Botany, Faculty of Life Sciences, Aligarh
Muslim University, Aligarh 202002, India
| | - Fuad Ameen
- Department
of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Neha Soleja
- Department
of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Parvez Khan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Abobakr Almansob
- Department
of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Altaf Ahmad
- Department
of Botany, Faculty of Life Sciences, Aligarh
Muslim University, Aligarh 202002, India
| |
Collapse
|
42
|
Das Mahapatra A, Queen A, Yousuf M, Khan P, Hussain A, Rehman MT, Alajmi MF, Datta B, Hassan MI. Design and development of 5-(4H)-oxazolones as potential inhibitors of human carbonic anhydrase VA: towards therapeutic management of diabetes and obesity. J Biomol Struct Dyn 2020; 40:3144-3154. [DOI: 10.1080/07391102.2020.1845803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Aarfa Queen
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Mohd Yousuf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md. Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bhaskar Datta
- Department of Chemistry, Indian Institute of Technology, Gandhinagar, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
43
|
Mardianingrum R, Yusuf M, Hariono M, Mohd Gazzali A, Muchtaridi M. α-Mangostin and its derivatives against estrogen receptor alpha. J Biomol Struct Dyn 2020; 40:2621-2634. [PMID: 33155528 DOI: 10.1080/07391102.2020.1841031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Estrogen receptor alpha (ERα) acts as the transcription factor and the main therapeutic target against breast cancer. One of the compounds that has been shown to act as an ERα is α-mangostin. However, it still has weaknesses due to its low solubility and low potent activity. In this study, α-mangostin was modified by substituting -OH group at C6 using benzoyl derivatives through a step by step in silico study, namely pharmacokinetic prediction (https://preadmet.bmdrc.kr/adme/), pharmacophore modeling (LigandScout 4.1), molecular docking simulation (AutoDock 4.2), molecular dynamics simulation (AMBER 16) and a binding free energy analysis using MM-PBSA method. From the computational studies, three compounds which are derived from α-mangostin (AMB-1 (-9.84 kcal/mol), AMB-2 (-6.80 kcal/mol) and AMB-10 (-12.42 kcal/mol)) have lower binding free energy than α-mangostin (-1.77 kcal/mol), as evidenced by the binding free energy calculation using the MM-PBSA method. They can then be predicted to have potent activities as ERα antagonists.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Richa Mardianingrum
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia.,Department of Pharmacy, Universitas Perjuangan, Tasikmalaya, Indonesia
| | - Muhammad Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Maywan Hariono
- Faculty of Pharmacy, Universitas Sanata Dharma, Yogyakarta, Indonesia
| | - Amira Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
44
|
Yousuf M, Khan P, Shamsi A, Shahbaaz M, Hasan GM, Haque QMR, Christoffels A, Islam A, Hassan MI. Inhibiting CDK6 Activity by Quercetin Is an Attractive Strategy for Cancer Therapy. ACS OMEGA 2020; 5:27480-27491. [PMID: 33134711 PMCID: PMC7594119 DOI: 10.1021/acsomega.0c03975] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Cyclin-dependent kinase 6 (CDK6) is a potential drug target that plays an important role in the progression of different types of cancers. We performed in silico and in vitro screening of different natural compounds and found that quercetin has a high binding affinity for the CDK6 and inhibits its activity with an IC50 = 5.89 μM. Molecular docking and a 200 ns whole atom simulation of the CDK6-quercetin complex provide insights into the binding mechanism and stability of the complex. Binding parameters ascertained by fluorescence and isothermal titration calorimetry studies revealed a binding constant in the range of 107 M-1 of quercetin to the CDK6. Thermodynamic parameters associated with the formation of the CDK6-quercetin complex suggested an electrostatic interaction-driven process. The cell-based protein expression studies in the breast (MCF-7) and lung (A549) cancer cells revealed that the treatment of quercetin decreases the expression of CDK6. Quercetin also decreases the viability and colony formation potential of selected cancer cells. Moreover, quercetin induces apoptosis, by decreasing the production of reactive oxygen species and CDK6 expression. Both in silico and in vitro studies highlight the significance of quercetin for the development of anticancer leads in terms of CDK6 inhibitors.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department
of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Parvez Khan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anas Shamsi
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohd Shahbaaz
- South
African Medical Research Council Bioinformatics Unit, South African
National Bioinformatics Institute, University
of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
- Laboratory
of Computational Modeling of Drugs, South
Ural State University, 76 Lenin Prospekt, Chelyabinsk 454080, Russia
| | - Gulam Mustafa Hasan
- Department
of Biochemistry, College of Medicine, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Alan Christoffels
- South
African Medical Research Council Bioinformatics Unit, South African
National Bioinformatics Institute, University
of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Asimul Islam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
45
|
Mohammad T, Shamsi A, Anwar S, Umair M, Hussain A, Rehman MT, AlAjmi MF, Islam A, Hassan MI. Identification of high-affinity inhibitors of SARS-CoV-2 main protease: Towards the development of effective COVID-19 therapy. Virus Res 2020; 288:198102. [PMID: 32717346 PMCID: PMC7380256 DOI: 10.1016/j.virusres.2020.198102] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease, caused by a newly emerged highly pathogenic virus called novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Targeting the main protease (Mpro, 3CLpro) of SARS-CoV-2 is an appealing approach for drug development because this enzyme plays a significant role in the viral replication and transcription. The available crystal structures of SARS-CoV-2 Mpro determined in the presence of different ligands and inhibitor-like compounds provide a platform for the quick development of selective inhibitors of SARS-CoV-2 Mpro. In this study, we utilized the structural information of co-crystallized SARS-CoV-2 Mpro for the structure-guided drug discovery of high-affinity inhibitors from the PubChem database. The screened compounds were selected on the basis of their physicochemical properties, drug-likeliness, and strength of affinity to the SARS-CoV-2 Mpro. Finally, we have identified 6-Deaminosinefungin (PubChem ID: 10428963) and UNII-O9H5KY11SV (PubChem ID: 71481120) as potential inhibitors of SARS-CoV-2 Mpro which may be further exploited in drug development to address SARS-CoV-2 pathogenesis. Both compounds are structural analogs of known antivirals, having considerable protease inhibitory potential with improved pharmacological properties. All-atom molecular dynamics simulations suggested SARS-CoV-2 Mpro in complex with these compounds is stable during the simulation period with minimal structural changes. This work provides enough evidence for further implementation of the identified compounds in the development of effective therapeutics of COVID-19.
Collapse
Affiliation(s)
- Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohd Umair
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
46
|
Peerzada M, Khan P, Khan NS, Avecilla F, Siddiqui SM, Hassan MI, Azam A. Design and Development of Small-Molecule Arylaldoxime/5-Nitroimidazole Hybrids as Potent Inhibitors of MARK4: A Promising Approach for Target-Based Cancer Therapy. ACS OMEGA 2020; 5:22759-22771. [PMID: 32954123 PMCID: PMC7495461 DOI: 10.1021/acsomega.0c01703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/17/2020] [Indexed: 05/28/2023]
Abstract
Microtubule affinity-regulating kinase 4 (MARK4), a member of the serine/threonine kinase family, is an emerging therapeutic target in anticancer drug discovery paradigm due to its involvement in regulation of microtubule dynamics, cell cycle regulation, and cancer progression. Therefore, to identify the novel chemical architecture for the design and development of novel MARK4 inhibitors with concomitant radical scavenging property, a series of small-molecule arylaldoxime/5-nitroimidazole conjugates were designed and synthesized via multistep chemical reactions following the pharmacophoric hybridization approach. Compound 4h was identified as a promising MARK4 inhibitor with high selectivity toward MARK4 inhibition as compared to the panel of screened 30 kinases pertaining to the serine/threonine family, which was validated by molecular docking and fluorescence binding studies. The comprehensive cell-based examination divulged the promising apoptotic, antiproliferative, and antioxidant potential for the chemotype 4h. The compound 4h was endowed with the K a value of 3.6 × 103 M-1 for human serum albumin, which reflects its remarkable transportation and delivery properties to the target site via blood. The present study impedes that in the future, such compounds may stand as optimized pharmacological lead candidates in drug discovery for targeting cancer via MARK4 inhibition with a remarkable anticancer profile.
Collapse
Affiliation(s)
- Mudasir
Nabi Peerzada
- Medicinal
Chemistry Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Parvez Khan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Nashrah Sharif Khan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Department
of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Fernando Avecilla
- Grupo
Xenomar, Centro de Investigacións Científicas Avanzadas
(CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus A Coruña, 15071 A Coruña, Spain
| | - Shadab Miyan Siddiqui
- Medicinal
Chemistry Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Amir Azam
- Medicinal
Chemistry Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
47
|
Roy S, Mohammad T, Gupta P, Dahiya R, Parveen S, Luqman S, Hasan GM, Hassan MI. Discovery of Harmaline as a Potent Inhibitor of Sphingosine Kinase-1: A Chemopreventive Role in Lung Cancer. ACS OMEGA 2020; 5:21550-21560. [PMID: 32905276 PMCID: PMC7469376 DOI: 10.1021/acsomega.0c02165] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The sphingosine kinase-1/sphingosine-1-phosphate pathway is linked with the cancer progression and survival of the chemotherapy-challenged cells. Sphingosine kinase-1 (SphK1) has emerged as an attractive drug target, but their inhibitors from natural sources are limited. In this study, we have chosen harmaline, one of the β-carboline alkaloids, and report its mechanism of binding to SphK1 and subsequent inhibition. Molecular docking combined with fluorescence binding studies revealed that harmaline binds to the substrate-binding pocket of SphK1 with an appreciable binding affinity and significantly inhibits the kinase activity of SphK1 with an IC50 value in the micromolar range. The cytotoxic effect of harmaline on non-small-cell lung cancer cells by MTT assay was found to be higher for H1299 compared to A549. Harmaline induces apoptosis in non-small-cell lung carcinoma cells (H1299 and A549), possibly via the intrinsic pathway. Our findings suggest that harmaline could be implicated as a scaffold for designing potent anticancer molecules with SphK1 inhibitory potential.
Collapse
Affiliation(s)
- Sonam Roy
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Preeti Gupta
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Rashmi Dahiya
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shahnaz Parveen
- Molecular
Bioprospection Department, CSIR-Central
Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Suaib Luqman
- Molecular
Bioprospection Department, CSIR-Central
Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Gulam Mustafa Hasan
- Department
of Biochemistry, College of Medicine, Prince
Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Kingdom of Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
48
|
Understanding the binding between Rosmarinic acid and serum albumin: In vitro and in silico insight. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113348] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
49
|
Identification of Potential Inhibitors of Calcium/Calmodulin-Dependent Protein Kinase IV from Bioactive Phytoconstituents. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2094635. [PMID: 32724490 PMCID: PMC7382742 DOI: 10.1155/2020/2094635] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/14/2020] [Accepted: 06/24/2020] [Indexed: 01/27/2023]
Abstract
Calcium/calmodulin-dependent protein kinase IV (CaMKIV) is an upstream regulator of CaMKK-CaMKIV signaling cascade that activates various transcription factors, thereby regulating several cellular activities including, neuronal communication and immune response. Owing to the abnormal expression in cancer and neurodegenerative diseases, the CaMKIV has been considered a potential drug target. In the present study, we checked the binding affinity of plant-derived natural compounds viz., quercetin, ellagic acid (EA), simvastatin, capsaicin, ursolic acid, DL-α-tocopherol acetate, and limonin towards CaMKIV. Molecular docking and fluorescence binding studies showed that EA and quercetin bind to the CaMKIV with a considerable affinity in comparison to other compounds. Enzyme inhibition assay revealed that both EA and quercetin inhibit CaMKIV activity with their IC50 values in the micromolar range. To get atomistic insights into the mode of interactions, inhibition mechanism, and the stability of the CaMKIV-ligand complex, a 100 ns MD simulation analysis was performed. Both EA and quercetin bind to the catalytically important residues of active site pocket of CaMKIV forming enough stabilizing interactions presumably inhibiting enzyme activity. Moreover, no significant structural change in the CaMKIV was observed upon binding of EA and quercetin. In conclusion, this study illustrates the application of phytoconstituents in the development of therapeutic molecules targeting CaMKIV having implications in cancer and neurodegenerative diseases after in vivo validation.
Collapse
|
50
|
Anwar S, Shamsi A, Shahbaaz M, Queen A, Khan P, Hasan GM, Islam A, Alajmi MF, Hussain A, Ahmad F, Hassan MI. Rosmarinic Acid Exhibits Anticancer Effects via MARK4 Inhibition. Sci Rep 2020; 10:10300. [PMID: 32587267 PMCID: PMC7316822 DOI: 10.1038/s41598-020-65648-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022] Open
Abstract
Microtubule affinity regulating kinase (MARK4) is a potential drug target for different types of cancer as it controls the early step of cell division. In this study, we have screened a series of natural compounds and finally identified rosmarinic acid (RA) as a potential inhibitor of MARK4. Molecular docking and 500 ns all-atom simulation studies suggested that RA binds to the active site pocket of MARK4, forming enough number of non-covalent interactions with critical residues and MARK4-RA complex is stable throughout the simulation trajectory. RA shows an excellent binding affinity to the MARK4 with a binding constant (K) of 107 M-1. Furthermore, RA significantly inhibits MARK4 activity (IC50 = 6.204 µM). The evaluation of enthalpy change (∆H) and entropy change (∆S) suggested that the MARK4-RA complex formation is driven by hydrogen bonding and thus complexation process is seemingly specific. The consequence of MARK4 inhibition by RA was further evaluated by cell-based tau-phosphorylation studies, which suggested that RA inhibited the phosphorylation of tau. The treatment of cancer cells with RA significantly controls cell growth and subsequently induces apoptosis. Our study provides a rationale for the therapeutic evaluation of RA and RA-based inhibitors in MARK4 associated cancers and other diseases.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohd Shahbaaz
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa
- Laboratory of Computational Modeling of Drugs, South Ural State University, 76 Lenin Prospekt, Chelyabinsk, 454080, Russia
| | - Aarfa Queen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Kingdom of Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|