1
|
Ramírez-Camejo LA, Rodríguez C, Florez-Buitrago X. Phytopathogenic fungi and oomycetes causing diseases in Theobroma cacao: Chemical and genetic features. Fungal Biol 2025; 129:101551. [PMID: 40222758 DOI: 10.1016/j.funbio.2025.101551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/16/2025] [Accepted: 02/17/2025] [Indexed: 04/15/2025]
Abstract
Phytopathogenic fungi (PF) and oomycetes (Oo) represent some of the most significant plant pathogens globally, causing extensive damage and economic losses in the chocolate tree, Theobroma cacao. This review aims to elucidate the molecular mechanisms behind cacao-PF/Oo interactions, with a particular emphasis on virulence factors. Despite their importance, the secondary metabolites (SMs) produced during controlled interactions between PF, Oo, and T. cacao remain underexplored. We have conducted a comprehensive review of the most critical PF and Oo species that infect T. cacao and highlighted the agricultural relevance of their SM chemistry. This investigation analyzes peer-reviewed papers from electronic databases PubMed, MDPI, ScienceDirect, Google Scholar, and SCOPUS. Through this analysis, we identify gaps in the current understanding and propose potential directions for future research. This includes a deeper investigation into the role of SMs in pathogen virulence, which could inform the development of more effective disease management strategies.
Collapse
Affiliation(s)
- Luis A Ramírez-Camejo
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge, Panama; Estación Científica COIBA AIP, Building 145, City of Knowledge, Clayton, Panama.
| | - Candelario Rodríguez
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge, Panama; Estación Científica COIBA AIP, Building 145, City of Knowledge, Clayton, Panama
| | - Ximena Florez-Buitrago
- Department of Plant Science, Macdonald Campus of McGill University, 21,111 Lakeshore Rd., Ste-Anne-de-Bellevue, Québec, Canada, H9X 3V9
| |
Collapse
|
2
|
Mazzeo G, Fusè M, Bloino J, Evidente A, Abbate S, Longhi G. CPL of Mellein and Related Natural Compounds: Analysis of the ESIPT Phenomenon. Chemphyschem 2024; 25:e202400543. [PMID: 38881499 DOI: 10.1002/cphc.202400543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
(R)-(-)-Mellein, (3R,4R)-4-hydroxymellein and (3R,4S)-4-hydroxymellein obtained from fungi, i. e. from Diplodia globulosa, were investigated as a class of natural products presenting ESIPT (excited state intramolecular proton transfer) phenomenon, through fluorescence and CPL (circularly polarized luminescence). The study was preceded by the assessment of the absolute configuration through ECD and VCD (electronic and vibrational circular dichroism) spectroscopies in addition to NMR spectra. It is found that ESIPT takes place in these systems very rapidly, and no dual fluorescence has been observed. The experimental study is backed up by TD-DFT calculations of ECD and CPL spectra, plus MD calculations to follow proton transfer in the excited state and careful analysis of the puckering dynamics of the lactone ring. Deprotonated forms of the three compounds were also investigated by the same chiroptical experimental and theoretical methods, showing how one can find in natural compounds not only biological activity but also biologically compatible sensing probes.
Collapse
Affiliation(s)
- Giuseppe Mazzeo
- Department of Molecular and Translational Medicine, Università di Brescia, Viale Europa,11, 25123, Brescia, Italy
| | - Marco Fusè
- Department of Molecular and Translational Medicine, Università di Brescia, Viale Europa,11, 25123, Brescia, Italy
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri, 56125, Pisa, Italy
| | - Antonio Evidente
- Institute of Biomolecular Chemistry, National Research Council (CNR), Via Campi Flegrei 34, 80078, Pozzuoli (Na), Italy
| | - Sergio Abbate
- Department of Molecular and Translational Medicine, Università di Brescia, Viale Europa,11, 25123, Brescia, Italy
- National Institute of Optics - CNR, Brescia Research Unit, via Branze 45, 25123, Brescia, Italy
| | - Giovanna Longhi
- Department of Molecular and Translational Medicine, Università di Brescia, Viale Europa,11, 25123, Brescia, Italy
- National Institute of Optics - CNR, Brescia Research Unit, via Branze 45, 25123, Brescia, Italy
| |
Collapse
|
3
|
Olszewska K, Mizera A, Ławniczak P, Kamińska A, Santillan R, Morales-Chamorro M, Ochoa ME, Farfán N, Łapiński A, Górecki M, Jastrzebska I, Runka T. Molecular Dynamics of Steroidal Rotors Probed by Theoretical, Spectroscopic and Dielectric Methods. Chemistry 2024; 30:e202303933. [PMID: 38311598 DOI: 10.1002/chem.202303933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Our study focuses on molecular rotors with fast-moving rotators and their potential applications in the development of new amphidynamic crystals. Steroidal molecular rotors with a dipolar fluorine-substituted phenyl group as the rotator were synthesized and characterized. Three different rotors were investigated with varying numbers of fluorine atoms. A comprehensive analysis was performed using vibrational spectroscopy (Raman, FT-IR), electronic circular dichroism (ECD), and dielectric response to understand the behavior of the investigated model rotors. The results were supported by theoretical calculations using Density Functional Theory (DFT) methods. The angle-dependent polarized Raman spectra confirmed the crystallinity of the samples. Nearly frequency and temperature-independent permittivity suggest low-frequency librational motion of stators. An in-depth analysis of ECD spectra revealed high conformational flexibility in solution, resulting in low ECD effects, while in the solid-state with restricted rotation, significant ECD effects were observed. These findings shed light on the conformational behavior and potential applications of the studied steroidal molecular rotors.
Collapse
Affiliation(s)
- Karolina Olszewska
- Faculty of Materials Engineering and Technical Physics, Institute of Materials Research and Quantum Engineering, Poznan University of Technology Piotrowo, 3, 60-965, Poznań, Poland
| | - Adam Mizera
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179, Poznań, Poland
| | - Paweł Ławniczak
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179, Poznań, Poland
| | - Anna Kamińska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Rosa Santillan
- Departamento de Química Centro de Investigación y de Estudios Avanzados del IPN, México D.F. Apdo. Postal 14-740, 07000, México
| | - Maricela Morales-Chamorro
- Departamento de Química Centro de Investigación y de Estudios Avanzados del IPN, México D.F. Apdo. Postal 14-740, 07000, México
| | - Ma Eugenia Ochoa
- Departamento de Química Centro de Investigación y de Estudios Avanzados del IPN, México D.F. Apdo. Postal 14-740, 07000, México
| | - Norberto Farfán
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Andrzej Łapiński
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179, Poznań, Poland
| | - Marcin Górecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Izabella Jastrzebska
- Institute of Chemistry, University of Białystok, Ciołkowskiego 1 K, 15-254, Białystok, Poland
| | - Tomasz Runka
- Faculty of Materials Engineering and Technical Physics, Institute of Materials Research and Quantum Engineering, Poznan University of Technology Piotrowo, 3, 60-965, Poznań, Poland
| |
Collapse
|
4
|
Chen H, Liu J, Hu L, Yang J, Wang Y, Sun W, Wang R, Ding G, Li Y. Mycotoxins from Alternaria Panax, the specific plant pathogen of Panax ginseng. Mycology 2024; 14:381-392. [PMID: 38187879 PMCID: PMC10769115 DOI: 10.1080/21501203.2023.2265662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/27/2023] [Indexed: 01/09/2024] Open
Abstract
Ginseng black spot, caused by Alternaria panax, is one of the most common diseases of Panax ginseng, which usually causes serious yield loss of ginseng plants. However, the pathogenic mechanism of A. panax has not been clarified clearly. Mycotoxins produced by phytopathogens play an important role in the process of infection. Previous study reported that dibutyl phthalate (DBP) identified from the metabolites of A. panax is a potent mycotoxin against P. ginseng. However, more evidence suggests that DBP is one of the constituents of plasticisers. To identify mycotoxins from A. panax and evaluate their phytotoxicity on the leaves of P. ginseng, different chromatographic, spectral and bioassay-guided methods were used together in this report. As a result, tyrosol (1), 3-hydroxy-3-(4-methoxyphenyl) propanoic acid (2), and 3-benzylpiperazine-2,5-dione (3) were isolated and characterised from the extract of A. panax, in which compounds 1 and 2 showed phytotoxic activity on ginseng leaves. Furthermore, DBP was confirmed to come from the residue of ethyl acetate through UPLC-MS/MS analysis, and displayed no phytotoxicity on ginseng leaves based on biological experiments. The results in this report first revealed that tyrosol (1), and 3-hydroxy-3-(4-methoxyphenyl) propanoic acid (2) not DBP were the potent mycotoxins of A. panax.
Collapse
Affiliation(s)
- Huiqing Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianzi Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Hu
- Ningbo Academy of Inspection and Quarantine, Ningbo, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanduo Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wensong Sun
- Liaoning Research Institute of Cash Crops, Liaoyang, China
| | - Rong Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Reveglia P, Agudo-Jurado FJ, Barilli E, Masi M, Evidente A, Rubiales D. Uncovering Phytotoxic Compounds Produced by Colletotrichum spp. Involved in Legume Diseases Using an OSMAC-Metabolomics Approach. J Fungi (Basel) 2023; 9:610. [PMID: 37367546 DOI: 10.3390/jof9060610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Different fungal species belonging to the Colletotrichum genus cause anthracnose disease in a range of major crops, resulting in huge economic losses worldwide. Typical symptoms include dark, sunken lesions on leaves, stems, or fruits. Colletotrichum spp. have synthesized, in vitro, a number of biologically active and structurally unusual metabolites that are involved in their host's infection process. In this study, we applied a one strain many compounds (OSMAC) approach, integrated with targeted and non-targeted metabolomics profiling, to shed light on the secondary phytotoxic metabolite panels produced by pathogenic isolates of Colletotrichum truncatum and Colletotrichum trifolii. The phytotoxicity of the fungal crude extracts was also assessed on their primary hosts and related legumes, and the results correlated with the metabolite profile that arose from the different cultural conditions. To the best of our knowledge, this is the first time that the OSMAC strategy integrated with metabolomics approaches has been applied to Colletotrichum species involved in legume diseases.
Collapse
Affiliation(s)
| | | | - Eleonora Barilli
- Institute for Sustainable Agriculture, CSIC, 14004 Cordoba, Spain
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II (UNINA), 80126 Naples, Italy
| | - Antonio Evidente
- Department of Chemical Sciences, University of Naples Federico II (UNINA), 80126 Naples, Italy
- Institute of Sciences of Food Production, National Research Council (ISPA-CNR), 70125 Bari, Italy
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, 14004 Cordoba, Spain
| |
Collapse
|
6
|
Khattab IM, Fischer J, Kaźmierczak A, Thines E, Nick P. Ferulic acid is a putative surrender signal to stimulate programmed cell death in grapevines after infection with Neofusicoccum parvum. PLANT, CELL & ENVIRONMENT 2023; 46:339-358. [PMID: 36263963 DOI: 10.1111/pce.14468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
An apoplectic breakdown from grapevine trunk diseases (GTDs) has become a serious challenge to viticulture as a consequence of drought stress. We hypothesize that fungal aggressiveness is controlled by a chemical communication between the host and colonizing fungus. We introduce the new concept of a 'plant surrender signal' accumulating in host plants under stress and facilitating the aggressive behaviour of the strain Neofusicoccum parvum (Bt-67) causing Botryosphaeriaceae-related dieback in grapevines. Using a cell-based experimental system (Vitis cells) and bioactivity-guided fractionation, we identify trans-ferulic acid, a monolignol precursor, as a 'surrender signal'. We show that this signal specifically activates the secretion of the fungal phytotoxin fusicoccin A aglycone. We show further that this phytotoxin, mediated by 14-3-3 proteins, activates programmed cell death in Vitis cells. We arrive at a model showing a chemical communication facilitating fusicoccin A secretion that drives necrotrophic behaviour during Botryosphaeriaceae-Vitis interaction through trans-ferulic acid. We thus hypothesize that channelling the phenylpropanoid pathway from this lignin precursor to the trans-resveratrol phytoalexin could be a target for future therapy.
Collapse
Affiliation(s)
- Islam M Khattab
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Jochen Fischer
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH, Kaiserslautern, Germany
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Eckhard Thines
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH, Kaiserslautern, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
7
|
Reveglia P, Billones-Baaijens R, Savocchia S. Phytotoxic Metabolites Produced by Fungi Involved in Grapevine Trunk Diseases: Progress, Challenges, and Opportunities. PLANTS (BASEL, SWITZERLAND) 2022; 11:3382. [PMID: 36501420 PMCID: PMC9736528 DOI: 10.3390/plants11233382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Grapevine trunk diseases (GTDs), caused by fungal pathogens, are a serious threat to vineyards worldwide, causing significant yield and economic loss. To date, curative methods are not available for GTDs, and the relationship between the pathogen and symptom expression is poorly understood. Several plant pathologists, molecular biologists, and chemists have been investigating different aspects of the pathogenicity, biochemistry, and chemical ecology of the fungal species involved in GTDs. Many studies have been conducted to investigate virulence factors, including the chemical characterization of phytotoxic metabolites (PMs) that assist fungi in invading and colonizing crops such as grapevines. Moreover, multidisciplinary studies on their role in pathogenicity, symptom development, and plant-pathogen interactions have also been carried out. The aim of the present review is to provide an illustrative overview of the biological and chemical characterization of PMs produced by fungi involved in Eutypa dieback, Esca complex, and Botryosphaeria dieback. Moreover, multidisciplinary investigations on host-pathogen interactions, including those using cutting-edge Omics techniques, will also be reviewed and discussed. Finally, challenges and opportunities in the role of PMs for reliable field diagnosis and control of GTDs in vineyards will also be explored.
Collapse
Affiliation(s)
| | | | - Sandra Savocchia
- Gulbali Institute, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
8
|
Azevedo-Nogueira F, Rego C, Gonçalves HMR, Fortes AM, Gramaje D, Martins-Lopes P. The road to molecular identification and detection of fungal grapevine trunk diseases. FRONTIERS IN PLANT SCIENCE 2022; 13:960289. [PMID: 36092443 PMCID: PMC9459133 DOI: 10.3389/fpls.2022.960289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Grapevine is regarded as a highly profitable culture, being well spread worldwide and mostly directed to the wine-producing industry. Practices to maintain the vineyard in healthy conditions are tenuous and are exacerbated due to abiotic and biotic stresses, where fungal grapevine trunk diseases (GTDs) play a major role. The abolishment of chemical treatments and the intensification of several management practices led to an uprise in GTD outbreaks. Symptomatology of GTDs is very similar among diseases, leading to underdevelopment of the vines and death in extreme scenarios. Disease progression is widely affected by biotic and abiotic factors, and the prevalence of the pathogens varies with country and region. In this review, the state-of-the-art regarding identification and detection of GTDs is vastly analyzed. Methods and protocols used for the identification of GTDs, which are currently rather limited, are highlighted. The main conclusion is the utter need for the development of new technologies to easily and precisely detect the presence of the pathogens related to GTDs, allowing to readily take phytosanitary measures and/or proceed to plant removal in order to establish better vineyard management practices. Moreover, new practices and methods of detection, identification, and quantification of infectious material would allow imposing greater control on nurseries and plant exportation, limiting the movement of infected vines and thus avoiding the propagation of fungal inoculum throughout wine regions.
Collapse
Affiliation(s)
- Filipe Azevedo-Nogueira
- DNA & RNA Sensing Lab, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília Rego
- LEAF - Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | | | - Ana Margarida Fortes
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - David Gramaje
- Institute of Grapevine and Wine Sciences (ICVV), Spanish National Research Council (CSIC), University of La Rioja and Government of La Rioja, Logroño, Spain
| | - Paula Martins-Lopes
- DNA & RNA Sensing Lab, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
9
|
Górecki M, Frelek J. A Holistic Approach to Determining Stereochemistry of Potential Pharmaceuticals by Circular Dichroism with β-Lactams as Test Cases. Int J Mol Sci 2021; 23:273. [PMID: 35008698 PMCID: PMC8745598 DOI: 10.3390/ijms23010273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
This paper's main objective is to show that many different factors must be considered when solving stereochemical problems to avoid misleading conclusions and obtain conclusive results from the analysis of spectroscopic properties. Particularly in determining the absolute configuration, the use of chiroptical methods is crucial, especially when other techniques, including X-ray crystallography, fail, are not applicable, or give inconclusive results. Based on various β-lactam derivatives as models, we show how to reliably determine their absolute configuration (AC) and preferred conformation from circular dichroism (CD) spectra. Comprehensive CD analysis, employing both approaches, i.e., traditional with their sector and helicity rules, and state-of-the-art supported by quantum chemistry (QC) calculations along with solvation models for both electronic (ECD) and vibrational (VCD) circular dichroism ranges, allows confident defining stereochemistry of the β-lactams studied. Based on an in-depth analysis of the results, we have shown that choosing a proper chiroptical method/s strictly depends on the specific case and certain structural features.
Collapse
Affiliation(s)
- Marcin Górecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 St., 01-224 Warsaw, Poland;
| | | |
Collapse
|
10
|
Phytotoxins Produced by Two Biscogniauxia rosacearum Strains, Causal Agents of Grapevine Trunk Diseases, and Charcoal Canker of Oak Trees in Iran. Toxins (Basel) 2021; 13:toxins13110812. [PMID: 34822596 PMCID: PMC8618908 DOI: 10.3390/toxins13110812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Biscogniauxia rosacearum, recognized for the first time as a pathogen involved in grapevine trunk diseases in Paveh (west of Iran) vineyards, produced meso-2,3-butanediol (1) as the only phytotoxin. Nectriapyrone (2), (3R)-5-methylmellein (3), (3R)-5-methyl-6-methoxymellein (4), and tyrosol (5) were instead produced as phytotoxins from a strain of the same fungus isolated from oak trees in Zagros forests of Gilan-e Gharb, Kermanshah Province. They were identified comparing their 1H and 13C NMR, ESIMS, and specific optical rotation data with those already reported in the literature. The phytotoxicity of metabolites (1–5) was estimated by leaf puncture assay on Quercus ilex L. and Hedera helix L., and by leaf absorption assay on grapevine (Vitis vinifera L.) at a concentration of 5 × 10−3 and 10−3 M. Tested on grapevine, meso-2,3-butanediol (1) and (3R)-5-methyl-6-methoxymellein (4) resulted to be the most phytotoxic compounds. On Q. ilex, nectriapyrone (2) and tyrosol (5) showed severe necrosis at the highest concentration while none of the compounds (1–5) was active on H. helix. Furthermore, the phytotoxicity of compounds 3 and 4 was also compared with that of some related natural melleins to perform a structure-activity relationship (SAR) study. The results of this study were also discussed.
Collapse
|
11
|
Nagel JH, Wingfield MJ, Slippers B. Increased abundance of secreted hydrolytic enzymes and secondary metabolite gene clusters define the genomes of latent plant pathogens in the Botryosphaeriaceae. BMC Genomics 2021; 22:589. [PMID: 34348651 PMCID: PMC8336260 DOI: 10.1186/s12864-021-07902-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/30/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The Botryosphaeriaceae are important plant pathogens, but also have the ability to establish asymptomatic infections that persist for extended periods in a latent state. In this study, we used comparative genome analyses to shed light on the genetic basis of the interactions of these fungi with their plant hosts. For this purpose, we characterised secreted hydrolytic enzymes, secondary metabolite biosynthetic gene clusters and general trends in genomic architecture using all available Botryosphaeriaceae genomes, and selected Dothideomycetes genomes. RESULTS The Botryosphaeriaceae genomes were rich in carbohydrate-active enzymes (CAZymes), proteases, lipases and secondary metabolic biosynthetic gene clusters (BGCs) compared to other Dothideomycete genomes. The genomes of Botryosphaeria, Macrophomina, Lasiodiplodia and Neofusicoccum, in particular, had gene expansions of the major constituents of the secretome, notably CAZymes involved in plant cell wall degradation. The Botryosphaeriaceae genomes were shown to have moderate to high GC contents and most had low levels of repetitive DNA. The genomes were not compartmentalized based on gene and repeat densities, but genes of secreted enzymes were slightly more abundant in gene-sparse regions. CONCLUSION The abundance of secreted hydrolytic enzymes and secondary metabolite BGCs in the genomes of Botryosphaeria, Macrophomina, Lasiodiplodia, and Neofusicoccum were similar to those in necrotrophic plant pathogens and some endophytes of woody plants. The results provide a foundation for comparative genomic analyses and hypotheses to explore the mechanisms underlying Botryosphaeriaceae host-plant interactions.
Collapse
Affiliation(s)
- Jan H Nagel
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0001, South Africa.
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0001, South Africa
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0001, South Africa
| |
Collapse
|
12
|
Reveglia P, Billones-Baaijens R, Millera Niem J, Masi M, Cimmino A, Evidente A, Savocchia S. Production of Phytotoxic Metabolites by Botryosphaeriaceae in Naturally Infected and Artificially Inoculated Grapevines. PLANTS (BASEL, SWITZERLAND) 2021; 10:802. [PMID: 33921820 PMCID: PMC8073839 DOI: 10.3390/plants10040802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022]
Abstract
Grapevine trunk diseases (GTDs) are considered a serious problem to viticulture worldwide. Several GTD fungal pathogens produce phytotoxic metabolites (PMs) that were hypothesized to migrate to the foliage where they cause distinct symptoms. The role of PMs in the expression of Botryosphaeria dieback (BD) symptoms in naturally infected and artificially inoculated wood using molecular and analytical chemistry techniques was investigated. Wood samples from field vines naturally infected with BD and one-year-old vines inoculated with Diplodia seriata, Spencermartinsia viticola and Dothiorella vidmadera were analysed by cultural isolations, quantitative PCR (qPCR) and targeted LC-MS/MS to detect three PMs: (R)-mellein, protocatechuic acid and spencertoxin. (R)-mellein was detected in symptomatic naturally infected wood and vines artificially inoculated with D. seriata but was absent in all non-symptomatic wood. The amount of (R)-mellein detected was correlated with the amount of pathogen DNA detected by qPCR. Protocatechuic acid and spencertoxin were absent in all inoculated wood samples. (R)-mellein may be produced by the pathogen during infection to break down the wood, however it was not translocated into other parts of the vine. The foliar symptoms previously reported in vineyards may be due to a combination of PMs produced and climatic and physiological factors that require further investigation.
Collapse
Affiliation(s)
- Pierluigi Reveglia
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (R.B.-B.); (J.M.N.); (S.S.)
- Dipartimento di Scienze Chimiche, Universita’ di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy; (M.M.); (A.C.); (A.E.)
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71121 Foggia, Italy
| | - Regina Billones-Baaijens
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (R.B.-B.); (J.M.N.); (S.S.)
| | - Jennifer Millera Niem
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (R.B.-B.); (J.M.N.); (S.S.)
- UPLB Museum of Natural History, University of the Philippines—Los Baños, College, Laguna 4031, Philippines
| | - Marco Masi
- Dipartimento di Scienze Chimiche, Universita’ di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy; (M.M.); (A.C.); (A.E.)
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche, Universita’ di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy; (M.M.); (A.C.); (A.E.)
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Universita’ di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy; (M.M.); (A.C.); (A.E.)
| | - Sandra Savocchia
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (R.B.-B.); (J.M.N.); (S.S.)
| |
Collapse
|
13
|
Xu D, Xue M, Shen Z, Jia X, Hou X, Lai D, Zhou L. Phytotoxic Secondary Metabolites from Fungi. Toxins (Basel) 2021; 13:261. [PMID: 33917534 PMCID: PMC8067579 DOI: 10.3390/toxins13040261] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 02/06/2023] Open
Abstract
Fungal phytotoxic secondary metabolites are poisonous substances to plants produced by fungi through naturally occurring biochemical reactions. These metabolites exhibit a high level of diversity in their properties, such as structures, phytotoxic activities, and modes of toxicity. They are mainly isolated from phytopathogenic fungal species in the genera of Alternaria, Botrytis, Colletotrichum, Fusarium, Helminthosporium, and Phoma. Phytotoxins are either host specific or non-host specific phytotoxins. Up to now, at least 545 fungal phytotoxic secondary metabolites, including 207 polyketides, 46 phenols and phenolic acids, 135 terpenoids, 146 nitrogen-containing metabolites, and 11 others, have been reported. Among them, aromatic polyketides and sesquiterpenoids are the main phytotoxic compounds. This review summarizes their chemical structures, sources, and phytotoxic activities. We also discuss their phytotoxic mechanisms and structure-activity relationships to lay the foundation for the future development and application of these promising metabolites as herbicides.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.X.); (M.X.); (Z.S.); (X.J.); (X.H.); (D.L.)
| |
Collapse
|
14
|
Fungal Bioactive Anthraquinones and Analogues. Toxins (Basel) 2020; 12:toxins12110714. [PMID: 33198270 PMCID: PMC7698144 DOI: 10.3390/toxins12110714] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 12/13/2022] Open
Abstract
This review, covering the literature from 1966 to the present (2020), describes naturally occurring fungal bioactive anthraquinones and analogues biosynthesized by the acetate route and concerning several different functionalized carbon skeletons. Hydrocarbons, lipids, sterols, esters, fatty acids, derivatives of amino acids, and aromatic compounds are metabolites belonging to other different classes of natural compounds and are generated by the same biosynthetic route. All of them are produced by plant, microorganisms, and marine organisms. The biological activities of anthraquinones and analogues comprise phytotoxic, antibacterial, antiviral, anticancer, antitumor, algicide, antifungal, enzyme inhibiting, immunostimulant, antiplatelet aggregation, cytotoxic, and antiplasmodium activities. The review also covers some practical industrial applications of anthraquinones.
Collapse
|
15
|
Masi M, Reveglia P, Femina G, Baaijens-Billones R, Savocchia S, Evidente A. Luteoethanones A and B, two phytotoxic 1-substituted ethanones produced by Neofusicoccum luteum, a causal agent of Botryosphaeria dieback on grapevine. Nat Prod Res 2020; 35:4542-4549. [PMID: 32202153 DOI: 10.1080/14786419.2020.1739045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Two new phytotoxic 1-substituted ethanones, named luteoethanones A and B, were isolated from Neofusicoccum luteum, the causal agents of Botryosphaeria dieback in Australia. Luteoethanones A and B were characterized, by spectroscopic methods (essentially 1 D and 2 D NMR and HR ESIMS), as 1-(8-Methoxy-2,4-methyl-1-oxa-4-aza-spiro[2.5]octa-5,7-dien-6-yl)-ethanone and its 2-demethyl analogue. When assayed on detached grapevine leaves (Vitis vinifera cv. Shiraz) both the compounds showed phytotoxic activity.
Collapse
Affiliation(s)
- Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Napoli, Italy
| | - Pierluigi Reveglia
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Napoli, Italy
| | - Giuseppe Femina
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Napoli, Italy
| | - Regina Baaijens-Billones
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Sandra Savocchia
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Napoli, Italy
| |
Collapse
|