1
|
Sarte DB, Villaraza AJL. Norleucine Substitution Enhances Self-Assembly of a Lanthanide-Binding Polypeptide Coiled Coil. J Pept Sci 2025; 31:e3665. [PMID: 39707684 DOI: 10.1002/psc.3665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/04/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
A de novo lanthanide-binding coiled-coil polypeptide (MB1-2) was previously reported to self-assemble into a trimeric complex upon addition of Tb3+ with a micromolar range dissociation constant. This study examines the effect of substitution of hydrophobic residues in heptad repeats of MB1-2 on the thermodynamic stability of the resulting Tb-peptide complex. Substitution of isoleucine to norleucine in each heptad repeat was assessed considering the greater accessible surface area of the latter and predicted increased hydrophobic interaction. Job's method of continuous variation using circular dichroism spectroscopy suggests a trimeric structure for the analog complex equivalent to that formed by MB1-2. The dissociation constant and CD spectra suggest that complex formation in the analog is more favorable as a result of ligand preorganization. In addition, thermal denaturation suggests greater stability of the Tb-MB1-2 Nle complex in comparison to the parent Tb-MB1-2. These results indicate improved stability of the complex class can be achieved through heptad repeat amino acid substitutions that increase peptide interchain interaction.
Collapse
Affiliation(s)
- Diego B Sarte
- Institute of Chemistry, College of Science, National Science Complex, Regidor Street, University of the Philippines-Diliman, Quezon City, Metro Manila, Philippines
| | - Aaron Joseph L Villaraza
- Institute of Chemistry, College of Science, National Science Complex, Regidor Street, University of the Philippines-Diliman, Quezon City, Metro Manila, Philippines
| |
Collapse
|
2
|
Agatić ZF, Tepavčević V, Puača G, Poša M. Interaction of drug molecules with surfactants below (Benesi-Hildebrand equation) and above the critical micelle concentration (Kawamura equation). Int J Pharm 2024; 665:124675. [PMID: 39265847 DOI: 10.1016/j.ijpharm.2024.124675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Drug molecules can interact with surfactant molecules either in their monomeric form, where the Benesi-Hildebrand equation determines the binding constant, or when a micellar pseudophase is formed, where the Kawamura equation assesses the partition coefficient. Benesi-Hildebrand plots represent the differential absorbance as a function of surfactant concentration below the critical micelle concentration (CMC), while Kawamura plots show this relationship above the CMC, where the drug can influence the CMC and needs consideration. This review aims to provide an overview of methods for evaluating drug-surfactant interactions in aqueous solutions, particularly below and above the CMC, using spectroscopic data. Understanding these interactions is crucial for pharmacodynamics, affecting drug binding, enzymatic activity, and formulation. Various surfactants were analyzed with diphenhydramine hydrochloride, levofloxacin, phenothiazine, moxifloxacin, and chlorpromazine hydrochloride to determine monomeric binding constants, while sulfathiazole, sodium valproate, cefotaxime, losartan, and metformin hydrochloride were assessed for partitioning coefficient values. Errors in Benesi-Hildebrand plots may arise from considering surfactant concentrations above the CMC, while mistakes in Kawamura plots may stem from neglecting to determine the CMC in the presence of drug molecules, which can alter the surfactant's behavior.
Collapse
Affiliation(s)
- Zita Farkaš Agatić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Vesna Tepavčević
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia.
| | - Gorana Puača
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Mihalj Poša
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
3
|
Payong JEL, Léonard NG, Anderson-Sanchez LM, Ziller JW, Yang JY. Synthesis and anion binding properties of (thio)urea functionalized Ni(II)-salen complexes. Dalton Trans 2024. [PMID: 39484730 DOI: 10.1039/d4dt02683g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Salen ligands (salen = N,N'-ethylenebis(salicylimine)) are well-known for their versatility and widespread utility in chelating metal complexes. However, installation of hydrogen-bonding units on the salen framework, particularly functional groups that require amine-based precursors such as (thio)ureas, is difficult to achieve without the use of protecting group strategies. In this report, we show that the phenylketone analog of salicyladehyde is a stable alternative that enables the facile installation of hydrogen bonding (thio)urea groups on the salen scaffold, thus imparting anion binding abilities to a metal salen complex. Synthesis of symmetric N-phenyl(thio)urea salen ligands functionalized at the 3,3'-position and an unsymmetric salen ligand with N-phenylurea at the 5-position was achieved. Subsequent metalation with nickel(II) acetate afforded the nickel(II) complexes that were investigated for their anion binding properties towards F-, Cl-, Br-, CH3COO-, and H2PO4-. Solid-state structures of the nickel(II) complexes as well as the Cl- bound dimer of the symmetric urea complex were obtained. The unusual acidity of the (thio)urea groups is reflected in the pKa-dependent anion binding behavior of the nickel(II) complexes, as elucidated by 1H and 19F Nuclear Magnetic Resonance (NMR) spectroscopy and Diffusion Ordered Spectroscopy (DOSY) experiments.
Collapse
Affiliation(s)
- Jae Elise L Payong
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, USA.
| | - Nadia G Léonard
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | | | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, USA.
| | - Jenny Y Yang
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, USA.
| |
Collapse
|
4
|
Panigrahi SD, Klebba KC, Rodriguez EN, Mayhan CM, Kotagiri N, Kumari H. Enhancing antibacterial efficacy through macrocyclic host complexation of fluoroquinolone antibiotics for overcoming resistance. Sci Rep 2024; 14:24637. [PMID: 39428392 PMCID: PMC11491488 DOI: 10.1038/s41598-024-73568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
The use of supramolecular assemblies in pharmaceuticals has garnered significant interest. Recent studies have shown that the activities of antibacterial agents can be enhanced through complexation with cyclic oligomers and metal ions. Notably, these complexes sometimes possess greater therapeutic properties than the parent drugs. To develop microbiologically potent supramolecular drugs, the complexation of macrocyclic hosts with fluoroquinolone (FQ) antibiotics was investigated. FQs are a successful family of antibiotics that target the bacterial enzymes DNA gyrase and DNA topoisomerase IV, leading to bacterial cell death through the inhibition of DNA synthesis. However, antibiotic resistance resulting from the repeated use of FQs over time has limited their effectiveness against resistant pathogens. To overcome this issue, the encapsulation of FQs in polyphenolic macrocycles was investigated. This study highlights resorcinarene, a polyphenolic host with antibacterial properties, and its ability to chemically interact with FQs. The inclusion complexation process was analyzed using NMR and FTIR techniques. The binding constants determined by 1H-NMR titration revealed that levofloxacin forms more stable complexes with resorcinarene than with β-cyclodextrin, which aligned with MD simulations. Assessment of the geometric characteristics of the inclusion complexes using 2D NMR analysis confirmed that different moieties of various FQs can fit into a single host cavity and improve activity against gram-negative bacteria. Overall, these findings suggest that encapsulation in polyphenolic macrocycles is a promising strategy for utilizing FQs against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Suchitra D Panigrahi
- James L. Winkle College of Pharmacy University of Cincinnati, 231 Albert Sabin Way, Medical Science Building 3109C, Cincinnati, OH, 45267-0514, USA
| | - Karoline C Klebba
- Helias Catholic High School, 1305 Swifts Hwy, Jefferson City, MO, 65109, USA
| | - Emily N Rodriguez
- Helias Catholic High School, 1305 Swifts Hwy, Jefferson City, MO, 65109, USA
| | - Collin M Mayhan
- James L. Winkle College of Pharmacy University of Cincinnati, 231 Albert Sabin Way, Medical Science Building 3109C, Cincinnati, OH, 45267-0514, USA
- Helias Catholic High School, 1305 Swifts Hwy, Jefferson City, MO, 65109, USA
| | - Nalinikanth Kotagiri
- James L. Winkle College of Pharmacy University of Cincinnati, 231 Albert Sabin Way, Medical Science Building 3109C, Cincinnati, OH, 45267-0514, USA
| | - Harshita Kumari
- James L. Winkle College of Pharmacy University of Cincinnati, 231 Albert Sabin Way, Medical Science Building 3109C, Cincinnati, OH, 45267-0514, USA.
| |
Collapse
|
5
|
Ward MD. New insights into coordination-cage based catalysis. Chem Commun (Camb) 2024; 60:10464-10475. [PMID: 39224947 DOI: 10.1039/d4cc03678f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This review article summarises work from the author's group on catalysis using coordination cages over the (approximate) period 2018-2024. Recent insights discussed include (i) the general mechanism of catalysis, which involves co-location of reaction partners using orthogonal interactions involving the cage cavity (neutral hydrophobic substrates) and the surface anion-based reaction partners; (ii) the role of the cage exterior surface in facilitating catalysis in some cases; (iii) quantitative analysis of anion-binding to the cage surface, as a complement to measurement of binding constants of neutral guests inside the cavity; (iv) a new type of redox-based catalysis using reactive oxygen species, which are generated by reaction of oxidants such as H2O2 and HSO5- with Co(II)/Co(III) redox couples in the cage superstructure. Collectively the results discussed provide signficant new possibilities for further exploration of catalysis using supramolecular assemblies.
Collapse
Affiliation(s)
- Michael D Ward
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
6
|
Kisfaludi P, Spátay S, Krekó M, Vezse P, Tóth T, Huszthy P, Golcs Á. A Bis(Acridino)-Crown Ether for Recognizing Oligoamines in Spermine Biosynthesis. Molecules 2024; 29:4390. [PMID: 39339385 PMCID: PMC11433836 DOI: 10.3390/molecules29184390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Oligoamines in cellular metabolism carry extremely diverse biological functions (i.e., regulating Ca2+-influx, neuronal nitric oxide synthase, membrane potential, Na+, K+-ATPase activity in synaptosomes, etc.). Furthermore, they also act as longevity agents and have a determinative role in autophagy, cell growth, proliferation, and death, while oligoamines dysregulation is a key in a variety of cancers. However, many of their mechanisms of actions have just begun to be understood. In addition to the numerous biosensing methods, only a very few simple small molecule-based tests are available for their selective but reversible tracking or fluorescent labeling. Motivated by this, we present herein a new fluorescent bis(acridino)-crown ether as a sensor molecule for biogenic oligoamines. The sensor molecule can selectively distinguish oligoamines from aliphatic mono- and diamino-analogues, while showing a reversible 1:2 (host:guest) complexation with a stepwise binding process accompanied by a turn-on fluorescence response. Both computational simulations on molecular docking and regression methods on titration experiments were carried out to reveal the oligoamine-recognition properties of the sensor molecule. The new fluorescent chemosensor molecule has a high potential for molecular-level functional studies on the oligoamine systems in cell processes (cellular uptake, transport, progression in cancers, etc.).
Collapse
Affiliation(s)
- Péter Kisfaludi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért Square 4, 1111 Budapest, Hungary
| | - Sára Spátay
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért Square 4, 1111 Budapest, Hungary
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Street 9, 1092 Budapest, Hungary
| | - Marcell Krekó
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Street 9, 1092 Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Department of Pharmaceutical Chemistry, Semmelweis University, Üllői Street 26, 1085 Budapest, Hungary
| | - Panna Vezse
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért Square 4, 1111 Budapest, Hungary
| | - Tünde Tóth
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért Square 4, 1111 Budapest, Hungary
- HUN-REN Centre for Energy Research, Konkoly-Thege Miklós Street 29-33, 1121 Budapest, Hungary
| | - Péter Huszthy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért Square 4, 1111 Budapest, Hungary
| | - Ádám Golcs
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért Square 4, 1111 Budapest, Hungary
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Street 9, 1092 Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Department of Pharmaceutical Chemistry, Semmelweis University, Üllői Street 26, 1085 Budapest, Hungary
| |
Collapse
|
7
|
Singh JK, Kaur S, Chandrasekaran B, Kaur G, Saini B, Kaur R, Silakari P, Kaur N, Bassi P. A QbD-Navigated Approach to the Development and Evaluation of Etodolac-Phospholipid Complex Containing Polymeric Films for Improved Anti-Inflammatory Effect. Polymers (Basel) 2024; 16:2517. [PMID: 39274149 PMCID: PMC11398249 DOI: 10.3390/polym16172517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
The current study focuses on development of phospholipid complex-loaded films of etodolac for enhanced transdermal permeation and anti-inflammatory effect. An etodolac-phospholipid complex was developed using the solvent evaporation method and was characterized by DSC, XRD, FTIR, and 1H-NMR studies. The formation of the complex led to conversion of a crystalline drug to an amorphous form. A stoichiometric ratio of 1:1 (drug-phospholipid) was selected as the optimized ratio. Further, the developed complex was incorporated into films and systematic optimization using a central composite design was carried out using a response surface methodological approach. The desirable design space based on minimum contact angle and maximum tensile strength was selected, while the water vapour transmission rate and swelling index were set within limits. The results for swelling index, contact angle, tensile strength, and water vapour transmission rate were 60.14 ± 1.01%, 31.6 ± 0.03, 2.44 ± 0.39 kg/cm2, and 15.38 g/hm2, respectively. These values exhibited a good correlation with the model-predicted values. The optimized formulation exhibited improved diffusion and permeation across skin. In vivo studies revealed enhanced anti-inflammatory potential of the developed films in comparison to the un-complexed drug. Hence, the study demonstrated that etodolac-phospholipid complex-loaded films improve the transdermal permeation and provided enhanced anti-inflammatory effect.
Collapse
Affiliation(s)
- Jangjeet Karan Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Simran Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | | | - Gurpreet Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
| | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Pragati Silakari
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Narinderpal Kaur
- Chitkara University School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
| | - Pallavi Bassi
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| |
Collapse
|
8
|
Ceborska M, Siklitskaya A, Kowalska AA, Kędra K. Synergetic Effect of β-Cyclodextrin and Its Simple Carbohydrate Substituents on Complexation of Folic Acid and Its Structural Analog Methotrexate. Pharmaceutics 2024; 16:1161. [PMID: 39339198 PMCID: PMC11435387 DOI: 10.3390/pharmaceutics16091161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/30/2024] Open
Abstract
Folic acid (FA) and its structural analog, anticancer medicine methotrexate (MTX), are known to form host/guest complexes with native cyclodextrins, of which the most stable are formed with the medium-sized β-cyclodextrin. Based on our research, proving that simple sugars (D-glucose, D-galactose, and D-mannose) can form adducts with folic acid, we envisioned that combining these two types of molecular receptors (cyclodextrin and simple carbohydrates) into one may be beneficial for the complexation of FA and MTX. We designed and obtained host/guest inclusion complexes of FA and MTX with two monoderivatives of β-cyclodextrin-substituted at position 6 with monosaccharide (glucose, G-β-CD) and disaccharide (maltose, Ma-β-CD). The complexation was proved by experimental (NMR, UV-vis, IR, TG, DSC) and theoretical methods. We proved that derivatization of β-cyclodextrin with glucose and maltose has a significant impact on the complexation with FA and MTX, as the addition of one glucose subunit to the structure of the receptor significantly increases the value of association constant for both FA/G-β-CD and MTX/G-β-CD, while further extending a pendant chain (incorporation of maltose subunit) results in no additional changes.
Collapse
Affiliation(s)
- Magdalena Ceborska
- Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University, Wóycickiego 1/3, 01-938 Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Aleksandra Siklitskaya
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Aneta Aniela Kowalska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Karolina Kędra
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
9
|
Sharma A, Govande V, Mahajan S, Sawant SD. 2,3-Difunctionalization of quinones: a gold-catalyzed cascade approach for trifluoromethyl-amination or sulfoximination. Chem Commun (Camb) 2024; 60:9598-9601. [PMID: 39143950 DOI: 10.1039/d4cc01891e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
A one-pot domino protocol employing gold(I) catalysis has been developed for the cascade trifluoromethyl-amination/sulfoximination of quinones. Togni I serves as the trifluoromethyl installing precursor, while amine or sulfoximine serves as the aminating source. Preliminary investigations suggest a mutual activation of Togni I and the amine precursor, facilitating the facile difunctionalization of quinones with excellent regioselectivity. Extensive substrate scope exploration demonstrates moderate to good yields of difunctionalized products. Application to the natural product Juglone highlights its potential for late-stage modifications in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Alpa Sharma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
- Academy of Scientific and Industrial Research, Ghaziabad-201002, India
| | - Vijaya Govande
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Shivangani Mahajan
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
- Academy of Scientific and Industrial Research, Ghaziabad-201002, India
| | - Sanghapal D Sawant
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
- Academy of Scientific and Industrial Research, Ghaziabad-201002, India
| |
Collapse
|
10
|
Onaka Y, Sakai R, Fukunaga TM, Ikemoto K, Isobe H. Bayesian Inference for Model Analyses of Supramolecular Complexes: A Case Study with Nanocarbon Hosts. Angew Chem Int Ed Engl 2024; 63:e202405388. [PMID: 38580617 DOI: 10.1002/anie.202405388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/07/2024]
Abstract
A 126 π-electron nanobowl molecule, phenine tridehydrosumanene, was synthesized in 12 steps through the development of a polygon cyclization strategy that assembled the polygonal precursors by Ni-mediated macrocyclization. The bowl-shaped structure accommodated C70 as a guest at the concave site, and the ball-in-bowl structure was determined by X-ray crystallography. The host-guest equilibrium in solution was studied with titration experiments using isothermal calorimetry, which provided an interesting test case for studying the host-guest stoichiometry. Bayesian inference was introduced for stoichiometric analyses of the equilibrium, and a procedure to estimate the volume of prior probability in the parameter space was developed. The Bayesian procedure functioned as Occam's razor and provided quantitative support for a specific stoichiometry. The method was examined with five host-guest examples comprising nanocarbon hosts, which suggested the versatility of Bayesian inference for studies of supramolecular complexes.
Collapse
Affiliation(s)
- Yuzuka Onaka
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Renki Sakai
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Toshiya M Fukunaga
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koki Ikemoto
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroyuki Isobe
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
11
|
Benkő BM, Tóth G, Moldvai D, Kádár S, Szabó E, Szabó ZI, Kraszni M, Szente L, Fiser B, Sebestyén A, Zelkó R, Sebe I. Cyclodextrin encapsulation enabling the anticancer repositioning of disulfiram: Preparation, analytical and in vitro biological characterization of the inclusion complexes. Int J Pharm 2024; 657:124187. [PMID: 38697585 DOI: 10.1016/j.ijpharm.2024.124187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Drug repositioning is a high-priority and feasible strategy in the field of oncology research, where the unmet medical needs are continuously unbalanced. Disulfiram is a potential non-chemotherapeutic, adjuvant anticancer agent. However, the clinical translation is limited by the drug's poor bioavailability. Therefore, the molecular encapsulation of disulfiram with cyclodextrins is evaluated to enhance the solubility and stability of the drug. The present work describes for the first time the complexation of disulfiram with randomly methylated-β-cyclodextrin. A parallel analytical andin vitrobiological comparison of disulfiram inclusion complexes with hydroxypropyl-β-cyclodextrin, randomly methylated-β-cyclodextrin and sulfobutylether-β-cyclodextrin is conducted. A significant drug solubility enhancement by about 1000-folds and fast dissolution in 1 min is demonstrated. Thein vitrodissolution-permeation studies and proliferation assays demonstrate the solubility-dependent efficacy of the drug. Throughout the different cancer cell lines' characteristics and disulfiram unspecific antitumoral activity, the inhibitory efficacy of the cyclodextrin encapsulated drug on melanoma (IC50 about 100 nM) and on glioblastoma (IC50 about 7000 nM) cell lines differ by a magnitude. This pre-formulation screening experiment serves as a proof of concept of using cyclodextrin encapsulation as a platform tool for further drug delivery development in repositioning areas.
Collapse
Affiliation(s)
- Beáta-Mária Benkő
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary.
| | - Gergő Tóth
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary.
| | - Dorottya Moldvai
- Tumor Biology, Cell and Tissue Culture Laboratory, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., Budapest 1085, Hungary.
| | - Szabina Kádár
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary; Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest 1111, Hungary.
| | - Edina Szabó
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest 1111, Hungary.
| | - Zoltán-István Szabó
- Faculty of Pharmacy Department of Drugs Industry and Pharmaceutical Management, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Str. 38, Târgu Mureș 540142, Romania.
| | - Márta Kraszni
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary.
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory Ltd., Illatos út 7, Budapest 1097, Hungary.
| | - Béla Fiser
- Institute of Chemistry, Faculty of Materials Science and Chemical Engineering, University of Miskolc, Egyetemváros, Miskolc 3515, Hungary; Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 90-236 Lodz, Poland; Ferenc Rakoczi II Transcarpathian Hungarian College of Higher Education, 90200 Beregszász, Transcarpathia, Ukraine.
| | - Anna Sebestyén
- Tumor Biology, Cell and Tissue Culture Laboratory, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., Budapest 1085, Hungary.
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary.
| | - István Sebe
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary; Egis Pharmaceuticals Plc., R&D Directorate, P.O. Box 100, Budapest 1475, Hungary.
| |
Collapse
|
12
|
Wang Y, Zhao H, Yang C, Fang L, Zheng L, Lv H, Stavropoulos P, Ai L, Zhang J. Chiral Recognition of Chiral (Hetero)Cyclic Derivatives Probed by Tetraaza Macrocyclic Chiral Solvating Agents via 1H NMR Spectroscopy. Anal Chem 2024; 96:5188-5194. [PMID: 38506628 PMCID: PMC11492768 DOI: 10.1021/acs.analchem.3c05395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
In the field of chiral recognition, chiral cyclic organic compounds, especially heterocyclic organic compounds, have attracted little attention and have been rarely studied as chiral substrates by means of 1H NMR spectroscopy. In this paper, enantiomers of thiohydantoin derivatives, representing typical five-membered N,N-heterocycles, have been synthesized and utilized for assignment of absolute configuration and analysis of enantiomeric excess. All enantiomers have been successfully differentiated with the assistance of novel tetraaza macrocyclic chiral solvating agents (TAMCSAs) by 1H NMR spectroscopy. Surprisingly, unprecedented nonequivalent chemical shift values (up to 2.052 ppm) of the NH proton of substrates have been observed, a new milestone in the evaluation of enantiomers. To better understand the intermolecular interactions between host and guest, Job plots and theoretical calculations of (S)-G1 and (R)-G1 with TAMCSA 1a were investigated and revealed significant geometric differentiation between the diastereomers. In order to evaluate practical applications of the present systems in analyzing optical purity of chiral substrates, enantiomeric excesses of a typical substrate (G1) with different optical compositions in the presence of a representative TAMCSA (1a) can be accurately calculated based on the integration of the NH proton's signal peaks. Importantly, this work provides a significant breakthrough in exploring and developing the chiral recognition of chiral heterocyclic organic compounds by 1H NMR spectroscopy.
Collapse
Affiliation(s)
- Yu Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Hongmei Zhao
- State Key Laboratory of Information Photonics and Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China
| | - Chunxia Yang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Lixia Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Li Zheng
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Hehua Lv
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Pericles Stavropoulos
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Lin Ai
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jiaxin Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
13
|
Delecluse M, Manick AD, Chatelet B, Chevallier-Michaud S, Moraleda D, Riggi ID, Dutasta JP, Martinez A. Ditopic Covalent Cage for Ion-Pair Binding: Influence of Anion Complexation on the Cation Exchange Rate. Chempluschem 2024; 89:e202300558. [PMID: 37950861 DOI: 10.1002/cplu.202300558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
A new hemicryptophane host with a ditopic molecular cavity combining a cyclotriveratrylene (CTV) unit with a tris-urea moiety was synthesized. The complexation of halides, tetramethylammonium (TMA+) cation, and ion pairs was investigated. A positive cooperativity was observed, since halides display a higher binding constant when a TMA+ cation is already present inside the cage. When TMA+ was complexed alone, a decrease of temperature from 298 K to 230 K was required to switch from a fast to a slow exchange regime on the NMR time scale. Nevertheless, the prior complexation of a halide guest in the lower part of the host resulted in significant decrease of the exchange rate of the subsequent complexation of the TMA+ cation. Under these conditions, the 1H NMR signals characteristic of a slow exchange regime were observed at 298 K. Addition of an excess of salts, increases the ionic strength of the solution, restoring the fast exchange dynamics. This result provides insight on how the exchange rate of a cation guest can be modulated by the complexation of a co-guest anion.
Collapse
Affiliation(s)
- Magalie Delecluse
- Aix-Marseille Univ., CNRS, Centrale Marseille iSm2, UMR 7113, 13397, Marseille, France
| | - Anne-Doriane Manick
- Aix-Marseille Univ., CNRS, Institut de Chimie, Radicalaire, UMR 7273, 13397, Marseille, France
| | - Bastien Chatelet
- Aix-Marseille Univ., CNRS, Centrale Marseille iSm2, UMR 7113, 13397, Marseille, France
| | | | - Delphine Moraleda
- Aix-Marseille Univ., CNRS, Centrale Marseille iSm2, UMR 7113, 13397, Marseille, France
| | - Innocenzo de Riggi
- Aix-Marseille Univ., CNRS, Centrale Marseille iSm2, UMR 7113, 13397, Marseille, France
| | - Jean-Pierre Dutasta
- ENS Lyon, CNRS, Laboratoire de Chimie UMR 5182 46 Allée d'Italie, 69364, Lyon, France
| | - Alexandre Martinez
- Aix-Marseille Univ., CNRS, Centrale Marseille iSm2, UMR 7113, 13397, Marseille, France
| |
Collapse
|
14
|
Ko H, Kang DG, Choi YJ, Wi Y, Kim S, Pham HH, Lee KM, Godman NP, McConney ME, Jeong KU. Polarization-Dependent Thin Films with Biaxial Anisotropic Absorption Constructed by a Single Coating and Subsequent Topochemical Polymerization of Chromophores. J Am Chem Soc 2024; 146:4393-4401. [PMID: 38329893 DOI: 10.1021/jacs.3c06444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
For the construction of hierarchical superstructures with biaxial anisotropic absorption, a newly synthesized diacetylene-functionalized bipyridinium is self-assembled to use an electron-accepting host for capturing and arranging guests. The formation of the donor-acceptor complex triggers an intermolecular charge transfer, leading to chromophore activation. Polarization-dependent multichroic thin films are prepared through a sequential process of single-coating, self-assembly, and topochemical polymerization of host-guest chromophores. Molecular packing structures constructed in the single-layer optical thin film possess orthogonal absorption axes for two different wavelengths. By tuning the linear polarization angle, the color of the optical thin film can be intentionally controlled. This single-layered multichroic film provides a new pathway for the development of anticounterfeiting and multiplexing encryptions.
Collapse
Affiliation(s)
- Hyeyoon Ko
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Dong-Gue Kang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yu-Jin Choi
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Youngjae Wi
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Subin Kim
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Huan Huu Pham
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kyung Min Lee
- US Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Nicholas P Godman
- US Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Michael E McConney
- US Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Kwang-Un Jeong
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
15
|
Mert S, Erdebil Ö. Anion-Binding Properties of Aliphatic Symmetric Squaramide Receptors. ACS OMEGA 2024; 9:8333-8342. [PMID: 38405436 PMCID: PMC10883022 DOI: 10.1021/acsomega.3c09094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/10/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Squaramides (SQs), which are very popular for their H-bonding ability, have attracted great interest due to their wide range of applications such as asymmetric synthesis, pharmacology, and anion transportation. In this study, aliphatic symmetric SQs based on cis/trans-1,2-diaminocyclohexane (DACH) substituted with cyclic tertiary amines, synthesized in four steps under simple reaction conditions, were investigated for the first time for their ability to bind Cl-, Br-, and I- anions. The changes in cis/trans geometric isomers and the cyclic ring (pyrrolidine vs piperidine) were found to have a combined effect on the degree of anion binding. The spectroscopic titrations of the SQs with TBA-Cl, TBA-Br, and TBA-I in the range of 0.2 to 20.0 equiv were monitored by 1H NMR, and the analyses of the magnitude of chemical shift differences in the NH peaks of the SQs in course of titration were performed by DynaFit and BindFit programs for the calculation of their Ka values. All symmetric SQs I-IV were found to selectively bind Cl- anion more strongly than Br- anion to varying degrees depending on the SQ derivatives. Especially, SQ IV, which has a symmetric trans-DACH and a pyrrolidine ring, was found to have the highest Cl- anion-binding ability compared to the other SQs. However, the SQs did not show any change in the chemical shift of the NH proton in 1H NMR upon successive addition of TBA-I, indicating that they do not interact with I- anion. The stoichiometries of the complexation behavior of SQs I-IV toward Cl- and Br- anions were also analyzed by Job plots.
Collapse
Affiliation(s)
- Serap Mert
- Department
of Chemistry and Chemical Processing Technology, Kocaeli University, Kocaeli 41140, Turkey
- Department
of Polymer Science and Technology, Kocaeli
University, Kocaeli 41001, Turkey
- Center
for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli 41001, Turkey
| | - Özden Erdebil
- Department
of Polymer Science and Technology, Kocaeli
University, Kocaeli 41001, Turkey
| |
Collapse
|
16
|
Jeong DI, Kim HJ, Lee SY, Kim S, Huh JW, Ahn JH, Karmakar M, Kim HJ, Lee K, Lee J, Ko HJ, Cho HJ. Hydrogel design to overcome thermal resistance and ROS detoxification in photothermal and photodynamic therapy of cancer. J Control Release 2024; 366:142-159. [PMID: 38145660 DOI: 10.1016/j.jconrel.2023.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Responsive heat resistance (by heat shock protein upregulation) and spontaneous reactive oxygen species (ROS) detoxification have been regarded as the major obstacles for photothermal/photodynamic therapy of cancer. To overcome the thermal resistance and improve ROS susceptibility in breast cancer therapy, Au ion-crosslinked hydrogels including indocyanine green (ICG) and polyphenol are devised. Au ion has been introduced for gel crosslinking (by catechol-Au3+ coordination), cellular glutathione depletion, and O2 production from cellular H2O2. ICG can generate singlet oxygen from O2 (for photodynamic therapy) and induce hyperthermia (for photothermal therapy) under the near-infrared laser exposure. (-)-Epigallocatechin gallate downregulates heat shock protein to overcome heat resistance during hyperthermia and exerts multiple anticancer functions in spite of its ironical antioxidant features. Those molecules are concinnously engaged in the hydrogel structure to offer fast gel transformation, syringe injection, self-restoration, and rheological tuning for augmented photo/chemotherapy of cancer. Intratumoral injection of multifunctional hydrogel efficiently suppressed the growth of primary breast cancer and completely eliminated the residual tumor mass. Proposed hydrogel system can be applied to tumor size reduction prior to surgery of breast cancer and the complete remission after its surgery.
Collapse
Affiliation(s)
- Da In Jeong
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun Jin Kim
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Song Yi Lee
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sungyun Kim
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ji Won Huh
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jae-Hee Ahn
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Mrinmoy Karmakar
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Han-Jun Kim
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - KangJu Lee
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyun-Jeong Ko
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun-Jong Cho
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
17
|
Finnegan TJ, Mortensen C, Badjić JD. Molecular baskets form inclusion complexes with phenethylamine drugs in water. Chem Commun (Camb) 2024. [PMID: 38273731 DOI: 10.1039/d3cc05485c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Molecular basket 16- comprising a nonpolar cavity and an anionic nest of six carboxylates at its rim was found to form inclusion complexes with (1R, 2S)-ephedrine, (1R, 2R)-pseudoephedrine, and (1S, 2R)-tranylcypromine. Experimental results (NMR) and theory (MM/DFT) suggest the basket encapsulates phenethylamines in unique and predictable fashion.
Collapse
Affiliation(s)
- Tyler J Finnegan
- The Ohio State University, Department of Chemistry & Biochemistry, 100 W 18th Avenue, Columbus, OH 43210, USA.
| | - Christopher Mortensen
- The Ohio State University, Department of Chemistry & Biochemistry, 100 W 18th Avenue, Columbus, OH 43210, USA.
| | - Jovica D Badjić
- The Ohio State University, Department of Chemistry & Biochemistry, 100 W 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
18
|
Massaro M, Cinà G, Borrego-Sánchez A, Sainz-Díaz CI, Viseras-Iborra C, Sánchez-Espejo R, de Melo Barbosa R, Leone F, Pibiri I, Noto R, Riela S. Thixotropic Hydrogels Based on Laponite® and Cucurbituril for Delivery of Lipophilic Drug Molecules. Chempluschem 2024; 89:e202300370. [PMID: 37767728 DOI: 10.1002/cplu.202300370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
Nowadays the use of hydrogels for biomedical purposes is increasing because of their interesting features that allow the development of targeted drug delivery systems. Herein, hydrogel based on Laponite® (Lap) clay mineral as gelator and cucurbit[6]uril (CB[6]) molecules were synthetized for the delivery of flufenamic acid (FFA) for potential topical application. Firstly, the interaction between CB[6] and FFA was assessed by UV-vis spectroscopic measurements and molecular modeling calculations. Then, the obtained complex was used as filler for Lap hydrogel (Lap/CB[6]/FFA). The properties of the hydrogel in terms of viscosity and, self-repair abilities were investigated; its morphology was imaged by scanning electron and polarized optical microscopies. Furthermore, the changes in the hydrodynamic radii and in the colloidal stability of CB[6]/Lap mixture were investigated in terms of translational diffusion from dynamic light scattering and ζ-potential measurements. Finally, the kinetic in vitro release of FFA, from Lap/CB[6]/FFA hydrogel, was studied in a medium mimicking the pH of skin and the obtained results were discussed both by an experimental point of view and by molecular modeling calculations.
Collapse
Affiliation(s)
- Marina Massaro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, V.le delle Scienze, Ed. 17 "Stanislao Cannizzaro", 90128, Palermo, Italy
| | - Giuseppe Cinà
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, V.le delle Scienze, Ed. 17 "Stanislao Cannizzaro", 90128, Palermo, Italy
| | - Ana Borrego-Sánchez
- Instituto de Ciencia Molecular, Universitat de València, Carrer del Catedrátic José Beltrán Martinez 2, 46980, Paterna, Spain
| | - C Ignacio Sainz-Díaz
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas- Universidad de Granada (CSIC-UGR), Av. de las Palmeras, 4, 18100-Armilla, Granada, Spain
| | - César Viseras-Iborra
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas- Universidad de Granada (CSIC-UGR), Av. de las Palmeras, 4, 18100-Armilla, Granada, Spain
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, s/n, 18071, Granada, Spain
| | - Rita Sánchez-Espejo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, s/n, 18071, Granada, Spain
| | - Raquel de Melo Barbosa
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, s/n, 18071, Granada, Spain
| | - Federica Leone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, V.le delle Scienze, Ed. 17 "Stanislao Cannizzaro", 90128, Palermo, Italy
| | - Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, V.le delle Scienze, Ed. 17 "Stanislao Cannizzaro", 90128, Palermo, Italy
| | - Renato Noto
- University of Palermo, V.le delle Scienze, Ed. 17 "Stanislao Cannizzaro", 90128, Palermo, Italy
| | - Serena Riela
- Dipartimento di Scienze Chimiche, University of Catania, Via A. Doria, 6, 95125, Catania, Italy
| |
Collapse
|
19
|
Fukunaga TM, Onaka Y, Kato T, Ikemoto K, Isobe H. Stoichiometry validation of supramolecular complexes with a hydrocarbon cage host by van 't Hoff analyses. Nat Commun 2023; 14:8246. [PMID: 38129419 PMCID: PMC10739680 DOI: 10.1038/s41467-023-43979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Defining chemical processes with equations is the first important step in characterizing equilibria for the assembly of supramolecular complexes, and the stoichiometry of the assembled components must be defined to generate the equation. Recently, this subject has attracted renewed interest, and statistical and/or information-theoretic measures were introduced to examine the validities of the equilibrium models used during curve fitting analyses of titration. The present study shows that these measures may not always be appropriate for credibility examinations and that further reformation of the protocols used to determine the overall stoichiometry is necessary. Hydrocarbon cage hosts and their chloroform complexes formed via weak CH-π hydrogen bonds were studied, which allowed us to introduce van 't Hoff analyses for effective validation of the stoichiometries of supramolecular complexes. This study shows that the stoichiometries of supramolecular complexes should be carefully examined by adopting multiple measures with different origins.
Collapse
Affiliation(s)
- Toshiya M Fukunaga
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuzuka Onaka
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takahide Kato
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koki Ikemoto
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Hiroyuki Isobe
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
20
|
Stroia I, Moisă ME, Pop A, Legrand B, Hanganu A, Hădade ND, Grosu I. Planar Chiral p,p'-Terphenyl-Based Cyclophanes with Remarkable Enantiomer Stability: Synthesis, Theoretical Investigations, and Complexation Studies. J Org Chem 2023; 88:15647-15657. [PMID: 37910657 DOI: 10.1021/acs.joc.3c01631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Design of conformationally stable compounds with planar chirality is a topic of great interest mainly because of their potential applications as enantioselective ligands or other functional materials. Herein, we present the design and synthesis of novel planar chiral cyclophanes, obtained by ortho, ortho″ anchoring of the p,p'-terphenyl unit, with bridges of different lengths and rigidities, along with their nuclear magnetic resonance, mass spectrometry, and X-ray characterizations. We investigated the influence of the structural particularities of the bridges over the stability of the enantiomers, by means of nuclear magnetic resonance and chiral high-performance liquid chromatography as well as by density functional theory calculations. We also demonstrated the ability of one of the cyclophanes to preferentially bind arginine with Ka > 110 M-1 (ΔG > -11 kJ mol-1) in acetonitrile solutions containig 10 % water, in the presence of other amino acids.
Collapse
Affiliation(s)
- Ioan Stroia
- Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
- Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
| | - Mădălina Elena Moisă
- Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
| | - Alexandra Pop
- Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
- Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
| | - Baptiste Legrand
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, ENSCM, CNRS, 15 Avenue Charles Flahault BP 14 491, 34093 Montpellier Cedex 5, France
| | - Anamaria Hanganu
- Research Centre of Applied Organic Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania
- "C. D. Nenitzescu" Institute of Organic and Supramolecular Chemistry of the Romanian Academy, 060023 Bucharest, Romania
| | - Niculina Daniela Hădade
- Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
- Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
| | - Ion Grosu
- Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
- Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
| |
Collapse
|
21
|
Mei P, Morimoto H, Okada Y, Matsuo K, Hayashi H, Saeki A, Yamada H, Aratani N. Complexation study of a 1,3-phenylene-bridged cyclic hexa-naphthalene with fullerenes C 60 and C 70 in solution and 1D-alignment of fullerenes in the crystals. RSC Adv 2023; 13:33459-33462. [PMID: 38025867 PMCID: PMC10644901 DOI: 10.1039/d3ra06526j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
To investigate the host ability of a simple macrocycle, 1,3-phenylene-bridged naphthalene hexamer N6, we evaluated the complexation of N6 with fullerenes in toluene and in the crystals. The complexes in the solid-state demonstrate the one-dimensional alignment of fullerenes. The single-crystals of the C60@N6 composite have semiconductive properties revealed by photoconductivity measurements.
Collapse
Affiliation(s)
- Peifeng Mei
- Division of Materials Science, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Hirofumi Morimoto
- Division of Materials Science, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Yuta Okada
- Division of Materials Science, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Kyohei Matsuo
- Division of Materials Science, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Hironobu Hayashi
- Division of Materials Science, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka Suita 565-0871 Japan
| | - Hiroko Yamada
- Division of Materials Science, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
| |
Collapse
|
22
|
Huang YH, Lu YL, Ruan J, Zheng SP, Zhang XD, Liu CH, Qin YH, Cao ZM, Jiao Z, Xu HS, Su CY. Dynamic Metallosupramolecular Cages Containing 12 Adaptable Pockets for High-Order Guest Binding Beyond Biomimicry. J Am Chem Soc 2023; 145:23361-23371. [PMID: 37844297 DOI: 10.1021/jacs.3c09491] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Molecular recognition lies at the heart of biological functions, which inspires lasting research in artificial host syntheses to mimic biomolecules that can recognize, process, and transport molecules with the highest level of complexity; nonetheless, the design principle and quantifying methodology of artificial hosts for multiple guests (≥4) remain a formidable task. Herein, we report two rhombic dodecahedral cages [(Zn/Fe)8Pd6-MOC-16], which embrace 12 adaptive pockets for multiguest binding with distinct conformational dynamics inherent in metal-center lability and are able to capture 4-24 guests to manifest a surprising complexity of binding scenarios. The exceptional high-order and hierarchical encapsulation phenomena suggest a wide host-guest dynamic-fit, enabling conformational adjustment and adaptation beyond the duality of induced-fit and conformational selection in protein interactions. A critical inspection of the host-guest binding events in solution has been performed by NMR and ESI-MS spectra, highlighting the importance of acquiring a reliable binding repertoire from different techniques and the uncertainty of quantifying the binding affinities of multiplying guests by an oversimplified method.
Collapse
Affiliation(s)
- Yin-Hui Huang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Lin Lu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia Ruan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shao-Ping Zheng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Dong Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chen-Hui Liu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Han Qin
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhong-Min Cao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhiwei Jiao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hai-Sen Xu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
23
|
Wang K, Rao Y, Xu L, Zhou M, Aratani N, Osuka A, Song J. Post-Installation of Fused Benzoheptagons at the Periphery of NiII Porphyrins: Helical Structures and Conformation-Adjustable Fullerenes Binding. Chemistry 2023; 29:e202301955. [PMID: 37518990 DOI: 10.1002/chem.202301955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Fused-benzoheptagon-installed NiII porphyrins were synthesized by a protocol consisting of (2-formyl)arylation at the meso-position(s) of NiII porphyrins, conversion of formyl group to methoxyethene group by Wittig reaction, and final Bi(OTf)3 -catalyzed cyclization. The structures of these porphyrins have been revealed by X-ray analysis. Owing to the installed heptagon ring(s), these porphyrins show curved structures with conformational flexibility. Dimer has been shown to have a small activation barrier for inversion and to capture C60 and C70 with large association constants with adjustable conformational changes.
Collapse
Affiliation(s)
- Kaisheng Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Yutao Rao
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Ling Xu
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Mingbo Zhou
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan
| | - Atsuhiro Osuka
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Jianxin Song
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
24
|
Zhu Y, Escorihuela J, Wang H, Sue ACH, Zuilhof H. Tunable Supramolecular Ag +-Host Interactions in Pillar[ n]arene[ m]quinones and Ensuing Specific Binding to 1-Alkynes. Molecules 2023; 28:7009. [PMID: 37894487 PMCID: PMC10609613 DOI: 10.3390/molecules28207009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
We developed an improved, robust synthesis of a series of pillar[6]arenes with a varying number (0-3) of quinone moieties in the ring. This easy-to-control variation yielded a gradually less electron-rich cavity in going from zero to three quinone units, as shown from the strength of host-guest interactions with silver ions. Such macrocycle-Ag2 complexes themselves were shown to display an unprecedented, sharp distinction between terminal alkynes, which strongly bound to such complexes, and internal alkynes, internal alkenes and terminal alkenes, which do hardly bind.
Collapse
Affiliation(s)
- Yumei Zhu
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Avda. Vicente Andrés Estellés s/n, 46100 València, Spain
| | - Haiying Wang
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Andrew C.-H. Sue
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen 361005, China
| | - Han Zuilhof
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
25
|
Wang YP, Duan XH, Huang YH, Hou YJ, Wu K, Zhang F, Pan M, Shen J, Su CY. Radio- and Photosensitizing Os(II)-Based Nanocage for Combined Radio-/Chemo-/X-ray-Induced Photodynamic Therapies, NIR Imaging, and Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43479-43491. [PMID: 37694454 DOI: 10.1021/acsami.3c08503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Integration of clinical imaging and collaborative multimodal therapies into a single nanomaterial for multipurpose diagnosis and treatment is of great interest to theranostic nanomedicine. Here, we report a rational design of a discrete Os-based metal-organic nanocage Pd6(OsL3)828+ (MOC-43) as a versatile theranostic nanoplatform to meet the following demands simultaneously: (1) synergistic treatments of radio-, chemo-, and X-ray-induced photodynamic therapies (X-PDT) for breast cancer, (2) NIR imaging for cancer cell tracking and tumor-targeting, and (3) anticancer drug transport through a host-guest strategy. The nanoscale MOC-43 incorporates high-Z Os-element to interact with X-ray irradiation for dual radiosensitization and photosensitization, showing efficient energy transfer to endogenous oxygen in cancer cells to enhance X-PDT efficacy. It also features intrinsic NIR emission originating from metal-to-ligand charge transfer (MLCT) as an excellent imaging probe. Meanwhile, its 12 pockets can capture and concentrate low-water-soluble molecules for anticancer drug delivery. These multifunctions are implemented and demonstrated by micellization of coumarin-loaded cages with DSPE-PEG2000 into coumarin ⊂ MOC-43 nanoparticles (CMNPs) for efficient subcellular endocytosis and uptake. The cancer treatments in vitro/in vivo show promising antitumor performance, providing a conceptual protocol to combine cage-cargo drug transport with diagnosis and treatment for collaborative cancer theranostics by virtue of multifunction synergism on a single-nanomaterial platform.
Collapse
Affiliation(s)
- Ya-Ping Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiao-Hui Duan
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510030, China
| | - Yin-Hui Huang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ya-Jun Hou
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Kai Wu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Fang Zhang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510030, China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jun Shen
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510030, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
26
|
Martínez-Vivas S, Poyatos M, Peris E. Supramolecular Control of the Oxidative Addition as a Way To Improve the Catalytic Efficiency of Pincer-Rhodium (I) Complexes. Angew Chem Int Ed Engl 2023; 62:e202307198. [PMID: 37342877 DOI: 10.1002/anie.202307198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/23/2023]
Abstract
1 H NMR studies using a cationic complex with a pyridine-di-imidazolylidene pincer ligand of formula [Rh(CNC)(CO)]+ revealed that this compound showed high binding affinity with coronene in CH2 Cl2 . The interaction between coronene and the planar RhI complex is established by means of π-stacking interactions. This interaction has a strong impact on the electron-donating strength of the pincer CNC ligand, which is increased significantly, as demonstrated by the shifting of the ν(CO) stretching bands to lower frequencies. The addition of coronene increases the reaction rate of the nucleophilic attack of methyl iodide on the rhodium (I) pincer complex, and also has a positive effect on the performance of the complex as a catalyst in the cycloisomerization of 4-pentynoic acid. These findings highlight the importance of supramolecular interactions for tuning the reactivity and catalytic activity of square-planar metal complexes.
Collapse
Affiliation(s)
- Sebastián Martínez-Vivas
- Institute of Advanced Materials (INAM)., Universitat Jaume I, Av. Vicente Sos Baynat s/n., 12071, Castellón, Spain
| | - Macarena Poyatos
- Institute of Advanced Materials (INAM)., Universitat Jaume I, Av. Vicente Sos Baynat s/n., 12071, Castellón, Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM)., Universitat Jaume I, Av. Vicente Sos Baynat s/n., 12071, Castellón, Spain
| |
Collapse
|
27
|
Liyana Gunawardana VW, Ward C, Wang H, Holbrook JH, Sekera ER, Cui H, Hummon AB, Badjić JD. Crystalline Nanoparticles of Water-Soluble Covalent Basket Cages (CBCs) for Encapsulation of Anticancer Drugs. Angew Chem Int Ed Engl 2023; 62:e202306722. [PMID: 37332078 PMCID: PMC10528532 DOI: 10.1002/anie.202306722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
We herein describe the preparation, assembly, recognition characteristics, and biocompatibility of novel covalent basket cage CBC-11, composed of four molecular baskets linked to four trivalent aromatic amines through amide groups. The cage is tetrahedral in shape and similar in size to small proteins (Mw =8637 g/mol) with a spacious nonpolar interior for accommodating multiple guests. While 24 carboxylates at the outer surface of CBC-11 render it soluble in aqueous phosphate buffer (PBS) at pH=7.0, the amphiphilic nature prompts its assembly into nanoparticles (d=250 nm, DLS). Cryo-TEM examination of nanoparticles revealed their crystalline nature with wafer-like shapes and hexagonally arranged cages. Nanoparticulate CBC-11 traps anticancer drugs irinotecan and doxorubicin, with each cage binding up to four drug molecules in a non-cooperative manner. The inclusion complexation resulted in nanoparticles growing in size and precipitating. In media containing mammalian cells (HCT 116, human colon carcinoma), the IC50 value of CBC-11 was above 100 μM. While this work presents the first example of a large covalent organic cage operating in water at the physiological pH and forming crystalline nanoparticles, it also demonstrates its biocompatibility and potential to act as a polyvalent binder of drugs for their sequestration or delivery.
Collapse
Affiliation(s)
| | - Carson Ward
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Maryland Hall 221, 3400 North Charles Street, Baltimore, MD, USA
| | - Joseph H Holbrook
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Emily R Sekera
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Maryland Hall 221, 3400 North Charles Street, Baltimore, MD, USA
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Jovica D Badjić
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
28
|
Biswas R, Samanta K, Ghorai S, Maji S, Natarajan R. Conformationally Flexible Cleft Receptor for Chloride Anion Transport. ACS OMEGA 2023; 8:19625-19631. [PMID: 37305253 PMCID: PMC10249377 DOI: 10.1021/acsomega.3c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023]
Abstract
The design and synthesis of a cleft-shaped bis-diarylurea receptor for chloride anion transport is reported in this work. The receptor is based on the foldameric nature of N,N'-diphenylurea upon its dimethylation. The bis-diarylurea receptor exhibits a strong and selective affinity for chloride over bromide and iodide anions. A nanomolar quantity of the receptor efficiently transports the chloride across a lipid bilayer membrane as a 1:1 complex (EC50 = 5.23 nm). The work demonstrates the utility of the N,N'-dimethyl-N,N'-diphenylurea scaffold in anion recognition and transport.
Collapse
Affiliation(s)
- Raju Biswas
- Organic
& Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Krishanu Samanta
- Organic
& Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandipan Ghorai
- Organic
& Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suman Maji
- Organic
& Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramalingam Natarajan
- Organic
& Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
29
|
Ikemoto K, Takahashi K, Ozawa T, Isobe H. Akaike's Information Criterion for Stoichiometry Inference of Supramolecular Complexes. Angew Chem Int Ed Engl 2023; 62:e202219059. [PMID: 36764927 DOI: 10.1002/anie.202219059] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023]
Abstract
"How do we decide the stoichiometry of host-guest complexes?" This question has long been answered by the Job plot since its first report in 1928. However, as the Job plot was claimed to be misleading in 2016, the question became an open question again and called for renewed investigations. An information-theoretic approach, called Akaike's information criterion, is introduced in this study to select the best model of host-guest complexes, which can rank the models with weight of evidence. A few test cases with unique cylindrical hosts were examined to demonstrate the applicability of the information-theoretic method. Consequently, reasonable views over the thermodynamic behaviors of dumbbell-and-cylinder complexes were obtained. Akaike's information criterion can be a useful and superior alternative to statistical null hypothesis testing, which was proposed as a remedy in place of the Job plot.
Collapse
Affiliation(s)
- Koki Ikemoto
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kanato Takahashi
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takeaki Ozawa
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroyuki Isobe
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
30
|
Hou XF, Chen XM, Bisoyi HK, Qi Q, Xu T, Chen D, Li Q. Light-Driven Aqueous Dissipative Pseudorotaxanes with Tunable Fluorescence Enabling Deformable Nano-Assemblies. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11004-11015. [PMID: 36802465 DOI: 10.1021/acsami.2c20276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Developing an artificial dynamic nanoscale molecular machine that dissipatively self-assembles far from equilibrium is fundamentally important but is significantly challenging. Herein, we report dissipatively self-assembling light-activated convertible pseudorotaxanes (PRs) that show tunable fluorescence and enable deformable nano-assemblies. A pyridinium-conjugated sulfonato-merocyanine derivative (EPMEH) and cucurbit[8]uril (CB[8]) form the 2EPMEH ⊂ CB[8] [3]PR in a 2:1 stoichiometry, which phototransforms into a transient spiropyran containing 1:1 EPSP ⊂ CB[8] [2]PR when exposed to light. The transient [2]PR thermally relaxes (reversibly) to the [3]PR in the dark accompanied by periodic fluorescence changes that include near-infrared emission. Moreover, octahedral and spherical nanoparticles are formed through the dissipative self-assembly of the two PRs, and the Golgi apparatus is dynamically imaged using fluorescent dissipative nano-assemblies.
Collapse
Affiliation(s)
- Xiao-Fang Hou
- Key Lab of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xu-Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, Ohio 44242, United States
| | - Qi Qi
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Tianchi Xu
- Key Lab of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dongzhong Chen
- Key Lab of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
31
|
Stability Constants of Cobalt(II) Complexes with Pyridinecarboxylic Acids in 1.0 mol·dm−3 NaNO3 at 25 °C. J SOLUTION CHEM 2023. [DOI: 10.1007/s10953-023-01254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
32
|
Li Y, Zhao H, Ren Y, Qiu M, Zhang H, Gao G, Zheng L, Stavropoulos P, Ai L. Synthesis of Enantiomers of Chiral Ester Derivatives Containing an Amide Group and Their Chiral Recognition by
1
H NMR Spectroscopy. ChemistrySelect 2023. [DOI: 10.1002/slct.202204039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Yan‐Lin Li
- College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Hong‐Mei Zhao
- State Key Laboratory of Information Photonics and Communications, School of Science Beijing University of Posts and Telecommunications Beijing 100876 P. R. China
| | - Yu‐Qing Ren
- College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Meng Qiu
- College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Hai‐Tong Zhang
- College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Guang‐Peng Gao
- College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Li Zheng
- College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Pericles Stavropoulos
- Department of Chemistry Missouri University of Science and Technology Rolla, Missouri 65409 USA
| | - Lin Ai
- College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| |
Collapse
|
33
|
Grabicki N, Fisher S, Dumele O. A Fourfold Gold(I)-Aryl Macrocycle with Hyperbolic Geometry and its Reductive Elimination to a Carbon Nanoring Host. Angew Chem Int Ed Engl 2023; 62:e202217917. [PMID: 36753601 DOI: 10.1002/anie.202217917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
An ethylene glycol-decorated [6]cyclo-meta-phenylene (CMP) macrocycle was synthesized and utilized as a subunit to construct a fourfold AuI 2 -aryl metallacycle with an overall square arrangement. The corners consist of rigid dinuclear gold(I) complexes previously known to form only triangular metallacycles. The interplay between the conformational flexibility of the [6]CMP macrocycle and the rigid dinuclear gold(I) moieties enable the square geometry, as revealed by single-crystal X-ray diffraction. The formation of the gold complex shows size-selectivity compared to an alternative route using platinum(II) corner motifs. Upon reductive elimination, an all-organic ether-decorated carbon nanoring was obtained. Investigation as a host for the complexation of large guest molecules with a suitable convex π-surfaces was accomplished using isothermal NMR binding titrations. Association constants for [6]cycloparaphenylene ([6]CPP), [7]CPP, C60 , and C70 were determined.
Collapse
Affiliation(s)
- Niklas Grabicki
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Sergey Fisher
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Oliver Dumele
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
34
|
Ibáñez S, Peris E. "Lock and Key" and "Induced-Fit" Host-Guest Models in Two Digold(I)-Based Metallotweezers. Inorg Chem 2023; 62:1820-1826. [PMID: 35360901 PMCID: PMC9974064 DOI: 10.1021/acs.inorgchem.2c00677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two different metallotweezers, each with two pyrene-imidazolylidene-gold(I) arms, were used as hosts for a series of planar aromatic guests. The metallotweezer with a dibenzoacridinebis(alkynyl) spacer (1) orients the two pyrene-imidazolylidene-gold(I) arms in a parallel disposition, with an interpanel distance of about 7 Å. The second metallotweezer (2) contains a carbazolylbis(alkynyl) spacer that directs the two pyrene panels in a diverging orientation. Determination of the association constants via 1H NMR titrations demonstrates that the binding strength shown by 1 is significantly larger than that found by 2, with binding affinities as large as 104 M-1 (in CDCl3), for the encapsulation of N,N'-dimethylnaphthalenetetracarboxydiimide with 1. The differences in the binding affinities are due to binding models associated with formation of the related host-guest complexes. While 1 operates via a "lock and key" model, in which the host does not suffer distortions upon formation of the inclusion complex, 2 operates via a guest-induced fit model. The large association constants shown by 1 with two planar guests were used for promotion of the template-directed synthesis of 1, which in the absence of an external template is produced in an equimolecular mixture with its self-aggregated congener, clippane [12]. This observation strongly suggests that the mechanically interlocked clippane is formed through a self-template-directed mechanism, while bonds are broken/formed during the synthetic protocol.
Collapse
Affiliation(s)
- Susana Ibáñez
- Institute
of Advanced Materials, Centro de Innovación en Química
Avanzada, Universitat Jaume I, Avenida Vicente Sos Baynat s/n, Castellón E-12071, Spain
| | - Eduardo Peris
- Institute
of Advanced Materials, Centro de Innovación en Química
Avanzada, Universitat Jaume I, Avenida Vicente Sos Baynat s/n, Castellón E-12071, Spain
| |
Collapse
|
35
|
Patil SM, Barji DS, Chavan T, Patel K, Collazo AJ, Prithipaul V, Muth A, Kunda NK. Solubility Enhancement and Inhalation Delivery of Cyclodextrin-Based Inclusion Complex of Delamanid for Pulmonary Tuberculosis Treatment. AAPS PharmSciTech 2023; 24:49. [PMID: 36702977 DOI: 10.1208/s12249-023-02510-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Tuberculosis (TB) is a contiguous airborne disease caused by Mycobacterium tuberculosis (M.tb), primarily affecting the human lungs. The progression of drug-susceptible TB to drug-resistant strains, MDR-TB and XDR-TB, has become a global challenge toward eradicating TB. Conventional TB treatment involves frequent dosing and prolonged treatment regimens predominantly by an oral or invasive route, leading to treatment-related systemic adverse effects and patient's noncompliance. Pulmonary delivery is an attractive option as we could reduce dose, limit systemic side-effects, and achieve rapid onset of action. Delamanid (DLD), an antituberculosis drug, has poor aqueous solubility, and in this study, we aim to improve its solubility using cyclodextrin complexation. We screened different cyclodextrins and found that HP-β-CD resulted in a 54-fold increase in solubility compared to a 27-fold and 13-fold increase by SBE-β-CD and HP-ɣ-CD, respectively. The stability constant (265 ± 15 M-1) and complexation efficiency (8.5 × 10-4) suggest the formation of a stable inclusion complex of DLD and HP-β-CD in a 2:1 ratio. Solid-state characterization studies (DSC, PXRD, and NMR) further confirmed successful complexation of DLD in HP-β-CD. The nebulized DLD-CD complex solution showed a mass median aerodynamic diameter of 4.42 ± 0.62 μm and fine particle fraction of 82.28 ± 2.79%, suggesting deposition in the respiratory airways. In bacterial studies, minimum inhibitory concentration of DLD-CD complex was significantly reduced (four-fold) compared to free DLD in M.tb (H37Ra strain). Furthermore, accelerated stability studies confirmed that the inclusion complex was stable for 4 weeks with 90%w/w drug content. In conclusion, we increased the aqueous solubility of DLD through cyclodextrin complexation and improved its efficacy in vitro.
Collapse
Affiliation(s)
- Suyash M Patil
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Druva Sarika Barji
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Tejashri Chavan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Kinjal Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Andrew J Collazo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Vasudha Prithipaul
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, New York, 11439, USA.
| |
Collapse
|
36
|
Hübler C. Analysing binding stoichiometries in NMR titration experiments using Monte Carlo simulation and resampling techniques. PEERJ ANALYTICAL CHEMISTRY 2022. [DOI: 10.7717/peerj-achem.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The application of Monte Carlo simulation and resampling techniques to analyse possible binding stoichiometries in NMR titration experiments is presented. Four simulated NMR titration experiments having complex species with 1:1, 2:1 and 1:2 stoichiometries were each analysed using a 1:1, 2:1/1:1, 1:1/1:2 and a 2:1/1:1/1:2 model as implemented in SupraFit. Each best-fit model was inspected using Monte Carlo simulation (MC), Cross Validation (CV) and a new protocol termed Reduction Analysis (RA). The results of the statistical post-processes were used to calculate characteristic descriptors that are the base of the judgment for both, the models and individual stability constants. The results indicate promising approaches to correctly identify 1:1, 2:1/1:1 and 1:1/1:2 models, however with some limitations in case of the 2:1/1:1/1:2 model. All simulations and post-processing protocols were performed with the newly presented SupraFit.
Collapse
Affiliation(s)
- Conrad Hübler
- Institut für Organische Chemie, Technische Universität Bergakademie Freiberg, Freiberg, Saxony, Germany
| |
Collapse
|
37
|
Chaudhry MT, Patrick BO, Akine S, MacLachlan MJ. Noncooperative guest binding by metal-free [2 + 2] Schiff-base macrocycles. Org Biomol Chem 2022; 20:8259-8268. [PMID: 36222441 DOI: 10.1039/d2ob01511k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Salphen-based [n + n] macrocycles have been widely explored for their unique chemical and topological properties following metal ion coordination. Despite having vastly different reactivity than their coordinated counterparts, fewer studies have focused on metal-free salphen macrocycles. We investigated the binding of [2 + 2] Schiff-base macrocycle host 3, which contains a central 18-crown-6-like cavity and two N2O2 moieties. This macrocycle strongly binds to spherical cationic guests (K11 ≈ 103-104 M-1, DCM/MeCN). The most robust binding was shown for K+ and Na+, followed by Li+ and Rb+. More sterically demanding cationic guests like dibenzylammonium (DBA+) showed almost no binding. The binding pocket in 3 is slightly smaller than 18-crown-6, resulting in binding outside the cavity, which provides a scaffold appropriate for 2 : 1 complexes, where two host molecules sandwich the guest. All host-guest complexes follow a 2 : 1 noncooperative binding model, where each successive binding event is less likely than the previous, unlike coordinated versions of 3, where most binding is 1 : 1.
Collapse
Affiliation(s)
- Mohammad T Chaudhry
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Mark J MacLachlan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Stewart Blusson Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
38
|
Mohan B, Xing T, Kumar S, Kumar S, Ma S, Sun F, Xing D, Ren P. A chemosensing approach for the colorimetric and spectroscopic detection of Cr 3+, Cu 2+, Fe 3+, and Gd 3+ metal ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157242. [PMID: 35820525 DOI: 10.1016/j.scitotenv.2022.157242] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/13/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Metal cations are present in domestic and industrial wastewater and have adverse effects on human and aqueous life. The present study describes the development of the molecular probe 9-anthracen-9-ylmethylene)hydrazineylidene)methyl)-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-8-ol (AMHMPQ) to detect Cr3+, Cu2+, Fe3+, and Gd3+ ions by using UV-visible, fluorescence, colorimetric and excitation-emission matrix (EEM) spectroscopy techniques. The interaction of Cr3+, Cu2+, Fe3+, and Gd3+ can be observed by the absorption maxima shift, turn-off, colour changes, and EEM shifts. In addition, fluorescence limits of detection 17.66 × 10-6 M, 6.44 × 10-9 M, 28.87 × 10-8 M, and 12.49 × 10-6 M in wide linear ranges, low limits of quantifications, high values of Stern-Volmer constant, Job's plot and Benesi-Hildebrand plot justify the 1:1 association affinity with association constants of 1.46 × 104 M-1, 1.86 × 107 M-1, 2.69 × 105 M-1, 2.13 × 104 M-1 for AMHMPQ-metal ions (Cr3+, Cu2+, Fe3+, and Gd3+ ions), respectively. Paper- and mask-based kits are developed to explore the utility of the designed chemosensor. Additionally, AMHMPQ acts as a reusable sensor for two, seven, two, and zero cycles for Cr3+, Cu2+, Fe3+, and Gd3+ ions, respectively, when checked with EDTA.
Collapse
Affiliation(s)
- Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Tiantian Xing
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Sandeep Kumar
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Shixuan Ma
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Feiyun Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Dingyu Xing
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
39
|
Wang Y, Xu J, Wang R, Liu H, Yu S, Xing LB. Supramolecular polymers based on host-guest interactions for the construction of artificial light-harvesting systems. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121402. [PMID: 35636137 DOI: 10.1016/j.saa.2022.121402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/08/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
In the present work, artificial light-harvesting systems with a fluorescence resonance energy transfer (FRET) process were successfully obtained in the aqueous solution. We designed and synthesized an amphiphilic pyrene derivative with two 4-vinylpyridium arms (Pmvb), which can interact with cucurbit[8]uril (CB[8]) to form supramolecular polymer through host-guest interactions in aqueous solution. The formation of supramolecular polymers results in a significant enhancement of fluorescence, which makes Pmvb-CB[8] an ideal energy donor to construct artificial light-harvesting systems in the aqueous solution. Subsequently, two different fluorescence dyes Rhodamine B (RhB) and Sulforhodamine 101 (SR101) were introduced as energy acceptors into the solution of Pmvb-CB[8] respectively, to fabricate two different artificial light-harvesting systems. The obtained artificial light-harvesting systems can achieve an efficient energy transfer process from Pmvb-CB[8] to RhB or SR101 with high energy transfer efficiency.
Collapse
Affiliation(s)
- Ying Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Juan Xu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Rongzhou Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| |
Collapse
|
40
|
Barravecchia L, Blanco-Gómez A, Neira I, Skackauskaite R, Vila A, Rey-Rico A, Peinador C, García MD. "Vermellogens" and the Development of CB[8]-Based Supramolecular Switches Using pH-Responsive and Non-Toxic Viologen Analogues. J Am Chem Soc 2022; 144:19127-19136. [PMID: 36206443 DOI: 10.1021/jacs.2c08575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present herein the "vermellogens", a new class of pH-responsive viologen analogues, which replace the direct linking between para-substituted pyridinium moieties within those by a hydrazone functional group. A series of such compounds have been efficiently synthesized in aqueous media by hydrazone exchange reactions, displaying a marked pH-responsivity. Furthermore, the parent N,N'-dimethylated "vermellogen": the "red thread", an analogue of the herbicide paraquat and used herein as a representative model of the series, showed anion-recognition abilities, non-reversible electrochemical behavior, and non-toxicity of the modified bis-pyridinium core. The host-guest chemistry for the "red thread" with the CB[7,8] macrocyclic receptors has been extensively studied experimentally and by dispersion corrected density functional theory methods, showing a parallel behavior to that previously described for the herbicide but, crucially, swapping the well-known redox reactive capabilities of the viologen-based inclusion complexes by acid-base supramolecular responsiveness.
Collapse
Affiliation(s)
- Liliana Barravecchia
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071A Coruña, Spain
| | - Arturo Blanco-Gómez
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071A Coruña, Spain
| | - Iago Neira
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071A Coruña, Spain
| | - Raminta Skackauskaite
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071A Coruña, Spain
| | - Alejandro Vila
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071A Coruña, Spain
| | - Ana Rey-Rico
- Gene & Cell Therapy Research Group (G-CEL), Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071A Coruña, Spain
| | - Carlos Peinador
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071A Coruña, Spain
| | - Marcos D García
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071A Coruña, Spain
| |
Collapse
|
41
|
Kwon H, Newell BS, Bruns CJ. Redox-switchable host-guest complexes of metallocenes and [8]cycloparaphenylene. NANOSCALE 2022; 14:14276-14285. [PMID: 36134555 DOI: 10.1039/d2nr03852h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The cycloparaphenylene (CPP) nanocarbons are an appealing family of macrocyclic organic semiconductors with size-tunable structures and unique optoelectronic properties, which can be further modulated by complexation with guest molecules. While many π-π-stabilized CPP-fullerene host-guest complexes are known, CPPs can also host polycyclic guests stabilized by aromatic CH-π interactions. Here we combine experimental and computational results to report that CH-π interactions can also be tapped to include redox-active metallocene guests in [8]cycloparaphenylene ([8]CPP). Oxidation of a metallocene guest is accompanied by an increase in binding affinity and tilt angle. Crystallographically determined solid-state structures reveal CH-π interactions in the ferrocene complex (Fc⊂[8]CPP) and additional π-π interactions in the cobaltocenium complex (CoCp2+⊂[8]CPP). Functionalizing Fc with oxygen-bearing side chains also improves complex stability to a similar extent as oxidation, due to the formation of CH-O hydrogen bonds with the host's p-phenylene units. This work shows that CH-π bonding can be generalized as a driving force for CPP host-guest complexes and combined with other supramolecular forces to enhance stability. Owing to their semiconducting nature, amenability to functionalization, and reversible redox-dependent behavior, the [8]CPP-metallocene host-guest complexes may expand the library of synthons available for designing bespoke nanoelectronics and artificial molecular machines.
Collapse
Affiliation(s)
- Hyejin Kwon
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, 427 UCB, Boulder, CO 80309, USA
| | - Brian S Newell
- Materials and Molecular Analysis Center, Analytical Resources Core, Colorado State University, 200 W. Lake Street, Fort Collins, CO 80523, USA
| | - Carson J Bruns
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, 427 UCB, Boulder, CO 80309, USA
- ATLAS Institute, University of Colorado Boulder, 1125 18th Street, 320 UCB, Boulder, CO 80309, USA.
| |
Collapse
|
42
|
Kumar GD, Banasiewicz M, Wrzosek A, O'Mari O, Zochowska M, Vullev VI, Jacquemin D, Szewczyk A, Gryko DT. A sensitive zinc probe operating via enhancement of excited-state intramolecular charge transfer. Org Biomol Chem 2022; 20:7439-7447. [PMID: 36102673 DOI: 10.1039/d2ob01296k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel highly sensitive fluorescent probes for zinc cations based on the diketopyrrolopyrrole scaffold were designed and synthesized. Large bathochromic shifts (≈80 nm) of fluorescence are observed when the Zn2+-recognition unit (di-(2-picolyl)amine) is bridged with the fluorophore possessing an additional pyridine unit able to participate in the coordination process. This effect originates from the dipolar architecture and the increasing electron-withdrawing properties of the diketopyrrolopyrrole core upon addition of the cation. The new, greenish-yellow emitting probes, which operate via modulation of intramolecular charge transfer, are very sensitive to the presence of Zn2+. Introduction of a morpholine unit in the diketopyrrolopyrrole structure induces a selective six-fold increase of the emission intensity upon zinc coordination. Importantly, the presence of other divalent biologically relevant metal cations has negligible effects and typically even at a 100-fold higher concentration of Mg2+/Zn2+, the effect is comparable. Computational studies rationalize the strong bathochromic shift upon Zn2+-complexation. Decorating the probes with the triphenylphosphonium cation and morpholine unit enables selective localization in the mitochondria and the lysosome of cardiac H9C2 cells, respectively.
Collapse
Affiliation(s)
- G Dinesh Kumar
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Marzena Banasiewicz
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Antoni Wrzosek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland.
| | - Omar O'Mari
- Department of Bioengineering, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA.
| | - Monika Zochowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland.
| | - Valentine I Vullev
- Department of Bioengineering, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA.
| | - Denis Jacquemin
- Nantes University, CNRS, CEISAM, UMR-6230, F-4400 Nantes, France.
| | - Adam Szewczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland.
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
43
|
Lauer JC, Bhat AS, Barwig C, Fritz N, Kirschbaum T, Rominger F, Mastalerz M. [2+3] Amide Cages by Oxidation of [2+3] Imine Cages – Revisiting Molecular Hosts for Highly Efficient Nitrate Binding. Chemistry 2022; 28:e202201527. [PMID: 35699158 PMCID: PMC9544679 DOI: 10.1002/chem.202201527] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/16/2022]
Abstract
The pollution of groundwater with nitrate is a serious issue because nitrate can cause several diseases such as methemoglobinemia or cancer. Therefore, selective removal of nitrate by efficient binding to supramolecular hosts is highly desired. Here we describe how to make [2+3] amide cages in very high to quantitative yields by applying an optimized Pinnick oxidation protocol for the conversion of corresponding imine cages. By NMR titration experiments of the eight different [2+3] amide cages with nitrate, chloride and hydrogen sulfate we identified one cage with an unprecedented high selectivity towards nitrate binding vs. chloride (S=705) or hydrogensulfate (S>13500) in CD2Cl2/CD3CN (1 : 3). NMR experiments as well as single‐crystal structure comparison of host‐guest complexes give insight into structure‐property‐relationships.
Collapse
Affiliation(s)
- Jochen C. Lauer
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Avinash S. Bhat
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Chantal Barwig
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Nathalie Fritz
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Tobias Kirschbaum
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
44
|
Zalmi GA, Nadimetla DN, Harmalkar SS, Narvekar KU, Bhosale SV. A Receptor Based on Diphenylaniline Donor Connected with Difuran and Pyridine as Acceptors: Synthesis, Crystal Structure and Selective Detection of Iron Ion. ChemistrySelect 2022. [DOI: 10.1002/slct.202202276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Geeta A. Zalmi
- School of Chemical Sciences Goa University, Taleigao Plateau Goa 403 206 India
| | - Dinesh N. Nadimetla
- School of Chemical Sciences Goa University, Taleigao Plateau Goa 403 206 India
| | | | - Kedar U. Narvekar
- School of Chemical Sciences Goa University, Taleigao Plateau Goa 403 206 India
| | | |
Collapse
|
45
|
Lee VJ, Heffern MC. Structure-activity assessment of flavonoids as modulators of copper transport. Front Chem 2022; 10:972198. [PMID: 36082200 PMCID: PMC9445161 DOI: 10.3389/fchem.2022.972198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022] Open
Abstract
Flavonoids are polyphenolic small molecules that are abundant in plant products and are largely recognized for their beneficial health effects. Possessing both antioxidant and prooxidant properties, flavonoids have complex behavior in biological systems. The presented work investigates the intersection between the biological activity of flavonoids and their interactions with copper ions. Copper is required for the proper functioning of biological systems. As such, dysregulation of copper is associated with metabolic disease states such as diabetes and Wilson's disease. There is evidence that flavonoids bind copper ions, but the biological implications of their interactions remain unclear. Better understanding these interactions will provide insight into the mechanisms of flavonoids' biological behavior and can inform potential therapeutic targets. We employed a variety of spectroscopic techniques to study flavonoid-Cu(II) binding and radical scavenging activities. We identified structural moieties important in flavonoid-copper interactions which relate to ring substitution but not the traditional structural subclassifications. The biological effects of the investigated flavonoids specifically on copper trafficking were assessed in knockout yeast models as well as in human hepatocytes. The copper modulating abilities of strong copper-binding flavonoids were largely influenced by the relative hydrophobicities. Combined, these spectroscopic and biological data help elucidate the intricate nature of flavonoids in affecting copper transport and open avenues to inform dietary recommendations and therapeutic development.
Collapse
Affiliation(s)
| | - Marie C. Heffern
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| |
Collapse
|
46
|
Bobylev EO, Poole DA, de Bruin B, Reek JNH. M 6L 12 Nanospheres with Multiple C 70 Binding Sites for 1O 2 Formation in Organic and Aqueous Media. J Am Chem Soc 2022; 144:15633-15642. [PMID: 35977385 PMCID: PMC9437924 DOI: 10.1021/jacs.2c05507] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Singlet oxygen is a potent oxidant with major applications
in organic
synthesis and medicinal treatment. An efficient way to produce singlet
oxygen is the photochemical generation by fullerenes which exhibit
ideal thermal and photochemical stability. In this contribution we
describe readily accessible M6L12 nanospheres
with unique binding sites for fullerenes located at the windows of
the nanospheres. Up to four C70 can be associated with
a single nanosphere, presenting an efficient method for fullerene
extraction and application. Depending on the functionality located
on the outside of the sphere, they act as vehicles for 1O2 generation in organic or in aqueous media using white
LED light. Excellent productivity in 1O2 generation
and consecutive oxidation of 1O2 acceptors using
C70⊂[Pd6L12], C60⊂[Pd6L12] or fullerene soot extract
was observed. The methodological design principles allow preparation
and application of highly effective multifullerene binding spheres.
Collapse
Affiliation(s)
- Eduard O Bobylev
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam The Netherlands
| | - David A Poole
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam The Netherlands
| | - Bas de Bruin
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam The Netherlands
| | - Joost N H Reek
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam The Netherlands
| |
Collapse
|
47
|
Wen J, Feng L, Zhao H, Zheng L, Stavropoulos P, Ai L, Zhang J. Chiral Recognition of Hydantoin Derivatives Enabled by Tetraaza Macrocyclic Chiral Solvating Agents Using 1H NMR Spectroscopy. J Org Chem 2022; 87:7934-7944. [PMID: 35675642 DOI: 10.1021/acs.joc.2c00587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enantiomers of a series of hydantoin derivatives were prepared from d- and l-amino acids with p-tolyl isocyanate and 3,5-bis(trifluoromethyl)phenyl isocyanate as guests for chiral recognition by 1H NMR spectroscopy. Meanwhile, several tetraaza macrocyclic compounds were synthesized as chiral solvating agents from d-phenylalanine and (1S,2S)-(+)-1,2-diaminocyclohexane. An uncommon enantiomeric discrimination has been successfully established for hydantoin derivatives, representatives of five-membered N,N-heterocycles, in the presence of tetraaza macrocyclic chiral solvating agents (TAMCSAs) 1a-1c by means of 1H NMR spectroscopy. Several unprecedented nonequivalent chemical shifts (up to 1.309 ppm) were observed in the split 1H NMR spectra. To evaluate practical applications in the determination of enantiomeric excess (ee), the ee values of samples with different optical purities (up to 95% ee) were accurately calculated by the integration of relevant proton peaks. To better understand the chiral discriminating behavior, Job plots of (±)-G1 with TAMCSA 1a were investigated. Furthermore, in order to further explore any underlying intermolecular hydrogen bonding interactions, theoretical calculations of the enantiomers of (S)-G1 and (R)-G1 with TAMCSA 1a were performed by means of the hybrid density functional theory (B3LYP/6-31G*) of the Gaussian 16 program.
Collapse
Affiliation(s)
- Jie Wen
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Lei Feng
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Hongmei Zhao
- State Key Laboratory of Information Photonics and Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China
| | - Li Zheng
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Pericles Stavropoulos
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Lin Ai
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jiaxin Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
48
|
Cross-reactive binding versus selective phosphate sensing in an imine macrocycle sensor. Chem 2022. [DOI: 10.1016/j.chempr.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Larsen ES, Ahumada G, Sultane PR, Bielawski CW. Stereoelectronically-induced allosteric binding: shape complementarity promotes positive cooperativity in fullerene/buckybowl complexes. Chem Commun (Camb) 2022; 58:6498-6501. [PMID: 35575168 DOI: 10.1039/d2cc01908f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel 2 : 1 host-guest complex forms between 8-tert-butyl-6b2-azapenta-benzo[bc,ef,hi,kl,no]corannulene (1) and C60 with positive cooperativity (α = 2.56) and high affinity (K1 × K2 = 2.8 × 106 M-2) at 25 °C. The C60 undergoes increasing shape complementarity toward 1 throughout the binding process.
Collapse
Affiliation(s)
- Eric S Larsen
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea. .,Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Guillermo Ahumada
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
| | - Prakash R Sultane
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
| | - Christopher W Bielawski
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea. .,Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
50
|
Binding Properties of RNA Quadruplex of SARS-CoV-2 to Berberine Compared to Telomeric DNA Quadruplex. Int J Mol Sci 2022; 23:ijms23105690. [PMID: 35628500 PMCID: PMC9145931 DOI: 10.3390/ijms23105690] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Previous studies suggest that berberine, an isoquinoline alkaloid, has antiviral potential and is a possible therapeutic candidate against SARS-CoV-2. The molecular underpinnings of its action are still unknown. Potential targets include quadruplexes (G4Q) in the viral genome as they play a key role in modulating the biological activity of viruses. While several DNA-G4Q structures and their binding properties have been elucidated, RNA-G4Qs such as RG-1 of the N-gene of SARS-CoV-2 are less explored. Using biophysical techniques, the berberine binding thermodynamics and the associated conformational and hydration changes of RG-1 could be characterized and compared with human telomeric DNA-G4Q 22AG. Berberine can interact with both quadruplexes. Substantial changes were observed in the interaction of berberine with 22AG and RG-1, which adopt different topologies that can also change upon ligand binding. The strength of interaction and the thermodynamic signatures were found to dependent not only on the initial conformation of the quadruplex, but also on the type of salt present in solution. Since berberine has shown promise as a G-quadruplex stabilizer that can modulate viral gene expression, this study may also contribute to the development of optimized ligands that can discriminate between binding to DNA and RNA G-quadruplexes.
Collapse
|