1
|
Yu L, Liu X, Zhao S, Zhu W, Wu L, Ding C. H-Aggregation of Squaraine Dye as Generic Colorimetric Molecules to Detect Cu 2. APPLIED SPECTROSCOPY 2024; 78:974-981. [PMID: 38772555 DOI: 10.1177/00037028241254391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
An infrared squaraine dye was utilized to detect Cu2+ in solvents based on H-aggregates of squaraine dye. H-aggregates are a type of aggregation with enhanced photophysical properties compared to monomers. In the presence of a Ca2+ solution, F-Cl offers exceptional H-aggregators that can be transformed into monomers by adding Cu2+. Furthermore, this mode successfully demonstrated fluorescence changes in HeLa cells cultured in vitro after the addition of Ca2+ or Cu2+. A highly specific detection of Cu2+ was achieved using this transformation mode.
Collapse
Affiliation(s)
- Lijia Yu
- National Center for Occupational Safety and Health, National Center for Occupational Medicine of Coal Industry, NHC, Beijing, China
| | - Xi Liu
- National Center for Occupational Safety and Health, National Center for Occupational Medicine of Coal Industry, NHC, Beijing, China
| | - Shuhua Zhao
- National Center for Occupational Safety and Health, National Center for Occupational Medicine of Coal Industry, NHC, Beijing, China
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| | - Wenxuan Zhu
- National Center for Occupational Safety and Health, National Center for Occupational Medicine of Coal Industry, NHC, Beijing, China
- School of Public Health, Hengyang Medical College, University of South China, Hengyang, China
| | - Lina Wu
- National Center for Occupational Safety and Health, National Center for Occupational Medicine of Coal Industry, NHC, Beijing, China
| | - Chunguang Ding
- National Center for Occupational Safety and Health, National Center for Occupational Medicine of Coal Industry, NHC, Beijing, China
| |
Collapse
|
2
|
Sorour MI, Kistler KA, Marcus AH, Matsika S. Molecular Dynamical and Quantum Mechanical Exploration of the Site-Specific Dynamics of Cy3 Dimers Internally Linked to dsDNA. J Phys Chem B 2024; 128:7750-7760. [PMID: 39105720 PMCID: PMC11343064 DOI: 10.1021/acs.jpcb.4c03115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Performing spectroscopic measurements on biomolecules labeled with fluorescent probes is a powerful approach to locating the molecular behavior and dynamics of large systems at specific sites within their local environments. The indocarbocyanine dye Cy3 has emerged as one of the most commonly used chromophores. The incorporation of Cy3 dimers into DNA enhances experimental resolution owing to the spectral characteristics influenced by the geometric orientation of excitonically coupled monomeric units. Various theoretical models and simulations have been utilized to aid in the interpretation of the experimental spectra. In this study, we employ all-atom molecular dynamics simulations to study the structural dynamics of Cy3 dimers internally linked to the dsDNA backbone. We used quantum mechanical calculations to derive insights from both the linear absorption spectra and the circular dichroism data. Furthermore, we explore potential limitations within a commonly used force field for cyanine dyes. The molecular dynamics simulations suggest the presence of four possible Cy3 dimeric populations. The spectral simulations on the four populations show one of them to agree better with the experimental signatures, suggesting it to be the dominant population. The relative orientation of Cy3 in this population compares very well with previous predictions from the Holstein-Frenkel Hamiltonian model.
Collapse
Affiliation(s)
- Mohammed I Sorour
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Kurt A Kistler
- Department of Chemistry, Pennsylvania State University, Brandywine Campus, Media, Pennsylvania 19063, United States
| | - Andrew H Marcus
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
3
|
Cox L, Bai C, Platnich CM, Rizzuto FJ. Divergent Polymer Superstructures from Protonated Poly(adenine) DNA and RNA. Biomacromolecules 2024; 25:3163-3168. [PMID: 38651279 DOI: 10.1021/acs.biomac.4c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Studies have shown that poly(adenine) DNA and RNA strands protonate at a low pH to form self-associating duplexes; however, the nanoscopic morphology of these structures is unclear. Here, we use Transition Electron Microscopy (TEM), Atomic Force Microscopy (AFM), dynamic light scattering (DLS), and fluorescence spectroscopy to show that both ribose identity (DNA or RNA) and assembly conditions (thermal or room-temperature annealing) dictate unique hierarchical structures for poly(adenine) sequences at a low pH. We show that while the thermodynamic product of protonating poly(adenine) DNA is a discrete dimer of two DNA strands, the kinetic product is a supramolecular polymer that branches and aggregates to form micron-diameter superstructures. In contrast, we find that protonated poly(A) RNA polymerizes into micrometer-length, twisted fibers under the same conditions. These divergent hierarchical morphologies highlight the amplification of subtle chemical differences between RNA and DNA into unique nanoscale behaviors. With the use of poly(adenine) strands spanning vaccine technologies, sensing, and dynamic biotechnology, understanding and controlling the underlying assembly pathways of these structures are critical to developing robust, programmable nanotechnologies.
Collapse
Affiliation(s)
- Lachlan Cox
- School of Chemistry, University of New South Wales, Sydney 2052, Australia
| | - Changzhuang Bai
- School of Chemistry, University of New South Wales, Sydney 2052, Australia
| | - Casey M Platnich
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K
| | - Felix J Rizzuto
- School of Chemistry, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
4
|
Pascual G, Roy SK, Barcenas G, Wilson CK, Cervantes-Salguero K, Obukhova OM, Krivoshey AI, Terpetschnig EA, Tatarets AL, Li L, Yurke B, Knowlton WB, Mass OA, Pensack RD, Lee J. Effect of hydrophilicity-imparting substituents on exciton delocalization in squaraine dye aggregates covalently templated to DNA Holliday junctions. NANOSCALE 2024; 16:1206-1222. [PMID: 38113123 DOI: 10.1039/d3nr04499h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Molecular aggregates exhibit emergent properties, including the collective sharing of electronic excitation energy known as exciton delocalization, that can be leveraged in applications such as quantum computing, optical information processing, and light harvesting. In a previous study, we found unexpectedly large excitonic interactions (quantified by the excitonic hopping parameter Jm,n) in DNA-templated aggregates of squaraine (SQ) dyes with hydrophilic-imparting sulfo and butylsulfo substituents. Here, we characterize DNA Holliday junction (DNA-HJ) templated aggregates of an expanded set of SQs and evaluate their optical properties in the context of structural heterogeneity. Specifically, we characterized the orientation of and Jm,n between dyes in dimer aggregates of non-chlorinated and chlorinated SQs. Three new chlorinated SQs that feature a varying number of butylsulfo substituents were synthesized and attached to a DNA-HJ via a covalent linker to form adjacent and transverse dimers. Various characteristics of the dye, including its hydrophilicity (in terms of log Po/w) and surface area, and of the substituents, including their local bulkiness and electron withdrawing capacity, were quantified computationally. The orientation of and Jm,n between the dyes were estimated using a model based on Kühn-Renger-May theory to fit the absorption and circular dichroism spectra. The results suggested that adjacent dimer aggregates of all the non-chlorinated and of the most hydrophilic chlorinated SQ dyes exhibit heterogeneity; that is, they form a mixture of dimers subpopulations. A key finding of this work is that dyes with a higher hydrophilicity (lower log Po/w) formed dimers with smaller Jm,n and large center-to-center dye distance (Rm,n). Also, the results revealed that the position of the dye in the DNA-HJ template, that is, adjacent or transverse, impacted Jm,n. Lastly, we found that Jm,n between symmetrically substituted dyes was reduced by increasing the local bulkiness of the substituent. This work provides insights into how to maintain strong excitonic coupling and identifies challenges associated with heterogeneity, which will help to improve control of these dye aggregates and move forward their potential application as quantum information systems.
Collapse
Affiliation(s)
- Gissela Pascual
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Simon K Roy
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA
| | - German Barcenas
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Christopher K Wilson
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA
| | | | - Olena M Obukhova
- State Scientific Institution "Institute for Single Crystals" of the National Academy of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | - Alexander I Krivoshey
- State Scientific Institution "Institute for Single Crystals" of the National Academy of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | | | - Anatoliy L Tatarets
- State Scientific Institution "Institute for Single Crystals" of the National Academy of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | - Lan Li
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Olga A Mass
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Jeunghoon Lee
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, USA.
| |
Collapse
|
5
|
Song RW, Shen CL, Zheng GS, Ni QC, Liu KK, Zang JH, Dong L, Lou Q, Shan CX. Supramolecular Aggregation of Carbon Nanodots. NANO LETTERS 2023; 23:11669-11677. [PMID: 38060996 DOI: 10.1021/acs.nanolett.3c03529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Supramolecular aggregation has provided the archetype concept to understand the variants in an emerging systems property. Herein, we have achieved the supramolecular assembly of carbon nanodots (CDs) for the first time and employ supramolecular aggregation to understand their alteration in photophysical properties. In detail, we have employed the CDs as a block to construct the supramolecular assembly of aggregates in the CDs' antisolvent of ethanol. The CD-based aggregates exhibit complex and organized morphologies with another long-wavelength excitation-dependent emission band. The experimental results and density functional theoretical calculations reveal that the supramolecular assembly of CDs can decrease the energy gap between the ground and excited states, contributing to the new long-wavelength excitation-dependent emission. The supramolecular aggregation can be employed as one universal strategy to manipulate and understand the luminescence of CDs. These findings cast new light to build the emerging systems and understand the light emission of CDs through supramolecular chemistry.
Collapse
Affiliation(s)
- Run-Wei Song
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Cheng-Long Shen
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Guang-Song Zheng
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Qing-Chao Ni
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Jin-Hao Zang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Qing Lou
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
6
|
Sorour MI, Marcus AH, Matsika S. Unravelling the Origin of the Vibronic Spectral Signatures in an Excitonically Coupled Indocarbocyanine Cy3 Dimer. J Phys Chem A 2023; 127:9530-9540. [PMID: 37934679 PMCID: PMC10774018 DOI: 10.1021/acs.jpca.3c06090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The indocarbocyanine Cy3 dye is widely used to probe the dynamics of proteins and DNA. Excitonically coupled Cy3 dimers exhibit very unique spectral signatures that depend on the interchromophoric geometrical orientation induced by the environment, making them powerful tools to infer the dynamics of their surroundings. Understanding the origin of the dimeric spectral signatures is a necessity for an accurate interpretation of the experimental results. In this work, we simulate the vibronic spectrum of an experimentally well-studied Cy3 dimer, and we explain the origin of the experimental signatures present in its linear absorption spectrum. The Franck-Condon harmonic approximations, among other tests, are used to probe the factors contributing to the spectrum. It is found that the first peak in the absorption spectrum originates from the lower energy excitonic state, while the next two peaks are vibrational progressions of the higher energy excitonic state. The polar solvent plays a crucial role in the appearance of the spectrum, being responsible for the localized S1 minimum, which results in an increased intensity of the first peak.
Collapse
Affiliation(s)
- Mohammed I Sorour
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Andrew H Marcus
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
7
|
Mathur D, Díaz SA, Hildebrandt N, Pensack RD, Yurke B, Biaggne A, Li L, Melinger JS, Ancona MG, Knowlton WB, Medintz IL. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chem Soc Rev 2023; 52:7848-7948. [PMID: 37872857 PMCID: PMC10642627 DOI: 10.1039/d0cs00936a] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 10/25/2023]
Abstract
DNA nanotechnology has now enabled the self-assembly of almost any prescribed 3-dimensional nanoscale structure in large numbers and with high fidelity. These structures are also amenable to site-specific modification with a variety of small molecules ranging from drugs to reporter dyes. Beyond obvious application in biotechnology, such DNA structures are being pursued as programmable nanoscale optical breadboards where multiple different/identical fluorophores can be positioned with sub-nanometer resolution in a manner designed to allow them to engage in multistep excitonic energy-transfer (ET) via Förster resonance energy transfer (FRET) or other related processes. Not only is the ability to create such complex optical structures unique, more importantly, the ability to rapidly redesign and prototype almost all structural and optical analogues in a massively parallel format allows for deep insight into the underlying photophysical processes. Dynamic DNA structures further provide the unparalleled capability to reconfigure a DNA scaffold on the fly in situ and thus switch between ET pathways within a given assembly, actively change its properties, and even repeatedly toggle between two states such as on/off. Here, we review progress in developing these composite materials for potential applications that include artificial light harvesting, smart sensors, nanoactuators, optical barcoding, bioprobes, cryptography, computing, charge conversion, and theranostics to even new forms of optical data storage. Along with an introduction into the DNA scaffolding itself, the diverse fluorophores utilized in these structures, their incorporation chemistry, and the photophysical processes they are designed to exploit, we highlight the evolution of DNA architectures implemented in the pursuit of increased transfer efficiency and the key lessons about ET learned from each iteration. We also focus on recent and growing efforts to exploit DNA as a scaffold for assembling molecular dye aggregates that host delocalized excitons as a test bed for creating excitonic circuits and accessing other quantum-like optical phenomena. We conclude with an outlook on what is still required to transition these materials from a research pursuit to application specific prototypes and beyond.
Collapse
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Engineering Physics, McMaster University, Hamilton, L8S 4L7, Canada
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Austin Biaggne
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Lan Li
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Mario G Ancona
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| |
Collapse
|
8
|
Mass OA, Watt DR, Patten LK, Pensack RD, Lee J, Turner DB, Yurke B, Knowlton WB. Exciton delocalization in a fully synthetic DNA-templated bacteriochlorin dimer. Phys Chem Chem Phys 2023; 25:28437-28451. [PMID: 37843877 PMCID: PMC10599410 DOI: 10.1039/d3cp01634j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023]
Abstract
A bacteriochlorophyll a (Bchla) dimer is a basic functional unit in the LH1 and LH2 photosynthetic pigment-protein antenna complexes of purple bacteria, where an ordered, close arrangement of Bchla pigments-secured by noncovalent bonding to a protein template-enables exciton delocalization at room temperature. Stable and tunable synthetic analogs of this key photosynthetic subunit could lead to facile engineering of exciton-based systems such as in artificial photosynthesis, organic optoelectronics, and molecular quantum computing. Here, using a combination of synthesis and theory, we demonstrate that exciton delocalization can be achieved in a dimer of a synthetic bacteriochlorin (BC) featuring stability, high structural modularity, and spectral properties advantageous for exciton-based devices. The BC dimer was covalently templated by DNA, a stable and highly programmable scaffold. To achieve exciton delocalization in the absence of pigment-protein interactions critical for the Bchla dimer, we relied on the strong transition dipole moment in BC enabled by two auxochromes along the Qy transition, and omitting the central metal and isocyclic ring. The spectral properties of the synthetic "free" BC closely resembled those of Bchla in an organic solvent. Applying spectroscopic modeling, the exciton delocalization in the DNA-templated BC dimer was evaluated by extracting the excitonic hopping parameter, J to be 214 cm-1 (26.6 meV). For comparison, the same method applied to the natural protein-templated Bchla dimer yielded J of 286 cm-1 (35.5 meV). The smaller value of J in the BC dimer likely arose from the partial bacteriochlorin intercalation and the difference in medium effect between DNA and protein.
Collapse
Affiliation(s)
- Olga A Mass
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Devan R Watt
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Lance K Patten
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Jeunghoon Lee
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, USA
| | - Daniel B Turner
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, USA
| |
Collapse
|
9
|
Hart SM, Gorman J, Bathe M, Schlau-Cohen GS. Engineering Exciton Dynamics with Synthetic DNA Scaffolds. Acc Chem Res 2023; 56:2051-2061. [PMID: 37345736 DOI: 10.1021/acs.accounts.3c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Excitons are the molecular-scale currency of electronic energy. Control over excitons enables energy to be directed and harnessed for light harvesting, electronics, and sensing. Excitonic circuits achieve such control by arranging electronically active molecules to prescribe desired spatiotemporal dynamics. Photosynthetic solar energy conversion is a canonical example of the power of excitonic circuits, where chromophores are positioned in a protein scaffold to perform efficient light capture, energy transport, and charge separation. Synthetic systems that aim to emulate this functionality include self-assembled aggregates, molecular crystals, and chromophore-modified proteins. While the potential of this approach is clear, these systems lack the structural precision to control excitons or even test the limits of their power. In recent years, DNA origami has emerged as a designer material that exploits biological building blocks to construct nanoscale architectures. The structural precision afforded by DNA origami has enabled the pursuit of naturally inspired organizational principles in a highly precise and scalable manner. In this Account, we describe recent developments in DNA-based platforms that spatially organize chromophores to construct tunable excitonic systems. The high fidelity of DNA base pairing enables the formation of programmable nanoscale architectures, and sequence-specific placement allows for the precise positioning of chromophores within the DNA structure. The integration of a wide range of chromophores across the visible spectrum introduces spectral tunability. These excitonic DNA-chromophore assemblies not only serve as model systems for light harvesting, solar conversion, and sensing but also lay the groundwork for the integration of coupled chromophores into larger-scale nucleic acid architectures.We have used this approach to generate DNA-chromophore assemblies of strongly coupled delocalized excited states through both sequence-specific self-assembly and the covalent attachment of chromophores. These strategies have been leveraged to independently control excitonic coupling and system-bath interaction, which together control energy transfer. We then extended this framework to identify how scaffold configurations can steer the formation of symmetry-breaking charge transfer states, paving the way toward the design of dual light-harvesting and charge separation DNA machinery. In an orthogonal application, we used the programmability of DNA chromophore assemblies to change the optical emission properties of strongly coupled dimers, generating a series of fluorophore-modified constructs with separable emission properties for fluorescence assays. Upcoming advances in the chemical modification of nucleotides, design of large-scale DNA origami, and predictive computational methods will aid in constructing excitonic assemblies for optical and computing applications. Collectively, the development of DNA-chromophore assemblies as a platform for excitonic circuitry offers a pathway to identifying and applying design principles for light harvesting and molecular electronics.
Collapse
Affiliation(s)
- Stephanie M Hart
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeffrey Gorman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Rafique MG, Remington JM, Clark F, Bai H, Toader V, Perepichka DF, Li J, Sleiman HF. Two-Dimensional Supramolecular Polymerization of DNA Amphiphiles is Driven by Sequence-Dependent DNA-Chromophore Interactions. Angew Chem Int Ed Engl 2023; 62:e202217814. [PMID: 36939824 PMCID: PMC10239398 DOI: 10.1002/anie.202217814] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/21/2023]
Abstract
Two-dimensional (2D) assemblies of water-soluble block copolymers have been limited by a dearth of systematic studies that relate polymer structure to pathway mechanism and supramolecular morphology. Here, we employ sequence-defined triblock DNA amphiphiles for the supramolecular polymerization of free-standing DNA nanosheets in water. Our systematic modulation of amphiphile sequence shows the alkyl chain core forming a cell membrane-like structure and the distal π-stacking chromophore block folding back to interact with the hydrophilic DNA block on the nanosheet surface. This interaction is crucial to sheet formation, marked by a chiral "signature", and sensitive to DNA sequence, where nanosheets form with a mixed sequence, but not with a homogeneous poly(thymine) sequence. This work opens the possibility of forming well-ordered, bilayer-like assemblies using a single DNA amphiphile for applications in cell sensing, nucleic acid therapeutic delivery and enzyme arrays.
Collapse
Affiliation(s)
| | - Jacob M. Remington
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA
| | - Finley Clark
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA
| | - Haochen Bai
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC H3A 0B8, Canada
| | - Violeta Toader
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC H3A 0B8, Canada
| | - Dmytro F. Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC H3A 0B8, Canada
| | - Jianing Li
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA
| | - Hanadi F. Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC H3A 0B8, Canada
| |
Collapse
|
11
|
Wassermann LM, Scheckenbach M, Baptist AV, Glembockyte V, Heuer-Jungemann A. Full Site-Specific Addressability in DNA Origami-Templated Silica Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212024. [PMID: 36932052 DOI: 10.1002/adma.202212024] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/20/2023] [Indexed: 06/09/2023]
Abstract
DNA nanotechnology allows for the fabrication of nanometer-sized objects with high precision and selective addressability as a result of the programmable hybridization of complementary DNA strands. Such structures can template the formation of other materials, including metals and complex silica nanostructures, where the silica shell simultaneously acts to protect the DNA from external detrimental factors. However, the formation of silica nanostructures with site-specific addressability has thus far not been explored. Here, it is shown that silica nanostructures templated by DNA origami remain addressable for post silicification modification with guest molecules even if the silica shell measures several nm in thickness. The conjugation of fluorescently labeled oligonucleotides is used to different silicified DNA origami structures carrying a complementary ssDNA handle as well as DNA-PAINT super-resolution imaging to show that ssDNA handles remain unsilicified and thus ensure retained addressability. It is also demonstrated that not only handles, but also ssDNA scaffold segments within a DNA origami nanostructure remain accessible, allowing for the formation of dynamic silica nanostructures. Finally, the power of this approach is demonstrated by forming 3D DNA origami crystals from silicified monomers. These results thus present a fully site-specifically addressable silica nanostructure with complete control over size and shape.
Collapse
Affiliation(s)
- Lea M Wassermann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried and Center for NanoScience (CeNS), Ludwig-Maximilians-University, 81377, Munich, Germany
| | - Michael Scheckenbach
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Anna V Baptist
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried and Center for NanoScience (CeNS), Ludwig-Maximilians-University, 81377, Munich, Germany
| | - Viktorija Glembockyte
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Amelie Heuer-Jungemann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried and Center for NanoScience (CeNS), Ludwig-Maximilians-University, 81377, Munich, Germany
| |
Collapse
|
12
|
Effect of Substituent Location on the Relationship between the Transition Dipole Moments, Difference Static Dipole, and Hydrophobicity in Squaraine Dyes for Quantum Information Devices. Molecules 2023; 28:molecules28052163. [PMID: 36903409 PMCID: PMC10004711 DOI: 10.3390/molecules28052163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Aggregates of organic dyes that exhibit excitonic coupling have a wide array of applications, including medical imaging, organic photovoltaics, and quantum information devices. The optical properties of a dye monomer, as a basis of dye aggregate, can be modified to strengthen excitonic coupling. Squaraine (SQ) dyes are attractive for those applications due to their strong absorbance peak in the visible range. While the effects of substituent types on the optical properties of SQ dyes have been previously examined, the effects of various substituent locations have not yet been investigated. In this study, density functional theory (DFT) and time-dependent density functional theory (TD-DFT) were used to investigate the relationships between SQ substituent location and several key properties of the performance of dye aggregate systems, namely, difference static dipole (Δd), transition dipole moment (μ), hydrophobicity, and the angle (θ) between Δd and μ. We found that attaching substituents along the long axis of the dye could increase μ while placement off the long axis was shown to increase Δd and reduce θ. The reduction in θ is largely due to a change in the direction of Δd as the direction of μ is not significantly affected by substituent position. Hydrophobicity decreases when electron-donating substituents are located close to the nitrogen of the indolenine ring. These results provide insight into the structure-property relationships of SQ dyes and guide the design of dye monomers for aggregate systems with desired properties and performance.
Collapse
|
13
|
Barcenas G, Biaggne A, Mass OA, Knowlton WB, Yurke B, Li L. Molecular Dynamic Studies of Dye-Dye and Dye-DNA Interactions Governing Excitonic Coupling in Squaraine Aggregates Templated by DNA Holliday Junctions. Int J Mol Sci 2023; 24:4059. [PMID: 36835471 PMCID: PMC9967300 DOI: 10.3390/ijms24044059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Dye molecules, arranged in an aggregate, can display excitonic delocalization. The use of DNA scaffolding to control aggregate configurations and delocalization is of research interest. Here, we applied Molecular Dynamics (MD) to gain an insight on how dye-DNA interactions affect excitonic coupling between two squaraine (SQ) dyes covalently attached to a DNA Holliday junction (HJ). We studied two types of dimer configurations, i.e., adjacent and transverse, which differed in points of dye covalent attachments to DNA. Three structurally different SQ dyes with similar hydrophobicity were chosen to investigate the sensitivity of excitonic coupling to dye placement. Each dimer configuration was initialized in parallel and antiparallel arrangements in the DNA HJ. The MD results, validated by experimental measurements, suggested that the adjacent dimer promotes stronger excitonic coupling and less dye-DNA interaction than the transverse dimer. Additionally, we found that SQ dyes with specific functional groups (i.e., substituents) facilitate a closer degree of aggregate packing via hydrophobic effects, leading to a stronger excitonic coupling. This work advances a fundamental understanding of the impacts of dye-DNA interactions on aggregate orientation and excitonic coupling.
Collapse
Affiliation(s)
- German Barcenas
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA
| | - Austin Biaggne
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA
| | - Olga A. Mass
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA
| | - William B. Knowlton
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - Bernard Yurke
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - Lan Li
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| |
Collapse
|
14
|
Díaz SA, Pascual G, Patten LK, Roy SK, Meares A, Chiriboga M, Susumu K, Knowlton WB, Cunningham PD, Mathur D, Yurke B, Medintz IL, Lee J, Melinger JS. Towards control of excitonic coupling in DNA-templated Cy5 aggregates: the principal role of chemical substituent hydrophobicity and steric interactions. NANOSCALE 2023; 15:3284-3299. [PMID: 36723027 PMCID: PMC9932853 DOI: 10.1039/d2nr05544a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/16/2023] [Indexed: 05/27/2023]
Abstract
Understanding and controlling exciton coupling in dye aggregates has become a greater focus as potential applications such as coherent exciton devices, nanophotonics, and biosensing have been proposed. DNA nanostructure templates allow for a powerful modular approach. Using DNA Holliday junction (HJ) templates variations of dye combinations and precision dye positions can be rapidly assayed, as well as creating aggregates of dyes that could not be prepared (either due to excess or lack of solubility) through alternative means. Indodicarbocyanines (Cy5) have been studied in coupled systems due to their large transition dipole moment, which contributes to strong coupling. Cy5-R dyes were recently prepared by chemically modifying the 5,5'-substituents of indole rings, resulting in varying dye hydrophobicity/hydrophilicity, steric considerations, and electron-donating/withdrawing character. We utilized Cy5-R dyes to examine the formation and properties of 30 unique DNA templated homodimers. We find that in our system the sterics of Cy5-R dyes play the determining factor in orientation and coupling strength of dimers, with coupling strengths ranging from 50-138 meV. The hydrophobic properties of the Cy5-R modify the percentage of dimers formed, and have a secondary role in determining the packing characteristics of the dimers when sterics are equivalent. Similar to other reports, we find that positioning of the Cy5-R within the HJ template can favor particular dimer interactions, specifically oblique or H-type dimers.
Collapse
Affiliation(s)
- Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States.
| | - Gissela Pascual
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Lance K Patten
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Simon K Roy
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Adam Meares
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States.
| | - Matthew Chiriboga
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States.
- Volgenau School of Engineering, George Mason University, Fairfax, Virginia 22030, USA
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, DC, USA
- Jacobs Corporation, Hanover, MD, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Paul D Cunningham
- Electronics Science and Technology Division Code 6800, U.S. Naval Research Laboratory, Washington, D.C. 20375, USA.
| | - Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States.
| | - Jeunghoon Lee
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
- Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division Code 6800, U.S. Naval Research Laboratory, Washington, D.C. 20375, USA.
| |
Collapse
|
15
|
Wright N, Huff JS, Barclay MS, Wilson CK, Barcenas G, Duncan KM, Ketteridge M, Obukhova OM, Krivoshey AI, Tatarets AL, Terpetschnig EA, Dean JC, Knowlton WB, Yurke B, Li L, Mass OA, Davis PH, Lee J, Turner DB, Pensack RD. Intramolecular Charge Transfer and Ultrafast Nonradiative Decay in DNA-Tethered Asymmetric Nitro- and Dimethylamino-Substituted Squaraines. J Phys Chem A 2023; 127:1141-1157. [PMID: 36705555 PMCID: PMC9923757 DOI: 10.1021/acs.jpca.2c06442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Molecular (dye) aggregates are a materials platform of interest in light harvesting, organic optoelectronics, and nanoscale computing, including quantum information science (QIS). Strong excitonic interactions between dyes are key to their use in QIS; critically, properties of the individual dyes govern the extent of these interactions. In this work, the electronic structure and excited-state dynamics of a series of indolenine-based squaraine dyes incorporating dimethylamino (electron donating) and/or nitro (electron withdrawing) substituents, so-called asymmetric dyes, were characterized. The dyes were covalently tethered to DNA Holliday junctions to suppress aggregation and permit characterization of their monomer photophysics. A combination of density functional theory and steady-state absorption spectroscopy shows that the difference static dipole moment (Δd) successively increases with the addition of these substituents while simultaneously maintaining a large transition dipole moment (μ). Steady-state fluorescence and time-resolved absorption and fluorescence spectroscopies uncover a significant nonradiative decay pathway in the asymmetrically substituted dyes that drastically reduces their excited-state lifetime (τ). This work indicates that Δd can indeed be increased by functionalizing dyes with electron donating and withdrawing substituents and that, in certain classes of dyes such as these asymmetric squaraines, strategies may be needed to ensure long τ, e.g., by rigidifying the π-conjugated network.
Collapse
Affiliation(s)
- Nicholas
D. Wright
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Jonathan S. Huff
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Matthew S. Barclay
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Christopher K. Wilson
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - German Barcenas
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Katelyn M. Duncan
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Maia Ketteridge
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Olena M. Obukhova
- SSI
“Institute for Single Crystals” of the National Academy
of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | - Alexander I. Krivoshey
- SSI
“Institute for Single Crystals” of the National Academy
of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | - Anatoliy L. Tatarets
- SSI
“Institute for Single Crystals” of the National Academy
of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | | | - Jacob C. Dean
- Department
of Physical Science, Southern Utah University, Cedar City, Utah 84720, United States
| | - William B. Knowlton
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Bernard Yurke
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Lan Li
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States,Center
for
Advanced Energy Studies, Idaho
Falls, Idaho 83401, United States
| | - Olga A. Mass
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Paul H. Davis
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States,Center
for
Advanced Energy Studies, Idaho
Falls, Idaho 83401, United States
| | - Jeunghoon Lee
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Daniel B. Turner
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Ryan D. Pensack
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States,
| |
Collapse
|
16
|
Fernandes R, Chowdhary S, Mikula N, Saleh N, Kanevche K, Berlepsch HV, Hosogi N, Heberle J, Weber M, Böttcher C, Koksch B. Cyanine Dye Coupling Mediates Self-assembly of a pH Sensitive Peptide into Novel 3D Architectures. Angew Chem Int Ed Engl 2022; 61:e202208647. [PMID: 36161448 PMCID: PMC9828782 DOI: 10.1002/anie.202208647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 01/12/2023]
Abstract
Synthetic multichromophore systems are of great importance in artificial light harvesting devices, organic optoelectronics, tumor imaging and therapy. Here, we introduce a promising strategy for the construction of self-assembled peptide templated dye stacks based on coupling of a de novo designed pH sensitive peptide with a cyanine dye Cy5 at its N-terminus. Microscopic techniques, in particular cryogenic TEM (cryo-TEM) and cryo-electron tomography technique (cryo-ET), reveal two types of highly ordered three-dimensional assembly structures on the micrometer scale. Unbranched compact layered rods are observed at pH 7.4 and two-dimensional membrane-like assemblies at pH 3.4, both species displaying spectral features of H-aggregates. Molecular dynamics simulations reveal that the coupling of Cy5 moieties promotes the formation of both ultrastructures, whereas the protonation states of acidic and basic amino acid side chains dictates their ultimate three-dimensional organization.
Collapse
Affiliation(s)
- Rita Fernandes
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Suvrat Chowdhary
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Natalia Mikula
- Mathematics for Life and Materials SciencesZuse Institute BerlinTakustraße 714195BerlinGermany
| | - Noureldin Saleh
- Mathematics for Life and Materials SciencesZuse Institute BerlinTakustraße 714195BerlinGermany
| | - Katerina Kanevche
- Department of PhysicsExperimental Molecular BiophysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Hans v. Berlepsch
- Research Center for Electron Microscopy and Core Facility BioSupraMolFreie Universität BerlinFabeckstraße 36a14195BerlinGermany
| | | | - Joachim Heberle
- Department of PhysicsExperimental Molecular BiophysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Marcus Weber
- Mathematics for Life and Materials SciencesZuse Institute BerlinTakustraße 714195BerlinGermany
| | - Christoph Böttcher
- Research Center for Electron Microscopy and Core Facility BioSupraMolFreie Universität BerlinFabeckstraße 36a14195BerlinGermany
| | - Beate Koksch
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| |
Collapse
|
17
|
Mass OA, Basu S, Patten LK, Terpetschnig EA, Krivoshey AI, Tatarets AL, Pensack RD, Yurke B, Knowlton WB, Lee J. Exciton Chirality Inversion in Dye Dimers Templated by DNA Holliday Junction. J Phys Chem Lett 2022; 13:10688-10696. [PMID: 36355575 PMCID: PMC9706552 DOI: 10.1021/acs.jpclett.2c02721] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
While only one enantiomer of chiral biomolecules performs a biological function, access to both enantiomers (or enantiomorphs) proved to be advantageous for technology. Using dye covalent attachment to a DNA Holliday junction (HJ), we created two pairs of dimers of bis(chloroindolenine)squaraine dye that enabled strongly coupled molecular excitons of opposite chirality in solution. The exciton chirality inversion was achieved by interchanging single covalent linkers of unequal length tethering the dyes of each dimer to the HJ core. Dimers in each pair exhibited profound exciton-coupled circular dichroism (CD) couplets of opposite signs. Dimer geometries, modeled by simultaneous fitting absorption and CD spectra, were related in each pair as nonsuperimposable and nearly exact mirror images. The origin of observed exciton chirality inversion was explained in the view of isomerization of the stacked Holliday junction. This study will open new opportunities for creating excitonic DNA-based materials that rely on programmable system chirality.
Collapse
Affiliation(s)
- Olga A. Mass
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Shibani Basu
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Lance K. Patten
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Ewald A. Terpetschnig
- SETA
BioMedicals, LLC, 2014
Silver Court East, Urbana, Illinois 61801, United
States
| | - Alexander I. Krivoshey
- SSI
“Institute for Single Crystals” of the National Academy
of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
| | - Anatoliy L. Tatarets
- SSI
“Institute for Single Crystals” of the National Academy
of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
| | - Ryan D. Pensack
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Bernard Yurke
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - William B. Knowlton
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Jeunghoon Lee
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| |
Collapse
|
18
|
Huff J, Díaz S, Barclay MS, Chowdhury AU, Chiriboga M, Ellis GA, Mathur D, Patten LK, Roy SK, Sup A, Biaggne A, Rolczynski BS, Cunningham PD, Li L, Lee J, Davis PH, Yurke B, Knowlton WB, Medintz IL, Turner DB, Melinger JS, Pensack RD. Tunable Electronic Structure via DNA-Templated Heteroaggregates of Two Distinct Cyanine Dyes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:17164-17175. [PMID: 36268205 PMCID: PMC9575151 DOI: 10.1021/acs.jpcc.2c04336] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/08/2022] [Indexed: 06/01/2023]
Abstract
Molecular excitons are useful for applications in light harvesting, organic optoelectronics, and nanoscale computing. Electronic energy transfer (EET) is a process central to the function of devices based on molecular excitons. Achieving EET with a high quantum efficiency is a common obstacle to excitonic devices, often owing to the lack of donor and acceptor molecules that exhibit favorable spectral overlap. EET quantum efficiencies may be substantially improved through the use of heteroaggregates-aggregates of chemically distinct dyes-rather than individual dyes as energy relay units. However, controlling the assembly of heteroaggregates remains a significant challenge. Here, we use DNA Holliday junctions to assemble homo- and heterotetramer aggregates of the prototypical cyanine dyes Cy5 and Cy5.5. In addition to permitting control over the number of dyes within an aggregate, DNA-templated assembly confers control over aggregate composition, i.e., the ratio of constituent Cy5 and Cy5.5 dyes. By varying the ratio of Cy5 and Cy5.5, we show that the most intense absorption feature of the resulting tetramer can be shifted in energy over a range of almost 200 meV (1600 cm-1). All tetramers pack in the form of H-aggregates and exhibit quenched emission and drastically reduced excited-state lifetimes compared to the monomeric dyes. We apply a purely electronic exciton theory model to describe the observed progression of the absorption spectra. This model agrees with both the measured data and a more sophisticated vibronic model of the absorption and circular dichroism spectra, indicating that Cy5 and Cy5.5 heteroaggregates are largely described by molecular exciton theory. Finally, we extend the purely electronic exciton model to describe an idealized J-aggregate based on Förster resonance energy transfer (FRET) and discuss the potential advantages of such a device over traditional FRET relays.
Collapse
Affiliation(s)
- Jonathan
S. Huff
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Sebastián
A. Díaz
- Center for Bio/Molecular Science
and Engineering Code 6900, Electronics Science and
Technology Division Code 6800, U.S. Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| | - Matthew S. Barclay
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Azhad U. Chowdhury
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Matthew Chiriboga
- Center for Bio/Molecular Science
and Engineering Code 6900, Electronics Science and
Technology Division Code 6800, U.S. Naval
Research Laboratory, Washington, District of Columbia 20375, United States
- Volgenau
School of Engineering, George Mason University, Fairfax, Virginia 22030, United States
| | - Gregory A. Ellis
- Center for Bio/Molecular Science
and Engineering Code 6900, Electronics Science and
Technology Division Code 6800, U.S. Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| | - Divita Mathur
- Center for Bio/Molecular Science
and Engineering Code 6900, Electronics Science and
Technology Division Code 6800, U.S. Naval
Research Laboratory, Washington, District of Columbia 20375, United States
- College
of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Lance K. Patten
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Simon K. Roy
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Aaron Sup
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Austin Biaggne
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Brian S. Rolczynski
- Center for Bio/Molecular Science
and Engineering Code 6900, Electronics Science and
Technology Division Code 6800, U.S. Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| | - Paul D. Cunningham
- Center for Bio/Molecular Science
and Engineering Code 6900, Electronics Science and
Technology Division Code 6800, U.S. Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| | - Lan Li
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
- Center
for Advanced Energy Studies, Idaho
Falls, Idaho 83401, United States
| | - Jeunghoon Lee
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Paul H. Davis
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
- Center
for Advanced Energy Studies, Idaho
Falls, Idaho 83401, United States
| | - Bernard Yurke
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - William B. Knowlton
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science
and Engineering Code 6900, Electronics Science and
Technology Division Code 6800, U.S. Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| | - Daniel B. Turner
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Joseph S. Melinger
- Center for Bio/Molecular Science
and Engineering Code 6900, Electronics Science and
Technology Division Code 6800, U.S. Naval
Research Laboratory, Washington, District of Columbia 20375, United States
| | - Ryan D. Pensack
- Micron
School of Materials Science & Engineering, Department of Physics, Department of Chemistry
& Biochemistry, Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| |
Collapse
|
19
|
Symmetry Breaking Charge Transfer in DNA-Templated Perylene Dimer Aggregates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196612. [PMID: 36235149 PMCID: PMC9571668 DOI: 10.3390/molecules27196612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022]
Abstract
Molecular aggregates are of interest to a broad range of fields including light harvesting, organic optoelectronics, and nanoscale computing. In molecular aggregates, nonradiative decay pathways may emerge that were not present in the constituent molecules. Such nonradiative decay pathways may include singlet fission, excimer relaxation, and symmetry-breaking charge transfer. Singlet fission, sometimes referred to as excitation multiplication, is of great interest to the fields of energy conversion and quantum information. For example, endothermic singlet fission, which avoids energy loss, has been observed in covalently bound, linear perylene trimers and tetramers. In this work, the electronic structure and excited-state dynamics of dimers of a perylene derivative templated using DNA were investigated. Specifically, DNA Holliday junctions were used to template the aggregation of two perylene molecules covalently linked to a modified uracil nucleobase through an ethynyl group. The perylenes were templated in the form of monomer, transverse dimer, and adjacent dimer configurations. The electronic structure of the perylene monomers and dimers were characterized via steady-state absorption and fluorescence spectroscopy. Initial insights into their excited-state dynamics were gleaned from relative fluorescence intensity measurements, which indicated that a new nonradiative decay pathway emerges in the dimers. Femtosecond visible transient absorption spectroscopy was subsequently used to elucidate the excited-state dynamics. A new excited-state absorption feature grows in on the tens of picosecond timescale in the dimers, which is attributed to the formation of perylene anions and cations resulting from symmetry-breaking charge transfer. Given the close proximity required for symmetry-breaking charge transfer, the results shed promising light on the prospect of singlet fission in DNA-templated molecular aggregates.
Collapse
|
20
|
Biaggne A, Kim YC, Melinger JS, Knowlton WB, Yurke B, Li L. Molecular dynamics simulations of cyanine dimers attached to DNA Holliday junctions. RSC Adv 2022; 12:28063-28078. [PMID: 36320263 PMCID: PMC9530999 DOI: 10.1039/d2ra05045e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
Dye aggregates and their excitonic properties are of interest for their applications to organic photovoltaics, non-linear optics, and quantum information systems. DNA scaffolding has been shown to be effective at promoting the aggregation of dyes in a controllable manner. Specifically, isolated DNA Holliday junctions have been used to achieve strongly coupled cyanine dye dimers. However, the structural properties of the dimers and the DNA, as well as the role of Holliday junction isomerization are not fully understood. To study the dynamics of cyanine dimers in DNA, molecular dynamics simulations were carried out for adjacent and transverse dimers attached to Holliday junctions in two different isomers. It was found that dyes attached to adjacent strands in the junction exhibit stronger dye-DNA interactions and larger inter-dye separations compared to transversely attached dimers, as well as end-to-end arrangements. Transverse dimers exhibit lower inter-dye separations and more stacked configurations. Furthermore, differences in Holliday junction isomer are analyzed and compared to dye orientations. For transverse dyes exhibiting the smaller inter-dye separations, excitonic couplings were calculated and shown to be in agreement with experiment. Our results suggested that dye attachment locations on DNA Holliday junctions affect dye-DNA interactions, dye dynamics, and resultant dye orientations which can guide the design of DNA-templated cyanine dimers with desired properties. Molecular dynamics simulations reveal dye attachment and DNA Holliday junction isomer effects on dye dimer orientations and excitonic couplings. These simulations can guide synthesis and experiments of dye-DNA structures for excitonic applications.![]()
Collapse
Affiliation(s)
- Austin Biaggne
- Micron School of Materials Science and Engineering, Boise State UniversityBoiseID 83725USA
| | - Young C. Kim
- Materials Science and Technology Division, U.S. Naval Research LaboratoryWashingtonDC20375USA
| | - Joseph. S. Melinger
- Electronics Science and Technology Division, U.S. Naval Research LaboratoryWashingtonDC20375USA
| | - William B. Knowlton
- Micron School of Materials Science and Engineering, Boise State UniversityBoiseID 83725USA,Department of Electrical and Computer Engineering, Boise State UniversityBoiseID 83725USA
| | - Bernard Yurke
- Micron School of Materials Science and Engineering, Boise State UniversityBoiseID 83725USA,Department of Electrical and Computer Engineering, Boise State UniversityBoiseID 83725USA
| | - Lan Li
- Micron School of Materials Science and Engineering, Boise State UniversityBoiseID 83725USA,Center for Advanced Energy StudiesIdaho FallsID 83401USA
| |
Collapse
|
21
|
Blanchard AT, Li Z, Duran EC, Scull CE, Hoff JD, Wright KR, Pan V, Walter NG. Ultra-photostable DNA FluoroCubes: Mechanism of Photostability and Compatibility with FRET and Dark Quenching. NANO LETTERS 2022; 22:6235-6244. [PMID: 35881934 PMCID: PMC10080265 DOI: 10.1021/acs.nanolett.2c01757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
DNA-based FluoroCubes were recently developed as a solution to photobleaching, a ubiquitous limitation of fluorescence microscopy (Niekamp; ; Stuurman; ; Vale Nature Methods, 2020). FluoroCubes, that is, compact ∼4 × 4 × 5.4 nm3 four-helix bundles coupled to ≤6 fluorescent dyes, remain fluorescent up to ∼50× longer than single dyes and emit up to ∼40× as many photons. The current work answers two important questions about the FluoroCubes. First, what is the mechanism by which photostability is enhanced? Second, are FluoroCubes compatible with Förster resonance energy transfer (FRET) and similar techniques? We use single particle photobleaching studies to show that photostability arises through interactions between the fluorophores and the four-helix DNA bundle. Supporting this, we discover that smaller ∼4 × 4 × 2.7 nm3 FluoroCubes also confer ultraphotostability. However, we find that certain dye-dye interactions negatively impact FluoroCube performance. Accordingly, 4-dye FluoroCubes lacking these interactions perform better than 6-dye FluoroCubes. We also demonstrate that FluoroCubes are compatible with FRET and dark quenching applications.
Collapse
Affiliation(s)
- Aaron T. Blanchard
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Michigan Society of Fellows, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zi Li
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Elizabeth C. Duran
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Catherine E. Scull
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - J. Damon Hoff
- Single Molecule Analysis in Real-Time (SMART) Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Keenan R. Wright
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Victor Pan
- Department of Biomedical Engineering, Emory University and the Georgia Institute of Technology, Atlanta, Georgia, 30322
| | - Nils G. Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, 48109, United States
| |
Collapse
|
22
|
Sorour MI, Marcus AH, Matsika S. Modeling the Electronic Absorption Spectra of the Indocarbocyanine Cy3. Molecules 2022; 27:4062. [PMID: 35807308 PMCID: PMC9268038 DOI: 10.3390/molecules27134062] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
Accurate modeling of optical spectra requires careful treatment of the molecular structures and vibronic, environmental, and thermal contributions. The accuracy of the computational methods used to simulate absorption spectra is limited by their ability to account for all the factors that affect the spectral shapes and energetics. The ensemble-based approaches are widely used to model the absorption spectra of molecules in the condensed-phase, and their performance is system dependent. The Franck-Condon approach is suitable for simulating high resolution spectra of rigid systems, and its accuracy is limited mainly by the harmonic approximation. In this work, the absorption spectrum of the widely used cyanine Cy3 is simulated using the ensemble approach via classical and quantum sampling, as well as, the Franck-Condon approach. The factors limiting the ensemble approaches, including the sampling and force field effects, are tested, while the vertical and adiabatic harmonic approximations of the Franck-Condon approach are also systematically examined. Our results show that all the vertical methods, including the ensemble approach, are not suitable to model the absorption spectrum of Cy3, and recommend the adiabatic methods as suitable approaches for the modeling of spectra with strong vibronic contributions. We find that the thermal effects, the low frequency modes, and the simultaneous vibrational excitations have prominent contributions to the Cy3 spectrum. The inclusion of the solvent stabilizes the energetics significantly, while its negligible effect on the spectral shapes aligns well with the experimental observations.
Collapse
Affiliation(s)
- Mohammed I. Sorour
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA;
| | - Andrew H. Marcus
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA;
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA;
| |
Collapse
|
23
|
Basu S, Cervantes-Salguero K, Yurke B, Knowlton WB, Lee J, Mass OA. Photocrosslinking Probes Proximity of Thymine Modifiers Tethering Excitonically Coupled Dye Aggregates to DNA Holliday Junction. Molecules 2022; 27:4006. [PMID: 35807250 PMCID: PMC9268628 DOI: 10.3390/molecules27134006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 12/04/2022] Open
Abstract
A DNA Holliday junction (HJ) has been used as a versatile scaffold to create a variety of covalently templated molecular dye aggregates exhibiting strong excitonic coupling. In these dye-DNA constructs, one way to attach dyes to DNA is to tether them via single long linkers to thymine modifiers incorporated in the core of the HJ. Here, using photoinduced [2 + 2] cycloaddition (photocrosslinking) between thymines, we investigated the relative positions of squaraine-labeled thymine modifiers in the core of the HJ, and whether the proximity of thymine modifiers correlated with the excitonic coupling strength in squaraine dimers. Photocrosslinking between squaraine-labeled thymine modifiers was carried out in two distinct types of configurations: adjacent dimer and transverse dimer. The outcomes of the reactions in terms of relative photocrosslinking yields were evaluated by denaturing polyacrylamide electrophoresis. We found that for photocrosslinking to occur at a high yield, a synergetic combination of three parameters was necessary: adjacent dimer configuration, strong attractive dye-dye interactions that led to excitonic coupling, and an A-T neighboring base pair. The insight into the proximity of dye-labeled thymines in adjacent and transverse configurations correlated with the strength of excitonic coupling in the corresponding dimers. To demonstrate a utility of photocrosslinking, we created a squaraine tetramer templated by a doubly crosslinked HJ with increased thermal stability. These findings provide guidance for the design of HJ-templated dye aggregates exhibiting strong excitonic coupling for exciton-based applications such as organic optoelectronics and quantum computing.
Collapse
Affiliation(s)
- Shibani Basu
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA; (S.B.); (K.C.-S.); (B.Y.); (W.B.K.)
| | - Keitel Cervantes-Salguero
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA; (S.B.); (K.C.-S.); (B.Y.); (W.B.K.)
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA; (S.B.); (K.C.-S.); (B.Y.); (W.B.K.)
- Department of Electrical & Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - William B. Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA; (S.B.); (K.C.-S.); (B.Y.); (W.B.K.)
- Department of Electrical & Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - Jeunghoon Lee
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA; (S.B.); (K.C.-S.); (B.Y.); (W.B.K.)
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA
| | - Olga A. Mass
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA; (S.B.); (K.C.-S.); (B.Y.); (W.B.K.)
| |
Collapse
|
24
|
Biaggne A, Spear L, Barcenas G, Ketteridge M, Kim YC, Melinger JS, Knowlton WB, Yurke B, Li L. Data-Driven and Multiscale Modeling of DNA-Templated Dye Aggregates. Molecules 2022; 27:3456. [PMID: 35684394 PMCID: PMC9182218 DOI: 10.3390/molecules27113456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Dye aggregates are of interest for excitonic applications, including biomedical imaging, organic photovoltaics, and quantum information systems. Dyes with large transition dipole moments (μ) are necessary to optimize coupling within dye aggregates. Extinction coefficients (ε) can be used to determine the μ of dyes, and so dyes with a large ε (>150,000 M−1cm−1) should be engineered or identified. However, dye properties leading to a large ε are not fully understood, and low-throughput methods of dye screening, such as experimental measurements or density functional theory (DFT) calculations, can be time-consuming. In order to screen large datasets of molecules for desirable properties (i.e., large ε and μ), a computational workflow was established using machine learning (ML), DFT, time-dependent (TD-) DFT, and molecular dynamics (MD). ML models were developed through training and validation on a dataset of 8802 dyes using structural features. A Classifier was developed with an accuracy of 97% and a Regressor was constructed with an R2 of above 0.9, comparing between experiment and ML prediction. Using the Regressor, the ε values of over 18,000 dyes were predicted. The top 100 dyes were further screened using DFT and TD-DFT to identify 15 dyes with a μ relative to a reference dye, pentamethine indocyanine dye Cy5. Two benchmark MD simulations were performed on Cy5 and Cy5.5 dimers, and it was found that MD could accurately capture experimental results. The results of this study exhibit that our computational workflow for identifying dyes with a large μ for excitonic applications is effective and can be used as a tool to develop new dyes for excitonic applications.
Collapse
Affiliation(s)
- Austin Biaggne
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (L.S.); (G.B.); (M.K.); (W.B.K.); (B.Y.)
| | - Lawrence Spear
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (L.S.); (G.B.); (M.K.); (W.B.K.); (B.Y.)
| | - German Barcenas
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (L.S.); (G.B.); (M.K.); (W.B.K.); (B.Y.)
| | - Maia Ketteridge
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (L.S.); (G.B.); (M.K.); (W.B.K.); (B.Y.)
| | - Young C. Kim
- Materials Science and Technology Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA;
| | - Joseph S. Melinger
- Electronics Science and Technology Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA;
| | - William B. Knowlton
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (L.S.); (G.B.); (M.K.); (W.B.K.); (B.Y.)
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - Bernard Yurke
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (L.S.); (G.B.); (M.K.); (W.B.K.); (B.Y.)
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - Lan Li
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (L.S.); (G.B.); (M.K.); (W.B.K.); (B.Y.)
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| |
Collapse
|
25
|
Barclay MS, Wilson CK, Roy SK, Mass OA, Obukhova OM, Svoiakov RP, Tatarets AL, Chowdhury AU, Huff JS, Turner DB, Davis PH, Terpetschnig EA, Yurke B, Knowlton WB, Lee J, Pensack RD. Oblique Packing and Tunable Excitonic Coupling in DNA‐Templated Squaraine Rotaxane Dimer Aggregates. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Matthew S. Barclay
- Boise State University Micron School of Materials Science & Engineering UNITED STATES
| | - Christopher K. Wilson
- Boise State University Micron School of Materials Science & Engineering UNITED STATES
| | - Simon K. Roy
- Boise State University Micron School of Materials Science & Engineering UNITED STATES
| | - Olga A. Mass
- Boise State University Micron School of Materials Science & Engineering UNITED STATES
| | - Olena M. Obukhova
- SSI Institute for Single Crystals NAS of Ukraine: Naukovo-tehnologicnij kompleks Institut monokristaliv Nacional'na akademia nauk Ukraini Department of Luminescent Materials and Dyes UKRAINE
| | - Rostyslav P. Svoiakov
- SSI Institute for Single Crystals NAS of Ukraine: Naukovo-tehnologicnij kompleks Institut monokristaliv Nacional'na akademia nauk Ukraini Department of Luminescent Materials and Dyes UKRAINE
| | - Anatoliy L. Tatarets
- SSI Institute for Single Crystals NAS of Ukraine: Naukovo-tehnologicnij kompleks Institut monokristaliv Nacional'na akademia nauk Ukraini Department of Luminescent Materials and Dyes UKRAINE
| | - Azhad U. Chowdhury
- Boise State University Micron School of Materials Science & Engineering UNITED STATES
| | - Jonathan S. Huff
- Boise State University Micron School of Materials Science & Engineering UNITED STATES
| | - Daniel B. Turner
- Boise State University Micron School of Materials Science & Engineering UNITED STATES
| | - Paul H. Davis
- Boise State University Micron School of Materials Science & Engineering UNITED STATES
| | | | - Bernard Yurke
- Boise State University Micron School of Materials Science & Engineering; Department of Electrical & Computer Engineering UNITED STATES
| | - William B. Knowlton
- Boise State University Micron School of Materials Science & Engineering; Department of Electrical & Computer Engineering UNITED STATES
| | - Jeunghoon Lee
- Boise State University Micron School of Materials Science & Engineering; Department of Chemistry & Biochemistry UNITED STATES
| | - Ryan D. Pensack
- Boise State University Micron School of Materials Science & Engineering 1435 W University Dr 83706 Boise UNITED STATES
| |
Collapse
|
26
|
Mass OA, Wilson CK, Barcenas G, Terpetschnig EA, Obukhova OM, Kolosova OS, Tatarets AL, Li L, Yurke B, Knowlton WB, Pensack RD, Lee J. Influence of Hydrophobicity on Excitonic Coupling in DNA-Templated Indolenine Squaraine Dye Aggregates. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:3475-3488. [PMID: 35242270 PMCID: PMC8883467 DOI: 10.1021/acs.jpcc.1c08981] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/15/2022] [Indexed: 06/01/2023]
Abstract
Control over the strength of excitonic coupling in molecular dye aggregates is a substantial factor for the development of technologies such as light harvesting, optoelectronics, and quantum computing. According to the molecular exciton model, the strength of excitonic coupling is inversely proportional to the distance between dyes. Covalent DNA templating was proved to be a versatile tool to control dye spacing on a subnanometer scale. To further expand our ability to control photophysical properties of excitons, here, we investigated the influence of dye hydrophobicity on the strength of excitonic coupling in squaraine aggregates covalently templated by DNA Holliday Junction (DNA HJ). Indolenine squaraines were chosen for their excellent spectral properties, stability, and diversity of chemical modifications. Six squaraines of varying hydrophobicity from highly hydrophobic to highly hydrophilic were assembled in two dimer configurations and a tetramer. In general, the examined squaraines demonstrated a propensity toward face-to-face aggregation behavior observed via steady-state absorption, fluorescence, and circular dichroism spectroscopies. Modeling based on the Kühn-Renger-May approach quantified the strength of excitonic coupling in the squaraine aggregates. The strength of excitonic coupling strongly correlated with squaraine hydrophobic region. Dimer aggregates of dichloroindolenine squaraine were found to exhibit the strongest coupling strength of 132 meV (1065 cm-1). In addition, we identified the sites for dye attachment in the DNA HJ that promote the closest spacing between the dyes in their dimers. The extracted aggregate geometries, and the role of electrostatic and steric effects in squaraine aggregation are also discussed. Taken together, these findings provide a deeper insight into how dye structures influence excitonic coupling in dye aggregates covalently templated via DNA, and guidance in design rules for exciton-based materials and devices.
Collapse
Affiliation(s)
- Olga A. Mass
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Christopher K. Wilson
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - German Barcenas
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | | | - Olena M. Obukhova
- State
Scientific Institution “Institute for Single Crystals”
of National Academy of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | - Olga S. Kolosova
- State
Scientific Institution “Institute for Single Crystals”
of National Academy of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | - Anatoliy L. Tatarets
- State
Scientific Institution “Institute for Single Crystals”
of National Academy of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | - Lan Li
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
- Center
for Advanced Energy Studies, Idaho
Falls, Idaho 83401, United States
| | - Bernard Yurke
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - William B. Knowlton
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Ryan. D. Pensack
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Jeunghoon Lee
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Chemistry and Biochemistry, Boise State
University, Boise, Idaho 83725, United
States
| |
Collapse
|
27
|
Dietzsch J, Bialas D, Bandorf J, Würthner F, Höbartner C. Tuning Exciton Coupling of Merocyanine Nucleoside Dimers by RNA, DNA and GNA Double Helix Conformations. Angew Chem Int Ed Engl 2022; 61:e202116783. [PMID: 34937127 PMCID: PMC9302137 DOI: 10.1002/anie.202116783] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Indexed: 12/02/2022]
Abstract
Exciton coupling between two or more chromophores in a specific environment is a key mechanism associated with color tuning and modulation of absorption energies. This concept is well exemplified by natural photosynthetic proteins, and can also be achieved in synthetic nucleic acid nanostructures. Here we report the coupling of barbituric acid merocyanine (BAM) nucleoside analogues and show that exciton coupling can be tuned by the double helix conformation. BAM is a nucleobase mimic that was incorporated in the phosphodiester backbone of RNA, DNA and GNA oligonucleotides. Duplexes with different backbone constitutions and geometries afforded different mutual dye arrangements, leading to distinct optical signatures due to competing modes of chromophore organization via electrostatic, dipolar, π-π-stacking and hydrogen-bonding interactions. The realized supramolecular motifs include hydrogen-bonded BAM-adenine base pairs and antiparallel as well as rotationally stacked BAM dimer aggregates with distinct absorption, CD and fluorescence properties.
Collapse
Affiliation(s)
- Julia Dietzsch
- Institute of Organic ChemistryUniversity of WürzburgGermany
| | - David Bialas
- Institute of Organic ChemistryUniversity of WürzburgGermany
- Center for Nanosystems ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| | | | - Frank Würthner
- Institute of Organic ChemistryUniversity of WürzburgGermany
- Center for Nanosystems ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Claudia Höbartner
- Institute of Organic ChemistryUniversity of WürzburgGermany
- Center for Nanosystems ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
28
|
Michie MS, Xu B, Sudlow G, Springer LE, Pham CT, Achilefu S. Side-chain modification of collagen-targeting peptide prevents dye aggregation for improved molecular imaging of arthritic joints. J Photochem Photobiol A Chem 2022; 424:113624. [PMID: 36406204 PMCID: PMC9673490 DOI: 10.1016/j.jphotochem.2021.113624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Near-infrared (NIR) dye-peptide conjugates are widely used for tissue-targeted molecular fluorescence imaging of pathophysiologic conditions. However, the significant contribution of both dye and peptide to the net mass of these bioconjugates implies that small changes in either component could alter their photophysical and biological properties. Here, we synthesized and conjugated a type I collagen targeted peptide, RRANAALKAGELYKCILY, to either a hydrophobic (LS1000) or hydrophilic (LS1006) NIR fluorescent dye. Spectroscopic analysis revealed rapid self-assembly of both LS1000 and LS1006 in aqueous media to form stable dimeric/H aggregates, regardless of the free dye's solubility in water. We discovered that replacing the cysteine residue in LS1000 and LS1006 with acetamidomethyl cysteine to afford LS1001 and LS1107, respectively, disrupted the peptide's self-assembly and activated the previously quenched dye's fluorescence in aqueous conditions. These results highlight the dominant role of the octadecapeptide, but not the dye molecules, in controlling the photophysical properties of these conjugates by likely sequestering or extruding the hydrophobic or hydrophilic dyes, respectively. Application of the compounds for imaging collagen-rich tissue in an animal model of inflammatory arthritis showed enhanced uptake of all four conjugates, which retained high collagen-binding affinity, in inflamed joints. Moreover, LS1001 and LS1107 improved the arthritic joint-to-background contrast, suggesting that reduced aggregation enhanced the clearance of these compounds from non-target tissues. Our results highlight a peptide-driven strategy to alter the aggregation states of molecular probes in aqueous solutions, irrespective of the water-solubilizing properties of the dye molecules. The interplay between the monomeric and aggregated forms of the conjugates using simple thiol-modifiers lends the peptide-driven approach to diverse applications, including the effective imaging of inflammatory arthritis joints.
Collapse
Affiliation(s)
- Megan S. Michie
- Optical Radiology Laboratory, Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Baogang Xu
- Optical Radiology Laboratory, Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gail Sudlow
- Optical Radiology Laboratory, Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Luke E. Springer
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Christine T.N. Pham
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Samuel Achilefu
- Optical Radiology Laboratory, Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
29
|
Dietzsch J, Bialas D, Bandorf J, Würthner F, Höbartner C. Tuning Exciton Coupling of Merocyanine Nucleoside Dimers by RNA, DNA and GNA Double Helix Conformations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julia Dietzsch
- Institute of Organic Chemistry University of Würzburg Germany
| | - David Bialas
- Institute of Organic Chemistry University of Würzburg Germany
- Center for Nanosystems Chemistry University of Würzburg Am Hubland 97074 Würzburg Germany
| | | | - Frank Würthner
- Institute of Organic Chemistry University of Würzburg Germany
- Center for Nanosystems Chemistry University of Würzburg Am Hubland 97074 Würzburg Germany
| | - Claudia Höbartner
- Institute of Organic Chemistry University of Würzburg Germany
- Center for Nanosystems Chemistry University of Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
30
|
Roy S, Mass OA, Kellis DL, Wilson CK, Hall JA, Yurke B, Knowlton WB. Exciton Delocalization and Scaffold Stability in Bridged Nucleotide-Substituted, DNA Duplex-Templated Cyanine Aggregates. J Phys Chem B 2021; 125:13670-13684. [PMID: 34894675 PMCID: PMC8713290 DOI: 10.1021/acs.jpcb.1c07602] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/04/2021] [Indexed: 11/28/2022]
Abstract
Molecular excitons play a foundational role in chromophore aggregates found in light-harvesting systems and offer potential applications in engineered excitonic systems. Controlled aggregation of chromophores to promote exciton delocalization has been achieved by covalently tethering chromophores to deoxyribonucleic acid (DNA) scaffolds. Although many studies have documented changes in the optical properties of chromophores upon aggregation using DNA scaffolds, more limited work has investigated how structural modifications of DNA via bridged nucleotides and chromophore covalent attachment impact scaffold stability as well as the configuration and optical behavior of attached aggregates. Here we investigated the impact of two types of bridged nucleotides, LNA and BNA, as a structural modification of duplex DNA-templated cyanine (Cy5) aggregates. The bridged nucleotides were incorporated in the domain of one to four Cy5 chromophores attached between adjacent bases of a DNA duplex. We found that bridged nucleotides increase the stability of DNA scaffolds carrying Cy5 aggregates in comparison with natural nucleotides in analogous constructs. Exciton coupling strength and delocalization in Cy5 aggregates were evaluated via steady-state absorption, circular dichroism, and theoretical modeling. Replacing natural nucleotides with bridged nucleotides resulted in a noticeable increase in the coupling strength (≥10 meV) between chromophores and increased H-like stacking behavior (i.e., more face-to-face stacking). Our results suggest that bridged nucleotides may be useful for increasing scaffold stability and coupling between DNA templated chromophores.
Collapse
Affiliation(s)
- Simon
K. Roy
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Olga A. Mass
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Donald L. Kellis
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Christopher K. Wilson
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - John A. Hall
- Division
of Research and Economic Development, Boise
State University, Boise, Idaho 83725, United States
| | - Bernard Yurke
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - William B. Knowlton
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| |
Collapse
|
31
|
Exploiting Complex Fluorophore Interactions to Monitor Virus Capsid Disassembly. Molecules 2021; 26:molecules26195750. [PMID: 34641294 PMCID: PMC8510433 DOI: 10.3390/molecules26195750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Supramolecular protein complexes are the corner stone of biological processes; they are essential for many biological functions. Unraveling the interactions responsible for the (dis)assembly of these complexes is required to understand nature and to exploit such systems in future applications. Virus capsids are well-defined assemblies of hundreds of proteins and form the outer shell of non-enveloped viruses. Due to their potential as a drug carriers or nano-reactors and the need for virus inactivation strategies, assessing the intactness of virus capsids is of great interest. Current methods to evaluate the (dis)assembly of these protein assemblies are experimentally demanding in terms of instrumentation, expertise and time. Here we investigate a new strategy to monitor the disassembly of fluorescently labeled virus capsids. To monitor surfactant-induced capsid disassembly, we exploit the complex photophysical interplay between multiple fluorophores conjugated to capsid proteins. The disassembly of the capsid changes the photophysical interactions between the fluorophores, and this can be spectrally monitored. The presented data show that this low complexity method can be used to study and monitor the disassembly of supramolecular protein complexes like virus capsids. However, the range of labeling densities that is suitable for this assay is surprisingly narrow.
Collapse
|
32
|
Sorour MI, Kistler KA, Marcus AH, Matsika S. Accurate Modeling of Excitonic Coupling in Cyanine Dye Cy3. J Phys Chem A 2021; 125:7852-7866. [PMID: 34494437 DOI: 10.1021/acs.jpca.1c05556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accurate modeling of excitonic coupling in molecules is of great importance for inferring the structures and dynamics of coupled systems. Cy3 is a cyanine dye that is widely used in molecular spectroscopy. Its well-separated excitation bands, high sensitivity to the surroundings, and the high energy transfer efficiency make it a perfect choice for excitonic coupling experiments. Many methods have been used to model the excitonic coupling in molecules with varying degrees of accuracy. The atomic transition charge model offers a high-accuracy and cost-effective way to calculating the excitonic coupling. The main focus of this work is to generate high-quality atomic transition charges that can accurately model the Cy3 dye's transition density. The transition density of the excitation of the ground to first excited state is calculated using configuration-interaction singles and time-dependent density functional theory and is benchmarked against the algebraic diagrammatic construction method. Using the transition density we derived the atomic transition charges using two approaches: Mulliken population analysis and charges fitted to the transition electrostatic potential. The quality of the charges is examined, and their ability to accurately calculate the excitonic coupling is assessed via comparison to experimental data of an artificial biscyanine construct. Theoretical comparisons to the supermolecule ab initio couplings and the widely used point-dipole approximation are also made. Results show that using the transition electrostatic potential is a reliable approach for generating the transition atomic charges. A high-quality set of charges, that can be used to model the Cy3 dye dimer excitonic coupling with high-accuracy and a reasonable computational cost, is obtained.
Collapse
Affiliation(s)
- Mohammed I Sorour
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Kurt A Kistler
- Department of Chemistry, Brandywine Campus, The Pennsylvania State University, Media, Pennsylvania 19063, United States
| | - Andrew H Marcus
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
33
|
Barcenas G, Biaggne A, Mass OA, Wilson CK, Obukhova OM, Kolosova OS, Tatarets AL, Terpetschnig E, Pensack RD, Lee J, Knowlton WB, Yurke B, Li L. First-principles studies of substituent effects on squaraine dyes. RSC Adv 2021; 11:19029-19040. [PMID: 35478639 PMCID: PMC9033489 DOI: 10.1039/d1ra01377g] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/17/2021] [Indexed: 01/21/2023] Open
Abstract
Dye molecules that absorb light in the visible region are key components in many applications, including organic photovoltaics, biological fluorescent labeling, super-resolution microscopy, and energy transport. One family of dyes, known as squaraines, has received considerable attention recently due to their favorable electronic and photophysical properties. In addition, these dyes have a strong propensity for aggregation, which results in emergent materials properties, such as exciton delocalization. This will be of benefit in charge separation and energy transport along with fundamental studies in quantum information. Given the high structural tunability of squaraine dyes, it is possible that exciton delocalization could be tailored by modifying the substituents attached to the π-conjugated network. To date, limited theoretical studies have explored the role of substituent effects on the electronic and photophysical properties of squaraines in the context of DNA-templated dye aggregates and resultant excitonic behavior. We used ab initio theoretical methods to determine the effects of substituents on the electronic and photophysical properties for a series of nine different squaraine dyes. Solvation free energy was also investigated as an insight into changes in hydrophobic behavior from substituents. The role of molecular symmetry on these properties was also explored via conformation and substitution. We found that substituent effects are correlated with the empirical Hammett constant, which demonstrates their electron donating or electron withdrawing strength. Electron withdrawing groups were found to impact solvation free energy, transition dipole moment, static dipole difference, and absorbance more than electron donating groups. All substituents showed a redshift in absorption for the squaraine dye. In addition, solvation free energy increases with Hammett constant. This work represents a first step toward establishing design rules for dyes with desired properties for excitonic applications. Squaraine dyes are candidates for DNA-templated excitonic interactions. This work presents substituent effects on the electronic and photophysicalproperties of squaraine dyes and a correlation between empirical Hammettconstant and those properties.![]()
Collapse
Affiliation(s)
- German Barcenas
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725 USA
| | - Austin Biaggne
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725 USA
| | - Olga A Mass
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725 USA
| | - Christopher K Wilson
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725 USA
| | - Olena M Obukhova
- SSI "Institute for Single Crystals" of National Academy of Sciences of Ukraine Kharkov 61072 Ukraine
| | - Olga S Kolosova
- SSI "Institute for Single Crystals" of National Academy of Sciences of Ukraine Kharkov 61072 Ukraine
| | - Anatoliy L Tatarets
- SSI "Institute for Single Crystals" of National Academy of Sciences of Ukraine Kharkov 61072 Ukraine.,SETA BioMedicals Urbana IL 61802 USA
| | | | - Ryan D Pensack
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725 USA
| | - Jeunghoon Lee
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725 USA .,Department of Chemistry and Biochemistry, Boise State University Boise ID 83725 USA
| | - William B Knowlton
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725 USA .,Department of Electrical and Computer Engineering, Boise State University Boise ID 83725 USA
| | - Bernard Yurke
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725 USA .,Department of Electrical and Computer Engineering, Boise State University Boise ID 83725 USA
| | - Lan Li
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725 USA .,Center for Advanced Energy Studies Idaho Falls ID 83401 USA
| |
Collapse
|
34
|
Liu Y, Wijesekara P, Kumar S, Wang W, Ren X, Taylor RE. The effects of overhang placement and multivalency on cell labeling by DNA origami. NANOSCALE 2021; 13:6819-6828. [PMID: 33885483 PMCID: PMC8161690 DOI: 10.1039/d0nr09212f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Through targeted binding to the cell membrane, structural DNA nanotechnology has the potential to guide and affix biomolecules such as drugs, growth factors and nanobiosensors to the surfaces of cells. In this study, we investigated the targeted binding efficiency of three distinct DNA origami shapes to cultured endothelial cells via cholesterol anchors. Our results showed that the labeling efficiency is highly dependent on the shape of the origami as well as the number and the location of the binding overhangs. With a uniform surface spacing of binding overhangs, 3D isotropic nanospheres and 1D anisotropic nanorods labeled cells effectively, and the isotropic nanosphere labeling fit well with an independent binding model. Face-decoration and edge-decoration of the anisotropic nanotile were performed to investigate the effects of binding overhang location on cell labeling, and only the edge-decorated nanotiles were successful at labeling cells. Edge proximity studies demonstrated that the labeling efficiency can be modulated in both nanotiles and nanorods by moving the binding overhangs towards the edges and vertices, respectively. Furthermore, we demonstrated that while double-stranded DNA (dsDNA) bridge tethers can rescue the labeling efficiency of the face-decorated rectangular plate, this effect is also dependent on the proximity of bridge tethers to the edges or vertices of the nanostructures. A final comparison of all three nanoshapes revealed that the end-labeled nanorod and the nanosphere achieved the highest absolute labeling intensities, but the highest signal-to-noise ratio, calculated as the ratio of overall labeling to initiator-free background labeling, was achieved by the end-labeled nanorod, with the edge-labeled nanotile coming in second place slightly ahead of the nanosphere. The findings from this study can help us further understand the factors that affect membrane attachment using cholesterol anchors, thus providing guidelines for the rational design of future functional DNA nanostructures.
Collapse
Affiliation(s)
- Ying Liu
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Hart SM, Chen WJ, Banal JL, Bricker WP, Dodin A, Markova L, Vyborna Y, Willard AP, Häner R, Bathe M, Schlau-Cohen GS. Engineering couplings for exciton transport using synthetic DNA scaffolds. Chem 2021. [DOI: 10.1016/j.chempr.2020.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Chatterjee S, Molenaar R, Tromp L, Wagterveld RM, Roesink HDW, Cornelissen JJLM, Claessens MMAE, Blum C. Optimizing fluorophore density for single virus counting: a photophysical approach. Methods Appl Fluoresc 2021; 9:025001. [PMID: 33480360 DOI: 10.1088/2050-6120/abd8e4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In health and environmental research, it is often necessary to quantify the concentrations of single (bio) nanoparticles present at very low concentrations. Suitable quantification approaches that rely on counting and tracking of single fluorescently labelled (bio) nanoparticles are often challenging since fluorophore self-quenching limits the maximum particle brightness. Here we study how the number of labels per nanoparticle influences the total brightness of fluorescently labelled cowpea chlorotic mottle virus (CCMV). We analyze in detail the photophysical interplay between the fluorophores on the virus particles. We deduce that the formation of dark aggregates and energy transfer towards these aggregates limits the total particle brightness that can be achieved. We show that by carefully selecting the number of fluorescent labels per CCMV, and thus minimizing the negative effects on particle brightness, it is possible to quantify fluorescently labelled CCMV concentrations down to fM concentrations in single particle counting experiments.
Collapse
Affiliation(s)
- Swarupa Chatterjee
- Nanobiophysics (NBP), MESA + Institute for Nanotechnology and Technical Medical Centre, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands. Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911MA, Leeuwarden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Biaggne A, Knowlton WB, Yurke B, Lee J, Li L. Substituent Effects on the Solubility and Electronic Properties of the Cyanine Dye Cy5: Density Functional and Time-Dependent Density Functional Theory Calculations. Molecules 2021; 26:molecules26030524. [PMID: 33498306 PMCID: PMC7863957 DOI: 10.3390/molecules26030524] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
The aggregation ability and exciton dynamics of dyes are largely affected by properties of the dye monomers. To facilitate aggregation and improve excitonic function, dyes can be engineered with substituents to exhibit optimal key properties, such as hydrophobicity, static dipole moment differences, and transition dipole moments. To determine how electron donating (D) and electron withdrawing (W) substituents impact the solvation, static dipole moments, and transition dipole moments of the pentamethine indocyanine dye Cy5, density functional theory (DFT) and time-dependent (TD-) DFT calculations were performed. The inclusion of substituents had large effects on the solvation energy of Cy5, with pairs of withdrawing substituents (W-W pairs) exhibiting the most negative solvation energies, suggesting dyes with W-W pairs are more soluble than others. With respect to pristine Cy5, the transition dipole moment was relatively unaffected upon substitution while numerous W-W pairs and pairs of donating and withdrawing substituents (D-W pairs) enhanced the static dipole difference. The increase in static dipole difference was correlated with an increase in the magnitude of the sum of the Hammett constants of the substituents on the dye. The results of this study provide insight into how specific substituents affect Cy5 monomers and which pairs can be used to engineer dyes with desired properties.
Collapse
Affiliation(s)
- Austin Biaggne
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (W.B.K.); (B.Y.); (J.L.)
| | - William B. Knowlton
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (W.B.K.); (B.Y.); (J.L.)
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - Bernard Yurke
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (W.B.K.); (B.Y.); (J.L.)
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - Jeunghoon Lee
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (W.B.K.); (B.Y.); (J.L.)
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA
| | - Lan Li
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (W.B.K.); (B.Y.); (J.L.)
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
- Correspondence:
| |
Collapse
|
38
|
Mass OA, Wilson CK, Roy SK, Barclay MS, Patten LK, Terpetschnig EA, Lee J, Pensack RD, Yurke B, Knowlton WB. Exciton Delocalization in Indolenine Squaraine Aggregates Templated by DNA Holliday Junction Scaffolds. J Phys Chem B 2020; 124:9636-9647. [PMID: 33052691 DOI: 10.1021/acs.jpcb.0c06480] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Exciton delocalization plays a prominent role in the photophysics of molecular aggregates, ultimately governing their particular function or application. Deoxyribonucleic acid (DNA) is a compelling scaffold in which to template molecular aggregates and promote exciton delocalization. As individual dye molecules are the basis of exciton delocalization in molecular aggregates, their judicious selection is important. Motivated by their excellent photostability and spectral properties, here, we examine the ability of squaraine dyes to undergo exciton delocalization when aggregated via a DNA Holliday junction (HJ) template. A commercially available indolenine squaraine dye was chosen for the study given its strong structural resemblance to Cy5, a commercially available cyanine dye previously shown to undergo exciton delocalization in DNA HJs. Three types of DNA-dye aggregate configurations-transverse dimer, adjacent dimer, and tetramer-were investigated. Signatures of exciton delocalization were observed in all squaraine-DNA aggregates. Specifically, strong blue shift and Davydov splitting were observed in steady-state absorption spectroscopy and exciton-induced features were evident in circular dichroism (CD) spectroscopy. Strongly suppressed fluorescence emission provided additional, indirect evidence for exciton delocalization in the DNA-templated squaraine dye aggregates. To quantitatively evaluate and directly compare the excitonic Coulombic coupling responsible for exciton delocalization, the strength of excitonic hopping interactions between the dyes was obtained by simultaneously fitting the experimental steady-state absorption and CD spectra via a Holstein-like Hamiltonian, in which, following the theoretical approach of Kühn, Renger, and May, the dominant vibrational mode is explicitly considered. The excitonic hopping strength within indolenine squaraines was found to be comparable to that of the analogous Cy5 DNA-templated aggregate. The squaraine aggregates adopted primarily an H-type (dyes oriented parallel to each other) spatial arrangement. Extracted geometric details of the dye mutual orientation in the aggregates enabled a close comparison of aggregate configurations and the elucidation of the influence of dye angular relationship on excitonic hopping interactions in squaraine aggregates. These results encourage the application of squaraine-based aggregates in next-generation systems driven by molecular excitons.
Collapse
Affiliation(s)
| | | | | | | | | | - Ewald A Terpetschnig
- SETA BioMedicals, LLC, 2014 Silver Court East, Urbana, Illinois 61801, United States
| | | | | | | | | |
Collapse
|
39
|
Helmerich DA, Beliu G, Sauer M. Multiple-Labeled Antibodies Behave Like Single Emitters in Photoswitching Buffer. ACS NANO 2020; 14:12629-12641. [PMID: 32804475 DOI: 10.1021/acsnano.0c06099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The degree of labeling (DOL) of antibodies has so far been optimized for high brightness and specific and efficient binding. The influence of the DOL on the blinking performance of antibodies used in direct stochastic optical reconstruction microscopy (dSTORM) has so far attained limited attention. Here, we investigated the spectroscopic characteristics of IgG antibodies labeled at DOLs of 1.1-8.3 with Alexa Fluor 647 (Al647) at the ensemble and single-molecule level. Multiple-Al647-labeled antibodies showed weak and strong quenching interactions in aqueous buffer but could all be used for dSTORM imaging with spatial resolutions of ∼20 nm independent of the DOL. Single-molecule fluorescence trajectories and photon antibunching experiments revealed that individual multiple-Al647-labeled antibodies show complex photophysics in aqueous buffer but behave as single emitters in photoswitching buffer independent of the DOL. We developed a model that explains the observed blinking of multiple-labeled antibodies and can be used for the development of improved fluorescent probes for dSTORM experiments.
Collapse
Affiliation(s)
- Dominic A Helmerich
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Gerti Beliu
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
40
|
Cunningham PD, Díaz SA, Yurke B, Medintz IL, Melinger JS. Delocalized Two-Exciton States in DNA Scaffolded Cyanine Dimers. J Phys Chem B 2020; 124:8042-8049. [PMID: 32706583 DOI: 10.1021/acs.jpcb.0c06732] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The engineering and manipulation of delocalized molecular exciton states is a key component for artificial biomimetic light harvesting complexes as well as alternative circuitry platforms based on exciton propagation. Here we examine the consequences of strong electronic coupling in cyanine homodimers on DNA duplex scaffolds. The most closely spaced dyes, attached to positions directly across the double-helix from one another, exhibit pronounced Davydov splitting due to strong electronic coupling. We demonstrate that the DNA scaffold is sufficiently robust to support observation of the transition from the lowest energy (J-like) one-exciton state to the nonlocal two-exciton state, where each cyanine dye is in the excited state. This transition proceeds via sequential photon absorption and persists for the lifetime of the exciton, establishing this as a controlled method for creating two-exciton states. Our observations suggest that DNA-organized dye networks have potential as platforms for molecular logic gates and entangled photon emission based on delocalized two-exciton states.
Collapse
Affiliation(s)
- Paul D Cunningham
- U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Sebastián A Díaz
- U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Bernard Yurke
- Boise State University, Boise, Idaho 83725, United States
| | - Igor L Medintz
- U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Joseph S Melinger
- U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
41
|
Sohail SH, Otto JP, Cunningham PD, Kim YC, Wood RE, Allodi MA, Higgins JS, Melinger JS, Engel GS. DNA scaffold supports long-lived vibronic coherence in an indodicarbocyanine (Cy5) dimer. Chem Sci 2020; 11:8546-8557. [PMID: 34123114 PMCID: PMC8163443 DOI: 10.1039/d0sc01127d] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Vibronic coupling between pigment molecules is believed to prolong coherences in photosynthetic pigment–protein complexes. Reproducing long-lived coherences using vibronically coupled chromophores in synthetic DNA constructs presents a biomimetic route to efficient artificial light harvesting. Here, we present two-dimensional (2D) electronic spectra of one monomeric Cy5 construct and two dimeric Cy5 constructs (0 bp and 1 bp between dyes) on a DNA scaffold and perform beating frequency analysis to interpret observed coherences. Power spectra of quantum beating signals of the dimers reveal high frequency oscillations that correspond to coherences between vibronic exciton states. Beating frequency maps confirm that these oscillations, 1270 cm−1 and 1545 cm−1 for the 0-bp dimer and 1100 cm−1 for the 1-bp dimer, are coherences between vibronic exciton states and that these coherences persist for ∼300 fs. Our observations are well described by a vibronic exciton model, which predicts the excitonic coupling strength in the dimers and the resulting molecular exciton states. The energy spacing between those states closely corresponds to the observed beat frequencies. MD simulations indicate that the dyes in our constructs lie largely internal to the DNA base stacking region, similar to the native design of biological light harvesting complexes. Observed coherences persist on the timescale of photosynthetic energy transfer yielding further parallels to observed biological coherences, establishing DNA as an attractive scaffold for synthetic light harvesting applications. Dyes coupled to DNA display distance-dependent vibronic couplings that prolongs quantum coherences detected with 2D spectroscopy.![]()
Collapse
Affiliation(s)
- Sara H Sohail
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago Chicago IL 60637 USA +1-773-834-0818
| | - John P Otto
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago Chicago IL 60637 USA +1-773-834-0818
| | - Paul D Cunningham
- U.S. Naval Research Laboratory 4555 Overlook Avenue SW Washington DC 20375 USA
| | - Young C Kim
- U.S. Naval Research Laboratory 4555 Overlook Avenue SW Washington DC 20375 USA
| | - Ryan E Wood
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago Chicago IL 60637 USA +1-773-834-0818
| | - Marco A Allodi
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago Chicago IL 60637 USA +1-773-834-0818
| | - Jacob S Higgins
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago Chicago IL 60637 USA +1-773-834-0818
| | - Joseph S Melinger
- U.S. Naval Research Laboratory 4555 Overlook Avenue SW Washington DC 20375 USA
| | - Gregory S Engel
- Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago Chicago IL 60637 USA +1-773-834-0818
| |
Collapse
|
42
|
Mazuski RJ, Díaz SA, Wood RE, Lloyd LT, Klein WP, Mathur D, Melinger JS, Engel GS, Medintz IL. Ultrafast Excitation Transfer in Cy5 DNA Photonic Wires Displays Dye Conjugation and Excitation Energy Dependency. J Phys Chem Lett 2020; 11:4163-4172. [PMID: 32391695 DOI: 10.1021/acs.jpclett.0c01020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
DNA scaffolds enable base-pair-specific positioning of fluorescent molecules, allowing for nanometer-scale precision in controlling multidye interactions. Expanding on this concept, DNA-based molecular photonic wires (MPWs) allow for light harvesting and directional propagation of photonic energy on the nanometer scale. The most common MPW examples exploit Förster resonance energy transfer (FRET), and FRET between the same dye species (HomoFRET) was recently shown to increase the distance and efficiency at which MPWs can function. Although increased proximity between adjacent fluorophores can be used to increase the energy transfer efficiency, FRET assumptions break down as the distance between the dye molecules becomes comparable to their size (∼2 nm). Here we compare dye conjugation with single versus dimer Cy5 dye repeats as HomoFRET MPW components on a double-crossover DNA scaffold. At room temperature (RT) under low-light conditions, end-labeled uncoupled dye molecules provide optimal transfer, while the Cy5 dimers show ultrafast (<100 ps) nonradiative decay that severely limits their functionality. Of particular interest is the observation that through increased excitation fluence as well as cryogenic temperatures, the dimeric MPW shows suppression of the ultrafast decay, demonstrating fluorescence lifetimes similar to the single Cy5 MPWs. This work points to the complex dynamic capabilities of dye-based nanophotonic networks, where dye positioning and interactions can become critical, and could be used to extend the lengths and complexities of such dye-DNA devices, enabling multiparameter nanophotonic circuitry.
Collapse
Affiliation(s)
- Richard J Mazuski
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Ryan E Wood
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Lawson T Lloyd
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - William P Klein
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20001, United States
| | - Divita Mathur
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Joseph S Melinger
- Electronic Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Gregory S Engel
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
43
|
Wu W, Wang C, Xu H, Wang J, Zhong Y, Zhang L, Chen Z, Sui X, Mao Z. Study of the aggregation behaviour of three primary reactive dyes via molecular dynamics simulations. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1755037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Wei Wu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Centre for Textile Science and Technology, Donghua University, Shanghai, People’s Republic of China
| | - Chunyi Wang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Centre for Textile Science and Technology, Donghua University, Shanghai, People’s Republic of China
| | - Hong Xu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Centre for Textile Science and Technology, Donghua University, Shanghai, People’s Republic of China
| | - Jian Wang
- Jifa Group Co. Ltd, Qingdao, People’s Republic of China
| | - Yi Zhong
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Centre for Textile Science and Technology, Donghua University, Shanghai, People’s Republic of China
| | - Linping Zhang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Centre for Textile Science and Technology, Donghua University, Shanghai, People’s Republic of China
| | - Zhize Chen
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Centre for Textile Science and Technology, Donghua University, Shanghai, People’s Republic of China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Centre for Textile Science and Technology, Donghua University, Shanghai, People’s Republic of China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Centre for Textile Science and Technology, Donghua University, Shanghai, People’s Republic of China
| |
Collapse
|
44
|
Rukin PS, Komarova KG, Fresch B, Collini E, Remacle F. Chirality of a rhodamine heterodimer linked to a DNA scaffold: an experimental and computational study. Phys Chem Chem Phys 2020; 22:7516-7523. [PMID: 32219241 DOI: 10.1039/d0cp00223b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chiroptical properties of multi-chromophoric systems are governed by the intermolecular arrangement of the monomeric units. We report on a computational and experimental study of the linear optical properties and supramolecular structure of a rhodamine heterodimer assembled on a DNA scaffold. The experimental absorption and circular dichroism (CD) profiles confirm the dimer formation. Computationally, starting from low-cost DFT/TDDFT simulations of the bare dimer we attribute the measured -/+ CD sign sequence of the S1/S2 bands to a specific chiral conformation of the heterodimer. In the monomers, as typical for rhodamine dyes, the electric transition dipole of the lowest π-π* transition is parallel to the long axis of the xanthene planes. We show that in the heterodimer the sign sequence of the two CD bands is related to the orientation of these long axes. To account explicitly for environment effects, we use molecular dynamics (MD) simulations for characterizing the supramolecular structure of the two optical isomers tethered on DNA. Average absorption and CD-profiles were modeled using ab initio TDDFT calculations at the geometries sampled along a few nanosecond MD run. The absorption profiles computed for both optical isomers are in good agreement with the experimental absorption spectrum and do not allow one to discriminate between them. The computed averaged CD profiles provide the orientation of monomers in the enantiomer that is dominant under the experimental conditions.
Collapse
Affiliation(s)
- P S Rukin
- Theoretical Physical Chemistry, UR MolSys B6c, University of Liege, B4000, Liege, Belgium.
| | - K G Komarova
- Theoretical Physical Chemistry, UR MolSys B6c, University of Liege, B4000, Liege, Belgium.
| | - B Fresch
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - E Collini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - F Remacle
- Theoretical Physical Chemistry, UR MolSys B6c, University of Liege, B4000, Liege, Belgium.
| |
Collapse
|
45
|
A 6-nm ultra-photostable DNA FluoroCube for fluorescence imaging. Nat Methods 2020; 17:437-441. [PMID: 32203385 PMCID: PMC7138518 DOI: 10.1038/s41592-020-0782-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/12/2020] [Indexed: 12/17/2022]
Abstract
Photobleaching limits extended imaging of fluorescent biological samples. Here, we developed DNA based “FluoroCubes” that are similar in size to the green fluorescent protein (GFP), have single-point attachment to proteins, have a ~54-fold higher photobleaching lifetime and emit ~43-fold more photons than single organic dyes. We demonstrate that DNA FluoroCubes provide outstanding tools for single-molecule imaging, allowing the tracking of single motor proteins for >800 steps with nanometer precision.
Collapse
|
46
|
Huang S, Qi J, deQuilettes DW, Huang M, Lin CW, Bardhan NM, Dang X, Bulović V, Belcher AM. M13 Virus-Based Framework for High Fluorescence Enhancement. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901233. [PMID: 31131998 DOI: 10.1002/smll.201901233] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/03/2019] [Indexed: 05/16/2023]
Abstract
Fluorescence imaging is a powerful tool for studying biologically relevant macromolecules, but its applicability is often limited by the fluorescent probe, which must demonstrate both high site-specificity and emission efficiency. In this regard, M13 virus, a versatile biological scaffold, has previously been used to both assemble fluorophores on its viral capsid with molecular precision and to also target a variety of cells. Although M13-fluorophore systems are highly selective, these complexes typically suffer from poor molecular detection limits due to low absorption cross-sections and moderate quantum yields. To overcome these challenges, a coassembly of the M13 virus, cyanine 3 dye, and silver nanoparticles is developed to create a fluorescent tag capable of binding with molecular precision with high emissivity. Enhanced emission of cyanine 3 of up to 24-fold is achieved by varying nanoparticle size and particle-fluorophore separation. In addition, it is found that the fluorescence enhancement increases with increasing dye surface density on the viral capsid. Finally, this highly fluorescent probe is applied for in vitro staining of E. coli. These results demonstrate an inexpensive framework for achieving tuned fluorescence enhancements. The methodology developed in this work is potentially amendable to fluorescent detection of a wide range of M13/cell combinations.
Collapse
Affiliation(s)
- Shengnan Huang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jifa Qi
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Dane W deQuilettes
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Mantao Huang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Ching-Wei Lin
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Neelkanth M Bardhan
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Xiangnan Dang
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Vladimir Bulović
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Angela M Belcher
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
47
|
Yang G, Tian J, Chen C, Jiang D, Xue Y, Wang C, Gao Y, Zhang W. An oxygen self-sufficient NIR-responsive nanosystem for enhanced PDT and chemotherapy against hypoxic tumors. Chem Sci 2019; 10:5766-5772. [PMID: 31293763 PMCID: PMC6568044 DOI: 10.1039/c9sc00985j] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/22/2019] [Indexed: 12/30/2022] Open
Abstract
The efficacy of photodynamic therapy and chemotherapy is largely limited by oxygen deficiency in the hypoxic tumor microenvironment. To solve these problems, we fabricated a novel NIR-responsive nanosystem which could co-deliver oxygen and anticancer drug DOX. An oxygen self-sufficient amphiphile (F-IR780-PEG) was first synthesized and subsequently utilized to load anticancer drug DOX to form nanoparticles (F/DOX nanoparticles). Due to the high oxygen capacity of such nanoparticles, the hypoxic tumor microenvironment was greatly modulated after these nanoparticles reached the tumor region, and the results revealed that hypoxia-inducible factor α (HIF-1α) was down-regulated and the expression of P-glycoprotein (P-gp) was then reduced, which were in favor of chemotherapy. Under light irradiation at 808 nm, IR780 could efficiently produce singlet oxygen to damage cancer cells by photodynamic therapy (PDT). Simultaneously, the IR780 linkage could be cleaved by singlet oxygen generated by itself and resulted in DOX release, which further caused cell damage by chemotherapy. With the combination of PDT and chemotherapy, F/DOX nanoparticles showed remarkable therapeutic efficacy under in vitro and in vivo conditions. Furthermore, the F/DOX nanoparticles are favorable for imaging-guided tumor therapy due to the inherent fluorescence properties of IR780. We thus believe that the synergistic treatment described here leads to an ideal therapeutic approach to hypoxic tumors.
Collapse
Affiliation(s)
- Guoliang Yang
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China .
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China .
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering Center , East China University of Science and Technology , China
| | - Dawei Jiang
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China .
| | - Yudong Xue
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China .
| | - Chaochao Wang
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China .
| | - Yun Gao
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China .
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China .
| |
Collapse
|
48
|
Huff JS, Davis PH, Christy A, Kellis DL, Kandadai N, Toa ZSD, Scholes GD, Yurke B, Knowlton WB, Pensack RD. DNA-Templated Aggregates of Strongly Coupled Cyanine Dyes: Nonradiative Decay Governs Exciton Lifetimes. J Phys Chem Lett 2019; 10:2386-2392. [PMID: 31010285 DOI: 10.1021/acs.jpclett.9b00404] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Molecular excitons are used in a variety of applications including light harvesting, optoelectronics, and nanoscale computing. Controlled aggregation via covalent attachment of dyes to DNA templates is a promising aggregate assembly technique that enables the design of extended dye networks. However, there are few studies of exciton dynamics in DNA-templated dye aggregates. We report time-resolved excited-state dynamics measurements of two cyanine-based dye aggregates, a J-like dimer and an H-like tetramer, formed through DNA-templating of covalently attached dyes. Time-resolved fluorescence and transient absorption indicate that nonradiative decay, in the form of internal conversion, dominates the aggregate ground state recovery dynamics, with singlet exciton lifetimes on the order of tens of picoseconds for the aggregates versus nanoseconds for the monomer. These results highlight the importance of circumventing nonradiative decay pathways in the future design of DNA-templated dye aggregates.
Collapse
Affiliation(s)
| | | | | | | | | | - Zi S D Toa
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Gregory D Scholes
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | | | | | | |
Collapse
|
49
|
Qiu Y, Hu H, Zhao D, Wang J, Wang H, Wang Q, Peng H, Liao Y, Xie X. Concentration-dependent dye aggregation and disassembly triggered by the same artificial helical foldamer. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.02.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Schröder T, Scheible MB, Steiner F, Vogelsang J, Tinnefeld P. Interchromophoric Interactions Determine the Maximum Brightness Density in DNA Origami Structures. NANO LETTERS 2019; 19:1275-1281. [PMID: 30681342 DOI: 10.1021/acs.nanolett.8b04845] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An ideal point light source is as small and as bright as possible. For fluorescent point light sources, homogeneity of the light sources is important as well as that the fluorescent units inside the light source maintain their photophysical properties, which is compromised by dye aggregation. Here we propose DNA origami as a rigid scaffold to arrange dye molecules in a dense pixel array with high control of stoichiometry and dye-dye interactions. In order to find the highest labeling density in a DNA origami structure without influencing dye photophysics, we alter the distance of two ATTO647N dyes in single base pair steps and probe the dye-dye interactions on the single-molecule level. For small distances strong quenching in terms of intensity and fluorescence lifetime is observed. With increasing distance, we observe reduced quenching and molecular dynamics. However, energy transfer processes in the weak coupling regime still have a significant impact and can lead to quenching by singlet-dark-state-annihilation. Our study fills a gap of studying the interactions of dyes relevant for superresolution microscopy with dense labeling and for single-molecule biophysics. Incorporating these findings in a 3D DNA origami object will pave the way to bright and homogeneous DNA origami nanobeads.
Collapse
Affiliation(s)
- Tim Schröder
- Department Chemie and Center for NanoScience , Ludwig-Maximilians-Universitaet Muenchen , Butenandtstrasse 5-13 Haus E , 81377 Muenchen , Germany
| | - Max B Scheible
- GATTAquant GmbH , Am Schlosshof 8 , 91355 Hiltpoltstein , Germany
| | - Florian Steiner
- Department Chemie and Center for NanoScience , Ludwig-Maximilians-Universitaet Muenchen , Butenandtstrasse 5-13 Haus E , 81377 Muenchen , Germany
| | - Jan Vogelsang
- Department Chemie and Center for NanoScience , Ludwig-Maximilians-Universitaet Muenchen , Butenandtstrasse 5-13 Haus E , 81377 Muenchen , Germany
| | - Philip Tinnefeld
- Department Chemie and Center for NanoScience , Ludwig-Maximilians-Universitaet Muenchen , Butenandtstrasse 5-13 Haus E , 81377 Muenchen , Germany
| |
Collapse
|