1
|
Jacobs MI, Johnston MN, Mahmud S. Exploring How the Surface-Area-to-Volume Ratio Influences the Partitioning of Surfactants to the Air-Water Interface in Levitated Microdroplets. J Phys Chem A 2024. [PMID: 39531536 DOI: 10.1021/acs.jpca.4c06210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Quantitative characterization of the surface of microdroplets is important to understanding and predicting numerous chemical and physical processes, such as cloud droplet formation and accelerated chemistry in microdroplets. However, it is increasingly appreciated that the surface compositions of microdroplets do not necessarily match those of macroscale solution due to their large surface-area-to-volume (SA-V) ratios and confined volumes. In this work, we explore how both droplet size and composition affect the surface composition of microdroplets by measuring the equilibrium surface tensions of levitated microdroplets containing a single surfactant. We measure the critical micelle concentrations (CMCs) for surfactants of various strengths (macroscale CMC values ranging from 0.02 to 10 mM) in microdroplets with radii ranging from 5 to 25 μm. We accurately model the surface tensions of microdroplets using an equilibrium partitioning model that only requires droplet size and adsorption parameters from macroscale measurements as inputs. Our model predicts that surfactants have an "effective CMC" in microdroplets that is always larger in value than the corresponding macroscale CMC. In some instances, the effective CMC of a surfactant in microdroplets is several orders of magnitude larger than both its macroscale CMC and its macroscale solubility limit. We present a simple expression for the effective CMC in microdroplets that depends on both the macroscale CMC of a surfactant and the SA-V ratio of the microdroplet. Ultimately, our experimental results and model can be used broadly to predict microdroplet surface compositions when investigating surface-driven accelerated chemistry in microdroplets or estimating cloud droplet activation.
Collapse
Affiliation(s)
- Michael I Jacobs
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, United States
| | - Madelyn N Johnston
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, United States
| | - Shahriar Mahmud
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, United States
| |
Collapse
|
2
|
El Haber M, Gérard V, Kleinheins J, Ferronato C, Nozière B. Measuring the Surface Tension of Atmospheric Particles and Relevant Mixtures to Better Understand Key Atmospheric Processes. Chem Rev 2024; 124:10924-10963. [PMID: 39177157 PMCID: PMC11467905 DOI: 10.1021/acs.chemrev.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Aerosol and aqueous particles are ubiquitous in Earth's atmosphere and play key roles in geochemical processes such as natural chemical cycles, cloud and fog formation, air pollution, visibility, climate forcing, etc. The surface tension of atmospheric particles can affect their size distribution, condensational growth, evaporation, and exchange of chemicals with the atmosphere, which, in turn, are important in the above-mentioned geochemical processes. However, because measuring this quantity is challenging, its role in atmospheric processes was dismissed for decades. Over the last 15 years, this field of research has seen some tremendous developments and is rapidly evolving. This review presents the state-of-the-art of this subject focusing on the experimental approaches. It also presents a unique inventory of experimental adsorption isotherms for over 130 mixtures of organic compounds in water of relevance for model development and validation. Potential future areas of research seeking to better determine the surface tension of atmospheric particles, better constrain laboratory investigations, or better understand the role of surface tension in various atmospheric processes, are discussed. We hope that this review appeals not only to atmospheric scientists but also to researchers from other fields, who could help identify new approaches and solutions to the current challenges.
Collapse
Affiliation(s)
- Manuella El Haber
- Institut
de Recherches sur l’Environnement et la Catalyse de Lyon (IRCELYON),
CNRS and Université Lyon 1, Villeurbanne 69626, France
| | - Violaine Gérard
- Institut
de Recherches sur l’Environnement et la Catalyse de Lyon (IRCELYON),
CNRS and Université Lyon 1, Villeurbanne 69626, France
| | - Judith Kleinheins
- Institute
for Atmospheric and Climate Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Corinne Ferronato
- Institut
de Recherches sur l’Environnement et la Catalyse de Lyon (IRCELYON),
CNRS and Université Lyon 1, Villeurbanne 69626, France
| | - Barbara Nozière
- Department
of Chemistry, KTH Royal Institute of Technology, Stockholm 114 28, Sweden
| |
Collapse
|
3
|
Madawala C, Molina C, Kim D, Gamage DK, Sun M, Leibensperger RJ, Mehndiratta L, Lee J, Kaluarachchi CP, Kimble KA, Sandstrom G, Harb C, Dinasquet J, Malfatti F, Prather KA, Deane GB, Stokes MD, Lee C, Slade JH, Stone EA, Grassian VH, Tivanski AV. Effects of Wind Speed on Size-Dependent Morphology and Composition of Sea Spray Aerosols. ACS EARTH & SPACE CHEMISTRY 2024; 8:1609-1622. [PMID: 39166261 PMCID: PMC11331522 DOI: 10.1021/acsearthspacechem.4c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 08/22/2024]
Abstract
Variable wind speeds over the ocean can have a significant impact on the formation mechanism and physical-chemical properties of sea spray aerosols (SSA), which in turn influence their climate-relevant impacts. Herein, for the first time, we investigate the effects of wind speed on size-dependent morphology and composition of individual nascent SSA generated from wind-wave interactions of natural seawater within a wind-wave channel as a function of size and their particle-to-particle variability. Filter-based thermal optical analysis, atomic force microscopy (AFM), AFM infrared spectroscopy (AFM-IR), and scanning electron microscopy (SEM) were employed in this regard. This study focuses on SSA with sizes within 0.04-1.8 μm generated at two wind speeds: 10 m/s, representing a wind lull scenario over the ocean, and 19 m/s, indicative of the wind speeds encountered in stormy conditions. Filter-based measurements revealed a reduction of the organic mass fraction as the wind speed increases. AFM imaging at 20% relative humidity of individual SSA identified six main morphologies: prism-like, rounded, core-shell, rod, rod inclusion core-shell, and aggregates. At 10 m/s, most SSA were rounded, while at 19 m/s, core-shells became predominant. Based on AFM-IR, rounded SSA at both wind speeds had similar composition, mainly composed of aliphatic and oxygenated species, whereas the shells of core-shells displayed more oxygenated organics at 19 m/s and more aliphatic organics at 10 m/s. Collectively, our observations can be attributed to the disruption of the sea surface microlayer film structure at higher wind speeds. The findings reveal a significant impact of wind speed on morphology and composition of SSA, which should be accounted for accurate assessment of their climate effects.
Collapse
Affiliation(s)
- Chamika
K. Madawala
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Carolina Molina
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Deborah Kim
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | | | - Mengnan Sun
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Raymond J. Leibensperger
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Lincoln Mehndiratta
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Jennie Lee
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | | | - Ke’La A. Kimble
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Greg Sandstrom
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Charbel Harb
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Julie Dinasquet
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Francesca Malfatti
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
- Department
of Life Science, Universita’ degli
Studi di Trieste, Trieste 34127, Italy
| | - Kimberly A. Prather
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Grant B. Deane
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - M. Dale Stokes
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Christopher Lee
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Jonathan H. Slade
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Elizabeth A. Stone
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Vicki H. Grassian
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Alexei V. Tivanski
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
4
|
Zhang S, Xin Y, Sun Y, Xi Z, Wei G, Han M, Liang B, Ou P, Xu K, Qiu J, Huang Z. Particle size effect on surface/interfacial tension and Tolman length of nanomaterials: A simple experimental method combining with theoretical. J Chem Phys 2024; 160:194708. [PMID: 38757618 DOI: 10.1063/5.0204848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
Surface tension and interfacial tension are crucial to the study of nanomaterials. Herein, we report a solubility method using magnesium oxide nanoparticles of different radii (1.8-105.0 nm, MgO NPs) dissolved in pure water as a targeted model; the surface tension and interfacial tension (and their temperature coefficients) were determined by measuring electrical conductivity and combined with the principle of the electrochemical equilibrium method, and the problem of particle size dependence is discussed. Encouragingly, this method can also be used to determine the ionic (atomic or molecular) radius and Tolman length of nanomaterials. This research results disclose that surface/interfacial tension and their temperature coefficients have a significant relationship with particle size. Surface/interfacial tension decreases rapidly with a radius <10 nm (while the temperature coefficients are opposite), while for a radius >10 nm, the effect is minimal. Especially, it is proven that the value of Tolman length is positive, the effect of particle size on Tolman length is consistent with the surface/interfacial tension, and the Tolman length of the bulk does not change much in the temperature range. This work initiates a new era for reliable determination of surface/interfacial tension, their temperature coefficients, ionic radius, and Tolman length of nanomaterials and provides an important theoretical basis for the development and application of various nanomaterials.
Collapse
Affiliation(s)
- Shengjiang Zhang
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, People's Republic of China
- Department of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning 530006, People's Republic of China
| | - Yujia Xin
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, People's Republic of China
| | - Yanan Sun
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, People's Republic of China
| | - Ziheng Xi
- Department of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning 530006, People's Republic of China
| | - Gan Wei
- Department of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning 530006, People's Republic of China
| | - Meng Han
- Department of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning 530006, People's Republic of China
| | - Bing Liang
- Department of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning 530006, People's Republic of China
| | - Panpan Ou
- Wuzhou Product Quality Inspection Institute, Wuzhou 543002, People's Republic of China
| | - Kangzhen Xu
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, People's Republic of China
| | - Jiangyuan Qiu
- Department of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning 530006, People's Republic of China
| | - Zaiyin Huang
- Department of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning 530006, People's Republic of China
| |
Collapse
|
5
|
Xu M, Tchinda NT, Li S, Du L. Enhanced saccharide enrichment in sea spray aerosols by coupling surface-active fatty acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170322. [PMID: 38278262 DOI: 10.1016/j.scitotenv.2024.170322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
The chemical composition of aerosols plays a significant role in aerosol-cloud interactions and, although saccharides make up their largest organic mass fraction, the current process model for understanding sea spray aerosol (SSA) composition struggles to replicate the enrichment of saccharides that has been observed. Here, we simulated the generation of SSA and quantified the enrichment of two soluble saccharides (glucose and trehalose) in SSA with a homemade sea spray aerosol generator. The results of the generation experiments demonstrated that both saccharides, especially trehalose, can promote the generation of SSA, whereas surface-active fatty acids primarily inhibit SSA production due to fewer bubble bursts caused by a large amount of foam accumulation. A significant decrease in surface tension of seawater with the addition of fatty acids was observed, while only a minor decrease was observed for seawater with the addition of only saccharide. Enrichment factors (EFs) of saccharides measured using high performance anion-exchange chromatography (HPAEC) with pulsed amperometric detection (PAD) revealed no enrichment of glucose in submicron SSA, while trehalose showed a slight enrichment. In the presence of surface-active fatty acids on the seawater surface, a significant increase in the enrichment of saccharides in SSA was observed, with glucose and trehalose showing EF of approximately 27-fold and 58-fold, respectively. Besides, this enrichment was accompanied by the accumulation of calcium and magnesium ions. The results presented here suggest that the coupling interaction mechanism of soluble saccharides and surface-active fatty acids on the ocean surface contributes to the enrichment of soluble saccharides in SSA.
Collapse
Affiliation(s)
- Minglan Xu
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Narcisse Tsona Tchinda
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Siyang Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation, School of Ecology and Environment, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Lin Du
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China.
| |
Collapse
|
6
|
Bain A, Ghosh K, Prisle NL, Bzdek BR. Surface-Area-to-Volume Ratio Determines Surface Tensions in Microscopic, Surfactant-Containing Droplets. ACS CENTRAL SCIENCE 2023; 9:2076-2083. [PMID: 38033804 PMCID: PMC10683496 DOI: 10.1021/acscentsci.3c00998] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 12/02/2023]
Abstract
The surface composition of aerosol droplets is central to predicting cloud droplet number concentrations, understanding atmospheric pollutant transformation, and interpreting observations of accelerated droplet chemistry. Due to the large surface-area-to-volume ratios of aerosol droplets, adsorption of surfactant at the air-liquid interface can deplete the droplet's bulk concentration, leading to droplet surface compositions that do not match those of the solutions that produced them. Through direct measurements of individual surfactant-containing, micrometer-sized droplet surface tensions, and fully independent predictive thermodynamic modeling of droplet surface tension, we demonstrate that, for strong surfactants, the droplet's surface-area-to-volume ratio becomes the key factor in determining droplet surface tension rather than differences in surfactant properties. For the same total surfactant concentration, the surface tension of a droplet can be >40 mN/m higher than that of the macroscopic solution that produced it. These observations indicate that an explicit consideration of surface-area-to-volume ratios is required when investigating heterogeneous chemical reactivity at the surface of aerosol droplets or estimating aerosol activation to cloud droplets.
Collapse
Affiliation(s)
- Alison Bain
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Kunal Ghosh
- Center
for Atmospheric Research, University of
Oulu, Oulu 90014, Finland
| | - Nønne L. Prisle
- Center
for Atmospheric Research, University of
Oulu, Oulu 90014, Finland
| | - Bryan R. Bzdek
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
7
|
Madawala C, Lee HD, Kaluarachchi CP, Tivanski AV. Quantifying the Viscosity of Individual Submicrometer Semisolid Particles Using Atomic Force Microscopy. Anal Chem 2023; 95:14566-14572. [PMID: 37740726 PMCID: PMC10551855 DOI: 10.1021/acs.analchem.3c01835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
Atmospheric aerosols' viscosities can vary significantly depending on their composition, mixing states, relative humidity (RH) and temperature. The diffusion time scale of atmospheric gases into an aerosol is largely governed by its viscosity, which in turn influences heterogeneous chemistry and climate-relevant aerosol effects. Quantifying the viscosity of aerosols in the semisolid phase state is particularly important as they are prevalent in the atmosphere and have a wide range of viscosities. Currently, direct viscosity measurements of submicrometer individual atmospheric aerosols are limited, largely due to the inherent size limitations of existing experimental techniques. Herein, we present a method that utilizes atomic force microscopy (AFM) to directly quantify the viscosity of substrate-deposited individual submicrometer semisolid aerosol particles as a function of RH. The method is based on AFM force spectroscopy measurements coupled with the Kelvin-Voigt viscoelastic model. Using glucose, sucrose, and raffinose as model systems, we demonstrate the accuracy of the AFM method within the viscosity range of ∼104-107 Pa s. The method is applicable to individual particles with sizes ranging from tens of nanometers to several micrometers. Furthermore, the method does not require prior knowledge on the composition of studied particles. We anticipate future measurements utilizing the AFM method on atmospheric aerosols at various RH to aid in our understanding of the range of aerosols' viscosities, the extent of particle-to-particle viscosity variability, and how these contribute to the particle diversity observable in the atmosphere.
Collapse
Affiliation(s)
- Chamika
K. Madawala
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Hansol D. Lee
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | | | - Alexei V. Tivanski
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
8
|
Sudersan P, Müller M, Hormozi M, Li S, Butt HJ, Kappl M. Method to Measure Surface Tension of Microdroplets Using Standard AFM Cantilever Tips. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37466052 PMCID: PMC10399288 DOI: 10.1021/acs.langmuir.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Surface tension is a physical property that is central to our understanding of wetting phenomena. One could easily measure liquid surface tension using commercially available tensiometers (e.g., Wilhelmy plate method) or by optical imaging (e.g., pendant drop method). However, such instruments are designed for bulk liquid volumes on the order of milliliters. In order to perform similar measurements on extremely small sample volumes in the range of femtoliters, atomic force microscope (AFM) is considered as a promising tool. It was previously reported that by fabricating a special "nanoneedle"-shaped cantilever probe, a Wilhelmy-like experiment can be performed with AFM. By measuring the capillary force between such special probes and a liquid surface, surface tension could be calculated. Here, we carried out measurements on microscopic droplets with AFM, but instead, using standard pyramidal cantilever tips. The cantilevers were coated with a hydrophilic polyethylene glycol-based polymer brush in a simple one-step process, which reduced its contact angle hysteresis for most liquids. Numerical simulations of a liquid drop interacting with a pyramidal or conical geometry were used to calculate surface tension from the experimentally measured force. The results on micrometer-sized drops agree well with bulk tensiometer measurement of three test liquids (mineral oil, ionic liquid, and glycerol), within a maximum error of 10%. Our method eliminates the need for specially fabricated "nanoneedle" tips, thus reducing the complexity and cost of measurement.
Collapse
Affiliation(s)
- Pranav Sudersan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Maren Müller
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mohammad Hormozi
- Technical University of Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Shuai Li
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Michael Kappl
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
9
|
MRNIP condensates promote DNA double-strand break sensing and end resection. Nat Commun 2022; 13:2638. [PMID: 35551189 PMCID: PMC9098523 DOI: 10.1038/s41467-022-30303-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/25/2022] [Indexed: 01/07/2023] Open
Abstract
The rapid recognition of DNA double-strand breaks (DSBs) by the MRE11/RAD50/NBS1 (MRN) complex is critical for the initiation of DNA damage response and DSB end resection. Here, we show that MRN complex interacting protein (MRNIP) forms liquid-like condensates to promote homologous recombination-mediated DSB repair. The intrinsically disordered region is essential for MRNIP condensate formation. Mechanically, the MRN complex is compartmentalized and concentrated into MRNIP condensates in the nucleus. After DSB formation, MRNIP condensates move to the damaged DNA rapidly to accelerate the binding of DSB by the concentrated MRN complex, therefore inducing the autophosphorylation of ATM and subsequent activation of DNA damage response signaling. Meanwhile, MRNIP condensates-enhanced MRN complex loading further promotes DSB end resection. In addition, data from xenograft models and clinical samples confirm a correlation between MRNIP and radioresistance. Together, these results reveal an important role of MRNIP phase separation in DSB response and the MRN complex-mediated DSB end resection. The MRN complex is a critical sensor and processor of DNA double-strand breaks (DSBs). Here, the authors show that MRNIP forms liquid-like condensates to accelerate the MRN-mediated sensing and end resection of DSB, thereby promoting DSB repair.
Collapse
|
10
|
Wang M, Cui Z, Xue Y. Determination of Interfacial Tension of Nanomaterials and the Effect of Particle Size on Interfacial Tension. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14463-14471. [PMID: 34865488 DOI: 10.1021/acs.langmuir.1c02431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The unique physical and chemical properties and performances of nanomaterials are closely related to the interfacial tension. However, there is no method to accurately measure the interfacial tension of nanomaterials. In addition, the effect of particle size on the interfacial tension of nanoparticles is unclear, and there exist conflicting conclusions about the value and sign of Tolman length. In this paper, a novel method of determining the interfacial tension (solid-liquid and solid-gas interfaces), temperature coefficient of interfacial tension, and Tolman lengths of nanomaterials by adsorption thermodynamics and kinetics was presented. The interfacial tension and its temperature coefficient of the solid-liquid interface of nano cadmium sulfide before adsorption were obtained, and further, the Tolman length was also obtained. The experimental results show that the particle size of nanoparticles has significant effects on the interfacial tension and its temperature coefficient. When the radius is larger than 10 nm, the interfacial tension and its temperature coefficient are almost constant with the decrease of the radius. When the radius is less than 10 nm, the interfacial tension decreases sharply and the temperature coefficient increases sharply with the decrease of the radius, and the temperature coefficient of the interfacial tension is negative. The Tolman length of the solid-liquid interface of nanoparticles is proved to be positive, and the particle size also has a significant effect on the Tolman length. The Tolman length decreases with the decrease of particle size. However, the effects of particle size on the Tolman length become significant only when the particle radius approach or reach the order of magnitudes of molecular (or atomic) radius. The effects of particle size on interfacial tension and Tolman length of nano cadmium sulfide obtained in this paper can provide significant references for the research and applications of interface thermodynamics of other nanomaterials.
Collapse
Affiliation(s)
- Mengying Wang
- Department of Chemistry, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zixiang Cui
- Department of Chemistry, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yongqiang Xue
- Department of Chemistry, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
11
|
Lee HD, Tivanski AV. Atomic Force Microscopy: An Emerging Tool in Measuring the Phase State and Surface Tension of Individual Aerosol Particles. Annu Rev Phys Chem 2021; 72:235-252. [PMID: 33428467 DOI: 10.1146/annurev-physchem-090419-110133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Atmospheric aerosols are suspended particulate matter of varying composition, size, and mixing state. Challenges remain in understanding the impact of aerosols on the climate, atmosphere, and human health. The effect of aerosols depends on their physicochemical properties, such as their hygroscopicity, phase state, and surface tension. These properties are dynamic with respect to the highly variable relative humidity and temperature of the atmosphere. Thus, experimental approaches that permit the measurement of these dynamic properties are required. Such measurements also need to be performed on individual, submicrometer-, and supermicrometer-sized aerosol particles, as individual atmospheric particles from the same source can exhibit great variability in their form and function. In this context, this review focuses on the recent emergence of atomic force microscopy as an experimental tool in physical, analytical, and atmospheric chemistry that enables such measurements. Remaining challenges are noted and suggestions for future studies are offered.
Collapse
Affiliation(s)
- Hansol D Lee
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA; ,
| | - Alexei V Tivanski
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA; ,
| |
Collapse
|
12
|
Liu S, Dutcher CS. Concentration Depth Profile-Based Multilayer Sorption Surface Tension Model for Aqueous Solutions. J Phys Chem A 2021; 125:1577-1588. [PMID: 33591199 DOI: 10.1021/acs.jpca.0c10232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface tension of chemically complex aqueous droplets is significant to atmospheric aerosol particle dynamics and fate. Isotherm-based predictive surface tension models are available which consider one layer of solute molecules sorbed at the liquid-vapor interface. However, the concentration depth profile (CDP) of solute molecules near the surface is continuous, making the single monolayer assumption inappropriate. Here, this work extends the isotherm framework by dividing the surface region into multiple layers to capture the continuity of the spatial distribution of solute molecules for binary solutions. Partition functions are established based on the displacement of water molecules by solute molecules. The number of displaced water molecules and energy of solute molecules at the surface and in the bulk are key model parameters relating surface tension and solute activity. Number densities of surface molecules from molecular dynamic (MD) simulations available in the literature are applied to determine model parameters. Finally, the model is extended to predict surface tension for mixture solutions, considering both independent and dependent adsorptions of different solute species to the liquid-vapor interface. The proposed model works well for both electrolyte and nonelectrolyte solutions and their mixtures from pure solvent to pure solute.
Collapse
Affiliation(s)
- Shihao Liu
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Cari S Dutcher
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, United States.,Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Kaluarachchi CP, Lee HD, Lan Y, Lansakara TI, Tivanski AV. Surface Tension Measurements of Aqueous Liquid-Air Interfaces Probed with Microscopic Indentation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2457-2465. [PMID: 33576233 DOI: 10.1021/acs.langmuir.0c03507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To elucidate the intricate role that the sea surface microlayer (SML) and sea spray aerosols (SSAs) play in climate, understanding the chemical complexity of the SML and how it affects the physical-chemical properties of the microlayer and SSA are important to investigate. While the surface tension of the SML has been studied previously using conventional experimental tools, accurate measurements must be localized to the thickness of the air-liquid interface of the SML. Here we explore the atomic force microscopy (AFM) capabilities to quantify the surface tension of aqueous solution droplets with (sub)micrometer indentation depths into the interface. Sample droplets of hexanoic acid at molar concentrations ranging from 0.1 to 80 mM and SML from a recent wave flume study were investigated. A constant-radius AFM nanoneedle was used to probe ca. 200 μL droplets with 0.3-1.2 μm indentation depths. As a comparison, the surface tension of bulk samples was also measured using a conventional force tensiometer. The data for the hexanoic acid show an excellent overlap between the AFM and force tensiometer surface tension measurements. For the surface tension measurements of the SML, however, the measured values from the AFM were 2.5 mN/m lower than that from the force tensiometer, which was attributed to the structural and chemical complexity of the SML, differences in the probing depth for each method, and the time scale required for the surface film to restructure as the needle is retracted away from the liquid surface. Overall, the study confirmed the accuracy of the AFM method in quantifying the surface tension of aqueous solutions over a wide range of concentrations for surface-active organic compounds. The methodology can be further used to reveal small, yet important, differences in the surface tension of complex air-liquid interfaces such as liquid systems where the type and concentration of surfactants vary with the distance from the air-liquid interface. For such complex systems, AFM measurements of the surface tension as a function of the probing depth and pulling rate may reveal a sublayer film structure of the liquid interface.
Collapse
Affiliation(s)
| | - Hansol D Lee
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Yiling Lan
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | | | - Alexei V Tivanski
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
14
|
Ault AP, Grassian VH, Carslaw N, Collins DB, Destaillats H, Donaldson DJ, Farmer DK, Jimenez JL, McNeill VF, Morrison GC, O'Brien RE, Shiraiwa M, Vance ME, Wells JR, Xiong W. Indoor Surface Chemistry: Developing a Molecular Picture of Reactions on Indoor Interfaces. Chem 2020; 6:3203-3218. [PMID: 32984643 PMCID: PMC7501779 DOI: 10.1016/j.chempr.2020.08.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemical reactions on indoor surfaces play an important role in air quality in indoor environments, where humans spend 90% of their time. We focus on the challenges of understanding the complex chemistry that takes place on indoor surfaces and identify crucial steps necessary to gain a molecular-level understanding of environmental indoor surface chemistry: (1) elucidate key surface reaction mechanisms and kinetics important to indoor air chemistry, (2) define a range of relevant and representative surfaces to probe, and (3) define the drivers of surface reactivity, particularly with respect to the surface composition, light, and temperature. Within the drivers of surface composition are the roles of adsorbed/absorbed water associated with indoor surfaces and the prevalence, inhomogeneity, and properties of secondary organic films that can impact surface reactivity. By combining laboratory studies, field measurements, and modeling we can gain insights into the molecular processes necessary to further our understanding of the indoor environment.
Collapse
Affiliation(s)
- Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.,Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA.,Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicola Carslaw
- Department of Environment and Geography, University of York, York, North Yorkshire YO10 5NG, UK
| | - Douglas B Collins
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Department of Chemistry, Bucknell University, Lewisburg, PA 17837, USA
| | - Hugo Destaillats
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - D James Donaldson
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Department of Physical and Environmental Sciences, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Jose L Jimenez
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO 80309, USA
| | - V Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Glenn C Morrison
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rachel E O'Brien
- Department of Chemistry, College of William and Mary, Williamsburg, VA 23185, USA
| | - Manabu Shiraiwa
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Marina E Vance
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - J R Wells
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Wei Xiong
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.,Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
15
|
Or VW, Wade M, Patel S, Alves MR, Kim D, Schwab S, Przelomski H, O'Brien R, Rim D, Corsi RL, Vance ME, Farmer DK, Grassian VH. Glass surface evolution following gas adsorption and particle deposition from indoor cooking events as probed by microspectroscopic analysis. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1698-1709. [PMID: 32661531 DOI: 10.1039/d0em00156b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Indoor surfaces are extremely diverse and their interactions with airborne compounds and aerosols influence the lifetime and reactivity of indoor emissions. Direct measurements of the physical and chemical state of these surfaces provide insights into the underlying physical and chemical processes involving surface adsorption, surface partitioning and particle deposition. Window glass, a ubiquitous indoor surface, was placed vertically during indoor activities throughout the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign and then analyzed to measure changes in surface morphology and surface composition. Atomic force microscopy-infrared (AFM-IR) spectroscopic analyses reveal that deposition of submicron particles from cooking events is a contributor to modifying the chemical and physical state of glass surfaces. These results demonstrate that the deposition of glass surfaces can be an important sink for organic rich particles material indoors. These findings also show that particle deposition contributes enough organic matter from a single day of exposure equivalent to a uniform film up to two nanometers in thickness, and that the chemical distinctness of different indoor activities is reflective of the chemical and morphological changes seen in these indoor surfaces. Comparison of the experimental results to physical deposition models shows variable agreement, suggesting that processes not captured in physical deposition models may play a role in the sticking of particles on indoor surfaces.
Collapse
Affiliation(s)
- Victor W Or
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA.
| | - Michael Wade
- Department of Civil, Architectural and Environmental Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Sameer Patel
- Mechanical Engineering Department, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Michael R Alves
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA.
| | - Deborah Kim
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA.
| | - Sarah Schwab
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA.
| | - Hannah Przelomski
- Department of Chemistry, William & Mary, Williamsburg, Virginia 23185, USA
| | - Rachel O'Brien
- Department of Chemistry, William & Mary, Williamsburg, Virginia 23185, USA
| | - Donghyun Rim
- Department of Architectural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Richard L Corsi
- Maseeh College of Engineering & Computer Science, Portland State University, Portland, Oregon 97021, USA
| | - Marina E Vance
- Mechanical Engineering Department, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA. and Scripps Institution of Oceanography and Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
16
|
Abstract
Advancements in designing complex models for atmospheric aerosol science and aerosol-cloud interactions rely vitally on accurately measuring the physicochemical properties of microscopic particles. Optical tweezers are a laboratory-based platform that can provide access to such measurements as they are able to isolate individual particles from an ensemble. The surprising ability of a focused beam of light to trap and hold a single particle can be conceptually understood in the ray optics regime using momentum transfer and Newton's second law. The same radiation pressure that results in stable trapping will also exert a deforming optical stress on the surface of the particle. For micron-sized aqueous droplets held in the air, the deformation will be on the order of a few nanometers or less, clearly not observable through optical microscopy. In this study, we utilize cavity-enhanced Raman scattering and a phenomenon known as thermal locking to measure small deformations in optically trapped droplets. With the aid of light-scattering calculations and a model that balances the hydrostatic pressure, surface tension, and optical pressure across the air-droplet interface, we can accurately determine surface tension from our measurements. Our approach is applied to 2 systems of atmospheric interest: aqueous organic and inorganic aerosol.
Collapse
|
17
|
Luo M, Dommer AC, Schiffer JM, Rez DJ, Mitchell AR, Amaro RE, Grassian VH. Surfactant Charge Modulates Structure and Stability of Lipase-Embedded Monolayers at Marine-Relevant Aerosol Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9050-9060. [PMID: 31188612 DOI: 10.1021/acs.langmuir.9b00689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lipases, as well as other enzymes, are present and active within the sea surface microlayer (SSML). Upon bubble bursting, lipases partition into sea spray aerosol (SSA) along with surface-active molecules such as lipids. Lipases are likely to be embedded in the lipid monolayer at the SSA surface and thus have the potential to influence SSA interfacial structure and chemistry. Elucidating the structure of the lipid monolayer at SSA interfaces and how this structure is altered upon interaction with a protein system like lipase is of interest, given the importance of how aerosols interact with sunlight, influence cloud formation, and provide surfaces for chemical reactions. Herein, we report an integrated experimental and computational study of Burkholderia cepacia lipase (BCL) embedded in a lipid monolayer and highlight the important role of electrostatic, rather than hydrophobic, interactions as a driver for monolayer stability. Specifically, we combine Langmuir film experiments and molecular dynamics (MD) simulations to examine the detailed interactions between the zwitterionic dipalmitoylphosphatidylcholine (DPPC) monolayer and BCL. Upon insertion of BCL from the underlying subphase into the lipid monolayer, it is shown that BCL permeates and largely disorders the monolayer while strongly interacting with zwitterionic DPPC molecules, as experimentally observed by Langmuir adsorption curves and infrared reflectance absorbance spectroscopy. Explicitly solvated, all-atom MD is then used to provide insights into inter- and intramolecular interactions that drive these observations, with specific attention to the formation of salt bridges or ionic-bonding interactions. We show that after insertion into the DPPC monolayer, lipase is maintained at high surface pressures and in large BCL concentrations by forming a salt-bridge-stabilized lipase-DPPC complex. In comparison, when embedded in an anionic monolayer at low surface pressures, BCL preferentially forms intramolecular salt bridges, reducing its total favorable interactions with the surfactant and partitioning out of the monolayer shortly after injection. Overall, this study shows that the structure and dynamics of lipase-embedded SSA surfaces vary based on surface charge and pressure and that these variations have the potential to differentially modulate the properties of marine aerosols.
Collapse
Affiliation(s)
- Man Luo
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Abigail C Dommer
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Jamie M Schiffer
- Janssen Pharmaceuticals , 3210 Merryfield Row , San Diego , California 92093 , United States
| | - Donald J Rez
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Andrew R Mitchell
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
- Scripps Institution of Oceanography , University of California , San Diego , California 92037 , United States
| |
Collapse
|
18
|
Ray KK, Lee HD, Gutierrez MA, Chang FJ, Tivanski AV. Correlating 3D Morphology, Phase State, and Viscoelastic Properties of Individual Substrate-Deposited Particles. Anal Chem 2019; 91:7621-7630. [DOI: 10.1021/acs.analchem.9b00333] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Kamal K. Ray
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Hansol D. Lee
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Miguel A. Gutierrez
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Franklin J. Chang
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Alexei V. Tivanski
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
19
|
Miles REH, Glerum MWJ, Boyer HC, Walker JS, Dutcher CS, Bzdek BR. Surface Tensions of Picoliter Droplets with Sub-Millisecond Surface Age. J Phys Chem A 2019; 123:3021-3029. [PMID: 30864798 DOI: 10.1021/acs.jpca.9b00903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aerosols are key components of the atmosphere and play important roles in many industrial processes. Because aerosol particles have high surface-to-volume ratios, their surface properties are especially important. However, direct measurement of the surface properties of aerosol particles is challenging. In this work, we describe an approach to measure the surface tension of picoliter volume droplets with surface age <1 ms by resolving their dynamic oscillations in shape immediately after ejection from a microdroplet dispenser. Droplet shape oscillations are monitored by highly time-resolved (500 ns) stroboscopic imaging, and droplet surface tension is accurately retrieved across a wide range of droplet sizes (10-25 μm radius) and surface ages (down to ∼100 μs). The approach is validated for droplets containing sodium chloride, glutaric acid, and water, which all show no variation in surface tension with surface age. Experimental results from the microdroplet dispenser approach are compared to complementary surface tension measurements of 5-10 μm radius droplets with aged surfaces using a holographic optical tweezers approach and predictions of surface tension using a statistical thermodynamic model. These approaches combined will allow investigation of droplet surface tension across a wide range of droplet sizes, compositions, and surface ages.
Collapse
Affiliation(s)
- Rachael E H Miles
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
| | - Michael W J Glerum
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
| | - Hallie C Boyer
- Department of Mechanical Engineering , University of Minnesota, Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Jim S Walker
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
| | - Cari S Dutcher
- Department of Mechanical Engineering , University of Minnesota, Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Bryan R Bzdek
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
| |
Collapse
|
20
|
Faust JA, Abbatt JPD. Organic Surfactants Protect Dissolved Aerosol Components against Heterogeneous Oxidation. J Phys Chem A 2019; 123:2114-2124. [DOI: 10.1021/acs.jpca.9b00167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jennifer A. Faust
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | | |
Collapse
|
21
|
Taylor GT. Windows into Microbial Seascapes: Advances in Nanoscale Imaging and Application to Marine Sciences. ANNUAL REVIEW OF MARINE SCIENCE 2019; 11:465-490. [PMID: 30134123 DOI: 10.1146/annurev-marine-121916-063612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Geochemical cycles of all nonconservative elements are mediated by microorganisms over nanometer spatial scales. The pelagic seascape is known to possess microstructure imposed by heterogeneous distributions of particles, polymeric gels, biologically important chemicals, and microbes. While indispensable, most traditional oceanographic observational approaches overlook this heterogeneity and ignore subtleties, such as activity hot spots, symbioses, niche partitioning, and intrapopulation phenotypic variations, that can provide a deeper mechanistic understanding of planktonic ecosystem function. As part of the movement toward cultivation-independent tools in microbial oceanography, techniques to examine the ecophysiology of individual populations and their role in chemical transformations at spatial scales relevant to microorganisms have been developed. This review presents technologies that enable geochemical and microbiological interrogations at spatial scales ranging from 0.02 to a few hundred micrometers, particularly focusing on atomic force microscopy, nanoscale secondary ion mass spectrometry, and confocal Raman microspectroscopy and introducing promising approaches for future applications in marine sciences.
Collapse
Affiliation(s)
- Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794, USA;
| |
Collapse
|
22
|
Mekic M, Loisel G, Zhou W, Jiang B, Vione D, Gligorovski S. Ionic-Strength Effects on the Reactive Uptake of Ozone on Aqueous Pyruvic Acid: Implications for Air-Sea Ozone Deposition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12306-12315. [PMID: 30290116 DOI: 10.1021/acs.est.8b03196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A vertical wetted-wall flow-tube technique was used to explore the ionic strength effects at the air-water interface in mediating the sea-surface reaction between ozone (O3) and pyruvic acid (PA). The uptake coefficients of ozone on aqueous PA increase substantially with the concentrations of bromide (Br-) ions, clearly indicating that the dry deposition of ozone could be significantly enhanced due to the presence of carbonyl compounds such as PA at the bromide-rich sea surface. Based on the observed uptake coefficients, the estimated deposition velocity of ozone (100 ppb) for a nanomolar range of PA concentrations is ∼1 × 10-3 m s-1, which represents a significant contribution to the known deposition velocity of ozone at the sea surface. The analysis of reaction products by ultra-high-resolution Fourier transform-ion cyclotron resonance mass spectrometry suggests the formation of oligomers during both the dark and light-induced heterogeneous reactions between gaseous O3 and PA occurring at the surface of a dilute aqueous phase (representative of cloud droplets). The detected high-molecular-weight compounds are much more complex than the oligomeric species identified during the photolytic degradation of bulk aqueous PA alone.
Collapse
Affiliation(s)
- Majda Mekic
- State Key Laboratory of Organic Geochemistry , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510 640 , China
- University of Chinese Academy of Sciences , Beijing 10069 , China
| | - Gwendal Loisel
- State Key Laboratory of Organic Geochemistry , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510 640 , China
| | - Wentao Zhou
- State Key Laboratory of Organic Geochemistry , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510 640 , China
- University of Chinese Academy of Sciences , Beijing 10069 , China
| | - Bin Jiang
- State Key Laboratory of Organic Geochemistry , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510 640 , China
| | - Davide Vione
- Dipartimento di Chimica , Università degli Studi di Torino , Via Pietro Giuria 5 , 10125 Torino , Italy
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510 640 , China
| |
Collapse
|
23
|
Abstract
Due to the adverse effect of atmospheric aerosols on public health and their ability to affect climate, extensive research has been undertaken in recent decades to understand their sources and sinks, as well as to study their physical and chemical properties. Atmospheric aerosols are important players in the Earth’s radiative budget, affecting incoming and outgoing solar radiation through absorption and scattering by direct and indirect means. While the cooling properties of pure inorganic aerosols are relatively well understood, the impact of organic aerosols on the radiative budget is unclear. Additionally, organic aerosols are transformed through chemical reactions during atmospheric transport. The resulting complex mixture of organic aerosol has variable physical and chemical properties that contribute further to the uncertainty of these species modifying the radiative budget. Correlations between oxidative processing and increased absorptivity, hygroscopicity, and cloud condensation nuclei activity have been observed, but the mechanisms behind these phenomena have remained unexplored. Herein, we review environmentally relevant heterogeneous mechanisms occurring on interfaces that contribute to the processing of aerosols. Recent laboratory studies exploring processes at the aerosol–air interface are highlighted as capable of generating the complexity observed in the environment. Furthermore, a variety of laboratory methods developed specifically to study these processes under environmentally relevant conditions are introduced. Remarkably, the heterogeneous mechanisms presented might neither be feasible in the gas phase nor in the bulk particle phase of aerosols at the fast rates enabled on interfaces. In conclusion, these surface mechanisms are important to better understand how organic aerosols are transformed in the atmosphere affecting the environment.
Collapse
|
24
|
Lee HD, Ray KK, Tivanski AV. Solid, Semisolid, and Liquid Phase States of Individual Submicrometer Particles Directly Probed Using Atomic Force Microscopy. Anal Chem 2017; 89:12720-12726. [DOI: 10.1021/acs.analchem.7b02755] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Hansol D. Lee
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Kamal K. Ray
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Alexei V. Tivanski
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|