1
|
Omwansu W, Musembi R, Derese S. Graph-based analysis of H-bond networks and unsupervised learning reveal conformational coupling in prion peptide segments. Phys Chem Chem Phys 2024. [PMID: 39291469 DOI: 10.1039/d4cp02123a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In this study, we employed a comprehensive computational approach to investigate the physical chemistry of the water networks surrounding hydrated peptide segments, as derived from molecular dynamics simulations. Our analysis uncovers a complex interplay of direct and water-mediated hydrogen bonds that intricately weave through the peptides. We demonstrate that these hydrogen bond networks encode critical information about the peptides' conformational behavior, with the dimensionality of these networks showing sensitivity to the peptides' conformations. Additionally, we estimated the free-energy landscape of the peptides across various conformations, revealing that their structures are predominantly characterized by unfolded, partially folded, and folded configurations, resulting in broad and rugged free-energy surfaces due to the numerous degrees of freedom contributed by the surrounding solvent. Importantly, the structured nature of this free-energy landscape becomes obscured when conventional collective variables, such as the number of hydrogen bonds, are used. Our findings provide new insights into the molecular mechanisms that couple protein and solvent degrees of freedom, highlighting their significance in the functioning of biological systems.
Collapse
Affiliation(s)
- Wycliffe Omwansu
- Department of Physics, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Robinson Musembi
- Department of Physics, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Solomon Derese
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| |
Collapse
|
2
|
Kapur B, Baldessari F, Lazaratos M, Nar H, Schnapp G, Giorgetti A, Bondar AN. Protons taken hostage: Dynamic H-bond networks of the pH-sensing GPR68. Comput Struct Biotechnol J 2023; 21:4370-4384. [PMID: 37711190 PMCID: PMC10498176 DOI: 10.1016/j.csbj.2023.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Proton-sensing G Protein Coupled Receptors (GPCRs) sense changes in the extracellular pH to effect cell signaling for cellular homeostasis. They tend to be overexpressed in solid tumors associated with acidic extracellular pH, and are of direct interest as drug targets. How proton-sensing GPCRs sense extracellular acidification and activate upon protonation change is important to understand, because it may guide the design of therapeutics. Lack of publicly available experimental structures make it challenging to discriminate between conflicting mechanisms proposed for proton-binding, as main roles have been assigned to either an extracellular histidine cluster or to an internal carboxylic triad. Here we present a protocol to derive and evaluate structural models of the proton-sensing GPR68. This approach integrates state-of-the-art homology modeling with microsecond-timescale atomistic simulations, and with a detailed assessment of the compatibility of the structural models with known structural features of class A GPCRs. To decipher structural elements of potential interest for protonation-coupled conformational changes of GPR68, we used the best-compatible model as a starting point for independent atomistic simulations of GPR68 with different protonation states, and graph computations to characterize the response of GPR68 to changes in protonation. We found that GPR68 hosts an extended hydrogen-bond network that inter-connects the extracellular histidine cluster to the internal carboxylic triad, and which can even reach groups at the cytoplasmic G-protein binding site. Taken together, results suggest that GPR68 relies on dynamic, hydrogen-bond networks to inter-connect extracellular and internal proton-binding sites, and to elicit conformational changes at the cytoplasmic G-protein binding site.
Collapse
Affiliation(s)
- Bhav Kapur
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
- Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | | | - Michalis Lazaratos
- Department of Physics, Theoretical Molecular Biophysics Group, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Herbert Nar
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Gisela Schnapp
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Alejandro Giorgetti
- University of Verona, Department of Biotechnology, 37134 Verona, Italy
- Forschungszentrum Jülich, Institute for Neuroscience and Medicine and Institute for Advanced Simulations (IAS-5/INM-9), Computational Biomedicine, Wilhelm-Johnen Straße, 52525 Jülich, Germany
| | - Ana-Nicoleta Bondar
- Forschungszentrum Jülich, Institute for Neuroscience and Medicine and Institute for Advanced Simulations (IAS-5/INM-9), Computational Biomedicine, Wilhelm-Johnen Straße, 52525 Jülich, Germany
- University of Bucharest, Faculty of Physics, Str. Atomiştilor 405, 077125 Bucharest-Măgurele, Romania
| |
Collapse
|
3
|
Morizumi T, Kim K, Li H, Govorunova EG, Sineshchekov OA, Wang Y, Zheng L, Bertalan É, Bondar AN, Askari A, Brown LS, Spudich JL, Ernst OP. Structures of channelrhodopsin paralogs in peptidiscs explain their contrasting K + and Na + selectivities. Nat Commun 2023; 14:4365. [PMID: 37474513 PMCID: PMC10359266 DOI: 10.1038/s41467-023-40041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
Kalium channelrhodopsin 1 from Hyphochytrium catenoides (HcKCR1) is a light-gated channel used for optogenetic silencing of mammalian neurons. It selects K+ over Na+ in the absence of the canonical tetrameric K+ selectivity filter found universally in voltage- and ligand-gated channels. The genome of H. catenoides also encodes a highly homologous cation channelrhodopsin (HcCCR), a Na+ channel with >100-fold larger Na+ to K+ permeability ratio. Here, we use cryo-electron microscopy to determine atomic structures of these two channels embedded in peptidiscs to elucidate structural foundations of their dramatically different cation selectivity. Together with structure-guided mutagenesis, we show that K+ versus Na+ selectivity is determined at two distinct sites on the putative ion conduction pathway: in a patch of critical residues in the intracellular segment (Leu69/Phe69, Ile73/Ser73 and Asp116) and within a cluster of aromatic residues in the extracellular segment (primarily, Trp102 and Tyr222). The two filters are on the opposite sides of the photoactive site involved in channel gating.
Collapse
Affiliation(s)
- Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Kyumhyuk Kim
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Hai Li
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Elena G Govorunova
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Oleg A Sineshchekov
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Yumei Wang
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Lei Zheng
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Éva Bertalan
- Physikzentrum, RWTH-Aachen University, Aachen, Germany
| | - Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Măgurele, Romania
- Institute of Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, Germany
| | - Azam Askari
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - John L Spudich
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA.
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Bondar AN, Barboiu M. Protons at bio-interfaces. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184139. [PMID: 36775006 DOI: 10.1016/j.bbamem.2023.184139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Affiliation(s)
- Ana-Nicoleta Bondar
- University of Bucharest, Faculty of Physics, Atomiștilor 405, Măgurele 077125, Romania; Forschungszentrum Jülich, Institute of Computational Biomedicine, IAS-5/INM-9, Wilhelm-Johnen Straße, 5428 Jülich, Germany.
| | - Mihail Barboiu
- Université de Montpelier, Institut Europeen de Membranes, Adaptive Supramolecular Nanosystems Group, ENSCM-CNRS, Place E. Bataillon CC047, 34095 Motpellier, France.
| |
Collapse
|
5
|
Bondar AN. Interplay between local protein interactions and water bridging of a proton antenna carboxylate cluster. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184052. [PMID: 36116514 DOI: 10.1016/j.bbamem.2022.184052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/17/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Proteins that bind protons at cell membrane interfaces often expose to the bulk clusters of carboxylate and histidine sidechains that capture protons transiently and, in proton transporters, deliver protons to an internal site. The protonation-coupled dynamics of bulk-exposed carboxylate clusters, also known as proton antennas, is poorly described. An essential open question is how water-mediated bridges between sidechains of the cluster respond to protonation change and facilitate transient proton storage. To address this question, here I studied the protonation-coupled dynamics at the proton-binding antenna of PsbO, a small extrinsinc subunit of the photosystem II complex, with atomistic molecular dynamics simulations and systematic graph-based analyses of dynamic protein and protein-water hydrogen-bond networks. The protonation of specific carboxylate groups is found to impact the dynamics of their local protein-water hydrogen-bond clusters. Regardless of the protonation state considered for PsbO, carboxylate pairs that can sample direct hydrogen bonding, or bridge via short hydrogen-bonded water chains, anchor to nearby basic or polar protein sidechains. As a result, carboxylic sidechains of the hypothesized antenna cluster are part of dynamic hydrogen bond networks that may rearrange rapidly when the protonation changes.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- University of Bucharest, Faculty of Physics, Str. Atomiştilor 405, Bucharest-Măgurele 077125, Romania; Forschungszentrum Jülich, Institute for Neuroscience and Medicine and Institute for Advanced Simulations (IAS-5/INM-9), Computational Biomedicine, 52425 Jülich, Germany; Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Arnimallee 14, D-14195 Berlin, Germany.
| |
Collapse
|
6
|
Bertalan É, Lesca E, Schertler GFX, Bondar AN. C-Graphs Tool with Graphical User Interface to Dissect Conserved Hydrogen-Bond Networks: Applications to Visual Rhodopsins. J Chem Inf Model 2021; 61:5692-5707. [PMID: 34670076 DOI: 10.1021/acs.jcim.1c00827] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dynamic hydrogen-bond networks provide proteins with structural plasticity required to translate signals such as ligand binding into a cellular response or to transport ions and larger solutes across membranes and, thus, are of central interest to understand protein reaction mechanisms. Here, we present C-Graphs, an efficient tool with graphical user interface that analyzes data sets of static protein structures or of independent numerical simulations to identify conserved, vs unique, hydrogen bonds and hydrogen-bond networks. For static structures, which may belong to the same protein or to proteins with different sequences, C-Graphs uses a clustering algorithm to identify sites of the hydrogen-bond network where waters are conserved among the structures. Using C-Graphs, we identify an internal protein-water hydrogen-bond network common to static structures of visual rhodopsins and adenosine A2A G protein-coupled receptors (GPCRs). Molecular dynamics simulations of a visual rhodopsin indicate that the conserved hydrogen-bond network from static structure can recruit dynamic hydrogen bonds and extend throughout most of the receptor. We release with this work the code for C-Graphs and its graphical user interface.
Collapse
Affiliation(s)
- Éva Bertalan
- Theoretical Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Elena Lesca
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, ETH Zürich, 5303 Villigen-PSI, Switzerland.,Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Gebhard F X Schertler
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, ETH Zürich, 5303 Villigen-PSI, Switzerland.,Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany.,Faculty of Physics, University of Bucharest, Strada Atomiştilor Nr. 405, Măgurele 077125, Romania.,Computational Biomedicine, IAS-5/INM-9, Institute for Neuroscience and Medicine and Institute for Advanced Simulations, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
7
|
Bondar AN. Proton-Binding Motifs of Membrane-Bound Proteins: From Bacteriorhodopsin to Spike Protein S. Front Chem 2021; 9:685761. [PMID: 34136464 PMCID: PMC8203321 DOI: 10.3389/fchem.2021.685761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Membrane-bound proteins that change protonation during function use specific protein groups to bind and transfer protons. Knowledge of the identity of the proton-binding groups is of paramount importance to decipher the reaction mechanism of the protein, and protonation states of prominent are studied extensively using experimental and computational approaches. Analyses of model transporters and receptors from different organisms, and with widely different biological functions, indicate common structure-sequence motifs at internal proton-binding sites. Proton-binding dynamic hydrogen-bond networks that are exposed to the bulk might provide alternative proton-binding sites and proton-binding pathways. In this perspective article I discuss protonation coupling and proton binding at internal and external carboxylate sites of proteins that use proton transfer for function. An inter-helical carboxylate-hydroxyl hydrogen-bond motif is present at functionally important sites of membrane proteins from archaea to the brain. External carboxylate-containing H-bond clusters are observed at putative proton-binding sites of protonation-coupled model proteins, raising the question of similar functionality in spike protein S.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| |
Collapse
|
8
|
Siemers M, Bondar AN. Interactive Interface for Graph-Based Analyses of Dynamic H-Bond Networks: Application to Spike Protein S. J Chem Inf Model 2021; 61:2998-3014. [PMID: 34133162 DOI: 10.1021/acs.jcim.1c00306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dynamic hydrogen-bond networks are key determinants of protein conformational dynamics. In the case of macromolecular protein complexes, which can have a large number of hydrogen bonds giving rise to extensive hydrogen-bond networks, efficient algorithms are required to analyze interactions that could be important for the dynamics and biological function of the complex. We present here a highly efficient, standalone interface designed for analyses of dynamical hydrogen-bond networks of biomolecules and macromolecular complexes. To facilitate a comprehensive description of protein dynamics, the interface includes analyses of hydrophobic interactions. We illustrate the usefulness and workflow of the interface by dissecting the dynamics of the ectodomain of SARS-CoV-2 protein S in its closed conformation. We find that protein S contains numerous local clusters of dynamic hydrogen bonds and identify hydrogen bonds that are sampled persistently. The receptor binding domain of the spike protein hosts only a handful of persistent hydrogen-bond clusters, suggesting structural plasticity. Our data analysis interface is released here for open use.
Collapse
Affiliation(s)
- Malte Siemers
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
9
|
Kaur D, Zhang Y, Reiss KM, Mandal M, Brudvig GW, Batista VS, Gunner MR. Proton exit pathways surrounding the oxygen evolving complex of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148446. [PMID: 33964279 DOI: 10.1016/j.bbabio.2021.148446] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/17/2022]
Abstract
Photosystem II allows water to be the primary electron source for the photosynthetic electron transfer chain. Water is oxidized to dioxygen at the Oxygen Evolving Complex (OEC), a Mn4CaO5 inorganic core embedded on the lumenal side of PSII. Water-filled channels surrounding the OEC must bring in substrate water molecules, remove the product protons to the lumen, and may transport the product oxygen. Three water-filled channels, denoted large, narrow, and broad, extend from the OEC towards the aqueous surface more than 15 Å away. However, the role of each pathway in the transport in and out of the OEC is yet to be established. Here, we combine Molecular Dynamics (MD), Multi Conformation Continuum Electrostatics (MCCE) and Network Analysis to compare and contrast the three potential proton transfer paths. Hydrogen bond network analysis shows that near the OEC the waters are highly interconnected with similar free energy for hydronium at all locations. The paths diverge as they move towards the lumen. The water chain in the broad channel is better connected than in the narrow and large channels, where disruptions in the network are observed approximately 10 Å from the OEC. In addition, the barrier for hydronium translocation is lower in the broad channel. Thus, a proton released from any location on the OEC can access all paths, but the likely exit to the lumen passes through PsbO via the broad channel.
Collapse
Affiliation(s)
- Divya Kaur
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY 10016, United States; Department of Physics, City College of New York, NY 10031, United States
| | - Yingying Zhang
- Department of Physics, City College of New York, NY 10031, United States; Department of Physics, The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - Krystle M Reiss
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Manoj Mandal
- Department of Physics, City College of New York, NY 10031, United States
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - M R Gunner
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY 10016, United States; Department of Physics, City College of New York, NY 10031, United States; Department of Physics, The Graduate Center of the City University of New York, New York, NY 10016, United States.
| |
Collapse
|
10
|
Characterization of the Features of Water Inside the SecY Translocon. J Membr Biol 2021; 254:133-139. [PMID: 33811496 DOI: 10.1007/s00232-021-00178-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Despite extended experimental and computational studies, the mechanism regulating membrane protein folding and stability in cell membranes is not fully understood. In this review, I will provide a personal and partial account of the scientific efforts undertaken by Dr. Stephen White to shed light on this topic. After briefly describing the role of water and the hydrophobic effect on cellular processes, I will discuss the physical chemistry of water confined inside the SecY translocon pore. I conclude with a review of recent literature that attempts to answer fundamental questions on the pathway and energetics of translocon-guided membrane protein insertion.
Collapse
|
11
|
Karathanou K, Lazaratos M, Bertalan É, Siemers M, Buzar K, Schertler GFX, Del Val C, Bondar AN. A graph-based approach identifies dynamic H-bond communication networks in spike protein S of SARS-CoV-2. J Struct Biol 2020; 212:107617. [PMID: 32919067 PMCID: PMC7481144 DOI: 10.1016/j.jsb.2020.107617] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
Abstract
Corona virus spike protein S is a large homo-trimeric protein anchored in the membrane of the virion particle. Protein S binds to angiotensin-converting-enzyme 2, ACE2, of the host cell, followed by proteolysis of the spike protein, drastic protein conformational change with exposure of the fusion peptide of the virus, and entry of the virion into the host cell. The structural elements that govern conformational plasticity of the spike protein are largely unknown. Here, we present a methodology that relies upon graph and centrality analyses, augmented by bioinformatics, to identify and characterize large H-bond clusters in protein structures. We apply this methodology to protein S ectodomain and find that, in the closed conformation, the three protomers of protein S bring the same contribution to an extensive central network of H-bonds, and contribute symmetrically to a relatively large H-bond cluster at the receptor binding domain, and to a cluster near a protease cleavage site. Markedly different H-bonding at these three clusters in open and pre-fusion conformations suggest dynamic H-bond clusters could facilitate structural plasticity and selection of a protein S protomer for binding to the host receptor, and proteolytic cleavage. From analyses of spike protein sequences we identify patches of histidine and carboxylate groups that could be involved in transient proton binding.
Collapse
Affiliation(s)
- Konstantina Karathanou
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Michalis Lazaratos
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Éva Bertalan
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Malte Siemers
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Krzysztof Buzar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Gebhard F X Schertler
- Paul Scherrer Institut, Department of Biology and Chemistry, Laboratory of Biomolecular Research, CH-5303 Villigen-PSI, Switzerland; ETH Zürich, Department of Biology, 8093 Zürich, Switzerland
| | - Coral Del Val
- University of Granada, Department of Computer Science and Artificial Intelligence, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), 18014 Granada, Spain
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany.
| |
Collapse
|
12
|
Gerland L, Friedrich D, Hopf L, Donovan EJ, Wallmann A, Erdmann N, Diehl A, Bommer M, Buzar K, Ibrahim M, Schmieder P, Dobbek H, Zouni A, Bondar A, Dau H, Oschkinat H. pH-Dependent Protonation of Surface Carboxylate Groups in PsbO Enables Local Buffering and Triggers Structural Changes. Chembiochem 2020; 21:1597-1604. [PMID: 31930693 PMCID: PMC7318136 DOI: 10.1002/cbic.201900739] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 11/11/2022]
Abstract
Photosystem II (PSII) catalyzes the splitting of water, releasing protons and dioxygen. Its highly conserved subunit PsbO extends from the oxygen-evolving center (OEC) into the thylakoid lumen and stabilizes the catalytic Mn4 CaO5 cluster. The high degree of conservation of accessible negatively charged surface residues in PsbO suggests additional functions, as local pH buffer or by affecting the flow of protons. For this discussion, we provide an experimental basis, through the determination of pKa values of water-accessible aspartate and glutamate side-chain carboxylate groups by means of NMR. Their distribution is strikingly uneven, with high pKa values around 4.9 clustered on the luminal PsbO side and values below 3.5 on the side facing PSII. pH-dependent changes in backbone chemical shifts in the area of the lumen-exposed loops are observed, indicating conformational changes. In conclusion, we present a site-specific analysis of carboxylate group proton affinities in PsbO, providing a basis for further understanding of proton transport in photosynthesis.
Collapse
Affiliation(s)
- Lisa Gerland
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyThielallee 6314195BerlinGermany
| | - Daniel Friedrich
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyThielallee 6314195BerlinGermany
| | - Linus Hopf
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyThielallee 6314195BerlinGermany
| | - Eavan J. Donovan
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
| | - Arndt Wallmann
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
| | - Natalja Erdmann
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
| | - Anne Diehl
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
| | - Martin Bommer
- Max-Delbrück-Centrum für Molekulare MedizinRobert-Rössle-Strasse 1013125BerlinGermany
| | - Krzysztof Buzar
- Freie Universität BerlinDepartment of Physics, Theoretical Molecular BiophysicsArnimallee 1414195BerlinGermany
| | - Mohamed Ibrahim
- Humboldt-Universität zu BerlinInstitute of BiologyPhilippstrasse 1310099BerlinGermany
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
| | - Holger Dobbek
- Humboldt-Universität zu BerlinInstitute of BiologyPhilippstrasse 1310099BerlinGermany
| | - Athina Zouni
- Humboldt-Universität zu BerlinInstitute of BiologyPhilippstrasse 1310099BerlinGermany
| | - Ana‐Nicoleta Bondar
- Freie Universität BerlinDepartment of Physics, Theoretical Molecular BiophysicsArnimallee 1414195BerlinGermany
| | - Holger Dau
- Freie Universität BerlinDepartment of Physics, Biophysics and PhotosynthesisArnimallee 1414195BerlinGermany
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare PharmakologieDepartment of NMR-Supported Structural BiologyRobert-Rössle-Strasse 1013125BerlinGermany
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyThielallee 6314195BerlinGermany
| |
Collapse
|
13
|
Müh F, Zouni A. Structural basis of light-harvesting in the photosystem II core complex. Protein Sci 2020; 29:1090-1119. [PMID: 32067287 PMCID: PMC7184784 DOI: 10.1002/pro.3841] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022]
Abstract
Photosystem II (PSII) is a membrane-spanning, multi-subunit pigment-protein complex responsible for the oxidation of water and the reduction of plastoquinone in oxygenic photosynthesis. In the present review, the recent explosive increase in available structural information about the PSII core complex based on X-ray crystallography and cryo-electron microscopy is described at a level of detail that is suitable for a future structure-based analysis of light-harvesting processes. This description includes a proposal for a consistent numbering scheme of protein-bound pigment cofactors across species. The structural survey is complemented by an overview of the state of affairs in structure-based modeling of excitation energy transfer in the PSII core complex with emphasis on electrostatic computations, optical properties of the reaction center, the assignment of long-wavelength chlorophylls, and energy trapping mechanisms.
Collapse
Affiliation(s)
- Frank Müh
- Department of Theoretical Biophysics, Institute for Theoretical Physics, Johannes Kepler University Linz, Linz, Austria
| | - Athina Zouni
- Humboldt-Universität zu Berlin, Institute for Biology, Biophysics of Photosynthesis, Berlin, Germany
| |
Collapse
|
14
|
Siemers M, Lazaratos M, Karathanou K, Guerra F, Brown LS, Bondar AN. Bridge: A Graph-Based Algorithm to Analyze Dynamic H-Bond Networks in Membrane Proteins. J Chem Theory Comput 2019; 15:6781-6798. [DOI: 10.1021/acs.jctc.9b00697] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Malte Siemers
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| | - Michalis Lazaratos
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| | - Konstantina Karathanou
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| | - Federico Guerra
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| | - Leonid S. Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| |
Collapse
|
15
|
Karathanou K, Bondar AN. Using Graphs of Dynamic Hydrogen-Bond Networks To Dissect Conformational Coupling in a Protein Motor. J Chem Inf Model 2019; 59:1882-1896. [PMID: 31038944 DOI: 10.1021/acs.jcim.8b00979] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DExD/H-box proteins are soluble enzymes that couple binding and hydrolysis of adenosine triphosphate (ATP) with reactions involving RNA metabolism or bind and push newly synthesized proteins across bacterial cell membranes. Knowledge of the reaction mechanism of these enzymes could help the development of new therapeutics. In order to explore the mechanism of long-distance conformational coupling in SecA, the DEAD-box motor of the Sec protein secretion in bacteria, we implemented algorithms that provide simplified graph representations of the protein's dynamic hydrogen-bond networks. We find that mutations near the nucleotide-binding site or changes of the nucleotide-binding state of SecA associate with altered dynamics at the preprotein binding domain and identify extended networks of hydrogen bonds that connect the active site of SecA to the region where SecA binds newly synthesized secretory proteins. Water molecules participate in hydrogen-bonded water chains that bridge functional domains of SecA and could contribute to long-distance conformational coupling.
Collapse
Affiliation(s)
- Konstantina Karathanou
- Freie Universität Berlin , Department of Physics, Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin , Department of Physics, Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| |
Collapse
|
16
|
Abstract
Membranes surrounding the biological cell and its internal compartments host proteins that catalyze chemical reactions essential for the functioning of the cell. Rather than being a passive structural matrix that holds membrane-embedded proteins in place, the membrane can largely shape the conformational energy landscape of membrane proteins and impact the energetics of their chemical reaction. Here, we highlight the challenges in understanding how lipids impact the conformational energy landscape of macromolecular membrane complexes whose functioning involves chemical reactions including proton transfer. We review here advances in our understanding of how chemical reactions occur at membrane interfaces gleaned with both theoretical and experimental advances using simple protein systems as guides. Our perspective is that of bridging experiments with theory to understand general physicochemical principles of membrane reactions, with a long term goal of furthering our understanding of the role of the lipids on the functioning of complex macromolecular assemblies at the membrane interface.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- Freie Universität Berlin , Department of Physics, Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| | - M Joanne Lemieux
- University of Alberta , Department of Biochemistry, Membrane Protein Disease Research Group , Edmonton , Alberta T6G 2H7 , Canada
| |
Collapse
|
17
|
Kemmler L, Ibrahim M, Dobbek H, Zouni A, Bondar AN. Dynamic water bridging and proton transfer at a surface carboxylate cluster of photosystem II. Phys Chem Chem Phys 2019; 21:25449-25466. [DOI: 10.1039/c9cp03926k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A hydrogen-bond cluster at a negatively-charged protein interface with a bound protein and long-lived waters might be a proton storage site.
Collapse
Affiliation(s)
- Lukas Kemmler
- Freie Universität Berlin
- Department of Physics
- Theoretical Molecular Biophysics Group
- D-14195 Berlin
- Germany
| | - Mohamed Ibrahim
- Humboldt Universtät zu Berlin
- Institute for Biology, Structural Biology and Biochemistry
- Berlin
- Germany
| | - Holger Dobbek
- Humboldt Universtät zu Berlin
- Institute for Biology, Structural Biology and Biochemistry
- Berlin
- Germany
| | - Athina Zouni
- Humboldt Universtät zu Berlin
- Institute for Biology, Biophysics of Photosynthesis
- Berlin
- Germany
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin
- Department of Physics
- Theoretical Molecular Biophysics Group
- D-14195 Berlin
- Germany
| |
Collapse
|
18
|
Affiliation(s)
- Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
19
|
Guerra F, Siemers M, Mielack C, Bondar AN. Dynamics of Long-Distance Hydrogen-Bond Networks in Photosystem II. J Phys Chem B 2018; 122:4625-4641. [PMID: 29589763 DOI: 10.1021/acs.jpcb.8b00649] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photosystem II uses the energy of absorbed light to split water molecules, generating molecular oxygen, electrons, and protons. The four protons generated during each reaction cycle are released to the lumen via mechanisms that are poorly understood. Given the complexity of photosystem II, which consists of multiple protein subunits and cofactor molecules and hosts numerous waters, a fundamental issue is finding transient networks of hydrogen bonds that bridge potential proton donor and acceptor groups. Here, we address this issue by performing all-atom molecular dynamics simulations of wild-type and mutant photosystem II monomers, which we analyze using a new protocol designed to facilitate efficient analysis of hydrogen-bond networks. Our computations reveal that local protein/water hydrogen-bond networks can assemble transiently in photosystem II such that the reaction center connects to the lumen. The dynamics of the hydrogen-bond networks couple to the protonation state of specific carboxylate groups and are altered in a mutant with defective proton transfer. Simulations on photosystem II without its extrinsic PsbO subunit provide a molecular interpretation of the elusive functional role of this subunit.
Collapse
Affiliation(s)
- Federico Guerra
- Freie Universität Berlin, Department of Physics , Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| | - Malte Siemers
- Freie Universität Berlin, Department of Physics , Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| | - Christopher Mielack
- Freie Universität Berlin, Department of Physics , Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics , Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| |
Collapse
|
20
|
Dynamic Water Hydrogen-Bond Networks at the Interface of a Lipid Membrane Containing Palmitoyl-Oleoyl Phosphatidylglycerol. J Membr Biol 2018. [DOI: 10.1007/s00232-018-0023-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Bommer M, Coates L, Dau H, Zouni A, Dobbek H. Protein crystallization and initial neutron diffraction studies of the photosystem II subunit PsbO. Acta Crystallogr F Struct Biol Commun 2017; 73:525-531. [PMID: 28876232 PMCID: PMC5619745 DOI: 10.1107/s2053230x17012171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/22/2017] [Indexed: 11/10/2022] Open
Abstract
The PsbO protein of photosystem II stabilizes the active-site manganese cluster and is thought to act as a proton antenna. To enable neutron diffraction studies, crystals of the β-barrel core of PsbO were grown in capillaries. The crystals were optimized by screening additives in a counter-diffusion setup in which the protein and reservoir solutions were separated by a 1% agarose plug. Crystals were cross-linked with glutaraldehyde. Initial neutron diffraction data were collected from a 0.25 mm3 crystal at room temperature using the MaNDi single-crystal diffractometer at the Spallation Neutron Source, Oak Ridge National Laboratory.
Collapse
Affiliation(s)
- Martin Bommer
- Institut für Biologie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Leighton Coates
- Biology and Soft Matter Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Holger Dau
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Athina Zouni
- Institut für Biologie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Holger Dobbek
- Institut für Biologie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| |
Collapse
|
22
|
Adam S, Knapp-Mohammady M, Yi J, Bondar AN. Revised CHARMM force field parameters for iron-containing cofactors of photosystem II. J Comput Chem 2017; 39:7-20. [PMID: 28850168 DOI: 10.1002/jcc.24918] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/05/2017] [Accepted: 08/03/2017] [Indexed: 01/25/2023]
Abstract
Photosystem II is a complex protein-cofactor machinery that splits water molecules into molecular oxygen, protons, and electrons. All-atom molecular dynamics simulations have the potential to contribute to our general understanding of how photosystem II works. To perform reliable all-atom simulations, we need accurate force field parameters for the cofactor molecules. We present here CHARMM bonded and non-bonded parameters for the iron-containing cofactors of photosystem II that include a six-coordinated heme moiety coordinated by two histidine groups, and a non-heme iron complex coordinated by bicarbonate and four histidines. The force field parameters presented here give water interaction energies and geometries in good agreement with the quantum mechanical target data. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Suliman Adam
- Theoretical Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin D-14195, Germany
| | - Michaela Knapp-Mohammady
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 580, Heidelberg D-69120, Germany
| | - Jun Yi
- Department of Biological Engineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin D-14195, Germany
| |
Collapse
|
23
|
Abstract
Szent-Győrgi called water the "matrix of life" and claimed that there was no life without it. This statement is true, as far as we know, on our planet, but it is not clear whether it must hold throughout the cosmos. To evaluate that question requires a close consideration of the many varied and subtle roles that water plays in living cells-a consideration that must be free of both an assumed essentialism that gives water an almost mystical life-giving agency and a traditional tendency to see it as a merely passive solvent. Water is a participant in the "life of the cell," and here I describe some of the features of that active agency. Water's value for molecular biology comes from both the structural and dynamic characteristics of its status as a complex, structured liquid as well as its nature as a polar, protic, and amphoteric reagent. Any discussion of water as life's matrix must, however, begin with an acknowledgment that our understanding of it as both a liquid and a solvent is still incomplete.
Collapse
|
24
|
del Val C, Bondar AN. Charged groups at binding interfaces of the PsbO subunit of photosystem II: A combined bioinformatics and simulation study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:432-441. [DOI: 10.1016/j.bbabio.2017.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 01/20/2023]
|
25
|
Dutra de Souza J, de Andrade Silva EM, Coelho Filho MA, Morillon R, Bonatto D, Micheli F, da Silva Gesteira A. Different adaptation strategies of two citrus scion/rootstock combinations in response to drought stress. PLoS One 2017; 12:e0177993. [PMID: 28545114 PMCID: PMC5435350 DOI: 10.1371/journal.pone.0177993] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/05/2017] [Indexed: 01/31/2023] Open
Abstract
Scion/rootstock interaction is important for plant development and for breeding programs. In this context, polyploid rootstocks presented several advantages, mainly in relation to biotic and abiotic stresses. Here we analyzed the response to drought of two different scion/rootstock combinations presenting different polyploidy: the diploid (2x) and autotetraploid (4x) Rangpur lime (Citrus limonia, Osbeck) rootstocks grafted with 2x Valencia Delta sweet orange (Citrus sinensis) scions, named V/2xRL and V/4xRL, respectively. Based on previous gene expression data, we developed an interactomic approach to identify proteins involved in V/2xRL and V/4xRL response to drought. A main interactomic network containing 3,830 nodes and 97,652 edges was built from V/2xRL and V/4xRL data. Exclusive proteins of the V/2xRL and V/4xRL networks (2,056 and 1,001, respectively), as well as common to both networks (773) were identified. Functional clusters were obtained and two models of drought stress response for the V/2xRL and V/4xRL genotypes were designed. Even if the V/2xRL plant implement some tolerance mechanisms, the global plant response to drought was rapid and quickly exhaustive resulting in a general tendency to dehydration avoidance, which presented some advantage in short and strong drought stress conditions, but which, in long terms, does not allow the plant survival. At the contrary, the V/4xRL plants presented a response which strong impacts on development but that present some advantages in case of prolonged drought. Finally, some specific proteins, which presented high centrality on interactomic analysis were identified as good candidates for subsequent functional analysis of citrus genes related to drought response, as well as be good markers of one or another physiological mechanism implemented by the plants.
Collapse
Affiliation(s)
- Joadson Dutra de Souza
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Ilhéus-BA, Brazil
| | - Edson Mario de Andrade Silva
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Ilhéus-BA, Brazil
| | - Mauricio Antônio Coelho Filho
- Embrapa Mandioca e Fruticultura, Departamento de Biologia Molecular, Rua Embrapa, s/n°, Cruz das Almas, Bahia, Brazil
| | | | - Diego Bonatto
- Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Biologia Molecular e Biotecnologia, Centro de Biotecnologia, Avenida Bento Goncalves 9500–Predio 43421, Porto Alegre-RS, Brazil
| | - Fabienne Micheli
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Ilhéus-BA, Brazil
- CIRAD, UMR AGAP, Montpellier, France
- * E-mail:
| | - Abelmon da Silva Gesteira
- Embrapa Mandioca e Fruticultura, Departamento de Biologia Molecular, Rua Embrapa, s/n°, Cruz das Almas, Bahia, Brazil
| |
Collapse
|
26
|
Bommer M, Bondar AN, Zouni A, Dobbek H, Dau H. Crystallographic and Computational Analysis of the Barrel Part of the PsbO Protein of Photosystem II: Carboxylate–Water Clusters as Putative Proton Transfer Relays and Structural Switches. Biochemistry 2016; 55:4626-35. [DOI: 10.1021/acs.biochem.6b00441] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Martin Bommer
- Institut
für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Ana-Nicoleta Bondar
- Fachbereich
Physik, Theoretical Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Athina Zouni
- Institut
für Biologie, Biophysik der Photosynthese, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Holger Dobbek
- Institut
für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Holger Dau
- Fachbereich
Physik, Biophysics and Photosynthesis, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
27
|
Morris JN, Eaton-Rye JJ, Summerfield TC. Environmental pH and the Requirement for the Extrinsic Proteins of Photosystem II in the Function of Cyanobacterial Photosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:1135. [PMID: 27555848 PMCID: PMC4977308 DOI: 10.3389/fpls.2016.01135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
In one of the final stages of cyanobacterial Photosystem II (PS II) assembly, binding of up to four extrinsic proteins to PS II stabilizes the oxygen-evolving complex (OEC). Growth of cyanobacterial mutants deficient in certain combinations of these thylakoid-lumen-associated polypeptides is sensitive to changes in environmental pH, despite the physical separation of the membrane-embedded PS II complex from the external environment. In this perspective we discuss the effect of environmental pH on OEC function and photoautotrophic growth in cyanobacteria with reference to pH-sensitive PS II mutants lacking extrinsic proteins. We consider the possibilities that, compared to pH 10.0, pH 7.5 increases susceptibility to PS II-generated reactive oxygen species (ROS) causing photoinhibition and reducing PS II assembly in some mutants, and that perturbations to channels in the lumenal regions of PS II might alter the accessibility of water to the active site as well as egress of oxygen and protons to the thylakoid lumen. Reduced levels of PS II in these mutants, and reduced OEC activity arising from the disruption of substrate/product channels, could reduce the trans-thylakoid pH gradient (ΔpH), leading to the impairment of photosynthesis. Growth of some PS II mutants at pH 7.5 can be rescued by elevating CO2 levels, suggesting that the pH-sensitive phenotype might primarily be an indirect result of back-pressure in the electron transport chain that results in heightened production of ROS by the impaired photosystem.
Collapse
Affiliation(s)
- Jaz N. Morris
- Department of Botany, University of OtagoDunedin, New Zealand
| | | | | |
Collapse
|
28
|
Hydration of proteins and nucleic acids: Advances in experiment and theory. A review. Biochim Biophys Acta Gen Subj 2016; 1860:1821-35. [PMID: 27241846 DOI: 10.1016/j.bbagen.2016.05.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Most biological processes involve water, and the interactions of biomolecules with water affect their structure, function and dynamics. SCOPE OF REVIEW This review summarizes the current knowledge of protein and nucleic acid interactions with water, with a special focus on the biomolecular hydration layer. Recent developments in both experimental and computational methods that can be applied to the study of hydration structure and dynamics are reviewed, including software tools for the prediction and characterization of hydration layer properties. MAJOR CONCLUSIONS In the last decade, important advances have been made in our understanding of the factors that determine how biomolecules and their aqueous environment influence each other. Both experimental and computational methods contributed to the gradually emerging consensus picture of biomolecular hydration. GENERAL SIGNIFICANCE An improved knowledge of the structural and thermodynamic properties of the hydration layer will enable a detailed understanding of the various biological processes in which it is involved, with implications for a wide range of applications, including protein-structure prediction and structure-based drug design.
Collapse
|
29
|
Roose JL, Frankel LK, Mummadisetti MP, Bricker TM. The extrinsic proteins of photosystem II: update. PLANTA 2016; 243:889-908. [PMID: 26759350 DOI: 10.1007/s00425-015-2462-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/25/2015] [Indexed: 05/24/2023]
Abstract
Recent investigations have provided important new insights into the structures and functions of the extrinsic proteins of Photosystem II. This review is an update of the last major review on the extrinsic proteins of Photosystem II (Bricker et al., Biochemistry 31:4623-4628 2012). In this report, we will examine advances in our understanding of the structure and function of these components. These proteins include PsbO, which is uniformly present in all oxygenic organisms, the PsbU, PsbV, CyanoQ, and CyanoP proteins, found in the cyanobacteria, and the PsbP, PsbQ and PsbR proteins, found in the green plant lineage. These proteins serve to stabilize the Mn4CaO5 cluster and optimize oxygen evolution at physiological calcium and chloride concentrations. The mechanisms used to perform these functions, however, remain poorly understood. Recently, important new findings have significantly advanced our understanding of the structures, locations and functions of these important subunits. We will discuss the biochemical, structural and genetic studies that have been used to elucidate the roles played by these proteins within the photosystem and their locations within the photosynthetic complex. Additionally, we will examine open questions needing to be addressed to provide a coherent picture of the role of these components within the photosystem.
Collapse
Affiliation(s)
- Johnna L Roose
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Laurie K Frankel
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Manjula P Mummadisetti
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Terry M Bricker
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|