1
|
Khurram M, Neuber S, Sill A, Helm CA. Highly Electrically Conductive PEDOT:PSS Films via Layer-By-Layer Electrostatic Self-Assembly. ACS OMEGA 2024; 9:48810-48820. [PMID: 39676992 PMCID: PMC11635489 DOI: 10.1021/acsomega.4c08946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024]
Abstract
Electrically conductive films of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) are usually formed by spin coating of aqueous dispersions with PEDOT:PSS nanoparticles. To better understand the film formation, the adsorption conditions are investigated using dip coating and a flow cell with different flow rates. Multilayer films are formed by sequential adsorption of oppositely charged macromolecules or nanoparticles. PEDOT:PSS serves as polyanion, and PDADMA is the polycation. In the dip coating process, the first layer consists of a ≈70 nm thick PEDOT:PSS nanoparticle monolayer. Subsequent PDADMA/PEDOT:PSS bilayers have a constant thickness (9.5 nm). Using the flow cell (0.2 mL/min) for film preparation led to constant PDADMA/PEDOT:PSS bilayer thickness (7.5 nm). PEDOT:PSS nanoparticle monolayers were only observed after PEDOT:PSS adsorption when the washing step was omitted. The electrical conductivity is independent of the number of deposition cycles for both preparation methods. Films prepared by dip coating show low conductivity (26 kS/m) and high surface roughness, whereas films prepared by flow cell show high conductivity (230 kS/m) and low roughness (2-4 nm). We propose that the adsorption in a flow cell leads to a flat orientation of the PEDOT molecules, which increases charge carrier mobility. It is hoped that a better understanding of the relationship between adsorption conditions and carrier mobility will further improve electrical conductivity.
Collapse
Affiliation(s)
- Muhammad Khurram
- Institute of Physics, University of Greifswald, Felix-Hausdorff-Straße 6, D-17489 Greifswald, Germany
| | - Sven Neuber
- Institute of Physics, University of Greifswald, Felix-Hausdorff-Straße 6, D-17489 Greifswald, Germany
| | - Annekatrin Sill
- Institute of Physics, University of Greifswald, Felix-Hausdorff-Straße 6, D-17489 Greifswald, Germany
| | - Christiane A. Helm
- Institute of Physics, University of Greifswald, Felix-Hausdorff-Straße 6, D-17489 Greifswald, Germany
| |
Collapse
|
2
|
Zhang T, Wu J, Ran F. Poly(3, 4-Ethylenedioxythiophene) as Promising Energy Storage Materials in Zinc-Ion Batteries. Macromol Rapid Commun 2024; 45:e2400476. [PMID: 39470626 DOI: 10.1002/marc.202400476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/22/2024] [Indexed: 10/30/2024]
Abstract
Benefiting from the advantages of high conductivity and good electrochemical stability, the conjugated conducting polymer poly (3, 4-ethylenedioxythiophene) is a promising energy storage material in zinc-ion batteries. Zinc-ion batteries have the advantages of high safety, environmental friendliness, and low cost, but suffer from unstable cathode material structure, poor electrical conductivity, and uncontrollable dendritic growth of zinc anodes. PEDOT, with its fast electrochemical response and wide potential window, is expected to make up for the shortcomings and enhance capacity and cycle life of zinc-ion batteries. Herein, in this review different polymerization methods of poly (3, 4-ethylenedioxythiophene) as well as their structure and properties are summarized; the progress in doping strategies related to the increasing conductivity and dispersivity of poly (3, 4-ethylenedioxythiophene) materials is discussed; specific applications of poly (3, 4-ethylenedioxythiophene)-based materials in anode, cathode, electrolyte, and binder of zinc-ion batteries are explored; and the representative advancements for improving the electrochemical performance of poly (3, 4-ethylenedioxythiophene) in zinc-ion batteries are emphasized. Finally, the current challenges of poly (3, 4-ethylenedioxythiophene) as promising materials in zinc-ion batteries and an insight into their future research directions are pointed out.
Collapse
Affiliation(s)
- Tianyun Zhang
- School of Mechanical and Electronical Engineering, Department of Textile Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730500, China
| | - Jiaojiao Wu
- School of Mechanical and Electronical Engineering, Department of Textile Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730500, China
| |
Collapse
|
3
|
Yuan Y, Patel RK, Banik S, Reta TB, Bisht RS, Fong DD, Sankaranarayanan SKRS, Ramanathan S. Proton Conducting Neuromorphic Materials and Devices. Chem Rev 2024; 124:9733-9784. [PMID: 39038231 DOI: 10.1021/acs.chemrev.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Neuromorphic computing and artificial intelligence hardware generally aims to emulate features found in biological neural circuit components and to enable the development of energy-efficient machines. In the biological brain, ionic currents and temporal concentration gradients control information flow and storage. It is therefore of interest to examine materials and devices for neuromorphic computing wherein ionic and electronic currents can propagate. Protons being mobile under an external electric field offers a compelling avenue for facilitating biological functionalities in artificial synapses and neurons. In this review, we first highlight the interesting biological analog of protons as neurotransmitters in various animals. We then discuss the experimental approaches and mechanisms of proton doping in various classes of inorganic and organic proton-conducting materials for the advancement of neuromorphic architectures. Since hydrogen is among the lightest of elements, characterization in a solid matrix requires advanced techniques. We review powerful synchrotron-based spectroscopic techniques for characterizing hydrogen doping in various materials as well as complementary scattering techniques to detect hydrogen. First-principles calculations are then discussed as they help provide an understanding of proton migration and electronic structure modification. Outstanding scientific challenges to further our understanding of proton doping and its use in emerging neuromorphic electronics are pointed out.
Collapse
Affiliation(s)
- Yifan Yuan
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Ranjan Kumar Patel
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Suvo Banik
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Tadesse Billo Reta
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ravindra Singh Bisht
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Dillon D Fong
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Subramanian K R S Sankaranarayanan
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Shriram Ramanathan
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
4
|
Zahabi N, Baryshnikov G, Linares M, Zozoulenko I. Charge carrier dynamics in conducting polymer PEDOT using ab initio molecular dynamics simulations. J Chem Phys 2023; 159:154801. [PMID: 37843059 DOI: 10.1063/5.0169363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023] Open
Abstract
As conducting polymers become increasingly important in electronic devices, understanding their charge transport is essential for material and device development. Various semi-empirical approaches have been used to describe temporal charge carrier dynamics in these materials, but there have yet to be any theoretical approaches utilizing ab initio molecular dynamics. In this work, we develop a computational technique based on ab initio Car-Parrinello molecular dynamics to trace charge carrier temporal motion in archetypical conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Particularly, we analyze charge dynamics in a single PEDOT chain and in two coupled chains with different degrees of coupling and study the effect of temperature. In our model we first initiate a positively charged polaron (compensated by a negative counterion) at one end of the chain, and subsequently displace the counterion to the other end of the chain and trace polaron dynamics in the system by monitoring bond length alternation in the PEDOT backbone and charge density distribution. We find that at low temperature (T = 1 K) the polaron distortion gradually disappears from its initial location and reappears near the new position of the counterion. At the room temperature (T = 300 K), we find that the distortions induced by polaron, and atomic vibrations are of the same magnitude, which makes tracking the polaron distortion challenging because it is hidden behind the temperature-induced vibrations. The novel approach developed in this work can be used to study polaron mobility along and between the chains, investigate charge transport in highly doped polymers, and explore other flexible polymers, including n-doped ones.
Collapse
Affiliation(s)
- Najmeh Zahabi
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Glib Baryshnikov
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Mathieu Linares
- Group of Scientific Visualization, Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
- Swedish e-Science Center (SeRC), Linköping University, SE-581 83 Linköping, Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| |
Collapse
|
5
|
Landi A, Reisjalali M, Elliott JD, Matta M, Carbone P, Troisi A. Simulation of polymeric mixed ionic and electronic conductors with a combined classical and quantum mechanical model. JOURNAL OF MATERIALS CHEMISTRY. C 2023; 11:8062-8073. [PMID: 37362027 PMCID: PMC10286221 DOI: 10.1039/d2tc05103f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/31/2023] [Indexed: 06/28/2023]
Abstract
In organic polymeric materials with mixed ionic and electronic conduction (OMIEC), the excess charge in doped polymers is very mobile and the dynamics of the polymer chain cannot be accurately described with a model including only fixed point charges. Ions and polymer are comparatively slower and a methodology to capture the correlated motions of excess charge and ions is currently unavailable. Considering a prototypical interface encountered in this type of materials, we constructed a scheme based on the combination of MD and QM/MM to evaluate the classical dynamics of polymer, water and ions, while allowing the excess charge of the polymer chains to rearrange following the external electrostatic potential. We find that the location of the excess charge varies substantially between chains. The excess charge changes across multiple timescales as a result of fast structural fluctuations and slow rearrangement of the polymeric chains. Our results indicate that such effects are likely important to describe the phenomenology of OMIEC, but additional features should be added to the model to enable the study of processes such as electrochemical doping.
Collapse
Affiliation(s)
- Alessandro Landi
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
- Dipartimento di Chimica e Biologia Adolfo Zambelli, Università di Salerno Via Giovanni Paolo II, I-84084 Fisciano Salerno Italy
| | - Maryam Reisjalali
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | - Joshua D Elliott
- Department of Chemical Engineering, University of Manchester Manchester M13 9PL UK
| | - Micaela Matta
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | - Paola Carbone
- Department of Chemical Engineering, University of Manchester Manchester M13 9PL UK
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| |
Collapse
|
6
|
Schütze Y, Gayen D, Palczynski K, de Oliveira Silva R, Lu Y, Tovar M, Partovi-Azar P, Bande A, Dzubiella J. How Regiochemistry Influences Aggregation Behavior and Charge Transport in Conjugated Organosulfur Polymer Cathodes for Lithium-Sulfur Batteries. ACS NANO 2023; 17:7889-7900. [PMID: 37014093 PMCID: PMC10141565 DOI: 10.1021/acsnano.3c01523] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
For lithium-sulfur (Li-S) batteries to become competitive, they require high stability and energy density. Organosulfur polymer-based cathodes have recently shown promising performance due to their ability to overcome common limitations of Li-S batteries, such as the insulating nature of sulfur. In this study, we use a multiscale modeling approach to explore the influence of the regiochemistry of a conjugated poly(4-(thiophene-3-yl)benzenethiol) (PTBT) polymer on its aggregation behavior and charge transport. Classical molecular dynamics simulations of the self-assembly of polymer chains with different regioregularity show that a head-to-tail/head-to-tail regularity can form a well-ordered crystalline phase of planar chains allowing for fast charge transport. Our X-ray diffraction measurements, in conjunction with our predicted crystal structure, confirm the presence of crystalline phases in the electropolymerized PTBT polymer. We quantitatively describe the charge transport in the crystalline phase in a band-like regime. Our results give detailed insights into the interplay between microstructural and electrical properties of conjugated polymer cathode materials, highlighting the effect of polymer chain regioregularity on its charge transport properties.
Collapse
Affiliation(s)
- Yannik Schütze
- Research
Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Theoretical
Chemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Diptesh Gayen
- Applied Theoretical
Physics - Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Karol Palczynski
- Research
Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Ranielle de Oliveira Silva
- Department
Electrochemical Energy Storage, Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Yan Lu
- Department
Electrochemical Energy Storage, Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institute
of Chemistry, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany
| | - Michael Tovar
- Department
Structure and Dynamics of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Pouya Partovi-Azar
- Institute
for Chemistry, Martin Luther Universität
Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Annika Bande
- Theory of
Electron Dynamics and Spectroscopy, Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Joachim Dzubiella
- Research
Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Applied Theoretical
Physics - Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| |
Collapse
|
7
|
Kim M, Lee SY, Kim J, Choi C, Lansac Y, Ahn H, Park S, Jang YH, Lee SH, Lee BH. Protic Ionic Liquids for Intrinsically Stretchable Conductive Polymers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3202-3213. [PMID: 36484468 DOI: 10.1021/acsami.2c17376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Inspired by the classic hard-soft acid-base theory and intrigued by a theoretical prediction of spontaneous ion exchange between poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and hard-cation-soft-anion ionic liquid (IL), we treat PEDOT:PSS with a new IL composed of a protic (i.e., extremely hard) cation (3-methylimidazolium, p-MIM+) and an extremely soft anion (tetracyanoborate, TCB-). In fact, this protic IL (p-MIM:TCB) accomplishes the same levels of ion-exchange-mediated PEDOT-PSS separation, PEDOT-rich nanofibril formation, and electrical conductivity enhancement (∼2500 S/cm) as its aprotic counterpart (EMIM:TCB with 1-ethyl-3-methylimidazolium), the best IL used for this purpose so far. Furthermore, p-MIM:TCB significantly outperforms EMIM:TCB in terms of improving the stretchability (i.e., the highest tensile strain) of the PEDOT:PSS thin film. This enhancement is a result of the aromatic and protic cation p-MIM+, which acts as a molecular adhesive holding the exchanged ion pairs (PEDOT+:TCB----p-MIM+:PSS-) via ionic intercalation (at the surface of TCB--decorated PEDOT+ clusters) and hydrogen bonding (to PSS-), in which washing p-MIM+ out of the film degrades the stretchability while keeping the morphology. Our results offer molecular-level insight into the morphological, electrical, and mechanical properties of PEDOT:PSS and a molecular-interaction-based enhancement strategy that can be used for intrinsically stretchable conductive polymers.
Collapse
Affiliation(s)
- Minji Kim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul03760, Republic of Korea
| | - Seung Yeob Lee
- Department of Chemistry, Daegu University, Gyeongsan38453, Republic of Korea
| | - Jihyun Kim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul03760, Republic of Korea
| | - Changwon Choi
- Department of Energy Science and Engineering, DGIST, Daegu42988, Republic of Korea
| | - Yves Lansac
- Department of Energy Science and Engineering, DGIST, Daegu42988, Republic of Korea
- GREMAN, CNRS UMR 7347, Université de Tours, 37200Tours, France
| | - Hyungju Ahn
- Pohang Accelerator Laboratory, POSTECH, Pohang37673, Republic of Korea
| | - Sohee Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul03760, Republic of Korea
| | - Yun Hee Jang
- Department of Energy Science and Engineering, DGIST, Daegu42988, Republic of Korea
- GREMAN, CNRS UMR 7347, Université de Tours, 37200Tours, France
| | - Seoung Ho Lee
- Department of Chemistry, Daegu University, Gyeongsan38453, Republic of Korea
| | - Byoung Hoon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul03760, Republic of Korea
| |
Collapse
|
8
|
Makki H, Troisi A. Morphology of conducting polymer blends at the interface of conducting and insulating phases: insight from PEDOT:PSS atomistic simulations. JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:16126-16137. [PMID: 36387833 PMCID: PMC9632246 DOI: 10.1039/d2tc03158b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/30/2022] [Indexed: 06/12/2023]
Abstract
Having phase-separated conductive and less-conductive domains is a common morphology in semiconducting polymer blends as it exists in the case of PEDOT:PSS, which is a representative example with a wide range of applications. In this paper, we constructed atomistic models for the interface between the PEDOT-rich (conductive) grains and the PSS-rich (less-conductive) phase through molecular dynamics simulations. Our models are obtained from experimentally relevant compositions, based on precise force field parameters, and through a robust relaxation procedure. We show that both PEDOT-rich and PSS-rich phases consist of PEDOT lamellae embedded in PSS chains. The size of these lamellae depends on the PEDOT concentration in each phase and our model predictions are in quantitative agreement with the experimental data. Furthermore, our models suggest that neither the phases nor the interfaces are entirely connected by π-π stacking. Thus, inter-lamellae tunnelling is essential for both intra- and inter-grain charge transport. We also show that a small increase (≈8 wt%) in the PEDOT concentration results in rather larger lamellae sizes, considerably more oriented lamellae, and slightly better inter-lamellae connectivity, which result in enhanced intra-grain conductivity. Moreover, we show how enhancing phase separation between PEDOT-rich and PSS-rich domains (similar to the effect of polar co-solvents), i.e., pulling out PEDOT from the PSS-rich phase and adding it in the PEDOT-rich phase, highly enhances the intra-grain connectivity but decreases the inter-grain conduction paths through the interface. Our results explain how the marginal extra degree of phase separation (based on experimentally obtained values) could result in a great enhancement in the overall film conductivity.
Collapse
Affiliation(s)
- Hesam Makki
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| |
Collapse
|
9
|
Kukhta NA, Luscombe CK. Gaining control over conjugated polymer morphology to improve the performance of organic electronics. Chem Commun (Camb) 2022; 58:6982-6997. [PMID: 35604084 DOI: 10.1039/d2cc01430k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugated polymers (CPs) are widely used in various domains of organic electronics. However, the performance of organic electronic devices can be variable due to the lack of precise predictive control over the polymer microstructure. While the chemical structure of CPs is important, CP microstructure also plays an important role in determining the charge-transport, optical and mechanical properties suitable for a target device. Understanding the interplay between CP microstructure and the resulting properties, as well as predicting and targeting specific polymer morphologies, would allow current comprehension of organic electronic device performance to be improved and potentially enable more facile device optimization and fabrication. In this Feature Article, we highlight the importance of investigating CP microstructure, discuss previous developments in the field, and provide an overview of the key aspects of the CP microstructure-property relationship, carried out in our group over recent years.
Collapse
Affiliation(s)
- Nadzeya A Kukhta
- Materials Science and Engineering Department, University of Washington, Seattle, Washington 98195-2120, USA
| | - Christine K Luscombe
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan.
| |
Collapse
|
10
|
Kukhta N, Marks A, Luscombe CK. Molecular Design Strategies toward Improvement of Charge Injection and Ionic Conduction in Organic Mixed Ionic-Electronic Conductors for Organic Electrochemical Transistors. Chem Rev 2022; 122:4325-4355. [PMID: 34902244 PMCID: PMC8874907 DOI: 10.1021/acs.chemrev.1c00266] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/23/2022]
Abstract
Expanding the toolbox of the biology and electronics mutual conjunction is a primary aim of bioelectronics. The organic electrochemical transistor (OECT) has undeniably become a predominant device for mixed conduction materials, offering impressive transconduction properties alongside a relatively simple device architecture. In this review, we focus on the discussion of recent material developments in the area of mixed conductors for bioelectronic applications by means of thorough structure-property investigation and analysis of current challenges. Fundamental operation principles of the OECT are revisited, and characterization methods are highlighted. Current bioelectronic applications of organic mixed ionic-electronic conductors (OMIECs) are underlined. Challenges in the performance and operational stability of OECT channel materials as well as potential strategies for mitigating them, are discussed. This is further expanded to sketch a synopsis of the history of mixed conduction materials for both p- and n-type channel operation, detailing the synthetic challenges and milestones which have been overcome to frequently produce higher performing OECT devices. The cumulative work of multiple research groups is summarized, and synthetic design strategies are extracted to present a series of design principles that can be utilized to drive figure-of-merit performance values even further for future OMIEC materials.
Collapse
Affiliation(s)
- Nadzeya
A. Kukhta
- Materials
Science and Engineering Department, University
of Washington, Seattle, Washington 98195, United States
| | - Adam Marks
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Christine K. Luscombe
- Materials
Science and Engineering Department, University
of Washington, Seattle, Washington 98195, United States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Molecular
Engineering & Sciences Institute, University
of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
11
|
Choi C, de Izarra A, Han I, Jeon W, Lansac Y, Jang YH. Hard-Cation-Soft-Anion Ionic Liquids for PEDOT:PSS Treatment. J Phys Chem B 2022; 126:1615-1624. [PMID: 35138105 DOI: 10.1021/acs.jpcb.1c09001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A promising conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) experiences significant conductivity enhancement when treated with proper ionic liquids (ILs). Based on the hard-soft-acid-base principle, we propose a combination of a hydrophilic hard cation A+ (instead of the commonly used 1-ethyl-3-methyl imidazolium, EMIM+) and a hydrophobic soft anion X- (such as tetracyanoborate, TCB-) as the best ILs for this purpose. Such ILs would decouple hydrophilic-but-insulating PSS- from conducting-but-hydrophobic PEDOT+ most efficiently by strong interactions with hydrophilic A+ and hydrophobic X-, respectively. Such a favorable ion exchange between PEDOT+:PSS- and A+:X- ILs would allow the growth of conducting PEDOT+ domains decorated by X-, not disturbed by PSS- or A+. Using density functional theory calculations and molecular dynamics simulations, we demonstrate that a protic cation- (aliphatic N-alkyl pyrrolidinium, in particular) combined with the hydrophobic anion TCB- indeed outperforms EMIM+ by promptly leaving hydrophobic TCB- and strongly binding to hydrophilic PSS-.
Collapse
Affiliation(s)
- Changwon Choi
- Department of Energy Science and Engineering, DGIST, 42988 Daegu, Korea
| | - Ambroise de Izarra
- Department of Energy Science and Engineering, DGIST, 42988 Daegu, Korea.,GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
| | - Ikhee Han
- Department of Energy Science and Engineering, DGIST, 42988 Daegu, Korea
| | - Woojin Jeon
- Department of Energy Science and Engineering, DGIST, 42988 Daegu, Korea
| | - Yves Lansac
- Department of Energy Science and Engineering, DGIST, 42988 Daegu, Korea.,GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France.,Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Saclay, 91405 Orsay, France
| | - Yun Hee Jang
- Department of Energy Science and Engineering, DGIST, 42988 Daegu, Korea
| |
Collapse
|
12
|
Wu R, Matta M, Paulsen BD, Rivnay J. Operando Characterization of Organic Mixed Ionic/Electronic Conducting Materials. Chem Rev 2022; 122:4493-4551. [PMID: 35026108 DOI: 10.1021/acs.chemrev.1c00597] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Operando characterization plays an important role in revealing the structure-property relationships of organic mixed ionic/electronic conductors (OMIECs), enabling the direct observation of dynamic changes during device operation and thus guiding the development of new materials. This review focuses on the application of different operando characterization techniques in the study of OMIECs, highlighting the time-dependent and bias-dependent structure, composition, and morphology information extracted from these techniques. We first illustrate the needs, requirements, and challenges of operando characterization then provide an overview of relevant experimental techniques, including spectroscopy, scattering, microbalance, microprobe, and electron microscopy. We also compare different in silico methods and discuss the interplay of these computational methods with experimental techniques. Finally, we provide an outlook on the future development of operando for OMIEC-based devices and look toward multimodal operando techniques for more comprehensive and accurate description of OMIECs.
Collapse
Affiliation(s)
- Ruiheng Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Micaela Matta
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
13
|
Kim D, Franco-Gonzalez JF, Zozoulenko I. How Long are Polymer Chains in Poly(3,4-ethylenedioxythiophene):Tosylate Films? An Insight from Molecular Dynamics Simulations. J Phys Chem B 2021; 125:10324-10334. [PMID: 34473507 DOI: 10.1021/acs.jpcb.1c04079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most important conductive polymers utilized in a variety of applications in organic electronics and bioelectronics and energy storage. PEDOT chains are believed to be rather short, but detailed knowledge of their length is missing because of the challenges in its experimental determination due to insolubility of PEDOT films. Here, we report a molecular dynamics (MD) study of in situ oxidative chemical polymerization and simultaneous crystallization of molecularly doped PEDOT focusing on the determination of its chain lengths at different polymerization temperatures. We find the average chain length to be 6, 7, and 11 monomers for 298, 323 and 373 K, respectively. At the same time, the length distribution is rather broad, for example, between 2 and 16 monomer units for T = 323 K. We demonstrate that the limiting factor determining the chain length is the diffusivity of the reactants (PEDOT monomers and oligomers). We also study the polymer film formation during solvent evaporation, and we find that although crystallization starts and proceeds already during the polymerization and doping phases, it mostly occurs during the evaporation phase. Finally, we believe that our results providing the oligomer chain length and polymerization and crystallization mechanisms obtained by means of MD "computational microscopy" provide an important insight into the morphology of PEDOT that cannot be obtained by other means.
Collapse
Affiliation(s)
- Donghyun Kim
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| | | | - Igor Zozoulenko
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| |
Collapse
|
14
|
de Izarra A, Choi C, Jang YH, Lansac Y. Molecular Dynamics of PEDOT:PSS Treated with Ionic Liquids. Origin of Anion Dependence Leading to Cation Design Principles. J Phys Chem B 2021; 125:8601-8611. [PMID: 34292746 DOI: 10.1021/acs.jpcb.1c02445] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conductivity enhancement of PEDOT:PSS via the morphological change of PEDOT-rich domains has been achieved by introducing a 1-ethyl-3-methylimidazolium (EMIM)-based ionic liquid (IL) into its aqueous solution, and the degree of such change varies drastically with the anion coupled to the EMIM cation constituting the IL. We carry out a series of molecular dynamics simulations on various simple model systems for the extremely complex mixtures of PEDOT:PSS and EMIM:X IL in water, varying the anion X, the IL concentration, the oligomer model of PEDOT:PSS, and the size of the model systems. The common characteristic found in all simulations is that although planar hydrophobic anions X are the most efficient for ion exchange between PEDOT:PSS and EMIM:X, they tend to bring together planar EMIM cations to PEDOT-rich domains, disrupting PEDOT π-stacks with PEDOT-X-EMIM intercalating layers. Nonplanar hydrophobic anions, which leave most of EMIM cations in water, are efficient for both ion exchange and the formation of extended PEDOT π-stacks, as observed in experiments. Based on such findings, we propose a design principle for new cations replacing EMIM; nonplanar hydrophilic cations combined with hydrophobic anions should improve IL efficiency for PEDOT:PSS treatment.
Collapse
Affiliation(s)
- Ambroise de Izarra
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France.,Department of Energy Science and Engineering, DGIST, 42988 Daegu, Korea
| | - Changwon Choi
- Department of Energy Science and Engineering, DGIST, 42988 Daegu, Korea
| | - Yun Hee Jang
- Department of Energy Science and Engineering, DGIST, 42988 Daegu, Korea
| | - Yves Lansac
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France.,Department of Energy Science and Engineering, DGIST, 42988 Daegu, Korea.,Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
15
|
Delavari N, Gladisch J, Petsagkourakis I, Liu X, Modarresi M, Fahlman M, Stavrinidou E, Linares M, Zozoulenko I. Water Intake and Ion Exchange in PEDOT:Tos Films upon Cyclic Voltammetry: Experimental and Molecular Dynamics Investigation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Najmeh Delavari
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Johannes Gladisch
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Ioannis Petsagkourakis
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Xianjie Liu
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Mohsen Modarresi
- Department of Physics, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mats Fahlman
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Mathieu Linares
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
- Group of Scientific Visualization, Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
- Swedish e-Science Center (SeRC), Linköping University, SE-581 83 Linköping, Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| |
Collapse
|
16
|
Zozoulenko I, Franco-Gonzalez JF, Gueskine V, Mehandzhiyski A, Modarresi M, Rolland N, Tybrandt K. Electronic, Optical, Morphological, Transport, and Electrochemical Properties of PEDOT: A Theoretical Perspective. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Igor Zozoulenko
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | | | - Viktor Gueskine
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | | | - Mohsen Modarresi
- Department of Physics, Ferdowsi University of Mashhad, Mashhad, PO Box 91775-1436, Iran
| | - Nicolas Rolland
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| |
Collapse
|
17
|
Michaels W, Zhao Y, Qin J. Atomistic Modeling of PEDOT:PSS Complexes II: Force Field Parameterization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wesley Michaels
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yan Zhao
- Department of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Jian Qin
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
18
|
Khot A, Savoie BM. Top–Down Coarse-Grained Framework for Characterizing Mixed Conducting Polymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Aditi Khot
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Brett M. Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
19
|
Jain K, Mehandzhiyski AY, Zozoulenko I, Wågberg L. PEDOT:PSS nano-particles in aqueous media: A comparative experimental and molecular dynamics study of particle size, morphology and z-potential. J Colloid Interface Sci 2021; 584:57-66. [PMID: 33059231 DOI: 10.1016/j.jcis.2020.09.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/25/2022]
Abstract
PEDOT PSS is the most widely used conducting polymer in organic and printed electronics. PEDOT PSS films have been extensively studied to understand the morphology, ionic and electronic conductivity of the polymer. However, the polymer dispersion, which is used to cast or spin coat the films, is not well characterized and not well understood theoretically. Here, we study in detail the particle morphology, size, charge density and zeta potential (z-potential) by coarse-grained MD simulations and dynamic light scattering (DLS) measurements, for different pH levels and ionic strengths. The PEDOT:PSS particles were found to be 12 nm-19 nm in diameter and had a z-potential of -30 mV to -50 mV when pH was changed from 1.7 to 9, at an added NaCl concentration of 1 mM, as measured by DLS. These values changed significantly with changing pH and ionic strength of the solution. The charge density of PEDOT:PSS particles was also found to be dependent on pH and ionic strength. Besides, the distribution of different ions (PSS-, PEDOT+, Na+, Cl-) present in the solution is simulated to understand the particle morphology and molecular origin of z-potential in PEDOT:PSS dispersion. The trend in change of particle size, charge density and z- potential with changing pH and ionic strength are in good agreement between the simulations and experiments. Our results show that the molecular model developed in this work represents very well the PEDOT:PSS nano-particles in aqueous dispersion. With this study, we hope to provide new insight and an in-depth understanding of the morphology and z-potential evolution in PEDOT:PSS dispersion.
Collapse
Affiliation(s)
- Karishma Jain
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden
| | - Aleksandar Y Mehandzhiyski
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Campus Norrköping, Linköping University, 60174 Norrköping, Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Campus Norrköping, Linköping University, 60174 Norrköping, Sweden; Wallenberg Wood Science Center, Linköping University, SE-60174 Norrköping, Sweden.
| | - Lars Wågberg
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden; Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
20
|
de Izarra A, Choi C, Jang YH, Lansac Y. Ionic Liquid for PEDOT:PSS Treatment. Ion Binding Free Energy in Water Revealing the Importance of Anion Hydrophobicity. J Phys Chem B 2021; 125:1916-1923. [DOI: 10.1021/acs.jpcb.0c10068] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ambroise de Izarra
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
| | - Changwon Choi
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
| | - Yun Hee Jang
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
| | - Yves Lansac
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
21
|
Maity S, Datta S, Mishra M, Banerjee S, Das S, Chatterjee K. Poly(3,4 ethylenedioxythiophene)‐tosylate—Its synthesis, properties and various applications. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shilpa Maity
- Department of Physics Jadavpur University Kolkata India
| | - Salini Datta
- Department of Physics Techno India University Kolkata India
| | - Megha Mishra
- Department of Physics Techno India University Kolkata India
| | | | - Sukhen Das
- Department of Physics Jadavpur University Kolkata India
| | | |
Collapse
|
22
|
Sahalianov I, Hynynen J, Barlow S, Marder SR, Müller C, Zozoulenko I. UV-to-IR Absorption of Molecularly p-Doped Polythiophenes with Alkyl and Oligoether Side Chains: Experiment and Interpretation Based on Density Functional Theory. J Phys Chem B 2020; 124:11280-11293. [PMID: 33237790 PMCID: PMC7872427 DOI: 10.1021/acs.jpcb.0c08757] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/04/2020] [Indexed: 11/28/2022]
Abstract
The UV-to-IR transitions in p-doped poly(3-hexylthiophene) (P3HT) with alkyl side chains and polar polythiophene with tetraethylene glycol side chains are studied experimentally by means of the absorption spectroscopy and computationally using density functional theory (DFT) and tight-binding DFT. The evolution of electronic structure is calculated as the doping level is varied, while the roles of dopant ions, chain twisting, and π-π stacking are also considered, each of these having the effect of broadening the absorption peaks while not significantly changing their positions. The calculated spectra are found to be in good agreement with experimental spectra obtained for the polymers doped with a molybdenum dithiolene complex. As in other DFT studies of doped conjugated polymers, the electronic structure and assignment of optical transitions that emerge are qualitatively different from those obtained through earlier "traditional" approaches. In particular, the two prominent bands seen for the p-doped materials are present for both polarons and bipolarons/polaron pairs. The lowest energy of these transitions is due to excitation from the valence band to a spin-resolved orbitals located in the gap between the bands. The higher-energy band is a superposition of excitation from the valence band to a spin-resolved orbitals in the gap and an excitation between bands.
Collapse
Affiliation(s)
- Ihor Sahalianov
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| | - Jonna Hynynen
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Göteborg, Sweden
| | - Stephen Barlow
- School
of Chemistry and Biochemistry and Center for Organic Photonics and
Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Seth R. Marder
- School
of Chemistry and Biochemistry and Center for Organic Photonics and
Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Christian Müller
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Göteborg, Sweden
| | - Igor Zozoulenko
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| |
Collapse
|
23
|
Modarresi M, Mehandzhiyski A, Fahlman M, Tybrandt K, Zozoulenko I. Microscopic Understanding of the Granular Structure and the Swelling of PEDOT:PSS. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00877] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mohsen Modarresi
- Department of Physics, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mats Fahlman
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| |
Collapse
|
24
|
Gladisch J, Stavrinidou E, Ghosh S, Giovannitti A, Moser M, Zozoulenko I, McCulloch I, Berggren M. Reversible Electronic Solid-Gel Switching of a Conjugated Polymer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901144. [PMID: 31993279 PMCID: PMC6974956 DOI: 10.1002/advs.201901144] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/20/2019] [Indexed: 05/19/2023]
Abstract
Conjugated polymers exhibit electrically driven volume changes when included in electrochemical devices via the exchange of ions and solvent. So far, this volumetric change is limited to 40% and 100% for reversible and irreversible systems, respectively, thus restricting potential applications of this technology. A conjugated polymer that reversibly expands by about 300% upon addressing, relative to its previous contracted state, while the first irreversible actuation can achieve values ranging from 1000-10 000%, depending on the voltage applied is reported. From experimental and theoretical studies, it is found that this large and reversible volumetric switching is due to reorganization of the polymer during swelling as it transforms between a solid-state phase and a gel, while maintaining percolation for conductivity. The polymer is utilized as an electroactive cladding to reduce the void sizes of a porous carbon filter electrode by 85%.
Collapse
Affiliation(s)
- Johannes Gladisch
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversitySE‐60174NorrköpingSweden
- Wallenberg Wood Science CenterDepartment of Science and TechnologyLinköping UniversitySE‐60174NorrköpingSweden
| | - Eleni Stavrinidou
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversitySE‐60174NorrköpingSweden
- Wallenberg Wood Science CenterDepartment of Science and TechnologyLinköping UniversitySE‐60174NorrköpingSweden
| | - Sarbani Ghosh
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversitySE‐60174NorrköpingSweden
| | - Alexander Giovannitti
- Department of Chemistry and Centre for Plastic ElectronicsImperial College LondonLondonSW7 2AZUK
| | - Maximilian Moser
- Department of Chemistry and Centre for Plastic ElectronicsImperial College LondonLondonSW7 2AZUK
| | - Igor Zozoulenko
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversitySE‐60174NorrköpingSweden
| | - Iain McCulloch
- Department of Chemistry and Centre for Plastic ElectronicsImperial College LondonLondonSW7 2AZUK
- Physical Sciences and Engineering DivisionKAUST Solar Center (KSC)King Abdullah University of Science and Technology (KAUST)KSCThuwal23955–6900Saudi Arabia
| | - Magnus Berggren
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversitySE‐60174NorrköpingSweden
- Wallenberg Wood Science CenterDepartment of Science and TechnologyLinköping UniversitySE‐60174NorrköpingSweden
| |
Collapse
|
25
|
Paulsen BD, Tybrandt K, Stavrinidou E, Rivnay J. Organic mixed ionic-electronic conductors. NATURE MATERIALS 2020; 19:13-26. [PMID: 31427743 DOI: 10.1038/s41563-019-0435-z] [Citation(s) in RCA: 289] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/14/2019] [Indexed: 05/10/2023]
Abstract
Materials that efficiently transport and couple ionic and electronic charge are key to advancing a host of technological developments for next-generation bioelectronic, optoelectronic and energy storage devices. Here we highlight key progress in the design and study of organic mixed ionic-electronic conductors (OMIECs), a diverse family of soft synthetically tunable mixed conductors. Across applications, the same interrelated fundamental physical processes dictate OMIEC properties and determine device performance. Owing to ionic and electronic interactions and coupled transport properties, OMIECs demand special understanding beyond knowledge derived from the study of organic thin films and membranes meant to support either electronic or ionic processes only. We address seemingly conflicting views and terminology regarding charging processes in these materials, and highlight recent approaches that extend fundamental understanding and contribute to the advancement of materials. Further progress is predicated on multimodal and multi-scale approaches to overcome lingering barriers to OMIEC design and implementation.
Collapse
Affiliation(s)
- Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
26
|
Sahalianov I, Singh SK, Tybrandt K, Berggren M, Zozoulenko I. The intrinsic volumetric capacitance of conducting polymers: pseudo-capacitors or double-layer supercapacitors? RSC Adv 2019; 9:42498-42508. [PMID: 35542835 PMCID: PMC9076818 DOI: 10.1039/c9ra10250g] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
The capacitance of conducting polymers represents one of the most important material parameters that in many cases determines the device and material performances. Despite a vast number of experimental studies, the theoretical understanding of the origin of the capacitance in conducting polymers remains unsatisfactory and appears even controversial. Here, we present a theoretical method, based on first principle capacitance calculations using density functional theory (DFT), and apply it to calculate the volumetric capacitance of two archetypical conducting polymers: poly(3,4-ethylene dioxythiophene) (PEDOT) and polypyrrole (PPy). Our aim is to achieve a quantitate description of the volumetric capacitance and to provide a qualitative understanding of its nature at the atomistic level. We find that the volumetric capacitance of PEDOT and PPy is ≈100 F cm-3 and ≈300 F cm-3, respectively, which is within the range of the corresponding reported experimental results. We demonstrate that the capacitance of conducting polymers originates from charges stored in atomistic Stern layers formed by counterions and doped polymeric chains. The Stern layers have a purely electrostatic origin, since the counterions do not form any bonds with the atoms of the polymeric chains, and no charge transfer between the counterions and conducting polymer takes place. This classifies the conducting polymers as double-layer supercapacitors rather than pseudo-capacitors. Further, we analyze contributions to the total capacitance originating from the classical capacitance C C and the quantum capacitance C Q, respectively, and find that the latter provides a dominant contribution. The method of calculations of the capacitance developed in the present paper is rather general and opens up the way for engineering and optimizing the capacitive response of the conducting polymers.
Collapse
Affiliation(s)
- Ihor Sahalianov
- Laboratory of Organic Electronics, ITN, Linköping University 60174 Norrköping Sweden
| | - Sandeep Kumar Singh
- Laboratory of Organic Electronics, ITN, Linköping University 60174 Norrköping Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, ITN, Linköping University 60174 Norrköping Sweden
- Wallenberg Wood Science Center, Linköping University 60174 Norrköping Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, ITN, Linköping University 60174 Norrköping Sweden
- Wallenberg Wood Science Center, Linköping University 60174 Norrköping Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics, ITN, Linköping University 60174 Norrköping Sweden
- Wallenberg Wood Science Center, Linköping University 60174 Norrköping Sweden
| |
Collapse
|
27
|
Kim D, Zozoulenko I. Why Is Pristine PEDOT Oxidized to 33%? A Density Functional Theory Study of Oxidative Polymerization Mechanism. J Phys Chem B 2019; 123:5160-5167. [DOI: 10.1021/acs.jpcb.9b01745] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Donghyun Kim
- Laboratory of Organic Electronics Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| |
Collapse
|
28
|
Berggren M, Crispin X, Fabiano S, Jonsson MP, Simon DT, Stavrinidou E, Tybrandt K, Zozoulenko I. Ion Electron-Coupled Functionality in Materials and Devices Based on Conjugated Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805813. [PMID: 30620417 DOI: 10.1002/adma.201805813] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/16/2018] [Indexed: 05/23/2023]
Abstract
The coupling between charge accumulation in a conjugated polymer and the ionic charge compensation, provided from an electrolyte, defines the mode of operation in a vast array of different organic electrochemical devices. The most explored mixed organic ion-electron conductor, serving as the active electrode in these devices, is poly(3,4-ethyelenedioxythiophene) doped with polystyrelensulfonate (PEDOT:PSS). In this progress report, scientists of the Laboratory of Organic Electronics at Linköping University review some of the achievements derived over the last two decades in the field of organic electrochemical devices, in particular including PEDOT:PSS as the active material. The recently established understanding of the volumetric capacitance and the mixed ion-electron charge transport properties of PEDOT are described along with examples of various devices and phenomena utilizing this ion-electron coupling, such as the organic electrochemical transistor, ionic-electronic thermodiffusion, electrochromic devices, surface switches, and more. One of the pioneers in this exciting research field is Prof. Olle Inganäs and the authors of this progress report wish to celebrate and acknowledge all the fantastic achievements and inspiration accomplished by Prof. Inganäs all since 1981.
Collapse
Affiliation(s)
- Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| | - Xavier Crispin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| | - Magnus P Jonsson
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| | - Daniel T Simon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| |
Collapse
|
29
|
Modarresi M, Franco-Gonzalez JF, Zozoulenko I. Computational microscopy study of the granular structure and pH dependence of PEDOT:PSS. Phys Chem Chem Phys 2019; 21:6699-6711. [PMID: 30855609 DOI: 10.1039/c8cp07141a] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computational microscopy based on Martini coarse grained molecular dynamics (MD) simulations of a doped conducting polymer poly(3,4-ethylenedioxythiophene)polystyrene sulfonate (best known as PEDOT:PSS) was performed focussing on the formation of the granular structure and PEDOT crystallites, and the effect of pH on the material morphology. The PEDOT:PSS morphology is shown to be sensitive to the initial distribution of PEDOT and PSS in the solution, and the results of the modelling suggest that the experimentally observed granular structure of PEDOT:PSS can be only obtained if the PEDOT/PSS solution is in the dispersive state in the initial crystallization stages. Variation of the pH is demonstrated to strongly affect the morphology of PEDOT:PSS films, altering their structure between granular-type and homogeneous. It also affects the size of crystallites and the relative arrangement of PEDOT and PSS chains. It is shown that the crystallites in PEDOT:PSS are smaller than those in PEDOT with molecular counterions such as PEDOT:tosylate, which is consistent with the available experimental data. The predicted changes of the PEDOT:PSS morphology with variation of the pH can be tested experimentally, and the calculated atomistic picture of PEDOT:PSS films (not accessible by conventional experimental techniques) is instrumental for understanding the material structure and building realistic models of PEDOT:PSS morphology.
Collapse
Affiliation(s)
- Mohsen Modarresi
- Department of Physics, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | |
Collapse
|
30
|
Cappai A, Antidormi A, Bosin A, Galliani D, Narducci D, Melis C. Interplay between synthetic conditions and micromorphology in poly(3,4-ethylenedioxythiophene):tosylate (PEDOT:Tos): an atomistic investigation. Phys Chem Chem Phys 2019; 21:8580-8586. [DOI: 10.1039/c9cp00970a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A systematic analysis was performed to elucidate the role played by proton scavengers in PEDOT chain length distribution and micromorphology.
Collapse
Affiliation(s)
- A. Cappai
- Department of Physics
- Univ. of Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - A. Antidormi
- Department of Physics
- Univ. of Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - A. Bosin
- Department of Physics
- Univ. of Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - D. Galliani
- Department of Materials Science
- Univ. of Milano-Bicocca
- 20125 Milano
- Italy
| | - D. Narducci
- Department of Materials Science
- Univ. of Milano-Bicocca
- 20125 Milano
- Italy
| | - C. Melis
- Department of Physics
- Univ. of Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| |
Collapse
|
31
|
Franco-Gonzalez JF, Rolland N, Zozoulenko IV. Substrate-Dependent Morphology and Its Effect on Electrical Mobility of Doped Poly(3,4-ethylenedioxythiophene) (PEDOT) Thin Films. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29115-29126. [PMID: 30070463 DOI: 10.1021/acsami.8b08774] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Deposition dynamics, crystallization, molecular packing, and electronic mobility of poly(3,4-ethylenedioxythiophene) (PEDOT) thin films are affected by the nature of the substrate. Computational microscopy has been carried out to reveal the morphology-substrate dependence for PEDOT thin films doped with molecular tosylate deposited on different substrates including graphite, Si3N4, silicon, and amorphous SiO2. It is shown that the substrate is instrumental in formation of the lamellar structure. PEDOT films on the ordered substrates (graphite, Si3N4, and silicon) exhibit preferential face-on orientation, with graphite showing the most ordered and pronounced face-on packing. In contrast, PEDOT on amorphous SiO2 exhibits the dominant edge-on orientation, except in the dry state where both packings are equally presented. The role of water and the porosity of the substrate in formation of the edge-on structure on SiO2 is outlined. On the basis of the calculated morphology, the multiscale calculations of the electronic transport and percolative analysis are performed outlining how the character of the substrate affects the electron mobility. It is demonstrated that good crystallinity (PEDOT on graphite substrate) and high content of edge-on (PEDOT on SiO2 substrate) are not enough to achieve the highest electrical in-plane mobility. Instead, the least ordered material with lower degree of the edge-on content (PEDOT on silicon substrate) provides the highest mobility because it exhibits an efficient network of π-π stacked chain extending throughout the entire sample.
Collapse
Affiliation(s)
- Juan Felipe Franco-Gonzalez
- Laboratory of Organic Electronics, Department of Science and Technology , Linköping University , SE-601 74 Norrköping , Sweden
| | - Nicolas Rolland
- Laboratory of Organic Electronics, Department of Science and Technology , Linköping University , SE-601 74 Norrköping , Sweden
| | - Igor V Zozoulenko
- Laboratory of Organic Electronics, Department of Science and Technology , Linköping University , SE-601 74 Norrköping , Sweden
| |
Collapse
|
32
|
de Izarra A, Park S, Lee J, Lansac Y, Jang YH. Ionic Liquid Designed for PEDOT:PSS Conductivity Enhancement. J Am Chem Soc 2018; 140:5375-5384. [DOI: 10.1021/jacs.7b10306] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ambroise de Izarra
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
- GREMAN, UMR 7347, CNRS, Université de Tours, 37200 Tours, France
| | - Seongjin Park
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
| | - Jinhee Lee
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
| | - Yves Lansac
- GREMAN, UMR 7347, CNRS, Université de Tours, 37200 Tours, France
- Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, 91405 Orsay, France
| | - Yun Hee Jang
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
| |
Collapse
|
33
|
Modarresi M, Franco-Gonzalez JF, Zozoulenko I. Morphology and ion diffusion in PEDOT:Tos. A coarse grained molecular dynamics simulation. Phys Chem Chem Phys 2018; 20:17188-17198. [DOI: 10.1039/c8cp02902d] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Martini coarse-grained Molecular Dynamics (MD) model for the doped conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is developed. It is shown that the diffusion coefficients decrease exponentially as the hydration level is reduced.
Collapse
Affiliation(s)
- Mohsen Modarresi
- Laboratory of Organic Electronics
- Department of Science and Technology
- Linköping University
- 60174 Norrköping
- Sweden
| | - Juan Felipe Franco-Gonzalez
- Laboratory of Organic Electronics
- Department of Science and Technology
- Linköping University
- 60174 Norrköping
- Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics
- Department of Science and Technology
- Linköping University
- 60174 Norrköping
- Sweden
| |
Collapse
|
34
|
Muñoz WA, Crispin X, Fahlman M, Zozoulenko IV. Understanding the Impact of Film Disorder and Local Surface Potential in Ultraviolet Photoelectron Spectroscopy of PEDOT. Macromol Rapid Commun 2017; 39. [DOI: 10.1002/marc.201700533] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/03/2017] [Indexed: 11/06/2022]
Affiliation(s)
- William A. Muñoz
- Laboratory of Organic Electronics; Department of Science and Technology; Linköping University; SE-601 74 Norrköping Sweden
| | - Xavier Crispin
- Laboratory of Organic Electronics; Department of Science and Technology; Linköping University; SE-601 74 Norrköping Sweden
| | - Mats Fahlman
- Department of Physics; Chemistry and Biology; Linköping University; SE-581 83 Linköping Sweden
| | - Igor V. Zozoulenko
- Laboratory of Organic Electronics; Department of Science and Technology; Linköping University; SE-601 74 Norrköping Sweden
| |
Collapse
|
35
|
Rudd S, Franco-Gonzalez JF, Kumar Singh S, Ullah Khan Z, Crispin X, Andreasen JW, Zozoulenko I, Evans D. Charge transport and structure in semimetallic polymers. ACTA ACUST UNITED AC 2017; 56:97-104. [PMID: 29242675 PMCID: PMC5725714 DOI: 10.1002/polb.24530] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/03/2017] [Indexed: 11/30/2022]
Abstract
Owing to changes in their chemistry and structure, polymers can be fabricated to demonstrate vastly different electrical conductivities over many orders of magnitude. At the high end of conductivity is the class of conducting polymers, which are ideal candidates for many applications in low‐cost electronics. Here, we report the influence of the nature of the doping anion at high doping levels within the semi‐metallic conducting polymer poly(3,4‐ethylenedioxythiophene) (PEDOT) on its electronic transport properties. Hall effect measurements on a variety of PEDOT samples show that the choice of doping anion can lead to an order of magnitude enhancement in the charge carrier mobility > 3 cm2/Vs at conductivities approaching 3000 S/cm under ambient conditions. Grazing Incidence Wide Angle X‐ray Scattering, Density Functional Theory calculations, and Molecular Dynamics simulations indicate that the chosen doping anion modifies the way PEDOT chains stack together. This link between structure and specific anion doping at high doping levels has ramifications for the fabrication of conducting polymer‐based devices. © 2017 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 97–104
Collapse
Affiliation(s)
- Sam Rudd
- Thin Film Coatings Group, Future Industries Institute, University of South Australia Mawson Lakes South Australia 5095 Australia
| | - Juan F Franco-Gonzalez
- Department of Science and Technology, Organic Electronics Linkoping University Norrkoping SE-601 74 Sweden
| | - Sandeep Kumar Singh
- Department of Science and Technology, Organic Electronics Linkoping University Norrkoping SE-601 74 Sweden
| | - Zia Ullah Khan
- Department of Science and Technology, Organic Electronics Linkoping University Norrkoping SE-601 74 Sweden
| | - Xavier Crispin
- Department of Science and Technology, Organic Electronics Linkoping University Norrkoping SE-601 74 Sweden
| | - Jens W Andreasen
- Department of Energy Conversion and Storage, Frederiksborgvej 399 Technical University of Denmark Roskilde 4000 Denmark
| | - Igor Zozoulenko
- Department of Science and Technology, Organic Electronics Linkoping University Norrkoping SE-601 74 Sweden
| | - Drew Evans
- Thin Film Coatings Group, Future Industries Institute, University of South Australia Mawson Lakes South Australia 5095 Australia
| |
Collapse
|
36
|
Franco-Gonzalez JF, Pavlopoulou E, Stavrinidou E, Gabrielsson R, Simon DT, Berggren M, Zozoulenko IV. Morphology of a self-doped conducting oligomer for green energy applications. NANOSCALE 2017; 9:13717-13724. [PMID: 28884179 DOI: 10.1039/c7nr04617k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A recently synthesized self-doped conducting oligomer, salt of bis[3,4-ethylenedioxythiophene]3thiophene butyric acid, ETE-S, is a novel promising material for green energy applications. Recently, it has been demonstrated that it can polymerize in vivo, in plant systems, leading to a formation of long-range conducting wires, charge storage and supercapacitive behaviour of living plants. Here we investigate the morphology of ETE-S combining the experimental characterisation using Grazing Incidence Wide Angle X-ray Scattering (GIWAXS) and atomistic molecular dynamics (MD) simulations. The GIWAXS measurements reveal a formation of small crystallites consisting of π-π stacked oligomers (with the staking distance 3.5 Å) that are further organized in h00 lamellae. These experimental results are confirmed by MD calculations, where we calculated the X-ray diffraction pattern and the radial distribution function for the distance between ETE-S chains. Our MD simulations also demonstrate the formation of the percolative paths for charge carriers that extend throughout the whole structure, despite the fact that the oligomers are short (6-9 rings) and crystallites are thin along the π-π stacking direction, consisting of only two or three π-π stacked oligomers. The existence of the percolative paths explains the previously observed high conductivity in in vivo polymerized ETE-S. We also explored the geometrical conformation of ETE-S oligomers and the bending of their aliphatic chains as a function of the oligomer lengths.
Collapse
Affiliation(s)
- Juan Felipe Franco-Gonzalez
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden.
| | | | | | | | | | | | | |
Collapse
|