1
|
Seo J, Singh R, Choi JH. Microscopic Heterogeneity Driven by Molecular Aggregation and Water Dynamics in Aqueous Osmolyte Solutions. J Chem Inf Model 2025. [PMID: 39883143 DOI: 10.1021/acs.jcim.4c01857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Water dynamics are investigated in binary osmolyte-water mixtures, exhibiting a microscopic heterogeneity driven by molecular aggregation, on the basis of molecular dynamics (MD) simulation studies. The protecting osmolyte TMAO molecules in solution are evenly dispersed without the formation of noticeable osmolyte aggregates, while the denaturant TMU molecules aggregate readily, generating microscopic heterogeneity in the spatial distribution of component molecules in TMU-water mixtures. A combined study of MD simulation with graph theoretical analysis and spatial inhomogeneity measurement with h-values in the two osmolyte solutions revealed that the translational and rotational motions of water in the microheterogeneous environment of TMU-water mixtures are less hindered than those in the homogeneous media of TMAO-water mixtures. The analysis of the osmolyte-water H-bond lifetime in the binary solutions shows that destabilizing osmolyte TMU makes relatively weak osmolyte-water interaction, compared to that in protecting osmolyte TMAO, enabling the interplay of TMU-TMU or TMU-protein as well as TMU-water interaction. Taken together, the complementary contributions of the two hypotheses are proposed to elucidate the operating mechanism of the osmolyte on protein stability, encompassing a direct mechanism for the preferential interaction between the osmolyte and protein and an indirect mechanism for the modulation of the water structure and dynamics in the osmolyte solutions.
Collapse
Affiliation(s)
- Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Ravi Singh
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
2
|
Hwang W, Austin SL, Blondel A, Boittier ED, Boresch S, Buck M, Buckner J, Caflisch A, Chang HT, Cheng X, Choi YK, Chu JW, Crowley MF, Cui Q, Damjanovic A, Deng Y, Devereux M, Ding X, Feig MF, Gao J, Glowacki DR, Gonzales JE, Hamaneh MB, Harder ED, Hayes RL, Huang J, Huang Y, Hudson PS, Im W, Islam SM, Jiang W, Jones MR, Käser S, Kearns FL, Kern NR, Klauda JB, Lazaridis T, Lee J, Lemkul JA, Liu X, Luo Y, MacKerell AD, Major DT, Meuwly M, Nam K, Nilsson L, Ovchinnikov V, Paci E, Park S, Pastor RW, Pittman AR, Post CB, Prasad S, Pu J, Qi Y, Rathinavelan T, Roe DR, Roux B, Rowley CN, Shen J, Simmonett AC, Sodt AJ, Töpfer K, Upadhyay M, van der Vaart A, Vazquez-Salazar LI, Venable RM, Warrensford LC, Woodcock HL, Wu Y, Brooks CL, Brooks BR, Karplus M. CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed. J Phys Chem B 2024; 128:9976-10042. [PMID: 39303207 PMCID: PMC11492285 DOI: 10.1021/acs.jpcb.4c04100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
Since its inception nearly a half century ago, CHARMM has been playing a central role in computational biochemistry and biophysics. Commensurate with the developments in experimental research and advances in computer hardware, the range of methods and applicability of CHARMM have also grown. This review summarizes major developments that occurred after 2009 when the last review of CHARMM was published. They include the following: new faster simulation engines, accessible user interfaces for convenient workflows, and a vast array of simulation and analysis methods that encompass quantum mechanical, atomistic, and coarse-grained levels, as well as extensive coverage of force fields. In addition to providing the current snapshot of the CHARMM development, this review may serve as a starting point for exploring relevant theories and computational methods for tackling contemporary and emerging problems in biomolecular systems. CHARMM is freely available for academic and nonprofit research at https://academiccharmm.org/program.
Collapse
Affiliation(s)
- Wonmuk Hwang
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
- Department
of Physics and Astronomy, Texas A&M
University, College Station, Texas 77843, United States
- Center for
AI and Natural Sciences, Korea Institute
for Advanced Study, Seoul 02455, Republic
of Korea
| | - Steven L. Austin
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Arnaud Blondel
- Institut
Pasteur, Université Paris Cité, CNRS UMR3825, Structural
Bioinformatics Unit, 28 rue du Dr. Roux F-75015 Paris, France
| | - Eric D. Boittier
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Stefan Boresch
- Faculty of
Chemistry, Department of Computational Biological Chemistry, University of Vienna, Wahringerstrasse 17, 1090 Vienna, Austria
| | - Matthias Buck
- Department
of Physiology and Biophysics, Case Western
Reserve University, School of Medicine, Cleveland, Ohio 44106, United States
| | - Joshua Buckner
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amedeo Caflisch
- Department
of Biochemistry, University of Zürich, CH-8057 Zürich, Switzerland
| | - Hao-Ting Chang
- Institute
of Bioinformatics and Systems Biology, National
Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, ROC
| | - Xi Cheng
- Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yeol Kyo Choi
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jhih-Wei Chu
- Institute
of Bioinformatics and Systems Biology, Department of Biological Science
and Technology, Institute of Molecular Medicine and Bioengineering,
and Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung
University, Hsinchu 30010, Taiwan,
ROC
| | - Michael F. Crowley
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Qiang Cui
- Department
of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department
of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department
of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Ana Damjanovic
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Physics and Astronomy, Johns Hopkins
University, Baltimore, Maryland 21218, United States
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yuqing Deng
- Shanghai
R&D Center, DP Technology, Ltd., Shanghai 201210, China
| | - Mike Devereux
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Xinqiang Ding
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Michael F. Feig
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Jiali Gao
- School
of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen, Guangdong 518055, China
- Department
of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - David R. Glowacki
- CiTIUS
Centro Singular de Investigación en Tecnoloxías Intelixentes
da USC, 15705 Santiago de Compostela, Spain
| | - James E. Gonzales
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Mehdi Bagerhi Hamaneh
- Department
of Physiology and Biophysics, Case Western
Reserve University, School of Medicine, Cleveland, Ohio 44106, United States
| | | | - Ryan L. Hayes
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department
of Pharmaceutical Sciences, University of
California, Irvine, Irvine, California 92697, United States
| | - Jing Huang
- Key Laboratory
of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Yandong Huang
- College
of Computer Engineering, Jimei University, Xiamen 361021, China
| | - Phillip S. Hudson
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Medicine
Design, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Wonpil Im
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Shahidul M. Islam
- Department
of Chemistry, Delaware State University, Dover, Delaware 19901, United States
| | - Wei Jiang
- Computational
Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Michael R. Jones
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Silvan Käser
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Fiona L. Kearns
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Nathan R. Kern
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jeffery B. Klauda
- Department
of Chemical and Biomolecular Engineering, Institute for Physical Science
and Technology, Biophysics Program, University
of Maryland, College Park, Maryland 20742, United States
| | - Themis Lazaridis
- Department
of Chemistry, City College of New York, New York, New York 10031, United States
| | - Jinhyuk Lee
- Disease
Target Structure Research Center, Korea
Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department
of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Justin A. Lemkul
- Department
of Biochemistry, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24061, United States
| | - Xiaorong Liu
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yun Luo
- Department
of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California 91766, United States
| | - Alexander D. MacKerell
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Dan T. Major
- Department
of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Markus Meuwly
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Lennart Nilsson
- Karolinska
Institutet, Department of Biosciences and
Nutrition, SE-14183 Huddinge, Sweden
| | - Victor Ovchinnikov
- Harvard
University, Department of Chemistry
and Chemical Biology, Cambridge, Massachusetts 02138, United States
| | - Emanuele Paci
- Dipartimento
di Fisica e Astronomia, Universitá
di Bologna, Bologna 40127, Italy
| | - Soohyung Park
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Richard W. Pastor
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Amanda R. Pittman
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Carol Beth Post
- Borch Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Samarjeet Prasad
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jingzhi Pu
- Department
of Chemistry and Chemical Biology, Indiana
University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Yifei Qi
- School
of Pharmacy, Fudan University, Shanghai 201203, China
| | | | - Daniel R. Roe
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Benoit Roux
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | | | - Jana Shen
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Andrew C. Simmonett
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Alexander J. Sodt
- Eunice
Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kai Töpfer
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Meenu Upadhyay
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Arjan van der Vaart
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | | | - Richard M. Venable
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Luke C. Warrensford
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - H. Lee Woodcock
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Yujin Wu
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles L. Brooks
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bernard R. Brooks
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Martin Karplus
- Harvard
University, Department of Chemistry
and Chemical Biology, Cambridge, Massachusetts 02138, United States
- Laboratoire
de Chimie Biophysique, ISIS, Université
de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
3
|
Riopedre-Fernandez M, Kostal V, Martinek T, Martinez-Seara H, Biriukov D. Developing and Benchmarking Sulfate and Sulfamate Force Field Parameters via Ab Initio Molecular Dynamics Simulations To Accurately Model Glycosaminoglycan Electrostatic Interactions. J Chem Inf Model 2024; 64:7122-7134. [PMID: 39250601 PMCID: PMC11423409 DOI: 10.1021/acs.jcim.4c00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Glycosaminoglycans (GAGs) are negatively charged polysaccharides found on cell surfaces, where they regulate transport pathways of foreign molecules toward the cell. The structural and functional diversity of GAGs is largely attributed to varied sulfation patterns along the polymer chains, which makes understanding their molecular recognition mechanisms crucial. Molecular dynamics (MD) simulations, thanks to their unmatched microscopic resolution, have the potential to be a reference tool for exploring the patterns responsible for biologically relevant interactions. However, the capability of molecular dynamics force fields used in biosimulations to accurately capture sulfation-specific interactions is not well established, partly due to the intrinsic properties of GAGs that pose challenges for most experimental techniques. In this work, we evaluate the performance of molecular dynamics force fields for sulfated GAGs by studying ion pairing of Ca2+ to sulfated moieties─N-methylsulfamate and methylsulfate─that resemble N- and O-sulfation found in GAGs, respectively. We tested available nonpolarizable (CHARMM36 and GLYCAM06) and explicitly polarizable (Drude and AMOEBA) force fields, and derived new implicitly polarizable models through charge scaling (prosECCo75 and GLYCAM-ECC75) that are consistent with our developed "charge-scaling" framework. The calcium-sulfamate/sulfate interaction free energy profiles obtained with the tested force fields were compared against reference ab initio molecular dynamics (AIMD) simulations, which serve as a robust alternative to experiments. AIMD simulations indicate that the preferential Ca2+ binding mode to sulfated GAG groups is solvent-shared pairing. Only our scaled-charge models agree satisfactorily with the AIMD data, while all other force fields exhibit poorer agreement, sometimes even qualitatively. Surprisingly, even explicitly polarizable force fields display a notable disagreement with the AIMD data, likely attributed to difficulties in their optimization and possible inherent limitations in depicting high-charge-density ion interactions accurately. Finally, the underperforming force fields lead to unrealistic aggregation of sulfated saccharides, which qualitatively disagrees with our understanding of the soft glycocalyx environment. Our results highlight the importance of accurately treating electronic polarization in MD simulations of sulfated GAGs and caution against over-reliance on currently available models without thorough validation and optimization.
Collapse
Affiliation(s)
- Miguel Riopedre-Fernandez
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
| | - Vojtech Kostal
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
| | - Tomas Martinek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
| | - Denys Biriukov
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| |
Collapse
|
4
|
Nencini R, Tempra C, Biriukov D, Riopedre-Fernandez M, Cruces Chamorro V, Polák J, Mason PE, Ondo D, Heyda J, Ollila OHS, Jungwirth P, Javanainen M, Martinez-Seara H. Effective Inclusion of Electronic Polarization Improves the Description of Electrostatic Interactions: The prosECCo75 Biomolecular Force Field. J Chem Theory Comput 2024; 20:7546-7559. [PMID: 39186899 PMCID: PMC11391585 DOI: 10.1021/acs.jctc.4c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
prosECCo75 is an optimized force field effectively incorporating electronic polarization via charge scaling. It aims to enhance the accuracy of nominally nonpolarizable molecular dynamics simulations for interactions in biologically relevant systems involving water, ions, proteins, lipids, and saccharides. Recognizing the inherent limitations of nonpolarizable force fields in precisely modeling electrostatic interactions essential for various biological processes, we mitigate these shortcomings by accounting for electronic polarizability in a physically rigorous mean-field way that does not add to computational costs. With this scaling of (both integer and partial) charges within the CHARMM36 framework, prosECCo75 addresses overbinding artifacts. This improves agreement with experimental ion binding data across a broad spectrum of systems─lipid membranes, proteins (including peptides and amino acids), and saccharides─without compromising their biomolecular structures. prosECCo75 thus emerges as a computationally efficient tool providing enhanced accuracy and broader applicability in simulating the complex interplay of interactions between ions and biomolecules, pivotal for improving our understanding of many biological processes.
Collapse
Affiliation(s)
- Ricky Nencini
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5, FI-00790 Helsinki, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, FI-00790 Helsinki, Finland
| | - Carmelo Tempra
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
| | - Denys Biriukov
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
- CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Miguel Riopedre-Fernandez
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
| | - Victor Cruces Chamorro
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
| | - Jakub Polák
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Philip E Mason
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
| | - Daniel Ondo
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Jan Heyda
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - O H Samuli Ollila
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5, FI-00790 Helsinki, Finland
- VTT Technical Research Centre of Finland, Tietotie 2, FI-02150 Espoo, Finland
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
| | - Matti Javanainen
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5, FI-00790 Helsinki, Finland
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague 6, Czech Republic
| |
Collapse
|
5
|
Antila HS, Dixit S, Kav B, Madsen JJ, Miettinen MS, Ollila OHS. Evaluating Polarizable Biomembrane Simulations against Experiments. J Chem Theory Comput 2024; 20:4325-4337. [PMID: 38718349 PMCID: PMC11137822 DOI: 10.1021/acs.jctc.3c01333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
Owing to the increase of available computational capabilities and the potential for providing a more accurate description, polarizable molecular dynamics force fields are gaining popularity in modeling biomolecular systems. It is, however, crucial to evaluate how much precision is truly gained with increasing cost and complexity of the simulation. Here, we leverage the NMRlipids open collaboration and Databank to assess the performance of available polarizable lipid models─the CHARMM-Drude and the AMOEBA-based parameters─against high-fidelity experimental data and compare them to the top-performing nonpolarizable models. While some improvement in the description of ion binding to membranes is observed in the most recent CHARMM-Drude parameters, and the conformational dynamics of AMOEBA-based parameters are excellent, the best nonpolarizable models tend to outperform their polarizable counterparts for each property we explored. The identified shortcomings range from inaccuracies in describing the conformational space of lipids to excessively slow conformational dynamics. Our results provide valuable insights for the further refinement of polarizable lipid force fields and for selecting the best simulation parameters for specific applications.
Collapse
Affiliation(s)
- Hanne S. Antila
- Department
of Theory and Bio-Systems, Max Planck Institute
of Colloids and Interfaces, Potsdam 14476, Germany
- Department
of Biomedicine, University of Bergen, Bergen 5020, Norway
- Computational
Biology Unit, Department of Informatics, University of Bergen, Bergen 5008, Norway
| | - Sneha Dixit
- Department
of Theory and Bio-Systems, Max Planck Institute
of Colloids and Interfaces, Potsdam 14476, Germany
| | - Batuhan Kav
- Institute
of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jïulich 52428, Germany
| | - Jesper J. Madsen
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Center
for Global Health and Infectious Diseases Research, Global and Planetary
Health, College of Public Health, University
of South Florida, Tampa, Florida 33612, United States of America
| | - Markus S. Miettinen
- Department
of Theory and Bio-Systems, Max Planck Institute
of Colloids and Interfaces, Potsdam 14476, Germany
- Computational
Biology Unit, Department of Informatics, University of Bergen, Bergen 5008, Norway
- Department
of Chemistry, University of Bergen, Bergen 5007, Norway
| | - O. H. Samuli Ollila
- VTT Technical
Research Centre of Finland, Espoo 02044, Finland
- Institute
of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
6
|
Nan Y, MacKerell AD. Balancing Group I Monatomic Ion-Polar Compound Interactions for Condensed Phase Simulation in the Polarizable Drude Force Field. J Chem Theory Comput 2024; 20:3242-3257. [PMID: 38588064 PMCID: PMC11039353 DOI: 10.1021/acs.jctc.3c01380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Molecular dynamics (MD) simulations are a commonly used method for investigating molecular behavior at the atomic level. Achieving reliable MD simulation results necessitates the use of an accurate force field. In the present work, we present a protocol to enhance the quality of group 1 monatomic ions (specifically Li+, Na+, K+, Rb+, and Cs+) with respect to their interactions with common polar model compounds in biomolecules in condensed phases in the context of the Drude polarizable force field. Instead of adjusting preexisting individual parameters for ions, model compounds, and water, we employ atom-pair specific Lennard-Jones (LJ) (known as NBFIX in CHARMM) and through-space Thole dipole screening (NBTHOLE) terms to fine-tune the balance of ion-model compound, ion-water, and model compound-water interactions. This involved establishing a protocol for the optimization of NBFIX and NBTHOLE parameters targeting the difference between molecular mechanical (MM) and quantum mechanical (QM) potential energy scans (PES). It is shown that targeting PES involving complexes that include multiple model compounds and/or ions as trimers and tetramers yields parameters that produce condensed phase properties in agreement with experimental data. Validation of this protocol involved the reproduction of experimental thermodynamic benchmarks, including solvation free energies of ions in methanol and N-methylacetamide, osmotic pressures, ionic conductivities, and diffusion coefficients within the condensed phase. These results show the importance of including more complex ion-model compound complexes beyond dimers in the QM target data to account for many-body effects during parameter fitting. The presented parameters represent a significant refinement of the Drude polarizable force field, which will lead to improved accuracy for modeling ion-biomolecular interactions.
Collapse
Affiliation(s)
- Yiling Nan
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201 MD
| | - Alexander D. MacKerell
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201 MD
| |
Collapse
|
7
|
Jarin Z, Venable RM, Han K, Pastor RW. Ion-Induced PIP2 Clustering with Martini3: Modification of Phosphate-Ion Interactions and Comparison with CHARMM36. J Phys Chem B 2024; 128:2134-2143. [PMID: 38393820 PMCID: PMC11686486 DOI: 10.1021/acs.jpcb.3c06523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) is a critical lipid for cellular signaling. The specific phosphorylation of the inositol ring controls protein binding as well as clustering behavior. Two popular models to describe ion-mediated clustering of PIP2 are Martini3 (M3) and CHARMM36 (C36). Molecular dynamics simulations of PIP2-containing bilayers in solutions of potassium chloride, sodium chloride, and calcium chloride, and at two different resolutions are performed to understand the aggregation and the model parameters that drive it. The average M3 clusters of PIP2 in bilayers of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine and PIP2 bilayers in the presence of K+, Na+, or Ca2+ contained 2.2, 2.6, and 6.4 times more PIP2 than C36 clusters, respectively. Indeed, the Ca2+-containing systems often formed a single large aggregate. Reparametrization of the M3 ion-phosphate Lennard-Jones interaction energies to reproduce experimental osmotic pressure of sodium dimethyl phosphate (DMP), K[DMP], and Ca[DMP]2 solutions, the same experimental target as C36, yielded comparably sized PIP2 clusters for the two models. Furthermore, C36 and the modified M3 predict similar saturation of the phosphate groups with increasing Ca2+, although the coarse-grained model does not capture the cooperativity between K+ and Ca2+. This characterization of the M3 behavior in the presence of monovalent and divalent ions lays a foundation to study cation/protein/PIP2 clustering.
Collapse
Affiliation(s)
- Zack Jarin
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Richard M Venable
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Kyungreem Han
- Laboratory of Computational Neurophysics, Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20892, United States
| |
Collapse
|
8
|
Nguyen ATP, Weigle AT, Shukla D. Functional regulation of aquaporin dynamics by lipid bilayer composition. Nat Commun 2024; 15:1848. [PMID: 38418487 PMCID: PMC10901782 DOI: 10.1038/s41467-024-46027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/12/2024] [Indexed: 03/01/2024] Open
Abstract
With the diversity of lipid-protein interactions, any observed membrane protein dynamics or functions directly depend on the lipid bilayer selection. However, the implications of lipid bilayer choice are seldom considered unless characteristic lipid-protein interactions have been previously reported. Using molecular dynamics simulation, we characterize the effects of membrane embedding on plant aquaporin SoPIP2;1, which has no reported high-affinity lipid interactions. The regulatory impacts of a realistic lipid bilayer, and nine different homogeneous bilayers, on varying SoPIP2;1 dynamics are examined. We demonstrate that SoPIP2;1's structure, thermodynamics, kinetics, and water transport are altered as a function of each membrane construct's ensemble properties. Notably, the realistic bilayer provides stabilization of non-functional SoPIP2;1 metastable states. Hydrophobic mismatch and lipid order parameter calculations further explain how lipid ensemble properties manipulate SoPIP2;1 behavior. Our results illustrate the importance of careful bilayer selection when studying membrane proteins. To this end, we advise cautionary measures when performing membrane protein molecular dynamics simulations.
Collapse
Affiliation(s)
- Anh T P Nguyen
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Austin T Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
9
|
Aboulfath Y, Bougueroua S, Cimas A, Barth D, Gaigeot MP. Time-Resolved Graphs of Polymorphic Cycles for H-Bonded Network Identification in Flexible Biomolecules. J Chem Theory Comput 2024; 20:1019-1035. [PMID: 38236138 DOI: 10.1021/acs.jctc.3c01031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A novel approach based on a coarse-grained representation of topological graphs is proposed for the automatic analysis of molecular dynamics (MD) trajectories of hydrogen-bonded (H-Bonded) flexible biomolecules. Herein, our approach models an H-Bonded biomolecule by its H-Bonded cycles and its graph of cycles in which the vertices and links represent the intersections between these cycles. We propose a methodology in which each identified conformer/isomer from the MD is represented by a well-chosen set of H-Bonded cycles called a minimum cycle basis. The key component is the "polycycles" that distinguish the cycles that play the same polymorphic role in the molecule from the ones that lead to an actual conformational change of the molecule. The relevance of our proposed method is evaluated on MD trajectories of gas-phase biomolecules, for which the covalent bonds are unchanged over time and only the hydrogen bonds change over time. The polygraphs and their time evolution are shown to reveal the dynamicity of the metastructure(s) of the H-Bonded biomolecules while providing polymorphic information on the cycles. Such information on the dynamics and changes in the H-bond network, as some cycles change identity while retaining the same role in the overall structure, is not easily captured at the atomic level of representation. Such information can instead be captured by polymorphic cycles.
Collapse
Affiliation(s)
- Ylène Aboulfath
- Université Paris-Saclay, Univ Versailles Saint Quentin, DAVID, 78035 Versailles, France
| | - Sana Bougueroua
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Alvaro Cimas
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Dominique Barth
- Université Paris-Saclay, Univ Versailles Saint Quentin, DAVID, 78035 Versailles, France
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
10
|
Seo J, Singh R, Ryu J, Choi JH. Molecular Aggregation Behavior and Microscopic Heterogeneity in Binary Osmolyte-Water Solutions. J Chem Inf Model 2024; 64:138-149. [PMID: 37983534 DOI: 10.1021/acs.jcim.3c01382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Osmolytes, small organic compounds, play a key role in modulating the protein stability in aqueous solutions, but the operating mechanism of the osmolyte remains inconclusive. Here, we attempt to clarify the mode of osmolyte action by quantitatively estimating the microheterogeneity of osmolyte-water mixtures with the aid of molecular dynamics simulation, graph theoretical analysis, and spatial distribution measurement in the four osmolyte solutions of trimethylamine-N-oxide (TMAO), tetramethylurea (TMU), dimethyl sulfoxide, and urea. TMAO, acting as a protecting osmolyte, tends to remain isolated with no formation of osmolyte aggregates while preferentially interacting with water, but there is a strong aggregation propensity in the denaturant TMU solution, characterized by favored hydrophobic interactions between TMU molecules. Taken together, the mechanism of osmolyte action on protein stability is proposed as a comprehensive one that encompasses the direct interactions between osmolytes and proteins and indirect interactions through the regulation of water properties in the osmolyte-water mixtures.
Collapse
Affiliation(s)
- Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Ravi Singh
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jonghyuk Ryu
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
11
|
Chongsaritsinsuk J, Steigmeyer AD, Mahoney KE, Rosenfeld MA, Lucas TM, Smith CM, Li A, Ince D, Kearns FL, Battison AS, Hollenhorst MA, Judy Shon D, Tiemeyer KH, Attah V, Kwon C, Bertozzi CR, Ferracane MJ, Lemmon MA, Amaro RE, Malaker SA. Glycoproteomic landscape and structural dynamics of TIM family immune checkpoints enabled by mucinase SmE. Nat Commun 2023; 14:6169. [PMID: 37794035 PMCID: PMC10550946 DOI: 10.1038/s41467-023-41756-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
Mucin-domain glycoproteins are densely O-glycosylated and play critical roles in a host of biological functions. In particular, the T cell immunoglobulin and mucin-domain containing family of proteins (TIM-1, -3, -4) decorate immune cells and act as key regulators in cellular immunity. However, their dense O-glycosylation remains enigmatic, primarily due to the challenges associated with studying mucin domains. Here, we demonstrate that the mucinase SmE has a unique ability to cleave at residues bearing very complex glycans. SmE enables improved mass spectrometric analysis of several mucins, including the entire TIM family. With this information in-hand, we perform molecular dynamics (MD) simulations of TIM-3 and -4 to understand how glycosylation affects structural features of these proteins. Finally, we use these models to investigate the functional relevance of glycosylation for TIM-3 function and ligand binding. Overall, we present a powerful workflow to better understand the detailed molecular structures and functions of the mucinome.
Collapse
Affiliation(s)
| | | | - Keira E Mahoney
- Department of Chemistry, Yale University, New Haven, CT, 06511, USA
| | - Mia A Rosenfeld
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Taryn M Lucas
- Department of Chemistry, Yale University, New Haven, CT, 06511, USA
| | - Courtney M Smith
- Yale Cancer Biology Institute and Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Alice Li
- Yale Cancer Biology Institute and Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Deniz Ince
- Department of Chemistry, Yale University, New Haven, CT, 06511, USA
| | - Fiona L Kearns
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Marie A Hollenhorst
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, 94305, USA
| | - D Judy Shon
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Katherine H Tiemeyer
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Victor Attah
- Department of Chemistry, Yale University, New Haven, CT, 06511, USA
| | - Catherine Kwon
- Department of Chemistry, Yale University, New Haven, CT, 06511, USA
| | - Carolyn R Bertozzi
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA
| | | | - Mark A Lemmon
- Yale Cancer Biology Institute and Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Stacy A Malaker
- Department of Chemistry, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
12
|
Yesylevskyy S, Martinez-Seara H, Jungwirth P. Curvature Matters: Modeling Calcium Binding to Neutral and Anionic Phospholipid Bilayers. J Phys Chem B 2023; 127:4523-4531. [PMID: 37191140 DOI: 10.1021/acs.jpcb.3c01962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this work, the influence of membrane curvature on the Ca2+ binding to phospholipid bilayers is investigated by means of molecular dynamics simulations. In particular, we compared Ca2+ binding to flat, elastically buckled, or uniformly bent zwitterionic and anionic phospholipid bilayers. We demonstrate that Ca2+ ions bind preferably to the concave membrane surfaces in both types of bilayers. We also show that the membrane curvature leads to pronounced changes in Ca2+ binding including differences in free ion concentrations, lipid coordination distributions, and the patterns of ion binding to different chemical groups of lipids. Moreover, these effects differ substantially for the concave and convex membrane monolayers. Comparison between force fields with either full or scaled charges indicates that charge scaling results in reduction of the Ca2+ binding to curved phosphatidylserine bilayers, while for phosphatidylcholine membranes, calcium binds only weakly for both force fields.
Collapse
Affiliation(s)
- Semen Yesylevskyy
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 542/2, 160 00 Prague 6, Czech Republic
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Nauky Avenue 46, 03038 Kyiv, Ukraine
- Receptor.AI Incorporated, 20-22 Wenlock Road, N1 7GU London, U.K
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 542/2, 160 00 Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 542/2, 160 00 Prague 6, Czech Republic
| |
Collapse
|
13
|
Bougueroua S, Bricage M, Aboulfath Y, Barth D, Gaigeot MP. Algorithmic Graph Theory, Reinforcement Learning and Game Theory in MD Simulations: From 3D Structures to Topological 2D-Molecular Graphs (2D-MolGraphs) and Vice Versa. Molecules 2023; 28:molecules28072892. [PMID: 37049654 PMCID: PMC10096312 DOI: 10.3390/molecules28072892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023] Open
Abstract
This paper reviews graph-theory-based methods that were recently developed in our group for post-processing molecular dynamics trajectories. We show that the use of algorithmic graph theory not only provides a direct and fast methodology to identify conformers sampled over time but also allows to follow the interconversions between the conformers through graphs of transitions in time. Examples of gas phase molecules and inhomogeneous aqueous solid interfaces are presented to demonstrate the power of topological 2D graphs and their versatility for post-processing molecular dynamics trajectories. An even more complex challenge is to predict 3D structures from topological 2D graphs. Our first attempts to tackle such a challenge are presented with the development of game theory and reinforcement learning methods for predicting the 3D structure of a gas-phase peptide.
Collapse
Affiliation(s)
- Sana Bougueroua
- Université Paris-Saclay, University Evry, CY Cergy Paris Université, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| | - Marie Bricage
- Université Paris-Saclay, University Versailles Saint Quentin, DAVID, 78000 Versailles, France
| | - Ylène Aboulfath
- Université Paris-Saclay, University Versailles Saint Quentin, DAVID, 78000 Versailles, France
| | - Dominique Barth
- Université Paris-Saclay, University Versailles Saint Quentin, DAVID, 78000 Versailles, France
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, University Evry, CY Cergy Paris Université, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| |
Collapse
|
14
|
Mondal M, Gao YQ. Sequence‐dependent clustering properties of nucleotides fragments in an ionic solution. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Manas Mondal
- Institute of Systems and Physical Biology Shenzhen Bay Laboratory Shenzhen China
| | - Yi Qin Gao
- Institute of Systems and Physical Biology Shenzhen Bay Laboratory Shenzhen China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering Peking University Beijing China
- Biomedical Pioneering Innovation Center Peking University Beijing China
- Beijing Advanced Innovation Center for Genomics Peking University Beijing China
| |
Collapse
|
15
|
Bougueroua S, Aboulfath Y, Barth D, Gaigeot MP. Algorithmic graph theory for post-processing molecular dynamics trajectories. Mol Phys 2023. [DOI: 10.1080/00268976.2022.2162456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Sana Bougueroua
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, Evry-Courcouronnes, France
| | - Ylène Aboulfath
- Université Paris-Saclay, Univ Versailles SQ, DAVID, Versailles, France
| | - Dominique Barth
- Université Paris-Saclay, Univ Versailles SQ, DAVID, Versailles, France
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, Evry-Courcouronnes, France
| |
Collapse
|
16
|
Pirhadi E, Vanegas JM, Farin M, Schertzer JW, Yong X. Effect of Local Stress on Accurate Modeling of Bacterial Outer Membranes Using All-Atom Molecular Dynamics. J Chem Theory Comput 2023; 19:363-372. [PMID: 36579901 PMCID: PMC11521388 DOI: 10.1021/acs.jctc.2c01026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biological membranes are fundamental components of living organisms that play an undeniable role in their survival. Molecular dynamics (MD) serves as an essential computational tool for studying biomembranes on molecular and atomistic scales. The status quo of MD simulations of biomembranes studies a nanometer-sized membrane patch periodically extended under periodic boundary conditions (PBCs). In nature, membranes are usually composed of different lipids in their two layers (referred to as leaflets). This compositional asymmetry imposes a fixed ratio of lipid numbers between the two leaflets in a periodically constrained membrane, which needs to be set appropriately. The widely adopted methods of defining a leaflet lipid ratio suffer from the lack of control over the mechanical tension of each leaflet, which could significantly influence research findings. In this study, we investigate the role of membrane-building protocol and the resulting initial stress state on the interaction between small molecules and asymmetric membranes. We model the outer membrane of Pseudomonas aeruginosa bacteria using two different building protocols and probe their interactions with the Pseudomonas quinolone signal (PQS). Our results show that differential stress could shift the position of free energy minimum for the PQS molecule between the two leaflets of the asymmetric membrane. This work provides critical insights into the relationship between the initial per-leaflet tension and the spontaneous intercalation of PQS.
Collapse
Affiliation(s)
- Emad Pirhadi
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York
| | - Juan M. Vanegas
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon
| | - Mithila Farin
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York
| | | | - Xin Yong
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York
| |
Collapse
|
17
|
Dommer A, Casalino L, Kearns F, Rosenfeld M, Wauer N, Ahn SH, Russo J, Oliveira S, Morris C, Bogetti A, Trifan A, Brace A, Sztain T, Clyde A, Ma H, Chennubhotla C, Lee H, Turilli M, Khalid S, Tamayo-Mendoza T, Welborn M, Christensen A, Smith DG, Qiao Z, Sirumalla SK, O'Connor M, Manby F, Anandkumar A, Hardy D, Phillips J, Stern A, Romero J, Clark D, Dorrell M, Maiden T, Huang L, McCalpin J, Woods C, Gray A, Williams M, Barker B, Rajapaksha H, Pitts R, Gibbs T, Stone J, Zuckerman DM, Mulholland AJ, Miller T, Jha S, Ramanathan A, Chong L, Amaro RE. #COVIDisAirborne: AI-enabled multiscale computational microscopy of delta SARS-CoV-2 in a respiratory aerosol. THE INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS 2023; 37:28-44. [PMID: 36647365 PMCID: PMC9527558 DOI: 10.1177/10943420221128233] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We seek to completely revise current models of airborne transmission of respiratory viruses by providing never-before-seen atomic-level views of the SARS-CoV-2 virus within a respiratory aerosol. Our work dramatically extends the capabilities of multiscale computational microscopy to address the significant gaps that exist in current experimental methods, which are limited in their ability to interrogate aerosols at the atomic/molecular level and thus obscure our understanding of airborne transmission. We demonstrate how our integrated data-driven platform provides a new way of exploring the composition, structure, and dynamics of aerosols and aerosolized viruses, while driving simulation method development along several important axes. We present a series of initial scientific discoveries for the SARS-CoV-2 Delta variant, noting that the full scientific impact of this work has yet to be realized.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John Russo
- Oregon Health & Science University, Portland, OR, USA
| | | | | | | | - Anda Trifan
- Argonne National Laboratory, Lemont, IL, USA
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alexander Brace
- Argonne National Laboratory, Lemont, IL, USA
- University of Chicago, Chicago, IL, USA
| | - Terra Sztain
- UC San Diego, La Jolla, CA, USA
- Freie Universitat Berlin
| | - Austin Clyde
- Argonne National Laboratory, Lemont, IL, USA
- University of Chicago, Chicago, IL, USA
| | - Heng Ma
- Argonne National Laboratory, Lemont, IL, USA
| | | | - Hyungro Lee
- Brookhaven National Lab and Rutgers University
| | | | | | | | | | | | | | - Zhuoran Qiao
- California Institute of Technology, Pasadena, CA, USA
| | | | | | | | - Anima Anandkumar
- California Institute of Technology, Pasadena, CA, USA
- NVIDIA Corp, Santa Clara, CA, USA
| | - David Hardy
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - James Phillips
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | | - Tom Maiden
- Pittsburgh Supercomputing Center, Pittsburgh, PA, USA
| | - Lei Huang
- Texas Advanced Computing Center, Austin, TX, USA
| | | | | | | | | | | | | | | | | | - John Stone
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
- NVIDIA Corp, Santa Clara, CA, USA
| | | | | | - Thomas Miller
- Entos, Inc., San Diego, CA, USA
- California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | |
Collapse
|
18
|
Kurki M, Poso A, Bartos P, Miettinen MS. Structure of POPC Lipid Bilayers in OPLS3e Force Field. J Chem Inf Model 2022; 62:6462-6474. [PMID: 36044537 PMCID: PMC9795559 DOI: 10.1021/acs.jcim.2c00395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It is crucial for molecular dynamics simulations of biomembranes that the force field parameters give a realistic model of the membrane behavior. In this study, we examined the OPLS3e force field for the carbon-hydrogen order parameters SCH of POPC (1-palmitoyl-2-oleoylphosphatidylcholine) lipid bilayers at varying hydration conditions and ion concentrations. The results show that OPLS3e behaves similarly to the CHARMM36 force field and relatively accurately follows the experimentally measured SCH for the lipid headgroup, the glycerol backbone, and the acyl tails. Thus, OPLS3e is a good choice for POPC bilayer simulations under many biologically relevant conditions. The exception are systems with an abundancy of ions, as similarly to most other force fields OPLS3e strongly overestimates the membrane-binding of cations, especially Ca2+. This leads to undesirable positive charge of the membrane surface and drastically lowers the concentration of Ca2+ in the surrounding solvent, which might cause issues in systems sensitive to correct charge distribution profiles across the membrane.
Collapse
Affiliation(s)
- Milla Kurki
- School
of Pharmacy, University of Eastern Finland, Kuopio Campus, Yliopistonranta 1
C, P.O. Box 1627, 70211 Kuopio, Finland
| | - Antti Poso
- School
of Pharmacy, University of Eastern Finland, Kuopio Campus, Yliopistonranta 1
C, P.O. Box 1627, 70211 Kuopio, Finland
| | - Piia Bartos
- School
of Pharmacy, University of Eastern Finland, Kuopio Campus, Yliopistonranta 1
C, P.O. Box 1627, 70211 Kuopio, Finland,
| | - Markus S. Miettinen
- Department
of Chemistry, University of Bergen, 5007 Bergen, Norway,Computational
Biology Unit, Department of Informatics, University of Bergen, 5007 Bergen, Norway
| |
Collapse
|
19
|
Seo J, Choi S, Singh R, Choi JH. Spatial Inhomogeneity and Molecular Aggregation behavior in Aqueous Binary Liquid Mixtures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
20
|
Nencini R, Ollila OHS. Charged Small Molecule Binding to Membranes in MD Simulations Evaluated against NMR Experiments. J Phys Chem B 2022; 126:6955-6963. [PMID: 36063117 PMCID: PMC9483918 DOI: 10.1021/acs.jpcb.2c05024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interactions of charged molecules with biomembranes regulate many of their biological activities, but their binding affinities to lipid bilayers are difficult to measure experimentally and model theoretically. Classical molecular dynamics (MD) simulations have the potential to capture the complex interactions determining how charged biomolecules interact with membranes, but systematic overbinding of sodium and calcium cations in standard MD simulations raises the question of how accurately force fields capture the interactions between lipid membranes and charged biomolecules. Here, we evaluate the binding of positively charged small molecules, etidocaine, and tetraphenylphosphonium to a phosphatidylcholine (POPC) lipid bilayer using the changes in lipid head-group order parameters. We observed that these molecules behave oppositely to calcium and sodium ions when binding to membranes: (i) their binding affinities are not overestimated by standard force field parameters, (ii) implicit inclusion of electronic polarizability increases their binding affinity, and (iii) they penetrate into the hydrophobic membrane core. Our results can be explained by distinct binding mechanisms of charged small molecules with hydrophobic moieties and monoatomic ions. The binding of the former is driven by hydrophobic effects, while the latter has direct electrostatic interactions with lipids. In addition to elucidating how different kinds of charged biomolecules bind to membranes, we deliver tools for further development of MD simulation parameters and methodology.
Collapse
Affiliation(s)
- Ricky Nencini
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - O H Samuli Ollila
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
21
|
Molecular dynamics and network analysis reveal the contrasting roles of polar solutes within organic phase amphiphile aggregation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Antila HS, Kav B, Miettinen MS, Martinez-Seara H, Jungwirth P, Ollila OHS. Emerging Era of Biomolecular Membrane Simulations: Automated Physically-Justified Force Field Development and Quality-Evaluated Databanks. J Phys Chem B 2022. [DOI: 10.1021/acs.jpcb.2c01954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hanne S. Antila
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Batuhan Kav
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum
Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany
| | - Markus S. Miettinen
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
- Department of Chemistry, University of Bergen, 5020 Bergen, Norway
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000 Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000 Prague 6, Czech Republic
| | - O. H. Samuli Ollila
- Institute of Biotechonology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
23
|
Design principles of PI(4,5)P 2 clustering under protein-free conditions: Specific cation effects and calcium-potassium synergy. Proc Natl Acad Sci U S A 2022; 119:e2202647119. [PMID: 35605121 DOI: 10.1073/pnas.2202647119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceClustering of phosphatidylinositol 4,5-bisphosphate (PIP2) with proteins into what are known as "PIP2 rafts" is a critical component of intracellular signaling, yet little is known about PIP2 clusters at the atomic level. Using molecular dynamics simulations and network theory, this paper shows that Ca2+ generates large clusters by linking PIP2 dimers already formed by doubly charged P4/P5 phosphates, while monovalent cations form smaller and less-stable clusters by adding PIP2 monomers preferentially via weaker interactions with P4/P5 (for Na+) or with glycerol P1 (for K+). Synergy arises between K+ and Ca2+ because each ion forms linkages with different phosphates, thereby giving clusters more ways to grow. This explains why Ca2+ is pumped into cells by ion channels to form PIP2 rafts.
Collapse
|
24
|
Dommer A, Casalino L, Kearns F, Rosenfeld M, Wauer N, Ahn SH, Russo J, Oliveira S, Morris C, Bogetti A, Trifan A, Brace A, Sztain T, Clyde A, Ma H, Chennubhotla C, Lee H, Turilli M, Khalid S, Tamayo-Mendoza T, Welborn M, Christensen A, Smith DGA, Qiao Z, Sirumalla SK, O'Connor M, Manby F, Anandkumar A, Hardy D, Phillips J, Stern A, Romero J, Clark D, Dorrell M, Maiden T, Huang L, McCalpin J, Woods C, Gray A, Williams M, Barker B, Rajapaksha H, Pitts R, Gibbs T, Stone J, Zuckerman D, Mulholland A, Miller T, Jha S, Ramanathan A, Chong L, Amaro R. #COVIDisAirborne: AI-Enabled Multiscale Computational Microscopy of Delta SARS-CoV-2 in a Respiratory Aerosol. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.11.12.468428. [PMID: 34816263 PMCID: PMC8609898 DOI: 10.1101/2021.11.12.468428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
We seek to completely revise current models of airborne transmission of respiratory viruses by providing never-before-seen atomic-level views of the SARS-CoV-2 virus within a respiratory aerosol. Our work dramatically extends the capabilities of multiscale computational microscopy to address the significant gaps that exist in current experimental methods, which are limited in their ability to interrogate aerosols at the atomic/molecular level and thus ob-scure our understanding of airborne transmission. We demonstrate how our integrated data-driven platform provides a new way of exploring the composition, structure, and dynamics of aerosols and aerosolized viruses, while driving simulation method development along several important axes. We present a series of initial scientific discoveries for the SARS-CoV-2 Delta variant, noting that the full scientific impact of this work has yet to be realized. ACM REFERENCE FORMAT Abigail Dommer 1† , Lorenzo Casalino 1† , Fiona Kearns 1† , Mia Rosenfeld 1 , Nicholas Wauer 1 , Surl-Hee Ahn 1 , John Russo, 2 Sofia Oliveira 3 , Clare Morris 1 , AnthonyBogetti 4 , AndaTrifan 5,6 , Alexander Brace 5,7 , TerraSztain 1,8 , Austin Clyde 5,7 , Heng Ma 5 , Chakra Chennubhotla 4 , Hyungro Lee 9 , Matteo Turilli 9 , Syma Khalid 10 , Teresa Tamayo-Mendoza 11 , Matthew Welborn 11 , Anders Christensen 11 , Daniel G. A. Smith 11 , Zhuoran Qiao 12 , Sai Krishna Sirumalla 11 , Michael O'Connor 11 , Frederick Manby 11 , Anima Anandkumar 12,13 , David Hardy 6 , James Phillips 6 , Abraham Stern 13 , Josh Romero 13 , David Clark 13 , Mitchell Dorrell 14 , Tom Maiden 14 , Lei Huang 15 , John McCalpin 15 , Christo- pherWoods 3 , Alan Gray 13 , MattWilliams 3 , Bryan Barker 16 , HarindaRajapaksha 16 , Richard Pitts 16 , Tom Gibbs 13 , John Stone 6 , Daniel Zuckerman 2 *, Adrian Mulholland 3 *, Thomas MillerIII 11,12 *, ShantenuJha 9 *, Arvind Ramanathan 5 *, Lillian Chong 4 *, Rommie Amaro 1 *. 2021. #COVIDisAirborne: AI-Enabled Multiscale Computational Microscopy ofDeltaSARS-CoV-2 in a Respiratory Aerosol. In Supercomputing '21: International Conference for High Perfor-mance Computing, Networking, Storage, and Analysis . ACM, New York, NY, USA, 14 pages. https://doi.org/finalDOI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Anda Trifan
- Argonne National Laboratory
- University of Illinois at Urbana-Champaign
| | | | | | - Austin Clyde
- Argonne National Laboratory
- University of Chicago
| | | | | | - Hyungro Lee
- Brookhaven National Lab & Rutgers University
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - John Stone
- University of Illinois at Urbana-Champaign
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Gaigeot MP. Some opinions on MD-based vibrational spectroscopy of gas phase molecules and their assembly: An overview of what has been achieved and where to go. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119864. [PMID: 34052762 DOI: 10.1016/j.saa.2021.119864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
We hereby review molecular dynamics simulations for anharmonic gas phase spectroscopy and provide some of our opinions of where the field is heading. With these new directions, the theoretical IR/Raman spectroscopy of large (bio)-molecular systems will be more easily achievable over longer time-scale MD trajectories for an increase in accuracy of the MD-IR and MD-Raman calculated spectra. With the new directions presented here, the high throughput 'decoding' of experimental IR/Raman spectra into 3D-structures should thus be possible, hence advancing e.g. the field of MS-IR for structural characterization by spectroscopy. We also review the assignment of vibrational spectra in terms of anharmonic molecular modes from the MD trajectories, and especially introduce our recent developments based on Graph Theory algorithms. Graph Theory algorithmic is also introduced in this review for the identification of the molecular 3D-structures sampled over MD trajectories.
Collapse
Affiliation(s)
- Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France.
| |
Collapse
|
26
|
Perez-Mellor AF, Spezia R. Determination of kinetic properties in unimolecular dissociation of complex systems from graph theory based analysis of an ensemble of reactive trajectories. J Chem Phys 2021; 155:124103. [PMID: 34598552 DOI: 10.1063/5.0058382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In this paper, we report how graph theory can be used to analyze an ensemble of independent molecular trajectories, which can react during the simulation time-length, and obtain structural and kinetic information. This method is totally general and here is applied to the prototypical case of gas phase fragmentation of protonated cyclo-di-glycine. This methodology allows us to analyze the whole set of trajectories in an automatic computer-based way without the need of visual inspection but by getting all the needed information. In particular, we not only determine the appearance of different products and intermediates but also characterize the corresponding kinetics. The use of colored graph and canonical labeling allows for the correct characterization of the chemical species involved. In the present case, the simulations consist of an ensemble of unimolecular fragmentation trajectories at constant energy such that from the rate constants at different energies, the threshold energy can also be obtained for both global and specific pathways. This approach allows for the characterization of ion-molecule complexes, likely through a roaming mechanism, by properly taking into account the elusive nature of such species. Finally, it is possible to directly obtain the theoretical mass spectrum of the fragmenting species if the reacting system is an ion as in the specific example.
Collapse
Affiliation(s)
- Ariel F Perez-Mellor
- LAMBE UMR8587, Université d'Evry Val d'Essonne, CNRS, CEA, Université Paris-Saclay, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, 91025 Evry, France
| | - Riccardo Spezia
- Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, F-75005 Paris, France
| |
Collapse
|
27
|
Milenkovic S, Bodrenko IV, Carpaneto A, Ceccarelli M. The key role of the central cavity in sodium transport through ligand-gated two-pore channels. Phys Chem Chem Phys 2021; 23:18461-18474. [PMID: 34612386 DOI: 10.1039/d1cp02947a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Subcellular and organellar mechanisms have manifested a prominent importance for a broad variety of processes that maintain cellular life at its most basic level. Mammalian two-pore channels (TPCs) appear to be cornerstones of these processes in endo-lysosomes by controlling delicate ion-concentrations in their interiors. With evolutionary remarkable architecture and one-of-a-kind selectivity filter, TPCs are an extremely attractive topic per se. In the light of the current COVID-19 pandemic, hTPC2 emerges to be more than attractive. As a key regulator of the endocytosis pathway, it is potentially essential for diverse viral infections in humans, as demonstrated. Here, by means of multiscale molecular simulations, we propose a model of sodium transport from the lumen to the cytosol where the central cavity works as a reservoir. Since the inhibition of hTPC2 is proven to stop SARS-CoV2 in vitro, shedding light on the hTPC2 function and mechanism is the first step towards the selection of potential inhibiting candidates.
Collapse
Affiliation(s)
- Stefan Milenkovic
- Department of Physics, University of Cagliari, 09042 Monserrato, Italy.
| | | | | | | |
Collapse
|
28
|
Allolio C, Harries D. Calcium Ions Promote Membrane Fusion by Forming Negative-Curvature Inducing Clusters on Specific Anionic Lipids. ACS NANO 2021; 15:12880-12887. [PMID: 34338519 DOI: 10.1021/acsnano.0c08614] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Vesicles enriched in certain negatively charged lipids, such as phosphatidylserine and PIP2, are known to undergo fusion in the presence of calcium ions without assistance from protein assemblies. Other lipids do not exhibit this propensity, even if they are negatively charged. Using our recently developed methodology, we extract elastic properties of a representative set of lipids. This allows us to trace the origin of lipid-calcium selectivity in membrane fusion to the formation of lipid clusters with long-range correlations that induce negative curvature on the membrane surface. Furthermore, the clusters generate lateral tension in the headgroup region at the membrane surface, concomitantly also stabilizing negative Gaussian curvature. Finally, calcium binding also reduces the orientational polarization of water around the membrane head groups, potentially reducing the hydration force acting between membranes. Binding calcium only weakly increases membrane bending rigidity and tilt moduli, in agreement with experiments. We show how the combined effects of calcium binding to membranes lower the barriers along the fusion pathway that lead to the formation of the fusion stalk as well as the fusion pore.
Collapse
Affiliation(s)
- Christoph Allolio
- Charles University, Faculty of Mathematics and Physics, Mathematical Institute, Sokolovská 83, 186 75 Prague 8, Czech Republic
- Institute of Chemistry, The Fritz Haber Center, and The Center for Nanoscience and Nanotechnology, The Hebrew University, E.J. Safra Campus, Jerusalem 9190401, Israel
| | - Daniel Harries
- Institute of Chemistry, The Fritz Haber Center, and The Center for Nanoscience and Nanotechnology, The Hebrew University, E.J. Safra Campus, Jerusalem 9190401, Israel
| |
Collapse
|
29
|
Carter-Fenk KA, Dommer AC, Fiamingo ME, Kim J, Amaro RE, Allen HC. Calcium bridging drives polysaccharide co-adsorption to a proxy sea surface microlayer. Phys Chem Chem Phys 2021; 23:16401-16416. [PMID: 34318808 DOI: 10.1039/d1cp01407b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Saccharides comprise a significant mass fraction of organic carbon in sea spray aerosol (SSA), but the mechanisms through which saccharides are transferred from seawater to the ocean surface and eventually into SSA are unclear. It is hypothesized that saccharides cooperatively adsorb to other insoluble organic matter at the air/sea interface, known as the sea surface microlayer (SSML). Using a combination of surface-sensitive infrared reflection-absorption spectroscopy and all-atom molecular dynamics simulations, we demonstrate that the marine-relevant, anionic polysaccharide alginate co-adsorbs to an insoluble palmitic acid monolayer via divalent cationic bridging interactions. Ca2+ induces the greatest extent of alginate co-adsorption to the monolayer, evidenced by the ∼30% increase in surface coverage, whereas Mg2+ only facilitates one-third the extent of co-adsorption at seawater-relevant cation concentrations due to its strong hydration propensity. Na+ cations alone do not facilitate alginate co-adsorption, and palmitic acid protonation hinders the formation of divalent cationic bridges between the palmitate and alginate carboxylate moieties. Alginate co-adsorption is largely confined to the interfacial region beneath the monolayer headgroups, so surface pressure, and thus monolayer surface coverage, only changes the amount of alginate co-adsorption by less than 5%. Our results provide physical and molecular characterization of a potentially significant polysaccharide enrichment mechanism within the SSML.
Collapse
Affiliation(s)
- Kimberly A Carter-Fenk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Yang Y, Jalali S, Nilsson BL, Dias CL. Binding Mechanisms of Amyloid-like Peptides to Lipid Bilayers and Effects of Divalent Cations. ACS Chem Neurosci 2021; 12:2027-2035. [PMID: 33973758 DOI: 10.1021/acschemneuro.1c00140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In several neurodegenerative diseases, cell toxicity can emerge from damage produced by amyloid aggregates to lipid membranes. The details accounting for this damage are poorly understood including how individual amyloid peptides interact with phospholipid membranes before aggregation. Here, we use all-atom molecular dynamics simulations to investigate the molecular mechanisms accounting for amyloid-membrane interactions and the role played by calcium ions in this interaction. Model peptides known to self-assemble into amyloid fibrils and bilayer made from zwitterionic and anionic lipids are used in this study. We find that both electrostatic and hydrophobic interactions contribute to peptide-bilayer binding. In particular, the attraction of peptides to lipid bilayers is dominated by electrostatic interactions between positive residues and negative phosphate moieties of lipid head groups. This attraction is stronger for anionic bilayers than for zwitterionic ones. Hydrophobicity drives the burial of nonpolar residues into the interior of the bilayer producing strong binding in our simulations. Moreover, we observe that the attraction of peptides to the bilayer is significantly reduced in the presence of calcium ions. This is due to the binding of calcium ions to negative phosphate moieties of lipid head groups, which leaves phospholipid bilayers with a net positive charge. Strong binding of the peptide to the membrane occurs less frequently in the presence of calcium ions and involves the formation of a "Ca2+ bridge".
Collapse
Affiliation(s)
- Yanxing Yang
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Sharareh Jalali
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Bradley L. Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Cristiano L. Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
31
|
Guvench O, Whitmore EK. Sulfation and Calcium Favor Compact Conformations of Chondroitin in Aqueous Solutions. ACS OMEGA 2021; 6:13204-13217. [PMID: 34056470 PMCID: PMC8158799 DOI: 10.1021/acsomega.1c01071] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/28/2021] [Indexed: 06/01/2023]
Abstract
The effects of sulfation and calcium cations (Ca2+) on the atomic-resolution conformational properties of chondroitin carbohydrate polymers in aqueous solutions are not well studied owing to experimental challenges. Here, we compare all-atom explicit-solvent molecular dynamics simulations results for pairs of O-type (nonsulfated) and A-type (GlcNAc 4-O-sulfated) chondroitin 20-mers in 140 mM NaCl with and without Ca2+ and find that both sulfation and Ca2+ favor more compact polymer conformations. We also show that subtle differences in force-field parametrization can have dramatic effects on Ca2+ binding to chondroitin carboxylate and sulfate functional groups and thereby determine Ca2+-mediated intra- and interstrand association. In addition to providing an atomic-resolution picture of the interaction of Ca2+ with sulfated and nonsulfated chondroitin polymers, the molecular dynamics data emphasize the importance of careful force-field parametrization to balance ion-water and ion-chondroitin interactions and suggest additional parametrization efforts to tune interactions involving sulfate.
Collapse
Affiliation(s)
- Olgun Guvench
- Department
of Pharmaceutical Sciences and Administration, School of Pharmacy, Westbrook College of Health Professions, University
of New England, 716 Stevens
Avenue, Portland, Maine 04103, United States
- Graduate
School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, Maine 04469, United
States
| | - Elizabeth K. Whitmore
- Department
of Pharmaceutical Sciences and Administration, School of Pharmacy, Westbrook College of Health Professions, University
of New England, 716 Stevens
Avenue, Portland, Maine 04103, United States
- Graduate
School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, Maine 04469, United
States
| |
Collapse
|
32
|
Lin X, Gorfe AA. Transmembrane potential of physiologically relevant model membranes: Effects of membrane asymmetry. J Chem Phys 2021; 153:105103. [PMID: 32933265 DOI: 10.1063/5.0018303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transmembrane potential difference (Vm) plays important roles in regulating various biological processes. At the macro level, Vm can be experimentally measured or calculated using the Nernst or Goldman-Hodgkin-Katz equation. However, the atomic details responsible for its generation and impact on protein and lipid dynamics still need to be further elucidated. In this work, we performed a series of all-atom molecular dynamics (MD) simulations of symmetric model membranes of various lipid compositions and cation contents to evaluate the relationship between membrane asymmetry and Vm. Specifically, we studied the impact of the asymmetric distribution of POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine), PIP2 (phosphatidylinositol 4,5-bisphosphate), as well as Na+ and K+ on Vm using atomically detailed MD simulations of symmetric model membranes. The results suggest that, for an asymmetric POPC-POPC/POPS bilayer in the presence of NaCl, the presence of the monovalent anionic lipid POPS in the inner leaflet polarizes the membrane (ΔVm < 0). Intriguingly, replacing a third of the POPS lipids by the polyvalent anionic signaling lipid PIP2 counteracts this effect, resulting in a smaller negative membrane potential. We also found that replacing Na+ ions in the inner region by K+ depolarizes the membrane (ΔVm > 0). These divergent effects arise from variations in the strength of cation-lipid interactions and are correlated with changes in lipid chain order and head-group orientation.
Collapse
Affiliation(s)
- Xubo Lin
- Institute of Single Cell Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
33
|
Luna E, Kim S, Gao Y, Widmalm G, Im W. Influences of Vibrio cholerae Lipid A Types on LPS Bilayer Properties. J Phys Chem B 2021; 125:2105-2112. [PMID: 33600188 DOI: 10.1021/acs.jpcb.0c09144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lipopolysaccharides (LPS) present in the outer leaflet of Gram-negative bacterial outer membranes protect the bacteria from external threats and influence antibiotic permeability as well as immune system recognition. The structure of lipid A, the anchor of an LPS molecule to the outer membrane, can make direct influences on membrane properties. Particularly, in Vibrio cholerae, a Gram-negative bacterium responsible for cholera, a severe diarrheal disease, modifications of lipid A structures grant antibiotic resistance and are a primary factor that led to the current cholera pandemic. However, the difference in structural properties incurred by such modifications has not been fully explored. In this work, five symmetric bilayer systems comprised of distinct lipid A structures of Vibrio cholerae LPS with O1 O-antigen were modeled and simulated to explore influences of different lipid A types on membrane properties. All-atom molecular dynamics simulations reveal that membrane properties such as hydrophobic thickness, acyl chain order parameter, and area per lipid are largely impacted by lipid A modifications due to differences in composition and acyl chain distortions. The modified lipid A is also less negatively charged, which possibly reveals a resistance mechanism to cationic antimicrobial peptide evasion. These findings present a possible explanation for Vibrio cholerae's immune system evasion properties and establish the differences between the lipid A types, which should be of use for any future study of the Gram-negative bacteria.
Collapse
Affiliation(s)
- Emanuel Luna
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Seonghoon Kim
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States.,School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Ya Gao
- School of Mathematics, Physics, and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
34
|
Duboué-Dijon E, Javanainen M, Delcroix P, Jungwirth P, Martinez-Seara H. A practical guide to biologically relevant molecular simulations with charge scaling for electronic polarization. J Chem Phys 2021; 153:050901. [PMID: 32770904 DOI: 10.1063/5.0017775] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Molecular simulations can elucidate atomistic-level mechanisms of key biological processes, which are often hardly accessible to experiment. However, the results of the simulations can only be as trustworthy as the underlying simulation model. In many of these processes, interactions between charged moieties play a critical role. Current empirical force fields tend to overestimate such interactions, often in a dramatic way, when polyvalent ions are involved. The source of this shortcoming is the missing electronic polarization in these models. Given the importance of such biomolecular systems, there is great interest in fixing this deficiency in a computationally inexpensive way without employing explicitly polarizable force fields. Here, we review the electronic continuum correction approach, which accounts for electronic polarization in a mean-field way, focusing on its charge scaling variant. We show that by pragmatically scaling only the charged molecular groups, we qualitatively improve the charge-charge interactions without extra computational costs and benefit from decades of force field development on biomolecular force fields.
Collapse
Affiliation(s)
- E Duboué-Dijon
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - M Javanainen
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 166 10, Czech Republic
| | - P Delcroix
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 166 10, Czech Republic
| | - P Jungwirth
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 166 10, Czech Republic
| | - H Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 166 10, Czech Republic
| |
Collapse
|
35
|
Javanainen M, Hua W, Tichacek O, Delcroix P, Cwiklik L, Allen HC. Structural Effects of Cation Binding to DPPC Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15258-15269. [PMID: 33296215 DOI: 10.1021/acs.langmuir.0c02555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ions at the two sides of the plasma membrane maintain the transmembrane potential, participate in signaling, and affect the properties of the membrane itself. The extracellular leaflet is particularly enriched in phosphatidylcholine lipids and under the influence of Na+, Ca2+, and Cl- ions. In this work, we combined molecular dynamics simulations performed using state-of-the-art models with vibrational sum frequency generation (VSFG) spectroscopy to study the effects of these key ions on the structure of dipalmitoylphosphatidylcholine. We used lipid monolayers as a proxy for membranes, as this approach enabled a direct comparison between simulation and experiment. We find that the effects of Na+ are minor. Ca2+, on the other hand, strongly affects the lipid headgroup conformations and induces a tighter packing of lipids, thus promoting the liquid condensed phase. It does so by binding to both the phosphate and carbonyl oxygens via direct and water-mediated binding modes, the ratios of which depend on the monolayer packing. Clustering analysis performed on simulation data revealed that changes in area per lipid or CaCl2 concentration both affect the headgroup conformations, yet their effects are anticorrelated. Cations at the monolayer surface also attract Cl-, which at large CaCl2 concentrations penetrates deep to the monolayer. This phenomenon coincides with a radical change in the VSFG spectra of the phosphate group, thus indicating the emergence of a new binding mode.
Collapse
Affiliation(s)
- Matti Javanainen
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, 160 00 Prague 6, Czech Republic
| | - Wei Hua
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ondrej Tichacek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, 160 00 Prague 6, Czech Republic
| | - Pauline Delcroix
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejskova 3, 18223 Prague 8, Czech Republic
| | - Lukasz Cwiklik
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejskova 3, 18223 Prague 8, Czech Republic
| | - Heather C Allen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
36
|
Fink L, Allolio C, Feitelson J, Tamburu C, Harries D, Raviv U. Bridges of Calcium Bicarbonate Tightly Couple Dipolar Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10715-10724. [PMID: 32787004 PMCID: PMC7586406 DOI: 10.1021/acs.langmuir.0c01511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/02/2020] [Indexed: 06/11/2023]
Abstract
The interaction between lipid membranes and ions is associated with a range of key physiological processes. Most earlier studies have focused on the interaction of lipids with cations, while the specific effects of the anions have been largely overlooked. Owing to dissolved atmospheric carbon dioxide, bicarbonate is an important ubiquitous anion in aqueous media. In this paper, we report on the effect of bicarbonate anions on the interactions between dipolar lipid membranes in the presence of previously adsorbed calcium cations. Using a combination of solution X-ray scattering, osmotic stress, and molecular dynamics simulations, we followed the interactions between 1,2-didodecanoyl-sn-glycero-3-phosphocholine (DLPC) lipid membranes that were dialyzed against CaCl2 solutions in the presence and absence of bicarbonate anions. Calcium cations adsorbed onto DLPC membranes, charge them, and lead to their swelling. In the presence of bicarbonate anions, however, the calcium cations can tightly couple one dipolar DLPC membrane to the other and form a highly condensed and dehydrated lamellar phase with a repeat distance of 3.45 ± 0.02 nm. Similar tight condensation and dehydration has only been observed between charged membranes in the presence of multivalent counterions. Bridging between bilayers by calcium bicarbonate complexes induced this arrangement. Furthermore, in this condensed phase, lipid molecules and adsorbed ions were arranged in a two-dimensional oblique lattice.
Collapse
Affiliation(s)
- Lea Fink
- Institute
of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Christoph Allolio
- Institute
of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
- The
Fritz Haber Center, The Hebrew University
of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Jehuda Feitelson
- Institute
of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Carmen Tamburu
- Institute
of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Daniel Harries
- Institute
of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
- The
Fritz Haber Center, The Hebrew University
of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Uri Raviv
- Institute
of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
37
|
Han K, Pastor RW, Fenollar–Ferrer C. PLD2-PI(4,5)P2 interactions in fluid phase membranes: Structural modeling and molecular dynamics simulations. PLoS One 2020; 15:e0236201. [PMID: 32687545 PMCID: PMC7371163 DOI: 10.1371/journal.pone.0236201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022] Open
Abstract
Interaction of phospholipase D2 (PLD2) with phosphatidylinositol (4,5)-bisphosphate (PIP2) is regarded as the critical step of numerous physiological processes. Here we build a full-length model of human PLD2 (hPLD2) combining template-based and ab initio modeling techniques and use microsecond all-atom molecular dynamics (MD) simulations of the protein in contact with a complex membrane to determine hPLD2-PIP2 interactions. MD simulations reveal that the intermolecular interactions preferentially occur between specific PIP2 phosphate groups and hPLD2 residues; the most strongly interacting residues are arginine at the pbox consensus sequence (PX) and pleckstrin homology (PH) domain. Interaction networks indicate formation of clusters at the protein-membrane interface consisting of amino acids, PIP2, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidic acid (POPA); the largest cluster was in the PH domain.
Collapse
Affiliation(s)
- Kyungreem Han
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard W. Pastor
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cristina Fenollar–Ferrer
- Laboratory of Molecular & Cellular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
- Laboratory of Molecular Genetics, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, United States of America
- Molecular Biology and Genetics Section, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
38
|
Rice A, Rooney MT, Greenwood AI, Cotten ML, Wereszczynski J. Lipopolysaccharide Simulations Are Sensitive to Phosphate Charge and Ion Parameterization. J Chem Theory Comput 2020; 16:1806-1815. [PMID: 32023054 DOI: 10.1021/acs.jctc.9b00868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The high proportion of lipopolysaccharide (LPS) molecules in the outer membrane of Gram-negative bacteria makes it a highly effective barrier to small molecules, antibiotic drugs, and other antimicrobial agents. Given this vital role in protecting bacteria from potentially hostile environments, simulations of LPS bilayers and outer membrane systems represent a critical tool for understanding the mechanisms of bacterial resistance and the development of new antibiotic compounds that circumvent these defenses. The basis of these simulations is parameterizations of LPS, which have been developed for all major molecular dynamics force fields. However, these parameterizations differ in both the protonation state of LPS and how LPS membranes behave in the presence of various ion species. To address these discrepancies and understand the effects of phosphate charge on bilayer properties, simulations were performed for multiple distinct LPS chemotypes with different ion parameterizations in both protonated or deprotonated lipid A states. These simulations show that bilayer properties, such as the area per lipid and inter-lipid hydrogen bonding, are highly influenced by the choice of phosphate group charges, cation type, and ion parameterization, with protonated LPS and monovalent cations with modified nonbonded parameters providing the best match to the experiments. Additionally, alchemical free energy simulations were performed to determine theoretical pKa values for LPS and subsequently validated by 31P solid-state nuclear magnetic resonance experiments. Results from these complementary computational and experimental studies demonstrate that the protonated state dominates at physiological pH, contrary to the deprotonated form modeled by many LPS force fields. Overall, these results highlight the sensitivity of LPS simulations to phosphate charge and ion parameters while offering recommendations for how existing models should be updated for consistency between force fields as well as to best match experiments.
Collapse
Affiliation(s)
- Amy Rice
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Mary T Rooney
- Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23185, United States
| | - Alexander I Greenwood
- Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23185, United States.,Department of Physics, College of William and Mary, Williamsburg, Virginia 23185, United States
| | - Myriam L Cotten
- Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23185, United States
| | - Jeff Wereszczynski
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|
39
|
Han K, Gericke A, Pastor RW. Characterization of Specific Ion Effects on PI(4,5)P 2 Clustering: Molecular Dynamics Simulations and Graph-Theoretic Analysis. J Phys Chem B 2020; 124:1183-1196. [PMID: 31994887 PMCID: PMC7461730 DOI: 10.1021/acs.jpcb.9b10951] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Numerous cellular functions mediated by phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2; PIP2) involve clustering of the lipid as well as colocalization with other lipids. Although the cation-mediated electrostatic interaction is regarded as the primary clustering mechanism, the ion-specific nature of the intermolecular network formation makes it challenging to characterize the clusters. Here we use all-atom molecular dynamics (MD) simulations of PIP2 monolayers and graph-theoretic analysis to gain insight into the phenomenon. MD simulations reveal that the intermolecular interactions preferentially occur between specific cations and phosphate groups (P1, P4, and P5) of the inositol headgroup with better-matched kosmotropic/chaotropic characters consistent with the law of matching water affinities (LMWA). Ca2+ is strongly attracted to P4/P5, while K+ preferentially binds to P1; Na+ interacts with both P4/P5 and P1. These specific interactions lead to the characteristic clustering patterns. Specificially, the size distributions and structures of PIP2 clusters generated by kosmotropic cations Ca2+ and Na+ are bimodal, with a combination of small and large clusters, while there is little clustering in the presence of only chaotropic K+; the largest clusters are obtained in systems with all three cations. The small-world network (a model with both local and long-range connections) best characterizes the clusters, followed by the random and the scale-free networks. More generally, the present results interpreted within the LMWA are consistent with the relative eukaryotic intracellular concentrations Ca2+ ≪ Na+ < Mg2+ < K+; that is, concentrations of Ca2+ and Na+ must be low to prevent damaging aggregation of lipids, DNA, RNA and phosphate-containing proteins.
Collapse
Affiliation(s)
- Kyungreem Han
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Arne Gericke
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Richard W. Pastor
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
40
|
Melcr J, Ferreira TM, Jungwirth P, Ollila OHS. Improved Cation Binding to Lipid Bilayers with Negatively Charged POPS by Effective Inclusion of Electronic Polarization. J Chem Theory Comput 2019; 16:738-748. [PMID: 31762275 DOI: 10.1021/acs.jctc.9b00824] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phosphatidylserine (PS) lipids are important signaling molecules and the most common negatively charged lipids in eukaryotic membranes. The signaling can be often regulated by calcium, but its interactions with PS headgroups are not fully understood. Classical molecular dynamics (MD) simulations can potentially give detailed description of lipid-ion interactions, but the results strongly depend on the used force field. Here, we apply the electronic continuum correction (ECC) to the Amber Lipid17 parameters of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS) lipid to improve its interactions with K+, Na+, and Ca2+ ions. The partial charges of the headgroup, glycerol backbone, and carbonyls of POPS, bearing a unit negative charge, were scaled with a factor of 0.75, derived for monovalent ions, and the Lennard-Jones σ parameters of the same segments were scaled with a factor of 0.89. The resulting ECC-POPS model gives more realistic interactions with Na+ and Ca2+ cations than the original Amber Lipid17 parameters when validated using headgroup order parameters and the "electrometer concept". In ECC-lipids simulations, populations of complexes of Ca2+ cations with more than two PS lipids are negligible, and interactions of Ca2+ cations with only carboxylate groups are twice more likely than with only phosphate groups, while interactions with carbonyls almost entirely involve other groups as well. Our results pave the way for more realistic MD simulations of biomolecular systems with anionic membranes, allowing signaling processes involving PS and Ca2+ to be elucidated.
Collapse
Affiliation(s)
- Josef Melcr
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 542/2 , CZ-16610 Prague 6 , Czech Republic.,Groningen Biomolecular Sciences and Biotechnology Institute and The Zernike Institute for Advanced Materials , University of Groningen , 9747 AG Groningen , The Netherlands
| | - Tiago M Ferreira
- NMR Group-Institut for Physics , Martin-Luther University Halle-Wittenberg , 06120 Halle , Germany
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 542/2 , CZ-16610 Prague 6 , Czech Republic
| | - O H Samuli Ollila
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 542/2 , CZ-16610 Prague 6 , Czech Republic.,Institute of Biotechnology , University of Helsinki , Helsinki FI-00014 , Finland
| |
Collapse
|
41
|
Antila H, Buslaev P, Favela-Rosales F, Ferreira TM, Gushchin I, Javanainen M, Kav B, Madsen JJ, Melcr J, Miettinen MS, Määttä J, Nencini R, Ollila OHS, Piggot TJ. Headgroup Structure and Cation Binding in Phosphatidylserine Lipid Bilayers. J Phys Chem B 2019; 123:9066-9079. [DOI: 10.1021/acs.jpcb.9b06091] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hanne Antila
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Pavel Buslaev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Russia
| | - Fernando Favela-Rosales
- Departamento de Investigación, Tecnológico Nacional de México, Campus Zacatecas Occidente, C. P. 99102 Zacatecas, México
| | - Tiago M. Ferreira
- NMR Group - Institute for Physics, Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Russia
| | - Matti Javanainen
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
| | - Batuhan Kav
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Jesper J. Madsen
- Department of Chemistry, The University of Chicago, 60637 Chicago, Illinois, United States of America
- Department of Global Health, College of Public Health, University of South Florida, 33612 Tampa, Florida, United States of America
| | - Josef Melcr
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
- Groningen Biomolecular Sciences and Biotechnology Institute and The Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Markus S. Miettinen
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Jukka Määttä
- Department of Chemistry and Materials Science, Aalto University, 00076 Espoo, Finland
| | - Ricky Nencini
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
| | - O. H. Samuli Ollila
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Thomas J. Piggot
- Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
42
|
Kesireddy A, Pothula KR, Lee J, Patel DS, Pathania M, van den Berg B, Im W, Kleinekathöfer U. Modeling of Specific Lipopolysaccharide Binding Sites on a Gram-Negative Porin. J Phys Chem B 2019; 123:5700-5708. [DOI: 10.1021/acs.jpcb.9b03669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anusha Kesireddy
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | - Karunakar R. Pothula
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | - Jumin Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Dhilon S. Patel
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Monisha Pathania
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Bert van den Berg
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| |
Collapse
|
43
|
Leonard AN, Klauda JB, Sukharev S. Isothermal Titration Calorimetry of Be 2+ with Phosphatidylserine Models Guides All-Atom Force-Field Development for Lipid-Ion Interactions. J Phys Chem B 2019; 123:1554-1565. [PMID: 30681857 DOI: 10.1021/acs.jpcb.8b11884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Beryllium has multiple industrial applications but exposure to its dust during manufacturing is associated with developing chronic inflammation in lungs known as berylliosis. Besides binding to specific alleles of MHC-II, Be2+ was recently found to compete with Ca2+ for binding sites on phosphatidylserine-containing membranes and inhibit recognition of this lipid by phagocytes. Computational studies of possible molecular targets for this small toxic dication are impeded by the absence of a reliable force field. This study introduces parameters for Be2+ for the CHARMM36 additive force field that represent interactions with water, including free energy of hydration and ion-monohydrate interaction energy and separation distance; and interaction parameters describing Be2+ affinity for divalent ion binding sites on lipids, namely phosphoryl and carboxylate oxygens. Results from isothermal titration calorimetry experiments for the binding affinities of Be2+ to dimethyl phosphate and acetate ions reveal that Be2+ strongly binds to phosphoryl groups. Revised interaction parameters for Be2+ with these types of oxygens reproduce experimental affinities in solution simulations. Surface tensions calculated from simulations of DOPS monolayers with varied concentrations of Be2+ are compared with prior results from Langmuir monolayer experiments, verifying the compacting effect that produces greater surface tensions (lower pressures) for Be2+-bound monolayers at the same surface area in comparison with K+. The new parameters will enable simulations that should reveal the mechanism of Be2+ interference with molecular recognition and signaling processes.
Collapse
Affiliation(s)
- Alison N Leonard
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | | | | |
Collapse
|
44
|
Leonard AN, Wang E, Monje-Galvan V, Klauda JB. Developing and Testing of Lipid Force Fields with Applications to Modeling Cellular Membranes. Chem Rev 2019; 119:6227-6269. [DOI: 10.1021/acs.chemrev.8b00384] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Bakó I, Pethes I, Pothoczki S, Pusztai L. Temperature dependent network stability in simple alcohols and pure water: The evolution of Laplace spectra. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Bougueroua S, Spezia R, Pezzotti S, Vial S, Quessette F, Barth D, Gaigeot MP. Graph theory for automatic structural recognition in molecular dynamics simulations. J Chem Phys 2018; 149:184102. [DOI: 10.1063/1.5045818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- S. Bougueroua
- LAMBE UMR8587, Univ. Evry, Université d’Evry Val d’Essonne, CNRS, CEA, Université Paris-Saclay, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, 91025 Evry, France
| | - R. Spezia
- LAMBE UMR8587, Univ. Evry, Université d’Evry Val d’Essonne, CNRS, CEA, Université Paris-Saclay, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, 91025 Evry, France
| | - S. Pezzotti
- LAMBE UMR8587, Univ. Evry, Université d’Evry Val d’Essonne, CNRS, CEA, Université Paris-Saclay, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, 91025 Evry, France
| | - S. Vial
- DAVID, Université de Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay, Données et Algorithmes pour une Ville Intelligente et Durable, 78035 Versailles, France
| | - F. Quessette
- DAVID, Université de Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay, Données et Algorithmes pour une Ville Intelligente et Durable, 78035 Versailles, France
| | - D. Barth
- DAVID, Université de Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay, Données et Algorithmes pour une Ville Intelligente et Durable, 78035 Versailles, France
| | - M.-P. Gaigeot
- LAMBE UMR8587, Univ. Evry, Université d’Evry Val d’Essonne, CNRS, CEA, Université Paris-Saclay, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, 91025 Evry, France
| |
Collapse
|
47
|
Han K, Hudson PS, Jones MR, Nishikawa N, Tofoleanu F, Brooks BR. Prediction of CB[8] host-guest binding free energies in SAMPL6 using the double-decoupling method. J Comput Aided Mol Des 2018; 32:1059-1073. [PMID: 30084077 DOI: 10.1007/s10822-018-0144-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
Abstract
This study reports the results of binding free energy calculations for CB[8] host-guest systems in the SAMPL6 blind challenge (receipt ID 3z83m). Force-field parameters were developed specific for each of host and guest molecules to improve configurational sampling. We used quantum mechanical (QM) implicit solvent calculations and QM force matching to determine non-bonded (partial atomic charges) and bonded terms, respectively. Free energy calculations were carried out using the double-decoupling method (DDM) combined with Hamiltonian replica exchange method (HREM) and Bennett acceptance ratio (BAR) method. The root mean square error (RMSE) of the predicted values using DDM with respect to the experimental results was 4.32 kcal/mol. The coefficient of determination (R2) and Kendall rank coefficient (τ) were 0.49 and 0.52, respectively, highest of all submissions. In addition, these were compared to the results obtained by umbrella sampling (US) and weighted histogram analysis method (WHAM). Overall, DDM achieved a higher prediction accuracy than the US method. Results are discussed in terms of parameterization and free energy simulations.
Collapse
Affiliation(s)
- Kyungreem Han
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Phillip S Hudson
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael R Jones
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Naohiro Nishikawa
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Florentina Tofoleanu
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
48
|
Naleem N, Bentenitis N, Smith PE. A Kirkwood-Buff derived force field for alkaline earth halide salts. J Chem Phys 2018; 148:222828. [PMID: 29907021 DOI: 10.1063/1.5019454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX2), where M = Mg2+, Ca2+, Sr2+, Ba2+ and X = Cl-, Br-, I-, which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.
Collapse
Affiliation(s)
- Nawavi Naleem
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid Campus Dr. North, Manhattan, Kansas 66506-0401, USA
| | - Nikolaos Bentenitis
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid Campus Dr. North, Manhattan, Kansas 66506-0401, USA
| | - Paul E Smith
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid Campus Dr. North, Manhattan, Kansas 66506-0401, USA
| |
Collapse
|