1
|
Xu Y, Biczysko M. Toward the identification of cyano-astroCOMs via vibrational features: benzonitrile as a test case. Front Chem 2024; 12:1439194. [PMID: 39296366 PMCID: PMC11408737 DOI: 10.3389/fchem.2024.1439194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024] Open
Abstract
The James Webb Space Telescope (JWST) opened a new era for the identification of molecular systems in the interstellar medium (ISM) by vibrational features. One group of molecules of increasing interest is cyano-derivatives of aromatic organic molecules, which have already been identified in the ISM on the basis of the analysis of rotational signatures, and so, are plausible candidates for the detection by the JWST. Benzonitrile considered in this work represents a suitable example for the validation of a computational strategy, which can be further applied for different, larger, and not-yet observed molecules. For this purpose, anharmonic simulations of infrared (IR) spectra have been compared with recent FTIR experimental studies. The anharmonic computations using the generalized second-order vibrational perturbation theory (GVPT2) in conjunction with a hybrid force field combining the harmonic part of revDSD-PBEP86-D3/jun-cc-pVTZ with anharmonic corrections from B3LYP-D3/SNSD show very good agreement with those in the experiment, with a mean error of 11 c m - 1 for all fundamental transitions overall and only 2 c m - 1 for the C ≡ N stretching fundamental at 4.49 μ m . The inclusion of overtones up to three-quanta transitions also allowed the prediction of spectra in the near-infrared region, which shows distinct features due to C ≡ N overtones at the 2.26 μ m and 1.52 μ m . The remarkable accuracy of the GVPT2 results opens a pathway for the reliable prediction of spectra for a broader range of cyano-astroCOMs.
Collapse
Affiliation(s)
- Yanting Xu
- International Centre for Quantum and Molecular Structures, Department of Physics, College of Sciences, Shanghai University, Shanghai, China
| | - Malgorzata Biczysko
- International Centre for Quantum and Molecular Structures, Department of Physics, College of Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
2
|
Bloino J, Jähnigen S, Merten C. After 50 Years of Vibrational Circular Dichroism Spectroscopy: Challenges and Opportunities of Increasingly Accurate and Complex Experiments and Computations. J Phys Chem Lett 2024; 15:8813-8828. [PMID: 39167088 DOI: 10.1021/acs.jpclett.4c01700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
VCD research continues to thrive, driven by ongoing experimental and theoretical advances. Modern studies deal with increasingly complex samples featuring weak intermolecular interactions and shallow potential energy surfaces. Likewise, the combination of VCD measurements with, for instance, cryo-spectroscopic techniques has significantly increased their sensitivity. The extent to which such modern measurements enhance the informative value of VCD depends significantly on the quality of the theoretical models, which must adequately account for anharmonicity, solvation and molecular dynamics. We herein discuss how experimental advancements engage in a stimulating interplay with recent theoretical developments, pursuing either the static or the dynamic computational route. Both paths have their own strengths and limitations, each addressing fundamentally different problems. We give an outlook on future challenges of VCD research, including the possibility to combine static and dynamic approaches to obtain a full picture of the sample.
Collapse
Affiliation(s)
- Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Sascha Jähnigen
- Freie Universität Berlin, Institut für Chemie und Biochemie, Arnimallee 22, 14195 Berlin, Germany
| | - Christian Merten
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
3
|
Xu R, Jiang Z, Yang Q, Bloino J, Biczysko M. Harmonic and anharmonic vibrational computations for biomolecular building blocks: Benchmarking DFT and basis sets by theoretical and experimental IR spectrum of glycine conformers. J Comput Chem 2024; 45:1846-1869. [PMID: 38682874 DOI: 10.1002/jcc.27377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Advanced vibrational spectroscopic experiments have reached a level of sophistication that can only be matched by numerical simulations in order to provide an unequivocal analysis, a crucial step to understand the structure-function relationship of biomolecules. While density functional theory (DFT) has become the standard method when targeting medium-size or larger systems, the problem of its reliability and accuracy are well-known and have been abundantly documented. To establish a reliable computational protocol, especially when accuracy is critical, a tailored benchmark is usually required. This is generally done over a short list of known candidates, with the basis set often fixed a priori. In this work, we present a systematic study of the performance of DFT-based hybrid and double-hybrid functionals in the prediction of vibrational energies and infrared intensities at the harmonic level and beyond, considering anharmonic effects through vibrational perturbation theory at the second order. The study is performed for the six-lowest energy glycine conformers, utilizing available "state-of-the-art" accurate theoretical and experimental data as reference. Focusing on the most intense fundamental vibrations in the mid-infrared range of glycine conformers, the role of the basis sets is also investigated considering the balance between computational cost and accuracy. Targeting larger systems, a broad range of hybrid schemes with different computational costs is also tested.
Collapse
Affiliation(s)
- Ruiqin Xu
- Department of Physics, College of Sciences, Shanghai University, Shanghai, China
| | | | - Qin Yang
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czechia
| | - Julien Bloino
- Classe di Scienze, Scuola Normale Superiore, Pisa, Italy
| | - Malgorzata Biczysko
- Department of Physics, College of Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
4
|
Fusè M, Mazzeo G, Abbate S, Ruzziconi R, Bloino J, Longhi G. Mid-IR and CH stretching vibrational circular dichroism spectroscopy to distinguish various sources of chirality: The case of quinophaneoxazoline based ruthenium(II) complexes. Chirality 2024; 36:e23649. [PMID: 38409881 DOI: 10.1002/chir.23649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/28/2024]
Abstract
Five diastereomers of ruthenium(II) complexes based on quinolinophaneoxazoline ligands were investigated by vibrational circular dichroism (VCD) in the mid-IR and CH stretching regions. Diastereomers differ in three sources of chirality: the planar chirality of the quinolinophane moiety, the central chirality of an asymmetric carbon atom of the oxazoline ring, and the chirality of the ruthenium atom. VCD, allied to DFT calculations, has been found to be effective in disentangling the various forms of chirality. In particular, a VCD band is identified in the CH stretching region directly connected to the chirality of the metal. The analysis of the calculated VCD spectra is carried out by partitioning the complexes into fragments. The anharmonic analysis is also performed with a recently proposed reduced-dimensionality approach: such treatment is particularly important when examining spectroscopic regions highly perturbed by resonances, like the CH stretching region.
Collapse
Affiliation(s)
- Marco Fusè
- Dipartimento di Medicina Molecolare e Traslazionale (DMMT), Università di Brescia, Brescia, Italy
| | - Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale (DMMT), Università di Brescia, Brescia, Italy
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale (DMMT), Università di Brescia, Brescia, Italy
- Istituto Nazionale di Ottica (INO), CNR, Research Unit Brescia, Brescia, Italy
| | - Renzo Ruzziconi
- Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri, Pisa, Italy
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale (DMMT), Università di Brescia, Brescia, Italy
- Istituto Nazionale di Ottica (INO), CNR, Research Unit Brescia, Brescia, Italy
| |
Collapse
|
5
|
Listro R, Marra A, Cavalloro V, Rossino G, Linciano P, Rossi D, Casali E, De Amici M, Mazzeo G, Longhi G, Fusè M, Dondio G, Pellavio G, Laforenza U, Schepmann D, Wünsch B, Collina S. Sigma receptor and aquaporin modulators: chiral resolution, configurational assignment, and preliminary biological profile of RC752 enantiomers. J Pharm Biomed Anal 2024; 239:115902. [PMID: 38101238 DOI: 10.1016/j.jpba.2023.115902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
The key role of chiral small molecules in drug discovery programs has been deeply investigated throughout last decades. In this context, our previous studies highlighted the influence of the absolute configuration of different stereocenters on the pharmacokinetic, pharmacodynamic and functional properties of promising Sigma receptor (SR) modulators. Thus, starting from the racemic SR ligand RC752, we report herein the isolation of the enantiomers via enantioselective separation with both HPLC and SFC. After optimization of the eco-sustainable chiral SFC method, both enantiomers were obtained in sufficient amount (tens of mg) and purity (ee up to 95%) to allow their characterization and initial biological investigation. Both enantiomers a) displayed a high affinity for the S1R subtype (Ki = 15.0 ± 1.7 and 6.0 ± 1.2 nM for the (S)- and (R)-enantiomer, respectively), but only negligible affinity toward the S2R (> 350 nM), and b) were rapidly metabolized when incubated with mouse and human hepatic microsomes. Furthermore, the activity on AQP-mediated water permeability indicated a different functional profile for the enantiomers in terms of modulatory effect on the peroxiporins gating.
Collapse
Affiliation(s)
- Roberta Listro
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Annamaria Marra
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Valeria Cavalloro
- Department of Earth and Environmental Sciences, University of Pavia, Via Sant 'Epifanio 14, 27100 Pavia, Italy
| | - Giacomo Rossino
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Pasquale Linciano
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Daniela Rossi
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Emanuele Casali
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Marco De Amici
- Department of Pharmaceutical Sciences, University of Milan, Via Luigi Mangiagalli 25, 20133 Milan, Italy
| | - Giuseppe Mazzeo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giovanna Longhi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Marco Fusè
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giulio Dondio
- Aphad SrL, Via della Resistenza, 65, Buccinasco 20090, Italy
| | - Giorgia Pellavio
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy
| | - Umberto Laforenza
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy
| | - Dirk Schepmann
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, Münster D-48149, Germany
| | - Bernhard Wünsch
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, Münster D-48149, Germany; Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
6
|
Yang Q, Bloino J. An Effective and Automated Processing of Resonances in Vibrational Perturbation Theory Applied to Spectroscopy. J Phys Chem A 2022; 126:9276-9302. [DOI: 10.1021/acs.jpca.2c06460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Qin Yang
- Faculty of Science, Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126Pisa, Italy
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610Prague, Czech Republic
| | - Julien Bloino
- Faculty of Science, Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126Pisa, Italy
| |
Collapse
|
7
|
Fusè M, Longhi G, Mazzeo G, Stranges S, Leonelli F, Aquila G, Bodo E, Brunetti B, Bicchi C, Cagliero C, Bloino J, Abbate S. Anharmonic Aspects in Vibrational Circular Dichroism Spectra from 900 to 9000 cm -1 for Methyloxirane and Methylthiirane. J Phys Chem A 2022; 126:6719-6733. [PMID: 36126273 PMCID: PMC9527749 DOI: 10.1021/acs.jpca.2c05332] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Vibrational circular dichroism (VCD) spectra and the
corresponding
IR spectra of the chiral isomers of methyloxirane and of methylthiirane
have been reinvestigated, both experimentally and theoretically, with
particular attention to accounting for anharmonic corrections, as
calculated by the GVPT2 approach. De novo recorded VCD spectra in
the near IR (NIR) range regarding CH-stretching overtone transitions,
together with the corresponding NIR absorption spectra, were also
considered and accounted for, both with the GVPT2 and with the local
mode approaches. Comparison of the two methods has permitted us to
better describe the nature of active “anharmonic” modes
in the two molecules and the role of mechanical and electrical anharmonicity
in determining the intensities of VCD and IR/NIR data. Finally, two
nonstandard IR/NIR regions have been investigated: the first one about
≈2000 cm–1, involving mostly two-quanta bending
mode transitions, the second one between 7000 and 7500 cm–1 involving three-quanta transitions containing CH-stretching overtones
and HCC/HCH bending modes.
Collapse
Affiliation(s)
- Marco Fusè
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy.,Istituto Nazionale di Ottica (INO), CNR, Research Unit of Brescia, c/o CSMT, VIA Branze 45, 25123 Brescia, Italy
| | - Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Stefano Stranges
- Dipartimento di Chimica e Tecnologia del Farmaco, Università"La Sapienza", P.le A. Moro 5, 00185 Roma, Italy.,IOM-CNR, Laboratorio TASC, Basovizza, 34149 Trieste, Italy
| | - Francesca Leonelli
- Dipartimento di Chimica, Università"La Sapienza", P.le A. Moro 5, 00185 Roma, Italy
| | - Giorgia Aquila
- Dipartimento di Chimica, Università"La Sapienza", P.le A. Moro 5, 00185 Roma, Italy
| | - Enrico Bodo
- Dipartimento di Chimica, Università"La Sapienza", P.le A. Moro 5, 00185 Roma, Italy
| | - Bruno Brunetti
- ISMN-CNR, Università La Sapienza, P.le A. Moro 5, 00185 Roma, Italy
| | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9,00124 Torino, Italy
| | - Cecilia Cagliero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9,00124 Torino, Italy
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri, 56125, Pisa, Italy
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy.,Istituto Nazionale di Ottica (INO), CNR, Research Unit of Brescia, c/o CSMT, VIA Branze 45, 25123 Brescia, Italy
| |
Collapse
|
8
|
Nakashima KI, Higuchi Y, Tomida J, Kawamura Y, Inoue M. Two new ɑ-pyrone derivatives from the endophytic Diaporthe sp. ECN371. J Nat Med 2022; 76:462-467. [PMID: 34981405 DOI: 10.1007/s11418-021-01586-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/14/2021] [Indexed: 11/27/2022]
Abstract
Diaportholides A (1) and B (2), two polyketides with ɑ-pyrone moieties, were isolated from the cultures of an endophytic Diaporthe sp. ECN371 isolated from Orixa japonica, together with four known polyketides, phomopsolide B (3), phomopsolidones A (4) and B (5), and 5-[(1R)-1-hydroxyethyl]-γ-oxo-2-furanbutanoic acid (6). The structures of 1 and 2 were determined by extensive analysis of NMR and MS spectroscopic data. Furthermore, the structure of 2 was confirmed by analyzing the single-crystal X-ray diffraction data. The luciferase reporter gene assay revealed that among all isolated compounds (1-6), 3, a known ɑ-pyrone derivative, exhibited agonistic activity against the peroxisome proliferator-activated receptor ɑ, which is an important regulator of lipid metabolism in humans.
Collapse
Affiliation(s)
- Ken-Ichi Nakashima
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan.
| | - Yuka Higuchi
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan
| | - Junko Tomida
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan
| | - Yoshiaki Kawamura
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan
| | - Makoto Inoue
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan
| |
Collapse
|
9
|
Mazzeo G, Cimmino A, Longhi G, Masi M, Evidente A, Abbate S. The Assignment of the Absolute Configuration of Non-Cyclic Sesquiterpenes by Vibrational and Electronic Circular Dichroism: The Example of Chiliadenus lopadusanus Metabolites. Biomolecules 2021; 11:biom11121902. [PMID: 34944545 PMCID: PMC8699476 DOI: 10.3390/biom11121902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
9-Hydroxynerolidol, 9-oxonerolidol, and chiliadenol B are three farnesane-type sesquiterpenoids isolated from Chiliadenus lopadusanus that have shown an interesting activity against human pathogens as Gram+ and Gram- bacteria resistant to antibiotics. However, the absolute configuration (AC) of these interesting sesquiterpenes has not been assigned so far. Vibrational and electronic circular dichroism spectra have been recorded and correlations are pointed out for the three compounds. Density functional theory (DFT) calculations are used in conjunction with Mosher's method of investigation to assign AC. Statistical analysis is considered to quantitatively define the choice of AC from VCD spectra.
Collapse
Affiliation(s)
- Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.M.); (G.L.)
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (A.C.); (M.M.); (A.E.)
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.M.); (G.L.)
| | - Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (A.C.); (M.M.); (A.E.)
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (A.C.); (M.M.); (A.E.)
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.M.); (G.L.)
- Correspondence: ; Tel.: +39-030-3717415
| |
Collapse
|
10
|
Taniguchi T, Zubir MZM, Harada N, Monde K. Exploration of chromophores for a VCD couplet in a spectrally transparent infrared region for biomolecules. Phys Chem Chem Phys 2021; 23:27525-27532. [PMID: 34874381 DOI: 10.1039/d1cp04074j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interactions of two chromophores such as carbonyl groups yield a strong VCD couplet that reflects the molecular structures. The use of VCD couplets for biomacromolecular structural studies has been hampered by severe signal overlap caused by numerous functional groups that originally exist in biomacromolecules. Nitrile, isonitrile, alkyne, and azido groups show characteristic IR absorption in the 2300-2000 cm-1 region, where biomolecules do not strongly absorb. We herein examined the usefulness of these functional groups as chromophores to observe a strong VCD couplet that can be readily interpreted using theoretical calculations. Studies on a chiral binaphthyl scaffold possessing two identical chromophores showed that nitrile and isonitrile groups generate moderately-strong but complex VCD signals due to anharmonic contributions. The nature of their anharmonic VCD patterns is discussed by comparison with the VCD spectrum of a mono-chromophoric molecule and by anharmonic DFT calculations. On the other hand, through studies on diazido binaphthyl and diazido monosaccharide, we demonstrated that the azido group is more promising for structural analysis of larger molecules due to its simple, strong VCD couplet whose spectral patterns are readily predicted by harmonic DFT calculations.
Collapse
Affiliation(s)
- Tohru Taniguchi
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan.
| | | | - Nobuyuki Harada
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Kenji Monde
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan.
| |
Collapse
|
11
|
Atara HD, Brahmbhatt GC, Parmar VM, Parmar NJ, Gupta VK. A Chitosan‐CatalyzedDomino Aldol‐Hetero‐Diels‐Alder Synthesis of Cyclic Heptanoid‐Annulated Pyran Scaffolds. ChemistrySelect 2021. [DOI: 10.1002/slct.202103333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hiralben D. Atara
- Department of Chemistry Sardar Patel University, Vallabh Vidyanagar 388120. Dist. Anand Gujarat India
| | | | - Vishalkumar M. Parmar
- Department of Chemistry Sardar Patel University, Vallabh Vidyanagar 388120. Dist. Anand Gujarat India
| | - Narsidas J. Parmar
- Department of Chemistry Sardar Patel University, Vallabh Vidyanagar 388120. Dist. Anand Gujarat India
| | - Vivek K. Gupta
- P. G. Department of Physics University of Jammu Jammu Tawi 180006 India
| |
Collapse
|
12
|
Barone V, Alessandrini S, Biczysko M, Cheeseman JR, Clary DC, McCoy AB, DiRisio RJ, Neese F, Melosso M, Puzzarini C. Computational molecular spectroscopy. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00034-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Potenti S, Spada L, Fusè M, Mancini G, Gualandi A, Leonardi C, Cozzi PG, Puzzarini C, Barone V. 4-Fluoro-Threonine: From Diastereoselective Synthesis to pH-Dependent Conformational Equilibrium in Aqueous Solution. ACS OMEGA 2021; 6:13170-13181. [PMID: 34056467 PMCID: PMC8158790 DOI: 10.1021/acsomega.1c01007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
4-Fluoro-threonine, the only fluoro amino acid of natural origin discovered so far, is an interesting target for both synthetic and theoretical investigations. In this work, we lay the foundation for spectroscopic characterization of 4-fluoro-threonine. First, we report a diastereoselective synthetic route, which is suitable to produce synthetic material for experimental characterization. The addition of the commercially available ethyl isocyanoacetate to benzyloxyacetaldehyde led to the corresponding benzyloxy-oxazoline, which was hydrolyzed and transformed into ethyl (4S*,5S*)-5-hydroxymethyl-2-oxo-4-oxazolidinecarboxylate in a few steps. Fluorination with diethylamino sulfur trifluoride (DAST) afforded ethyl (4S*,5S*)-5-fluoromethyl-2-oxo-4-oxazolidinecarboxylate, which was deprotected to give the desired diastereomerically pure 4-fluoro-threonine, in 8-10% overall yield. With the synthetic material in our hands, acid-base titrations have been carried out to determine acid dissociation constants and the isoelectric point, which is the testing ground for the theoretical analysis. We have used machine learning coupled with quantum chemistry at the state-of-the-art to analyze the conformational space of 4-fluoro-threonine, with the aim of gaining insights from the comparison of computational and experimental results. Indeed, we have demonstrated that our approach, which couples a last-generation double-hybrid density functional including empirical dispersion contributions with a model combining explicit first-shell molecules and a polarizable continuum for describing solvent effects, provides results and trends in remarkable agreement with experiments. Finally, the conformational analysis applied to fluoro amino acids represents an interesting study for the effect of fluorine on the stability and population of conformers.
Collapse
Affiliation(s)
- Simone Potenti
- Laboratorio
SMART, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Lorenzo Spada
- Laboratorio
SMART, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Marco Fusè
- Laboratorio
SMART, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Giordano Mancini
- Laboratorio
SMART, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- Istituto
Nazionale di Fisica Nucleare (INFN), Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Andrea Gualandi
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Costanza Leonardi
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università
di Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Pier Giorgio Cozzi
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Cristina Puzzarini
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Vincenzo Barone
- Laboratorio
SMART, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
14
|
Xu D, Xue M, Shen Z, Jia X, Hou X, Lai D, Zhou L. Phytotoxic Secondary Metabolites from Fungi. Toxins (Basel) 2021; 13:261. [PMID: 33917534 PMCID: PMC8067579 DOI: 10.3390/toxins13040261] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 02/06/2023] Open
Abstract
Fungal phytotoxic secondary metabolites are poisonous substances to plants produced by fungi through naturally occurring biochemical reactions. These metabolites exhibit a high level of diversity in their properties, such as structures, phytotoxic activities, and modes of toxicity. They are mainly isolated from phytopathogenic fungal species in the genera of Alternaria, Botrytis, Colletotrichum, Fusarium, Helminthosporium, and Phoma. Phytotoxins are either host specific or non-host specific phytotoxins. Up to now, at least 545 fungal phytotoxic secondary metabolites, including 207 polyketides, 46 phenols and phenolic acids, 135 terpenoids, 146 nitrogen-containing metabolites, and 11 others, have been reported. Among them, aromatic polyketides and sesquiterpenoids are the main phytotoxic compounds. This review summarizes their chemical structures, sources, and phytotoxic activities. We also discuss their phytotoxic mechanisms and structure-activity relationships to lay the foundation for the future development and application of these promising metabolites as herbicides.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (D.X.); (M.X.); (Z.S.); (X.J.); (X.H.); (D.L.)
| |
Collapse
|
15
|
del Río RE, Joseph-Nathan P. Vibrational Circular Dichroism Absolute Configuration of Natural Products From 2015 to 2019. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21996166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although demonstrated in 1975, vibrational circular dichroism (VCD) finally started to popularize during this century as a reliable tool to determine the absolute configuration (AC) of organic molecules. This research field continues to be a very dynamic one, in particular for the study of natural products which are a unlimited source of chiral molecules. It therefore turns of interest to summarize the accomplishments published in recent years and to comment on some eventual difficulties that emerged in rare cases to complete the AC determination task. Therefore the aim of this review is to update VCD results for the AC assignment of natural products published from 2015 to 2019, a period in which VCD was reported in some 126 publications involving almost 300 molecules. They are organized according the type of studied metabolite allowing an easily search. The molecules correspond to 28 monoterpenes concerning 17 papers, to 42 sesquiterpenes in 14 papers, to 51 diterpenes in 19 publications, to 5 other terpenoids in three papers, to 48 aromatic molecules in 15 reports, to 20 polyketides in 10 publications, to 27 miscellaneous formulas also in 10 papers, and to 76 nitrogen containing compounds, which include alkaloids and their synthetic analogs, in 38 articles. The landscape of reviewed molecules is quite wide as it goes from simple monoterpenes, like borneol or camphor, to very relevant biological molecules like the alkaloid cocaine or tadalafil samples to distinguish genuine and counterfeit Cialis®. In addition, 5 natural products and a simple derivative published outside the reviewed period, were used to illustrate some aspects of density functional theory calculations.
Collapse
Affiliation(s)
- Rosa E. del Río
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - Pedro Joseph-Nathan
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
16
|
Ravutsov M, Dobrikov GM, Dangalov M, Nikolova R, Dimitrov V, Mazzeo G, Longhi G, Abbate S, Paoloni L, Fusè M, Barone V. 1,2-Disubstituted Planar Chiral Ferrocene Derivatives from Sulfonamide-Directed ortho-Lithiation: Synthesis, Absolute Configuration, and Chiroptical Properties. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martin Ravutsov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Akademic Georgi Bonchev Street, Bl. 9, 1113 Sofia, Bulgaria
| | - Georgi M. Dobrikov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Akademic Georgi Bonchev Street, Bl. 9, 1113 Sofia, Bulgaria
| | - Miroslav Dangalov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Akademic Georgi Bonchev Street, Bl. 9, 1113 Sofia, Bulgaria
| | - Rositsa Nikolova
- Institute of Mineralogy and Crystallography “Acad. Ivan Kostov”, Bulgarian Academy of Sciences, Akademic Georgi Bonchev Street, Bl. 107, Sofia 1113, Bulgaria
| | - Vladimir Dimitrov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Akademic Georgi Bonchev Street, Bl. 9, 1113 Sofia, Bulgaria
| | - Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
- Research Unit of Brescia, Istituto Nazionale di Ottica (INO), CNR, 25123 Brescia, Italy
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
- Research Unit of Brescia, Istituto Nazionale di Ottica (INO), CNR, 25123 Brescia, Italy
| | - Lorenzo Paoloni
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Marco Fusè
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
17
|
Mancini G, Fusè M, Lazzari F, Chandramouli B, Barone V. Unsupervised search of low-lying conformers with spectroscopic accuracy: A two-step algorithm rooted into the island model evolutionary algorithm. J Chem Phys 2020; 153:124110. [DOI: 10.1063/5.0018314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Giordano Mancini
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56125 Pisa, Italy
| | - Marco Fusè
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56125 Pisa, Italy
| | - Federico Lazzari
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56125 Pisa, Italy
| | | | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56125 Pisa, Italy
| |
Collapse
|
18
|
Roireau JH, Rosano RJ, Lazzara NC, Chen T, Bajsa-Hirschel J, Schrader KK, Duke SO, Wykoff D, Giuliano RM. Synthesis of Pyranopyrans Related to Diplopyrone and Evaluation as Antibacterials and Herbicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9906-9916. [PMID: 32808779 DOI: 10.1021/acs.jafc.0c02564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stereoselective syntheses of new pyranopyrans that are related to the natural product diplopyrone, which is a phytotoxin implicated in cork oak decline, have been achieved from carbohydrate starting materials in two approaches that are based on C-glycosides as key intermediates. A C-alkynyl glycoside prepared by Ferrier rearrangement was used as the precursor to a new pyranopyran alkyne that showed potent antibacterial activity against the common bacterial pathogen Edwardsiella ictaluri that causes enteric septicemia in catfish. The C-alkynyl glycoside also showed herbicidal activity. New bioassay data for the pyranopyran nitrile (4aR,6S,8aR)-6-cyano-6,8a-dihydropyrano-[3,2-b]pyran-2(4aH)-one, the most potent of the pyranopyrans synthesized to date, were obtained in greenhouse studies that revealed additional herbicidal activity. Other new analogues that were synthesized included desmethylpyranopyrans that were prepared by Isobe C-alkynylation-rearrangement/reduction and RCM-based pyranopyran construction. The antibiotic and phytotoxic activities of the new pyranopyrans synthesized in this study highlight the importance of substituents on the nonlactone ring and demonstrate the potential of such compounds as antibiotics and herbicides.
Collapse
Affiliation(s)
- Jack H Roireau
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Robert J Rosano
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Nicholas C Lazzara
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Thomas Chen
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Joanna Bajsa-Hirschel
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, P. O. Box 1848, University, Mississippi 38677, United States
| | - Kevin K Schrader
- Warmwater Aquaculture Research Unit, Agricultural Research Service, U.S. Department of Agriculture, P. O. Box 1848, University, Mississippi 38677, United States
| | - Stephen O Duke
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, P. O. Box 1848, University, Mississippi 38677, United States
| | - Dennis Wykoff
- Department of Biology, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Robert M Giuliano
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| |
Collapse
|
19
|
Sarotti AM. In Silico Reassignment of (+)-Diplopyrone by NMR Calculations: Use of a DP4/J-DP4/DP4+/DIP Tandem to Revise Both Relative and Absolute Configuration. J Org Chem 2020; 85:11566-11570. [DOI: 10.1021/acs.joc.0c01563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ariel M. Sarotti
- Instituto de Quı́mica Rosario (CONICET), Facultad de Ciencias Bioquı́micas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
20
|
Roscetto E, Masi M, Esposito M, Di Lecce R, Delicato A, Maddau L, Calabrò V, Evidente A, Catania MR. Anti-Biofilm Activity of the Fungal Phytotoxin Sphaeropsidin A Against Clinical Isolates of Antibiotic-Resistant Bacteria. Toxins (Basel) 2020; 12:E444. [PMID: 32650496 PMCID: PMC7404997 DOI: 10.3390/toxins12070444] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
Many pathogens involved in human infection have rapidly increased their antibiotic resistance, reducing the effectiveness of therapies in recent decades. Most of them can form biofilms and effective drugs are not available to treat these formations. Natural products could represent an efficient solution in discovering and developing new drugs to overcome antimicrobial resistance and treat biofilm-related infections. In this study, 20 secondary metabolites produced by pathogenic fungi of forest plants and belonging to diverse classes of naturally occurring compounds were evaluated for the first time against clinical isolates of antibiotic-resistant Gram-negative and Gram-positive bacteria. epi-Epoformin, sphaeropsidone, and sphaeropsidin A showed antimicrobial activity on all test strains. In particular, sphaeropsidin A was effective at low concentrations with Minimum Inhibitory Concentration (MIC) values ranging from 6.25 μg/mL to 12.5 μg/mL against all reference and clinical test strains. Furthermore, sphaeropsidin A at sub-inhibitory concentrations decreased methicillin-resistant S. aureus (MRSA) and P. aeruginosa biofilm formation, as quantified by crystal violet staining. Interestingly, mixtures of sphaeropsidin A and epi-epoformin have shown antimicrobial synergistic effects with a concomitant reduction of cytotoxicity against human immortalized keratinocytes. Our data show that sphaeropsidin A and epi-epoformin possess promising antimicrobial properties.
Collapse
Affiliation(s)
- Emanuela Roscetto
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy; (M.E.); (M.R.C.)
| | - Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy; (R.D.L.); (A.E.)
| | - Matilde Esposito
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy; (M.E.); (M.R.C.)
| | - Roberta Di Lecce
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy; (R.D.L.); (A.E.)
| | - Antonella Delicato
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy; (A.D.); (V.C.)
| | - Lucia Maddau
- Dipartimento di Agraria, Sezione di Patologia Vegetale ed Entomologia, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy;
| | - Viola Calabrò
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy; (A.D.); (V.C.)
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy; (R.D.L.); (A.E.)
| | - Maria Rosaria Catania
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy; (M.E.); (M.R.C.)
| |
Collapse
|
21
|
Del Galdo S, Fusè M, Barone V. CPL Spectra of Camphor Derivatives in Solution by an Integrated QM/MD Approach. Front Chem 2020; 8:584. [PMID: 32733856 PMCID: PMC7358700 DOI: 10.3389/fchem.2020.00584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/05/2020] [Indexed: 11/16/2022] Open
Abstract
We extend a recently proposed computational strategy for the simulation of absorption spectra of semi-rigid molecular systems in condensed phases to the emission spectra of flexible chromophores. As a case study, we have chosen the CPL spectrum of camphor in methanol solution, which shows a well-defined bisignate shape. The first step of our approach is the quantum mechanical computation of reference spectra including vibrational averaging effects and taking bulk solvent effects into account by means of the polarizable continuum model. In the present case, the large amplitude inversion mode is explicitly treated by a numerical approach, whereas the other small-amplitude vibrational modes are taken into account within the harmonic approximation. Next, the snapshots of classical molecular dynamics computations are clusterized and one representative configuration from each cluster is used to compute a reference spectrum. In the present case, different clusters correspond to the two stable conformers of camphor in the S1 excited electronic state and, for each of them, to different numbers of strong solute-solvent hydrogen bonds. Finally, local fluctuation effects within each cluster are taken into account by means of the perturbed matrix model. The overall procedure leads to good agreement with experiment for absorption and emission spectra together with their chiral counterparts, thus allowing to analyze the role of different effects (stereo-electronic, vibrational, environmental) in tuning the overall experimental spectra.
Collapse
Affiliation(s)
| | - Marco Fusè
- SMART Laboratory, Scuola Normale Superiore, Pisa, Italy
| | | |
Collapse
|
22
|
Greene J, Kopplin N, Roireau J, Bezpalko M, Kassel S, Giuliano MW, Giuliano R. Synthesis and crystal structure of (2 S,4a R,8a R)-6-oxo-2,4a,6,8a-tetra-hydro-pyrano[3,2- b]pyran-2-carboxamide. Acta Crystallogr E Crystallogr Commun 2020; 76:761-764. [PMID: 32431948 PMCID: PMC7199262 DOI: 10.1107/s2056989020001292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/29/2020] [Indexed: 11/17/2022]
Abstract
The pyran-opyran amide (2S,4aR,8aR)-6-oxo-2,4a,6,8a-tetra-hydro-pyrano[3,2-b]pyran-2-carboxamide, C9H9NO4, 3, was prepared by a chemoselective hydration of the corresponding nitrile, 2, using a heterogeneous catalytic method based on copper(II) supported on mol-ecular sieves, in the presence of acetaldoxime. Compound 3 belongs to a new class of pyran-opyrans that possess anti-bacterial and phytotoxic activity. Crystallographic analysis of 3 shows a bent structure for the cis-fused bicyclic pyran-opyran, similar to nitrile 2. Evidence of an intra-molecular hydrogen bond involving the amide group and ring oxygen was not observed; however, two separate inter-molecular hydrogen-bonding inter-actions were observed between the amide hydrogen atoms and adjacent carbonyl oxygen atoms along the b- and a-axis directions. The latter inter-action may also be supported by an inter-molecular C-H⋯O hydrogen bond. The lattice is filled out by close-packed layers of this hydrogen-bonded network along the c-axis direction, related from one to the next by a 21 screw axis.
Collapse
Affiliation(s)
- John Greene
- Department of Chemistry, Villanova University, 800 E Lancaster Avenue, Villanova, PA, USA
| | - Noa Kopplin
- Department of Chemistry, Villanova University, 800 E Lancaster Avenue, Villanova, PA, USA
| | - Jack Roireau
- Department of Chemistry, Villanova University, 800 E Lancaster Avenue, Villanova, PA, USA
| | - Mark Bezpalko
- Department of Chemistry, Villanova University, 800 E Lancaster Avenue, Villanova, PA, USA
| | - Scott Kassel
- Department of Chemistry, Villanova University, 800 E Lancaster Avenue, Villanova, PA, USA
| | - Michael W. Giuliano
- Department of Chemistry and Biochemistry, College of Charleston, 66 George Street, Charleston, SC, USA
| | - Robert Giuliano
- Department of Chemistry, Villanova University, 800 E Lancaster Avenue, Villanova, PA, USA
| |
Collapse
|
23
|
Del Galdo S, Fusè M, Barone V. The ONIOM/PMM Model for Effective Yet Accurate Simulation of Optical and Chiroptical Spectra in Solution: Camphorquinone in Methanol as a Case Study. J Chem Theory Comput 2020; 16:3294-3306. [PMID: 32250614 PMCID: PMC7222099 DOI: 10.1021/acs.jctc.0c00124] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
This paper deals
with the development and first validation of a
composite approach for the simulation of chiroptical spectra in solution
aimed to strongly reduce the number of full QM computations without
any significant accuracy loss. The approach starts from the quantum
mechanical computation of reference spectra including vibrational
averaging effects and taking average solvent effects into account
by means of the polarizable continuum model. Next, the snapshots of
classical molecular dynamics computations are clusterized and one
reference configuration from each cluster is used to compute a reference
spectrum. Local fluctuation effects within each cluster are then taken
into account by means of the perturbed matrix model. The performance
of the proposed approach is tested on the challenging case of the
optical and chiroptical spectra
of camphorquinone in methanol solution. Although further validations
are surely needed, the results of this first study are quite promising
also taking into account that agreement with experimental data is
reached by just a couple of full quantum mechanical geometry optimizations
and frequency computations.
Collapse
Affiliation(s)
- Sara Del Galdo
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Marco Fusè
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
24
|
Nafie LA. Vibrational optical activity: From discovery and development to future challenges. Chirality 2020; 32:667-692. [DOI: 10.1002/chir.23191] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
|
25
|
Paoloni L, Mazzeo G, Longhi G, Abbate S, Fusè M, Bloino J, Barone V. Toward Fully Unsupervised Anharmonic Computations Complementing Experiment for Robust and Reliable Assignment and Interpretation of IR and VCD Spectra from Mid-IR to NIR: The Case of 2,3-Butanediol and trans-1,2-Cyclohexanediol. J Phys Chem A 2020; 124:1011-1024. [PMID: 31922423 PMCID: PMC7993639 DOI: 10.1021/acs.jpca.9b11025] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
![]()
The infrared (IR)
and vibrational circular dichroism (VCD) spectra
of 2,3-butanediol and trans-1,2-cyclohexanediol from
900 to 7500 cm–1 (including mid-IR, fundamental
CH and OH stretchings, and near-infrared regions) have been investigated
by a combined experimental and computational strategy. The computational
approach is rooted in density functional theory (DFT) computations
of harmonic and leading anharmonic mechanical, electrical, and magnetic
contributions, followed by a generalized second-order perturbative
(GVPT2) evaluation of frequencies and intensities for all the above
regions without introducing any ad hoc scaling factor. After proper
characterization of large-amplitude motions, all resonances plaguing
frequencies and intensities are taken into proper account. Comparison
of experimental and simulated spectra allows unbiased assignment and
interpretation of the most interesting features. The reliability of
the GVPT2 approach for OH stretching fundamentals and overtones is
confirmed by the remarkable agreement with a local mode model purposely
tailored for the latter two regions. Together with the specific interest
of the studied molecules, our results confirm that an unbiased assignment
and interpretation of vibrational spectra for flexible medium-size
molecules can be achieved by means of a nearly unsupervised reliable,
robust, and user-friendly DFT/GVPT2 model.
Collapse
Affiliation(s)
- Lorenzo Paoloni
- Scuola Normale Superiore , Piazza dei Cavalieri 7 , I-56126 Pisa , Italy
| | - Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale , Università di Brescia , Viale Europa 11 , 25123 Brescia , Italy
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale , Università di Brescia , Viale Europa 11 , 25123 Brescia , Italy.,Consiglio Nazionale delle Ricerche-I.N.O. , c/o CSMT via Branze, 45 , 25123 Brescia , Italy
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale , Università di Brescia , Viale Europa 11 , 25123 Brescia , Italy.,Consiglio Nazionale delle Ricerche-I.N.O. , c/o CSMT via Branze, 45 , 25123 Brescia , Italy
| | - Marco Fusè
- Scuola Normale Superiore , Piazza dei Cavalieri 7 , I-56126 Pisa , Italy
| | - Julien Bloino
- Scuola Normale Superiore , Piazza dei Cavalieri 7 , I-56126 Pisa , Italy
| | - Vincenzo Barone
- Scuola Normale Superiore , Piazza dei Cavalieri 7 , I-56126 Pisa , Italy
| |
Collapse
|
26
|
Polavarapu PL, Santoro E. Vibrational optical activity for structural characterization of natural products. Nat Prod Rep 2020; 37:1661-1699. [DOI: 10.1039/d0np00025f] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review presents the recent progress towards elucidating the structures of chiral natural products and applications using vibrational optical activity (VOA) spectroscopy.
Collapse
|