1
|
Siska E, Smith GA, Villa-Cortes S, Conway LJ, Husband RJ, Van Cleave J, Petitgirard S, Cerantola V, Appel K, Baehtz C, Bouffetier V, Dwivedi A, Göde S, Gorkhover T, Konopkova Z, Hosseini-Saber SMA, Kuschel S, Laurus T, Nakatsutsumi M, Strohm C, Sztuk-Dambietz J, Zastrau U, Smith D, Lawler KV, Pickard CJ, Schwartz CP, Salamat A. Ultrafast Yttrium Hydride Chemistry at High Pressures via Non-equilibrium States Induced by an X-ray Free Electron Laser. J Phys Chem Lett 2024; 15:9912-9919. [PMID: 39303208 DOI: 10.1021/acs.jpclett.4c02134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Controlling the formation and stoichiometric content of the desired phases of materials has become of central interest for a variety of fields. The possibility of accessing metastable states by initiating reactions by X-ray-triggered mechanisms over ultrashort time scales has been enabled by the development of X-ray free electron lasers (XFELs). Utilizing the exceptionally high-brilliance X-ray pulses from the EuXFEL, we report the synthesis of a previously unobserved yttrium hydride under high pressure, along with nonstoichiometric changes in hydrogen content as probed at a repetition rate of 4.5 MHz using time-resolved X-ray diffraction. Exploiting non-equilibrium pathways, we synthesize and characterize a hydride in a Weaire-Phelan structure type at pressures as low as 125 GPa, predicted using a crystal structure search, with a hydrogen content of 4.0-5.75 hydrogens per cation, that is enthalpically metastable on the convex hull.
Collapse
Affiliation(s)
- Emily Siska
- Nevada Extreme Conditions Laboratory, University of Nevada Las Vegas, Las Vegas, Nevada 89154, United States
| | - G Alexander Smith
- Nevada Extreme Conditions Laboratory, University of Nevada Las Vegas, Las Vegas, Nevada 89154, United States
- Department of Chemistry & Biochemistry, University of Nevada Las Vegas, Las Vegas, Nevada 89154, United States
| | - Sergio Villa-Cortes
- Nevada Extreme Conditions Laboratory, University of Nevada Las Vegas, Las Vegas, Nevada 89154, United States
| | - Lewis J Conway
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K
- Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Rachel J Husband
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Joshua Van Cleave
- Nevada Extreme Conditions Laboratory, University of Nevada Las Vegas, Las Vegas, Nevada 89154, United States
- Department of Physics & Astronomy, University of Nevada Las Vegas, Las Vegas, Nevada 89154, United States
| | - Sylvain Petitgirard
- Institute of Geochemistry and Petrology, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
| | - Valerio Cerantola
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Department of Earth and Environmental Sciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza 4, 20126 Milan, Italy
| | - Karen Appel
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Carsten Baehtz
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Victorien Bouffetier
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Anand Dwivedi
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Sebastian Göde
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Tais Gorkhover
- University of Hamburg, Institute for Experimental Physics, 22761 Hamburg, Germany
| | - Zuzana Konopkova
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - S M A Hosseini-Saber
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Stephan Kuschel
- University of Hamburg, Institute for Experimental Physics, 22761 Hamburg, Germany
| | - Torsten Laurus
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Motoaki Nakatsutsumi
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Cornelius Strohm
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Jolanta Sztuk-Dambietz
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Ulf Zastrau
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Dean Smith
- Nevada Extreme Conditions Laboratory, University of Nevada Las Vegas, Las Vegas, Nevada 89154, United States
| | - Keith V Lawler
- Nevada Extreme Conditions Laboratory, University of Nevada Las Vegas, Las Vegas, Nevada 89154, United States
| | - Chris J Pickard
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K
- Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Craig P Schwartz
- Nevada Extreme Conditions Laboratory, University of Nevada Las Vegas, Las Vegas, Nevada 89154, United States
| | - Ashkan Salamat
- Nevada Extreme Conditions Laboratory, University of Nevada Las Vegas, Las Vegas, Nevada 89154, United States
- Department of Physics & Astronomy, University of Nevada Las Vegas, Las Vegas, Nevada 89154, United States
| |
Collapse
|
2
|
Husband RJ, Liermann HP, McHardy JD, McWilliams RS, Goncharov AF, Prakapenka VB, Edmund E, Chariton S, Konôpková Z, Strohm C, Sanchez-Valle C, Frost M, Andriambariarijaona L, Appel K, Baehtz C, Ball OB, Briggs R, Buchen J, Cerantola V, Choi J, Coleman AL, Cynn H, Dwivedi A, Graafsma H, Hwang H, Koemets E, Laurus T, Lee Y, Li X, Marquardt H, Mondal A, Nakatsutsumi M, Ninet S, Pace E, Pepin C, Prescher C, Stern S, Sztuk-Dambietz J, Zastrau U, McMahon MI. Phase transition kinetics of superionic H 2O ice phases revealed by Megahertz X-ray free-electron laser-heating experiments. Nat Commun 2024; 15:8256. [PMID: 39313509 PMCID: PMC11420352 DOI: 10.1038/s41467-024-52505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
H2O transforms to two forms of superionic (SI) ice at high pressures and temperatures, which contain highly mobile protons within a solid oxygen sublattice. Yet the stability field of both phases remains debated. Here, we present the results of an ultrafast X-ray heating study utilizing MHz pulse trains produced by the European X-ray Free Electron Laser to create high temperature states of H2O, which were probed using X-ray diffraction during dynamic cooling. We confirm an isostructural transition during heating in the 26-69 GPa range, consistent with the formation of SI-bcc. In contrast to prior work, SI-fcc was observed exclusively above ~50 GPa, despite evidence of melting at lower pressures. The absence of SI-fcc in lower pressure runs is attributed to short heating timescales and the pressure-temperature path induced by the pump-probe heating scheme in which H2O was heated above its melting temperature before the observation of quenched crystalline states, based on the earlier theoretical prediction that SI-bcc nucleates more readily from the fluid than SI-fcc. Our results may have implications for the stability of SI phases in ice-rich planets, for example during dynamic freezing, where the preferential crystallization of SI-bcc may result in distinct physical properties across mantle ice layers.
Collapse
Affiliation(s)
- R J Husband
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
| | - H P Liermann
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - J D McHardy
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, UK
| | - R S McWilliams
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, UK
| | - A F Goncharov
- Carnegie Science, Earth and Planets Laboratory, Washington, DC, USA
| | - V B Prakapenka
- The University of Chicago, Center for Advanced Radiation Sources, Chicago, IL, USA
| | - E Edmund
- Carnegie Science, Earth and Planets Laboratory, Washington, DC, USA
| | - S Chariton
- The University of Chicago, Center for Advanced Radiation Sources, Chicago, IL, USA
| | | | - C Strohm
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - C Sanchez-Valle
- Universität Münster, Institut für Mineralogie, Corrensstraße 24, Münster, Germany
| | - M Frost
- SLAC National Accelerator Laboratory, California, USA
| | - L Andriambariarijaona
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, Paris, France
| | - K Appel
- European XFEL, Schenefeld, Germany
| | - C Baehtz
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, Germany
| | - O B Ball
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, UK
| | - R Briggs
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - J Buchen
- Department of Earth Sciences, University of Oxford, Oxford, UK
- Bayerisches Geoinstitut, Universität Bayreuth, Universitätsstraße 30, Bayreuth, Germany
| | - V Cerantola
- European XFEL, Schenefeld, Germany
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | - J Choi
- Department of Earth System Sciences, Yonsei University, Seoul, Korea
| | - A L Coleman
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - H Cynn
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | - H Graafsma
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - H Hwang
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - E Koemets
- Department of Earth Sciences, University of Oxford, Oxford, UK
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| | - T Laurus
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Y Lee
- Department of Earth System Sciences, Yonsei University, Seoul, Korea
| | - X Li
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, China
| | - H Marquardt
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - A Mondal
- Universität Münster, Institut für Mineralogie, Corrensstraße 24, Münster, Germany
| | | | - S Ninet
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, Paris, France
| | - E Pace
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, UK
| | - C Pepin
- CEA, DAM, DIF, 91297 Arpajon, France; Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, Bruyères-le-Châtel, France
| | - C Prescher
- Institute of Earth and Environmental Sciences, University of Freiburg, Freiburg, Germany
| | - S Stern
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- X-Spectrum GmbH, Luruper Hauptstraße 1, Hamburg, Germany
| | | | | | - M I McMahon
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Choi J, Husband RJ, Hwang H, Kim T, Bang Y, Yun S, Lee J, Sim H, Kim S, Nam D, Chae B, Liermann HP, Lee Y. Oxidation of iron by giant impact and its implication on the formation of reduced atmosphere in the early Earth. SCIENCE ADVANCES 2023; 9:eadi6096. [PMID: 38100581 PMCID: PMC10848730 DOI: 10.1126/sciadv.adi6096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Giant impact-driven redox processes in the atmosphere and magma ocean played crucial roles in the evolution of Earth. However, because of the absence of rock records from that time, understanding these processes has proven challenging. Here, we present experimental results that simulate the giant impact-driven reactions between iron and volatiles (H2O and CO2) using x-ray free electron laser (XFEL) as fast heat pump and structural probe. Under XFEL pump, iron is oxidized to wüstite (FeO), while volatiles are reduced to H2 and CO. Furthermore, iron oxidation proceeds into formation of hydrides (γ-FeHx) and siderite (FeCO3), implying redox boundary near 300-km depth. Through quantitative analysis on reaction products, we estimate the volatile and FeO budgets in bulk silicate Earth, supporting the Theia hypothesis. Our findings shed light on the fast and short-lived process that led to reduced atmosphere, required for the emergence of prebiotic organic molecules in the early Earth.
Collapse
Affiliation(s)
- Jinhyuk Choi
- Department of Earth System Sciences, Yonsei University, Seoul 03722, Republic of Korea
| | - Rachel J. Husband
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
| | - Huijeong Hwang
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
- School of Earth Sciences and Environmental Engineering, GIST, Gwangju 61005, Republic of Korea
| | - Taehyun Kim
- Department of Earth System Sciences, Yonsei University, Seoul 03722, Republic of Korea
| | - Yoonah Bang
- Department of Earth System Sciences, Yonsei University, Seoul 03722, Republic of Korea
| | - Seohee Yun
- Department of Earth System Sciences, Yonsei University, Seoul 03722, Republic of Korea
| | - Jeongmin Lee
- Department of Earth System Sciences, Yonsei University, Seoul 03722, Republic of Korea
| | - Heehyeon Sim
- Department of Earth System Sciences, Yonsei University, Seoul 03722, Republic of Korea
| | - Sangsoo Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Daewoong Nam
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
- Photon Science Center, POSTECH, Pohang 37673, Republic of Korea
| | - Boknam Chae
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | | | - Yongjae Lee
- Department of Earth System Sciences, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Husband RJ, Strohm C, Appel K, Ball OB, Briggs R, Buchen J, Cerantola V, Chariton S, Coleman AL, Cynn H, Dattelbaum D, Dwivedi A, Eggert JH, Ehm L, Evans WJ, Glazyrin K, Goncharov AF, Graafsma H, Howard A, Huston L, Hutchinson TM, Hwang H, Jacob S, Kaa J, Kim J, Kim M, Koemets E, Konôpková Z, Langenhorst F, Laurus T, Li X, Mainberger J, Marquardt H, McBride EE, McGuire C, McHardy JD, McMahon MI, McWilliams RS, Méndez ASJ, Mondal A, Morard G, O’Bannon EF, Otzen C, Pépin CM, Prakapenka VB, Prescher C, Preston TR, Redmer R, Roeper M, Sanchez-Valle C, Smith D, Smith RF, Sneed D, Speziale S, Spitzbart T, Stern S, Sturtevant BT, Sztuk-Dambietz J, Talkovski P, Velisavljevic N, Vennari C, Wu Z, Yoo CS, Zastrau U, Jenei Z, Liermann HP. A MHz X-ray diffraction set-up for dynamic compression experiments in the diamond anvil cell. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:671-685. [PMID: 37318367 PMCID: PMC10325015 DOI: 10.1107/s1600577523003910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023]
Abstract
An experimental platform for dynamic diamond anvil cell (dDAC) research has been developed at the High Energy Density (HED) Instrument at the European X-ray Free Electron Laser (European XFEL). Advantage was taken of the high repetition rate of the European XFEL (up to 4.5 MHz) to collect pulse-resolved MHz X-ray diffraction data from samples as they are dynamically compressed at intermediate strain rates (≤103 s-1), where up to 352 diffraction images can be collected from a single pulse train. The set-up employs piezo-driven dDACs capable of compressing samples in ≥340 µs, compatible with the maximum length of the pulse train (550 µs). Results from rapid compression experiments on a wide range of sample systems with different X-ray scattering powers are presented. A maximum compression rate of 87 TPa s-1 was observed during the fast compression of Au, while a strain rate of ∼1100 s-1 was achieved during the rapid compression of N2 at 23 TPa s-1.
Collapse
Affiliation(s)
- Rachel J. Husband
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Cornelius Strohm
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Karen Appel
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Orianna B. Ball
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Richard Briggs
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | - Johannes Buchen
- University of Oxford, Department of Earth Sciences, South Parks Road, Oxford OX1 3AN, United Kingdom
| | | | - Stella Chariton
- The University of Chicago, Consortium for Advanced Radiation Sources, 5640 South Ellis Avenue Chicago, IL 60637, USA
| | - Amy L. Coleman
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | - Hyunchae Cynn
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | - Dana Dattelbaum
- Los Alamos National Laboratory, Shock and Detonation Physics (M-9), PO 1663, Los Alamos, NM 87545, USA
| | - Anand Dwivedi
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Jon H. Eggert
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | - Lars Ehm
- Department of Geosciences, 255 Earth and Space Sciences Building (ESS), Stony Brook, NY 11794-2100, USA
| | - William J. Evans
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | | | - Alexander F. Goncharov
- Carnegie Science, Earth and Planets Laboratory, 5241 Broad Branch Road, NW, Washington, DC 20015, USA
| | - Heinz Graafsma
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Alex Howard
- Washington State University, Department of Chemistry and Institute for Shock Physics, Pullman, WA 99164, USA
| | - Larissa Huston
- Los Alamos National Laboratory, Shock and Detonation Physics (M-9), PO 1663, Los Alamos, NM 87545, USA
| | - Trevor M. Hutchinson
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | - Huijeong Hwang
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Sony Jacob
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | - Johannes Kaa
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Technische Universität Dortmund, Fakultät Physik/DELTA, Maria-Goeppert-Mayer-Straße 2, 44227 Dortmund, Germany
| | - Jaeyong Kim
- Hanyang University, Department of Physics, 17 Haengdang Dong, Seongdong gu Seoul 133-791, Republic of Korea
| | - Minseob Kim
- Washington State University, Department of Chemistry and Institute for Shock Physics, Pullman, WA 99164, USA
| | - Egor Koemets
- University of Oxford, Department of Earth Sciences, South Parks Road, Oxford OX1 3AN, United Kingdom
| | | | - Falko Langenhorst
- Institut für Geowissenschaften, Friedrich-Schiller-Universität Jena, Carl-Zeiss-Promenade 10, 07745 Jena, Germany
| | - Torsten Laurus
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Xinyang Li
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Jona Mainberger
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Hauke Marquardt
- University of Oxford, Department of Earth Sciences, South Parks Road, Oxford OX1 3AN, United Kingdom
| | - Emma E. McBride
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Christopher McGuire
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | - James D. McHardy
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Malcolm I. McMahon
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - R. Stewart McWilliams
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Alba S. J. Méndez
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Anshuman Mondal
- Universität Münster, Institut für Mineralogie, Corrensstraße 24, 48149 Münster, Germany
| | - Guillaume Morard
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, 38000 Grenoble, France
| | - Earl F. O’Bannon
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | - Christoph Otzen
- Institut für Geowissenschaften, Friedrich-Schiller-Universität Jena, Carl-Zeiss-Promenade 10, 07745 Jena, Germany
| | - Charles M. Pépin
- CEA, DAM, DIF, 91297 Arpajon Cedex, France
- Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, 91680 Bruyères-le-Châtel, France
| | - Vitali B. Prakapenka
- The University of Chicago, Consortium for Advanced Radiation Sources, 5640 South Ellis Avenue Chicago, IL 60637, USA
| | - Clemens Prescher
- Albert-Ludwigs University of Freiburg, Institute of Earth and Environmental Sciences, Hermann-Herder-Str. 5, D-79104 Freiburg, Germany
| | | | - Ronald Redmer
- Universität Rostock, Institut für Physik, Albert-Einstein-Straße 23–24, 18059 Rostock, Germany
| | - Michael Roeper
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Carmen Sanchez-Valle
- Universität Münster, Institut für Mineralogie, Corrensstraße 24, 48149 Münster, Germany
| | - Dean Smith
- Argonne National Laboratory, High Pressure Collaborative Access Team (HPCAT), X-ray Science Division (XSD), 9700 S. Cass Avenue, Lemont, IL 60439, USA
| | - Raymond F. Smith
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | - Daniel Sneed
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | - Sergio Speziale
- Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, 14473 Potsdam, Germany
| | - Tobias Spitzbart
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Stephan Stern
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Blake T. Sturtevant
- Los Alamos National Laboratory, Shock and Detonation Physics (M-9), PO 1663, Los Alamos, NM 87545, USA
| | | | - Peter Talkovski
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Nenad Velisavljevic
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | - Cara Vennari
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | - Zhongyan Wu
- Hanyang University, Department of Physics, 17 Haengdang Dong, Seongdong gu Seoul 133-791, Republic of Korea
| | - Choong-Shik Yoo
- Washington State University, Department of Chemistry and Institute for Shock Physics, Pullman, WA 99164, USA
| | - Ulf Zastrau
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Zsolt Jenei
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | | |
Collapse
|
5
|
Affiliation(s)
- Sandra Ninet
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS UMR 7590, MNHN, Paris, France.
| |
Collapse
|
6
|
Singh PDD, Murthy Z, Kumar Kailasa S. Metal nitrides nanostructures: Properties, synthesis and conceptualization in analytical methods developments for chemical analysis and separation, and in energy storage applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
E J, Kim Y, Bielecki J, Sikorski M, de Wijn R, Fortmann-Grote C, Sztuk-Dambietz J, Koliyadu JCP, Letrun R, Kirkwood HJ, Sato T, Bean R, Mancuso AP, Kim C. Expected resolution limits of x-ray free-electron laser single-particle imaging for realistic source and detector properties. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2022; 9:064101. [PMID: 36411869 PMCID: PMC9675053 DOI: 10.1063/4.0000169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/31/2022] [Indexed: 05/15/2023]
Abstract
The unprecedented intensity of x-ray free-electron laser sources has enabled single-particle x-ray diffraction imaging (SPI) of various biological specimens in both two-dimensional projection and three dimensions (3D). The potential of studying protein dynamics in their native conditions, without crystallization or chemical staining, has encouraged researchers to aim for increasingly higher resolutions with this technique. The currently achievable resolution of SPI is limited to the sub-10 nanometer range, mainly due to background effects, such as instrumental noise and parasitic scattering from the carrier gas used for sample delivery. Recent theoretical studies have quantified the effects of x-ray pulse parameters, as well as the required number of diffraction patterns to achieve a certain resolution, in a 3D reconstruction, although the effects of detector noise and the random particle orientation in each diffraction snapshot were not taken into account. In this work, we show these shortcomings and address limitations on achievable image resolution imposed by the adaptive gain integrating pixel detector noise.
Collapse
Affiliation(s)
- Juncheng E
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Y. Kim
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - J. Bielecki
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - M. Sikorski
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - R. de Wijn
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | | | - R. Letrun
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - T. Sato
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - R. Bean
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - C. Kim
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Author to whom correspondence should be addressed:
| |
Collapse
|
8
|
|
9
|
Pang J, Jin W, Kuang X, Lu C. Two-Dimensional Fe 8N Nanosheets: Ferromagnets and Nitrogen Diffusion. J Phys Chem Lett 2021; 12:8453-8459. [PMID: 34448584 DOI: 10.1021/acs.jpclett.1c02242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We perform a first-principles study and identify two intriguing ferromagnets, hollow-Fe8N (H-Fe8N) and bridge-Fe8N (B-Fe8N) monolayers, by extensive structural searches. Both H-Fe8N and B-Fe8N nanosheets are buckled triangular lattices with a similar motif, but they are distinguishable by the positions of N atoms. The magnetic and electronic properties show that H-Fe8N is a low-spin ferromagnet; in contrast, B-Fe8N is a high-spin ferromagnet, which originates from the 3d orbital splitting of the Fe atom due to the low/high symmetric crystal field. Surprisingly, two stable Fe8N monolayers can be transferred to each other by N atom diffusion from the bridge position to the hollow position with the migration energy barrier of 1.5 eV. The energy barrier is affected by introduced Fe defects and rare earth metal dopants. These findings introduce a new tactic to regulate the 2D Fe-nitride monolayers at the atomic scale.
Collapse
Affiliation(s)
- Jiafei Pang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Wenyuan Jin
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Xiaoyu Kuang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Cheng Lu
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China
| |
Collapse
|
10
|
Zastrau U, Appel K, Baehtz C, Baehr O, Batchelor L, Berghäuser A, Banjafar M, Brambrink E, Cerantola V, Cowan TE, Damker H, Dietrich S, Di Dio Cafiso S, Dreyer J, Engel HO, Feldmann T, Findeisen S, Foese M, Fulla-Marsa D, Göde S, Hassan M, Hauser J, Herrmannsdörfer T, Höppner H, Kaa J, Kaever P, Knöfel K, Konôpková Z, Laso García A, Liermann HP, Mainberger J, Makita M, Martens EC, McBride EE, Möller D, Nakatsutsumi M, Pelka A, Plueckthun C, Prescher C, Preston TR, Röper M, Schmidt A, Seidel W, Schwinkendorf JP, Schoelmerich MO, Schramm U, Schropp A, Strohm C, Sukharnikov K, Talkovski P, Thorpe I, Toncian M, Toncian T, Wollenweber L, Yamamoto S, Tschentscher T. The High Energy Density Scientific Instrument at the European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1393-1416. [PMID: 34475288 PMCID: PMC8415338 DOI: 10.1107/s1600577521007335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
The European XFEL delivers up to 27000 intense (>1012 photons) pulses per second, of ultrashort (≤50 fs) and transversely coherent X-ray radiation, at a maximum repetition rate of 4.5 MHz. Its unique X-ray beam parameters enable groundbreaking experiments in matter at extreme conditions at the High Energy Density (HED) scientific instrument. The performance of the HED instrument during its first two years of operation, its scientific remit, as well as ongoing installations towards full operation are presented. Scientific goals of HED include the investigation of extreme states of matter created by intense laser pulses, diamond anvil cells, or pulsed magnets, and ultrafast X-ray methods that allow their diagnosis using self-amplified spontaneous emission between 5 and 25 keV, coupled with X-ray monochromators and optional seeded beam operation. The HED instrument provides two target chambers, X-ray spectrometers for emission and scattering, X-ray detectors, and a timing tool to correct for residual timing jitter between laser and X-ray pulses.
Collapse
Affiliation(s)
- Ulf Zastrau
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Karen Appel
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Carsten Baehtz
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | - Oliver Baehr
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | | | - Mohammadreza Banjafar
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | | | - Thomas E. Cowan
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | - Horst Damker
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | | | - Jörn Dreyer
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | - Hans-Olaf Engel
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | | | - Manon Foese
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | | | - Mohammed Hassan
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | - Jens Hauser
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | - Hauke Höppner
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | - Johannes Kaa
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Peter Kaever
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | - Klaus Knöfel
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | | | | | - Jona Mainberger
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Mikako Makita
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Emma E. McBride
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Dominik Möller
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | - Alexander Pelka
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | | | | | - Michael Röper
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | - Wolfgang Seidel
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | | | - Ulrich Schramm
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | - Andreas Schropp
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | | | - Peter Talkovski
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Ian Thorpe
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Monika Toncian
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | - Toma Toncian
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | - Shingo Yamamoto
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | |
Collapse
|