1
|
Wang T, Iriawan H, Peng J, Rao RR, Huang B, Zheng D, Menga D, Aggarwal A, Yuan S, Eom J, Zhang Y, McCormack K, Román-Leshkov Y, Grossman J, Shao-Horn Y. Confined Water for Catalysis: Thermodynamic Properties and Reaction Kinetics. Chem Rev 2025; 125:1420-1467. [PMID: 39902648 DOI: 10.1021/acs.chemrev.4c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Water is a salient component in catalytic systems and acts as a reactant, product and/or spectator species in the reaction. Confined water in distinct local environments can display significantly different behaviors from that of bulk water. Therefore, the wide-ranging chemistry of confined water can provide tremendous opportunities to tune the reaction kinetics. In this review, we focus on drawing the connection between confined water properties and reaction kinetics for heterogeneous (electro)catalysis. First, the properties of confined water are presented, where the enthalpy, entropy, and dielectric properties of water can be regulated by tuning the geometry and hydrophobicity of the cavities. Second, experimental and computational studies that investigate the interactions between water and inorganic materials, such as carbon nanotubes (1D confinement), charged metal or metal oxide surfaces (2D), zeolites and metal-organic frameworks (3D) and ions/solvent molecules (0D), are reviewed to demonstrate the opportunity to create confined water structures with unique H-bonding network properties. Third, the role of H-bonding structure and dynamics in governing the activation free energy, reorganization energy and pre-exponential factor for (electro)catalysis are discussed. We highlight emerging opportunities to enhance proton-coupled electron transfer by optimizing interfacial H-bond networks to regulate reaction kinetics for the decarbonization of chemicals and fuels.
Collapse
Affiliation(s)
- Tao Wang
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Haldrian Iriawan
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jiayu Peng
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Reshma R Rao
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
- Grantham Institute - Climate Change and the Environment, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| | - Botao Huang
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Daniel Zheng
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Davide Menga
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Abhishek Aggarwal
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shuai Yuan
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - John Eom
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yirui Zhang
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kaylee McCormack
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeffrey Grossman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yang Shao-Horn
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Majumdar J, Mandal S, Govind Rajan A, Maiti PK. Similar structure but different thermodynamic, dielectric, and frictional properties of confined water in twisted 2D materials: MoS 2vs. graphene. NANOSCALE 2025; 17:2354-2364. [PMID: 39688132 DOI: 10.1039/d4nr03821e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Water-based nanofluidic devices, where water is confined in Angstrom scale nanochannels, are widely encountered in nanotechnology. Although it is known that the material of confinement has a significant influence on the properties of confined water, much less is known of the relationship between the structure of nanoconfined water and its properties, impacting the design of nanofluidic devices. We explore the behavior of a confined water monolayer within a bilayer molybdenum disulfide (MoS2) structure, comparing its behavior with that within bilayer graphene. We find that only ∼2% of the entire structure has nearly perfect square order and the rest is filled with rhombus ordering. Surprisingly, we find that although the structure of monolayer confined water remains the same in both the 2D materials, thermodynamic analysis shows that confined water has a more favorable potential environment in MoS2 than graphene for all twists explored here. However, with increasing twist angle, the encapsulating effect of water diminishes slightly in the case of graphene than MoS2. Interestingly, the dielectric constant is anomalously lower in MoS2 by ∼22% compared to the confined water dielectric constant in a graphene nanochannel. Finally, we show that the static friction coefficient of confined water in bilayer MoS2 does not change with twist. However, unlike graphene, it does not show an order of magnitude reduction due to this extreme confinement. Overall, we show, counter-intuitively, that although confined water structures are similar in different 2D materials considered here, there exist differences in other properties of this structured water.
Collapse
Affiliation(s)
- Jeet Majumdar
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Soham Mandal
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Ananth Govind Rajan
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
3
|
Fu W, Liu Z, Li D, Pan B. Chemistry for water treatment under nanoconfinement. WATER RESEARCH 2025; 275:123173. [PMID: 39864357 DOI: 10.1016/j.watres.2025.123173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
The global freshwater crisis, exacerbated by escalating pollution, poses a significant threat to human health. Addressing this challenge required innovative strategies to develop highly efficient and process-adaptable materials for water decontamination. In this regard, nanomaterials with confinement structures have emerged as a promising solution, outperforming traditional nanomaterials in terms of efficiency, selectivity, stability, and process adaptability, thereby serving as an ideal platform for designing novel functional materials for sustainable water treatment. This Review focuses on recent advancements and employment of nanoconfinement effects in various water treatment processes, emphasizing the fundamental chemistry underlying nanoconfinement effects. Also, the existing knowledge gaps related to nanoconfinement effects and future prospects for expanding their applications in diverse water treatment scenarios are discussed.
Collapse
Affiliation(s)
- Wanyi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Ziyao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Dan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Coelho F, Mercier Franco LF. The Interplay between Dynamics and Structure on the Dielectric Tensor of Nanoconfined Water: Surface Charge and Salinity Effect. J Phys Chem B 2024; 128:11759-11767. [PMID: 39549036 PMCID: PMC11613631 DOI: 10.1021/acs.jpcb.4c05803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Under confinement, the water dielectric constant is a second-order tensor with an abnormally low out-of-plane element. In our work, we investigate the dielectric tensor of an aqueous NaCl solution confined by a quartz slit-pore. The static dielectric constant is determined from local polarization density fluctuations via molecular dynamics simulations. In a pioneering investigation, we evaluate not only the effect of salinity but also surface charge. The parallel dielectric constant decreases with salinity due to dielectric saturation. From a dynamic perspective, the relaxation of water dipoles is slower within the hydration shells of ions. An anisotropic arrangement on the quartz surface results in preferred orientations of interfacial water molecules. By embedding charge, the surface structure changes, and extra dipole fluctuations in one direction may develop anisotropy in the parallel dielectric constant at the interface. Both surface charge and salinity increase the perpendicular dielectric constant. Nevertheless, the surface charge effect is more pronounced and may even recover the bulk dielectric constant value. The electric field established by the charged surface may disturb the planar hydrogen bond network at the interface, increasing out-of-plane dipolar fluctuations. Our work advances the knowledge of confined dielectric behavior, shedding light on the key role that charged surfaces play.
Collapse
Affiliation(s)
- Felipe
Mourão Coelho
- Faculdade de Engenharia Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-852, Brazil
| | | |
Collapse
|
5
|
Schott C, Schneider PM, Song KT, Yu H, Götz R, Haimerl F, Gubanova E, Zhou J, Schmidt TO, Zhang Q, Alexandrov V, Bandarenka AS. How to Assess and Predict Electrical Double Layer Properties. Implications for Electrocatalysis. Chem Rev 2024; 124:12391-12462. [PMID: 39527623 PMCID: PMC11613321 DOI: 10.1021/acs.chemrev.3c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
The electrical double layer (EDL) plays a central role in electrochemical energy systems, impacting charge transfer mechanisms and reaction rates. The fundamental importance of the EDL in interfacial electrochemistry has motivated researchers to develop theoretical and experimental approaches to assess EDL properties. In this contribution, we review recent progress in evaluating EDL characteristics such as the double-layer capacitance, highlighting some discrepancies between theory and experiment and discussing strategies for their reconciliation. We further discuss the merits and challenges of various experimental techniques and theoretical approaches having important implications for aqueous electrocatalysis. A strong emphasis is placed on the substantial impact of the electrode composition and structure and the electrolyte chemistry on the double-layer properties. In addition, we review the effects of temperature and pressure and compare solid-liquid interfaces to solid-solid interfaces.
Collapse
Affiliation(s)
- Christian
M. Schott
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Peter M. Schneider
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Kun-Ting Song
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Haiting Yu
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Rainer Götz
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Felix Haimerl
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- BMW
AG, Petuelring 130, 80809 München, Germany
| | - Elena Gubanova
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Jian Zhou
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Thorsten O. Schmidt
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Qiwei Zhang
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- State
Key Laboratory of Urban Water Resource and Environment, School of
Environment, Harbin Institute of Technology, Harbin 150090, People’s Republic of China
| | - Vitaly Alexandrov
- Department
of Chemical and Biomolecular Engineering and Nebraska Center for Materials
and Nanoscience, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Aliaksandr S. Bandarenka
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- Catalysis
Research Center, Technical University of
Munich, Ernst-Otto-Fischer-Straße 1, 85748 Garching bei München, Germany
| |
Collapse
|
6
|
Chogani A, King HE, Živković A, Plümper O. The Effect of Salinity on the Dielectric Permittivity of Nanoconfined Geofluids. ACS EARTH & SPACE CHEMISTRY 2024; 8:2284-2293. [PMID: 39600319 PMCID: PMC11587090 DOI: 10.1021/acsearthspacechem.4c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Nanoporosity is a characteristic feature of geological formations that provides potential pathways for geofluids to meander and interact with minerals. Confinement of water within nanopores leads to unique phenomena. The dielectric constant of water becomes anisotropic and adopts tensorial properties rather than remaining a scalar value. In such nanoconfinement, it has been found that the permittivity of water decreases perpendicularly and increases parallel to the interface. As geofluids are rarely pure water in nature, being a water-salt(-gas) mixture within the Earth, it becomes pivotal to examine how these additional constituents of water affect the permittivity of fluids confined within the nanopores of rocks. In this study, we present the calculation of the permittivity of saline water in calcite slit nanopores using molecular dynamics simulations under low-pressure-temperature conditions. The dielectric properties are weakly dependent on salinity for both the perpendicular and parallel dielectric permittivity components. We analyzed the atomic charge and polarization density of the fluid perpendicular to the nanochannel walls and the orientation of water molecules' dipole inside the nanochannel. From our analysis, most of these factors were generally not altered significantly in the presence of salinity. These findings are significant because they enable us to use well-studied pure water properties under nanoconfinement to determine the geochemical behavior of fluids within natural nanoporous systems.
Collapse
Affiliation(s)
- Alireza Chogani
- Department of Earth Sciences, Utrecht University, Utrecht 3584 CB, The Netherlands
| | - Helen E. King
- Department of Earth Sciences, Utrecht University, Utrecht 3584 CB, The Netherlands
| | - Aleksandar Živković
- Department of Earth Sciences, Utrecht University, Utrecht 3584 CB, The Netherlands
| | - Oliver Plümper
- Department of Earth Sciences, Utrecht University, Utrecht 3584 CB, The Netherlands
| |
Collapse
|
7
|
Agles AA, Bourg IC. Structure and Dynamics of Water in Polysaccharide (Alginate) Solutions and Gels Explained by the Core-Shell Model. Biomacromolecules 2024; 25:6403-6415. [PMID: 39228282 PMCID: PMC11480987 DOI: 10.1021/acs.biomac.4c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
In both biological and engineered systems, polysaccharides offer a means of establishing structural stiffness without altering the availability of water. Notable examples include the extracellular matrix of prokaryotes and eukaryotes, artificial skin grafts, drug delivery materials, and gels for water harvesting. Proper design and modeling of these systems require detailed understanding of the behavior of water confined in pores narrower than about 1 nm. We use molecular dynamics simulations to investigate the properties of water in solutions and gels of the polysaccharide alginate as a function of the water content and polymer cross-linking. We find that a detailed understanding of the nanoscale dynamics of water in alginate solutions and gels requires consideration of the discrete nature of water. However, we also find that the trends in tortuosity, permeability, dielectric constant, and shear viscosity can be adequately represented using the "core-shell" conceptual model that considers the confined fluid as a continuum.
Collapse
Affiliation(s)
- Avery A. Agles
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ian C. Bourg
- Department
of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- High
Meadows Environmental Institute, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
8
|
Delgà-Fernández M, Toral-Lopez A, Guimerà-Brunet A, Pérez-Marín AP, Marin EG, Godoy A, Garrido JA, Del Corro E. Interfacial Phenomena Governing Performance of Graphene Electrodes in Aqueous Electrolyte. NANO LETTERS 2024; 24:11376-11384. [PMID: 39231528 PMCID: PMC11421073 DOI: 10.1021/acs.nanolett.4c01808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
There is evidence of the presence of intercalated water between graphene and the substrate in electronic devices. However, a proper understanding of the impact of this phenomenon, which causes important limitations for the optimization of graphene-based devices operating in aqueous electrolytes, is missing. We used graphene-based electrodes on insulating and conducting substrates to evaluate the impact of intercalated water by combining experimental techniques with numerical simulations. Results show that the capacitance of the conductive substrate/graphene electrodes is significantly higher than that of the insulating substrate/graphene ones. Meanwhile, Raman spectroscopy demonstrates that graphene charge modulation with the applied potential is independent of the substrate conductivity. We found that this intriguing behavior is influenced by the water intercalation phenomena and governed by the substrate conductive nature. This work contributes to the understanding of the electric response of graphene-based devices in an aqueous environment and of the methods to measure and model it.
Collapse
Affiliation(s)
- Marta Delgà-Fernández
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
| | - Alejandro Toral-Lopez
- Pervasive Electronics Advanced Research Laboratory (PEARL), Department of Electronics and Computer Technology, University of Granada, 18071 Granada, Spain
| | - Anton Guimerà-Brunet
- Institut de Microelectrònica de Barcelona (IMB-CNM), CSIC, Esfera UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - A Pablo Pérez-Marín
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
| | - Enrique G Marin
- Pervasive Electronics Advanced Research Laboratory (PEARL), Department of Electronics and Computer Technology, University of Granada, 18071 Granada, Spain
| | - Andrés Godoy
- Pervasive Electronics Advanced Research Laboratory (PEARL), Department of Electronics and Computer Technology, University of Granada, 18071 Granada, Spain
| | - Jose A Garrido
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
- ICREA, 08010 Barcelona, Spain
| | - Elena Del Corro
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
| |
Collapse
|
9
|
Wang R, Tiwary P. Atomic scale insights into NaCl nucleation in nanoconfined environments. Chem Sci 2024:d4sc04042b. [PMID: 39234215 PMCID: PMC11367593 DOI: 10.1039/d4sc04042b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
In this work we examine the nucleation from NaCl aqueous solutions within nano-confined environments, employing enhanced sampling molecular dynamics simulations integrated with machine learning-derived reaction coordinates. Through our simulations, we successfully induce phase transitions between solid, liquid, and a hydrated phase, typically observed at lower temperatures in bulk environments. Interestingly, while generally speaking nano-confinement serves to stabilize the solid phase and elevate melting points, there are subtle variations in the thermodynamics of competing phases with the precise extent of confinement. Our simulations explain these findings by underscoring the significant role of water, alongside ion aggregation and subtle, anisotropic dielectric behavior, in driving nucleation within nano-confined environments. This report thus provides a framework for sampling, analyzing and understanding nucleation processes under nano-confinement.
Collapse
Affiliation(s)
- Ruiyu Wang
- Institute for Physical Science and Technology, University of Maryland College Park MD 20742 USA
| | - Pratyush Tiwary
- Institute for Physical Science and Technology, University of Maryland College Park MD 20742 USA
- Department of Chemistry and Biochemistry, University of Maryland College Park MD 20742 USA
- University of Maryland Institute for Health Computing Bethesda Maryland 20852 USA
| |
Collapse
|
10
|
Tavakol M, Voïtchovsky K. Water and ions in electrified silica nano-pores: a molecular dynamics study. Phys Chem Chem Phys 2024; 26:22062-22072. [PMID: 39113575 DOI: 10.1039/d4cp00750f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Solid-liquid interfaces (SLIs) are ubiquitous in science and technology from the development of energy storage devices to the chemical reactions occurring in the biological milieu. In systems involving aqueous saline solutions as the liquid, both the water and the ions are routinely exposed to an electric field, whether the field is externally applied, or originating from the natural surface charges of the solid. In the current study a molecular dynamics (MD) framework is developed to study the effect of an applied voltage on the behaviour of ionic solutions located in a ∼7 nm pore between two uncharged hydrophilic silica slabs. We systematically investigate the dielectric properties of the solution and the organisation of the water and ions as a function of salt concentration. In pure water, the interplay between interfacial hydrogen bonds and the applied field can induce a significant reorganisation of the water orientation and densification at the interface. In saline solutions, at low concentrations and voltages the interface dominates the whole system due to the extended Debye length resulting in a dielectric constant lower than that for the bulk solution. An increase in salt concentration or voltage brings about more localized interfacial effects resulting in dielectric properties closer to that of the bulk solution. This suggests the possibility of tailoring the system to achieve the desired dielectric properties. For example, at a specific salt concentration, interfacial effects can locally increase the dielectric constant, something that could be exploited for energy storage.
Collapse
Affiliation(s)
- Mahdi Tavakol
- Physics Department, Durham University, Durham DH1 3LE, UK.
| | | |
Collapse
|
11
|
Vannoy KJ, Edwards MQ, Renault C, Dick JE. An Electrochemical Perspective on Reaction Acceleration in Microdroplets. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:149-171. [PMID: 38594942 DOI: 10.1146/annurev-anchem-061622-030919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Analytical techniques operating at the nanoscale introduce confinement as a tool at our disposal. This review delves into the phenomenon of accelerated reactivity within micro- and nanodroplets. A decade of accelerated reactivity observations was succeeded by several years of fundamental studies aimed at mechanistic enlightenment. Herein, we provide a brief historical context for rate enhancement in and around micro- and nanodroplets and summarize the mechanisms that have been proposed to contribute to such extraordinary reactivity. We highlight recent electrochemical reports that make use of restricted mass transfer to enhance electrochemical reactions and/or quantitatively measure reaction rates within droplet-confined electrochemical cells. A comprehensive approach to nanodroplet reactivity is paramount to understanding how nature takes advantage of these systems to provide life on Earth and, in turn, how to harness the full potential of such systems.
Collapse
Affiliation(s)
- Kathryn J Vannoy
- 1Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
| | | | - Christophe Renault
- 1Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
- 2Current Address: Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA
| | - Jeffrey E Dick
- 1Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
- 3Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
12
|
de la Puente M, Laage D. Impact of interfacial curvature on molecular properties of aqueous interfaces. J Chem Phys 2024; 160:234504. [PMID: 38888129 DOI: 10.1063/5.0210884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
The curvature of soft interfaces plays a crucial role in determining their mechanical and thermodynamic properties, both at macroscopic and microscopic scales. In the case of air/water interfaces, particular attention has recently focused on water microdroplets, due to their distinctive chemical reactivity. However, the specific impact of curvature on the molecular properties of interfacial water and interfacial reactivity has so far remained elusive. Here, we use molecular dynamics simulations to determine the effect of curvature on a broad range of structural, dynamical, and thermodynamical properties of the interface. For a droplet, a flat interface, and a cavity, we successively examine the structure of the hydrogen-bond network and its relation to vibrational spectroscopy, the dynamics of water translation, rotation, and hydrogen-bond exchanges, and the thermodynamics of ion solvation and ion-pair dissociation. Our simulations show that curvature predominantly impacts the hydrogen-bond structure through the fraction of dangling OH groups and the dynamics of interfacial water molecules. In contrast, curvature has a limited effect on solvation and ion-pair dissociation thermodynamics. For water microdroplets, this suggests that the curvature alone cannot fully account for the distinctive reactivity measured in these systems, which are of great importance for catalysis and atmospheric chemistry.
Collapse
Affiliation(s)
- M de la Puente
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - D Laage
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
13
|
Jana A, Shepherd S, Litman Y, Wilkins DM. Learning Electronic Polarizations in Aqueous Systems. J Chem Inf Model 2024; 64:4426-4435. [PMID: 38804973 PMCID: PMC11167596 DOI: 10.1021/acs.jcim.4c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
The polarization of periodically repeating systems is a discontinuous function of the atomic positions, a fact which seems at first to stymie attempts at their statistical learning. Two approaches to build models for bulk polarizations are compared: one in which a simple point charge model is used to preprocess the raw polarization to give a learning target that is a smooth function of atomic positions and the total polarization is learned as a sum of atom-centered dipoles and one in which instead the average position of Wannier centers around atoms is predicted. For a range of bulk aqueous systems, both of these methods perform perform comparatively well, with the former being slightly better but often requiring an extra effort to find a suitable point charge model. As a challenging test, we also analyze the performance of the models at the air-water interface. In this case, while the Wannier center approach delivers accurate predictions without further modifications, the preprocessing method requires augmentation with information from isolated water molecules to reach similar accuracy. Finally, we present a simple protocol to preprocess the polarizations in a data-driven way using a small number of derivatives calculated at a much lower level of theory, thus overcoming the need to find point charge models without appreciably increasing the computation cost. We believe that the training strategies presented here help the construction of accurate polarization models required for the study of the dielectric properties of realistic complex bulk systems and interfaces with ab initio accuracy.
Collapse
Affiliation(s)
- Arnab Jana
- Centre
for Quantum Materials and Technologies, School of Mathematics and
Physics, Queen’s University Belfast, Belfast BT7 1NN, U.K.
| | - Sam Shepherd
- Centre
for Quantum Materials and Technologies, School of Mathematics and
Physics, Queen’s University Belfast, Belfast BT7 1NN, U.K.
| | - Yair Litman
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - David M. Wilkins
- Centre
for Quantum Materials and Technologies, School of Mathematics and
Physics, Queen’s University Belfast, Belfast BT7 1NN, U.K.
| |
Collapse
|
14
|
Córdoba A, Montes de Oca JM, Darling SB, de Pablo JJ. Influence of the Dielectric Constant on the Ionic Current Rectification of Bipolar Nanopores. ACS NANO 2024; 18:12569-12579. [PMID: 38696274 DOI: 10.1021/acsnano.4c03546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
In this paper, we investigate how the dielectric constant, ϵ, of an electrolyte solvent influences the current rectification characteristics of bipolar nanopores. It is well recognized that bipolar nanopores with two oppositely charged regions rectify current when exposed to an alternating electric potential difference. Here, we consider dilute electrolytes with NaCl only and with a mixture of NaCl and charged nanoparticles. These systems are studied using two levels of description, all-atom explicit water molecular dynamics (MD) simulations and coarse-grained implicit solvent MD simulations. The charge density and electric potential profiles and current-voltage relationship predicted by the implicit solvent simulations with ϵ = 11.3 show good agreement with the predictions from the explicit water simulations. Under nonequilibrium conditions, the predictions of the implicit solvent simulations with a dielectric constant closer to the one of bulk water are significantly different from the predictions obtained with the explicit water model. These findings are closely aligned with experimental data on the dielectric constant of water when confined to nanometric spaces, which suggests that ϵ decreases significantly compared to its value in the bulk. Moreover, the largest electric current rectification is observed in systems containing nanoparticles when ϵ = 78.8. Using enhanced sampling, we have shown that this larger rectification arises from the presence of a significantly deeper minimum in the free energy of the system with a larger ϵ, and when a negative voltage bias is applied. Since implicit solvent models and mean-field continuum theories are often used to design Janus membranes based on bipolar nanopores, this work highlights the importance of properly accounting for the effects of confinement on the dielectric constant of the electrolyte solvent. The results presented here indicate that the dielectric constant in implicit solvent simulations may be used as an adjustable parameter to approximately account for the effects of nanometric confinement on aqueous electrolyte solvents.
Collapse
Affiliation(s)
- Andrés Córdoba
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Joan Manuel Montes de Oca
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Seth B Darling
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
15
|
Pireddu G, Fairchild CJ, Niblett SP, Cox SJ, Rotenberg B. Impedance of nanocapacitors from molecular simulations to understand the dynamics of confined electrolytes. Proc Natl Acad Sci U S A 2024; 121:e2318157121. [PMID: 38662549 PMCID: PMC11067016 DOI: 10.1073/pnas.2318157121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Nanoelectrochemical devices have become a promising candidate technology across various applications, including sensing and energy storage, and provide new platforms for studying fundamental properties of electrode/electrolyte interfaces. In this work, we employ constant-potential molecular dynamics simulations to investigate the impedance of gold-aqueous electrolyte nanocapacitors, exploiting a recently introduced fluctuation-dissipation relation. In particular, we relate the frequency-dependent impedance of these nanocapacitors to the complex conductivity of the bulk electrolyte in different regimes, and use this connection to design simple but accurate equivalent circuit models. We show that the electrode/electrolyte interfacial contribution is essentially capacitive and that the electrolyte response is bulk-like even when the interelectrode distance is only a few nanometers, provided that the latter is sufficiently large compared to the Debye screening length. We extensively compare our simulation results with spectroscopy experiments and predictions from analytical theories. In contrast to experiments, direct access in simulations to the ionic and solvent contributions to the polarization allows us to highlight their significant and persistent anticorrelation and to investigate the microscopic origin of the timescales observed in the impedance spectrum. This work opens avenues for the molecular interpretation of impedance measurements, and offers valuable contributions for future developments of accurate coarse-grained representations of confined electrolytes.
Collapse
Affiliation(s)
- Giovanni Pireddu
- Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS, Sorbonne Université, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), CNRS, Sorbonne Université, ParisF-75005, France
| | - Connie J. Fairchild
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Samuel P. Niblett
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Stephen J. Cox
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Benjamin Rotenberg
- Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS, Sorbonne Université, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), CNRS, Sorbonne Université, ParisF-75005, France
- Réseau sur le Stockage Electrochimique de l’Energie, Fédération de Recherche CNRS 3459, Amiens Cedex80039, France
| |
Collapse
|
16
|
Heindel JP, LaCour RA, Head-Gordon T. The role of charge in microdroplet redox chemistry. Nat Commun 2024; 15:3670. [PMID: 38693110 PMCID: PMC11519639 DOI: 10.1038/s41467-024-47879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/12/2024] [Indexed: 05/03/2024] Open
Abstract
In charged water microdroplets, which occur in nature or in the lab upon ultrasonication or in electrospray processes, the thermodynamics for reactive chemistry can be dramatically altered relative to the bulk phase. Here, we provide a theoretical basis for the observation of accelerated chemistry by simulating water droplets of increasing charge imbalance to create redox agents such as hydroxyl and hydrogen radicals and solvated electrons. We compute the hydration enthalpy of OH- and H+ that controls the electron transfer process, and the corresponding changes in vertical ionization energy and vertical electron affinity of the ions, to create OH• and H• reactive species. We find that at ~ 20 - 50% of the Rayleigh limit of droplet charge the hydration enthalpy of both OH- and H+ have decreased by >50 kcal/mol such that electron transfer becomes thermodynamically favorable, in correspondence with the more favorable vertical electron affinity of H+ and the lowered vertical ionization energy of OH-. We provide scaling arguments that show that the nanoscale calculations and conclusions extend to the experimental microdroplet length scale. The relevance of the droplet charge for chemical reactivity is illustrated for the formation of H2O2, and has clear implications for other redox reactions observed to occur with enhanced rates in microdroplets.
Collapse
Affiliation(s)
- Joseph P Heindel
- Kenneth S. Pitzer Theory Center and Department of Chemistry, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - R Allen LaCour
- Kenneth S. Pitzer Theory Center and Department of Chemistry, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Theory Center and Department of Chemistry, Berkeley, CA, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Departments of Bioengineering and Chemical and Biomolecular Engineering University of CAlifornia, Berkeley, CA, USA.
| |
Collapse
|
17
|
Yang H, Ji G, Choi M, Park S, An H, Lee HT, Jeong J, Park YD, Kim K, Park N, Jeong J, Kim DS, Park HR. Suppressed terahertz dynamics of water confined in nanometer gaps. SCIENCE ADVANCES 2024; 10:eadm7315. [PMID: 38657066 PMCID: PMC11042745 DOI: 10.1126/sciadv.adm7315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Nanoconfined waters exhibit low static permittivity mainly due to interfacial effects that span about one nanometer. The characteristic length scale may be much longer in the terahertz (THz) regime where long-range collective dynamics occur; however, the THz dynamics have been largely unexplored because of the lack of a robust platform. Here, we use metallic loop nanogaps to sharply enhance light-matter interactions and precisely measure real and imaginary THz refractive indices of nanoconfined water at gap widths ranging from 2 to 20 nanometers, spanning mostly interfacial waters all the way to quasi-bulk waters. We find that, in addition to the well-known interfacial effect, the confinement effect also contributes substantially to the decrease in the complex refractive indices of the nanoconfined water by cutting off low-energy vibrational modes, even at gap widths as large as 10 nanometers. Our findings provide valuable insights into the collective dynamics of water molecules which is crucial to understanding water-mediated processes.
Collapse
Affiliation(s)
- Hyosim Yang
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Gangseon Ji
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Min Choi
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Seondo Park
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeonjun An
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hyoung-Taek Lee
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Joonwoo Jeong
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Yun Daniel Park
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungwan Kim
- Department of Physics, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Noejung Park
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jeeyoon Jeong
- Department of Physics and Institute for Quantum Convergence Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dai-Sik Kim
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeong-Ryeol Park
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
18
|
Tanaka Y, Sato H, Nakano H. Computational dielectric spectroscopy on solid-solution interface by time-dependent voltage applied molecular dynamics simulation. J Chem Phys 2024; 160:144103. [PMID: 38591671 DOI: 10.1063/5.0189977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/24/2024] [Indexed: 04/10/2024] Open
Abstract
A frequency-dependent dielectric constant characterizes the dielectric response of a medium and also represents the time scale of system's collective dynamics. Although it is valuable not only academically but also practically for developing advanced devices, getting the value of a solution at the interface with a solid or electrode surface is challenging both experimentally and computationally. Here, we propose a computational method that imitates the dielectric spectroscopy and AC impedance measurement. It combines a time-dependent voltage applied molecular dynamics simulation with an equivalent circuit representation of a system composed of a solution confined between two identical electrodes. It gives the frequency-dependent dielectric constants of the bulk solution and the interface simultaneously. Unlike the conventional method, it does not require computation of a dipole autocorrelation function and its Fourier transformation. Application of the method on a system of water confined between polarizable Pt electrodes gives the static dielectric constant and the relaxation time of the bulk water in good agreement with previous simulation results and experimental values. In addition, it gives a much smaller static dielectric constant at the interface, consistent with previous observations. The outline of the dielectric dispersion curve of the interface seems similar to that of the bulk, but the relaxation time is several times faster.
Collapse
Affiliation(s)
- Yuichi Tanaka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano Nishihiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan
| | - Hiroshi Nakano
- CD-FMat, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba Central 2, Tsukuba, Ibaraki 305-8568, Japan
| |
Collapse
|
19
|
Villapiano F, Di Lorenzo R, Sparaco R, Magli E, Frecentese F, Laneri S, D’Orsi A, Nele V, Biondi M, Mayol L, Campani V, Santagada V, De Rosa G. Technological and Physical-Chemical Evaluation of Cotton Gauzes Impregnated with Semisolid Preparations for Wound Healing. Biomedicines 2024; 12:777. [PMID: 38672133 PMCID: PMC11048641 DOI: 10.3390/biomedicines12040777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic wounds are marked by an extended healing period during which damaged tissues fail to undergo orderly and timely repair. Examples of chronic wounds encompass venous ulcers, pressure ulcers, and diabetic foot ulcers. The process of wound healing is complex and dynamic, relying on the interplay and response among various cells and mediators. In this study, four marketed wound dressing products based on cotton gauzes impregnated with different semisolid products (namely Betadine® 10%, Connettivina® Bio Plus Fitostimoline® Plus, and Non-Ad® gauzes) have been characterized for their physicochemical properties and ex vivo behaviors. More in detail, the pH and rheological features of semisolid formulations impregnating the gauzes were analyzed along with their ability to adhere to the gauzes. The most promising ones were selected and compared in ex vivo experiments on fresh pig skin. The pH measurements showed an acidic environment for all the tested solutions, albeit with variations in mean values, ranging from 2.66 to 4.50. The outcomes of rheological studies demonstrated that all the semisolid preparations impregnating the gauzes exhibited a pseudoplastic behavior, with significant differences in the pseudoplasticity index across the preparations, which is likely to influence their ability to adhere to the gauze. A rheological study in oscillatory mode revealed rheological behavior typical of a viscous solution only for the cream impregnating non-paraffin gauzes. The other products exhibited rheological behavior typical of a weak gel, which is expected to be advantageous as regards the capability of the semisolid preparation to create and maintain the space within the wound and to provide protection to the injured tissue. Results of ex vivo experiments demonstrated that Fitostimoline® Plus was more effective than Connettivina® Bio Plus in promoting both skin hydration and energy.
Collapse
Affiliation(s)
- Fabrizio Villapiano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (F.V.); (R.S.); (F.F.); (A.D.); (V.N.); (M.B.); (V.S.); (G.D.R.)
| | - Ritamaria Di Lorenzo
- RD Cosmetics, Department of Pharmacy, University of Naples Federico II, Via Domenico Motesano 49, 80131 Naples, Italy; (R.D.L.); (S.L.)
| | - Rosa Sparaco
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (F.V.); (R.S.); (F.F.); (A.D.); (V.N.); (M.B.); (V.S.); (G.D.R.)
| | - Elisa Magli
- Department of Public Health, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy;
| | - Francesco Frecentese
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (F.V.); (R.S.); (F.F.); (A.D.); (V.N.); (M.B.); (V.S.); (G.D.R.)
| | - Sonia Laneri
- RD Cosmetics, Department of Pharmacy, University of Naples Federico II, Via Domenico Motesano 49, 80131 Naples, Italy; (R.D.L.); (S.L.)
| | - Alessandra D’Orsi
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (F.V.); (R.S.); (F.F.); (A.D.); (V.N.); (M.B.); (V.S.); (G.D.R.)
| | - Valeria Nele
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (F.V.); (R.S.); (F.F.); (A.D.); (V.N.); (M.B.); (V.S.); (G.D.R.)
| | - Marco Biondi
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (F.V.); (R.S.); (F.F.); (A.D.); (V.N.); (M.B.); (V.S.); (G.D.R.)
| | - Laura Mayol
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Virginia Campani
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (F.V.); (R.S.); (F.F.); (A.D.); (V.N.); (M.B.); (V.S.); (G.D.R.)
| | - Vincenzo Santagada
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (F.V.); (R.S.); (F.F.); (A.D.); (V.N.); (M.B.); (V.S.); (G.D.R.)
| | - Giuseppe De Rosa
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (F.V.); (R.S.); (F.F.); (A.D.); (V.N.); (M.B.); (V.S.); (G.D.R.)
| |
Collapse
|
20
|
Finney AR, Salvalaglio M. Properties of aqueous electrolyte solutions at carbon electrodes: effects of concentration and surface charge on solution structure, ion clustering and thermodynamics in the electric double layer. Faraday Discuss 2024; 249:334-362. [PMID: 37781909 DOI: 10.1039/d3fd00133d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Surfaces are able to control physical-chemical processes in multi-component solution systems and, as such, find application in a wide range of technological devices. Understanding the structure, dynamics and thermodynamics of non-ideal solutions at surfaces, however, is particularly challenging. Here, we use Constant Chemical Potential Molecular Dynamics (CμMD) simulations to gain insight into aqueous NaCl solutions in contact with graphite surfaces at high concentrations and under the effect of applied surface charges: conditions where mean-field theories describing interfaces cannot (typically) be reliably applied. We discover an asymmetric effect of surface charge on the electric double layer structure and resulting thermodynamic properties, which can be explained by considering the affinity of the surface for cations and anions and the cooperative adsorption of ions that occurs at higher concentrations. We characterise how the sign of the surface charge affects ion densities and water structure in the double layer and how the capacitance of the interface-a function of the electric potential drop across the double layer-is largely insensitive to the bulk solution concentration. Notably, we find that negatively charged graphite surfaces induce an increase in the size and concentration of extended liquid-like ion clusters confined to the double layer. Finally, we discuss how concentration and surface charge affect the activity coefficients of ions and water at the interface, demonstrating how electric fields in this region should be explicitly considered when characterising the thermodynamics of both solute and solvent at the solid/liquid interface.
Collapse
Affiliation(s)
- Aaron R Finney
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK.
| | - Matteo Salvalaglio
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK.
| |
Collapse
|
21
|
Limaye A, Suvlu D, Willard AP. Water molecules mute the dependence of the double-layer potential profile on ionic strength. Faraday Discuss 2024; 249:267-288. [PMID: 37830233 DOI: 10.1039/d3fd00114h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
We present the results of molecular dynamics simulations of a nanoscale electrochemical cell. The simulations include an aqueous electrolyte solution with varying ionic strength (i.e., concentrations ranging from 0-4 M) between a pair of metallic electrodes held at constant potential difference. We analyze these simulations by computing the electrostatic potential profile of the electric double-layer region and find it to be nearly independent of ionic concentration, in stark contrast to the predictions of standard continuum-based theories. We attribute this lack of concentration dependence to the molecular influences of water molecules at the electrode-solution interface. These influences include the molecular manifestation of water's dielectric response, which tends to drown out the comparatively weak screening requirement of the ions. To support our analysis, we decompose water's interfacial response into three primary contributions: molecular layering, intrinsic (zero-field) orientational polarization, and the dipolar dielectric response.
Collapse
Affiliation(s)
- Aditya Limaye
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | - Dylan Suvlu
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | - Adam P Willard
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
22
|
Shoemaker BA, Haji-Akbari A. Ideal conductor/dielectric model (ICDM): A generalized technique to correct for finite-size effects in molecular simulations of hindered ion transport. J Chem Phys 2024; 160:024116. [PMID: 38197447 DOI: 10.1063/5.0180029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024] Open
Abstract
Molecular simulations serve as indispensable tools for investigating the kinetics and elucidating the mechanism of hindered ion transport across nanoporous membranes. In particular, recent advancements in advanced sampling techniques have made it possible to access translocation timescales spanning several orders of magnitude. In our prior study [Shoemaker et al., J. Chem. Theory Comput. 18, 7142 (2022)], we identified significant finite size artifacts in simulations of pressure-driven hindered ion transport through nanoporous graphitic membranes. We introduced the ideal conductor model, which effectively corrects for such artifacts by assuming the feed to be an ideal conductor. In the present work, we introduce the ideal conductor dielectric model (Icdm), a generalization of our earlier model, which accounts for the dielectric properties of both the membrane and the filtrate. Using the Icdm model substantially enhances the agreement among corrected free energy profiles obtained from systems of varying sizes, with notable improvements observed in regions proximate to the pore exit. Moreover, the model has the capability to consider secondary ion passage events, including the transport of a co-ion subsequent to the traversal of a counter-ion, a feature that is absent in our original model. We also investigate the sensitivity of the new model to various implementation details. The Icdm model offers a universally applicable framework for addressing finite size artifacts in molecular simulations of ion transport. It stands as a significant advancement in our quest to use molecular simulations to comprehensively understand and manipulate ion transport processes through nanoporous membranes.
Collapse
Affiliation(s)
- Brian A Shoemaker
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
23
|
Dufils T, Schran C, Chen J, Geim AK, Fumagalli L, Michaelides A. Origin of dielectric polarization suppression in confined water from first principles. Chem Sci 2024; 15:516-527. [PMID: 38179530 PMCID: PMC10763014 DOI: 10.1039/d3sc04740g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024] Open
Abstract
It has long been known that the dielectric constant of confined water should be different from that in bulk. Recent experiments have shown that it is vanishingly small, however the origin of the phenomenon remains unclear. Here we used ab initio molecular dynamics simulations (AIMD) and AIMD-trained machine-learning potentials to understand water's structure and electronic properties underpinning this effect. For the graphene and hexagonal boron-nitride substrates considered, we find that it originates in the spontaneous anti-parallel alignment of the water dipoles in the first two water layers near the solid interface. The interfacial layers exhibit net ferroelectric ordering, resulting in an overall anti-ferroelectric arrangement of confined water. Together with constrained hydrogen-bonding orientations, this leads to much reduced out-of-plane polarization. Furthermore, we directly contrast AIMD and simple classical force-field simulations, revealing important differences. This work offers insight into a property of water that is critical in modulating surface forces, the electric-double-layer formation and molecular solvation, and shows a way to compute it.
Collapse
Affiliation(s)
- T Dufils
- Department of Physics and Astronomy, University of Manchester Manchester M13 9PL UK
- National Graphene Institute, University of Manchester Manchester M13 9PL UK
| | - C Schran
- Cavendish Laboratory, Department of Physics, University of Cambridge Cambridge CB3 0HE UK
- Lennard-Jones Centre, University of Cambridge Trinity Ln Cambridge CB2 1TN UK
| | - J Chen
- School of Physics, Peking University Beijing 100871 China
| | - A K Geim
- Department of Physics and Astronomy, University of Manchester Manchester M13 9PL UK
- National Graphene Institute, University of Manchester Manchester M13 9PL UK
| | - L Fumagalli
- Department of Physics and Astronomy, University of Manchester Manchester M13 9PL UK
- National Graphene Institute, University of Manchester Manchester M13 9PL UK
| | - A Michaelides
- Lennard-Jones Centre, University of Cambridge Trinity Ln Cambridge CB2 1TN UK
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
24
|
Tran B, Zhou Y, Janik MJ, Milner ST. Negative Dielectric Constant of Water at a Metal Interface. PHYSICAL REVIEW LETTERS 2023; 131:248001. [PMID: 38181128 DOI: 10.1103/physrevlett.131.248001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/09/2023] [Indexed: 01/07/2024]
Abstract
Water polarizability at a metal interface plays an essential role in electrochemistry. We devise a classical molecular dynamics approach with an efficient description of metal polarization and a novel ac field method to measure the local dielectric response of interfacial water. Water adlayers next to the metal surface exhibit higher-than-bulk in-plane and negative out-of-plane dielectric constants, the latter corresponding physically to overscreening of the applied field. If we account for the gap region at the interface, the average out-of-plane dielectric constant is quite low (ε_{⊥}≈2), in agreement with reported measurements on confined thin films.
Collapse
Affiliation(s)
- Bolton Tran
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yuxing Zhou
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Michael J Janik
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Scott T Milner
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
25
|
Hénot M, Déjardin PM, Ladieu F. Orientational dynamics in supercooled glycerol computed from MD simulations: self and cross contributions. Phys Chem Chem Phys 2023; 25:29233-29240. [PMID: 37873650 DOI: 10.1039/d3cp04578a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The orientational dynamics of supercooled glycerol is probed using molecular dynamics simulations for temperatures ranging from 323 K to 253 K, through correlation functions of first and second ranks of Legendre polynomials, pertaining respectively to dielectric spectroscopy (DS) and depolarized dynamic light scattering (DDLS). The self, cross, and total correlation functions are compared with relevant experimental data. The computations reveal the low sensitivity of DDLS to cross-correlations, in agreement with what is found in experimental work, and strengthen the idea of directly comparing DS and DDLS data to evaluate the effect of cross-correlations in polar liquids. The analysis of the net static cross-correlations and their spatial decomposition shows that, although cross-correlations extend over nanometric distances, their net magnitude originates, in the case of glycerol, from the first shell of neighbouring molecules. Accessing the angular dependence of the static correlation allows us to get a microscopic understanding of why the rank-1 correlation function is more sensitive to cross-correlation than its rank-2 counterpart.
Collapse
Affiliation(s)
- Marceau Hénot
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay Bat 772, 91191 Gif-sur-Yvette Cedex, France.
| | - Pierre-Michel Déjardin
- Laboratoire de Modélisation Pluridisciplinaire et Simulations, Université de Perpignan Via Domitia, 52 avenue Paul Alduy, F-66860 Perpignan, France
| | - François Ladieu
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay Bat 772, 91191 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
26
|
Borgis D, Laage D, Belloni L, Jeanmairet G. Dielectric response of confined water films from a classical density functional theory perspective. Chem Sci 2023; 14:11141-11150. [PMID: 37860645 PMCID: PMC10583706 DOI: 10.1039/d3sc01267k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/21/2023] [Indexed: 10/21/2023] Open
Abstract
We re-examine the problem of the dielectric response of highly polar liquids such as water in confinement between two walls using simple two-variable density functional theory involving number and polarisation densities. In the longitudinal polarisation case where a perturbing field is applied perpendicularly to the walls, we show that the notion of the local dielectric constant, although ill-defined at a microscopic level, makes sense when coarse-graining over the typical size of a particle is introduced. The approach makes it possible to study the effective dielectric response of thin liquid films of various thicknesses in connection with the recent experiments of Fumagalli et al., [Science, 2018, 360, 1339-1342], and to discuss the notion of the interfacial dielectric constant. We argue that the observed properties as a function of slab dimensions, in particular the very low dielectric constants of the order of 2-3 measured for thin slabs of ∼1 nm thickness do not highlight any special properties of water but can be recovered for a generic polar solvent having similar particle size and the same high dielectric constant. Regarding the transverse polarisation case where the perturbing field is parallel to the walls, the associated effective dielectric constant as a function of slab dimensions reaches bulk-like values at much shorter widths than in the longitudinal case. In both cases, we find an oscillatory behaviour for slab thicknesses in the one nanometer range due to packing effects.
Collapse
Affiliation(s)
- Daniel Borgis
- Maison de la Simulation, CNRS-CEA-Université Paris-Saclay UAR 3441 91191 Gif-sur-Yvette France
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS 75005 Paris France
| | - Damien Laage
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS 75005 Paris France
| | - Luc Belloni
- Université Paris-Saclay, CEA, CNRS, NIMBE 91191 Gif-sur-Yvette France
| | - Guillaume Jeanmairet
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX F-75005 Paris France
- Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), FR CNRS 3459 80039 Amiens Cedex France
| |
Collapse
|
27
|
Hoang Ngoc Minh T, Kim J, Pireddu G, Chubak I, Nair S, Rotenberg B. Electrical noise in electrolytes: a theoretical perspective. Faraday Discuss 2023; 246:198-224. [PMID: 37409620 DOI: 10.1039/d3fd00026e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Seemingly unrelated experiments such as electrolyte transport through nanotubes, nano-scale electrochemistry, NMR relaxometry and surface force balance measurements, all probe electrical fluctuations: of the electric current, the charge and polarization, the field gradient (for quadrupolar nuclei) and the coupled mass/charge densities. The fluctuations of such various observables arise from the same underlying microscopic dynamics of the ions and solvent molecules. In principle, the relevant length and time scales of these dynamics are encoded in the dynamic structure factors. However, modelling the latter for frequencies and wavevectors spanning many orders of magnitude remains a great challenge to interpret the experiments in terms of physical processes such as solvation dynamics, diffusion, electrostatic and hydrodynamic interactions between ions, interactions with solid surfaces, etc. Here, we highlight the central role of the charge-charge dynamic structure factor in the fluctuations of electrical observables in electrolytes and offer a unifying perspective over a variety of complementary experiments. We further analyze this quantity in the special case of an aqueous NaCl electrolyte, using simulations with explicit ions and an explicit or implicit solvent. We discuss the ability of the standard Poisson-Nernst-Planck theory to capture the simulation results, and how the predictions can be improved. We finally discuss the contributions of ions and water to the total charge fluctuations. This work illustrates an ongoing effort towards a comprehensive understanding of electrical fluctuations in bulk and confined electrolytes, in order to enable experimentalists to decipher the microscopic properties encoded in the measured electrical noise.
Collapse
Affiliation(s)
- Thê Hoang Ngoc Minh
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Jeongmin Kim
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Giovanni Pireddu
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Iurii Chubak
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Swetha Nair
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| |
Collapse
|
28
|
Domingues TS, Coifman RR, Haji-Akbari A. Robust Estimation of Position-Dependent Anisotropic Diffusivity Tensors from Molecular Dynamics Trajectories. J Phys Chem B 2023; 127:8644-8659. [PMID: 37757480 DOI: 10.1021/acs.jpcb.3c03581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Confinement breaks translational and rotational symmetry in materials and makes all physical properties functions of position. Such spatial variations are key to modulating material properties at the nanoscale, and characterizing them accurately is therefore an intense area of research in the molecular simulations community. This is relatively easy to accomplish for basic mechanical observables. Determining spatial profiles of transport properties, such as diffusivity, is, however, much more challenging, as it requires calculating position-dependent autocorrelations of mechanical observables. In our previous paper (Domingues, T.S.; Coifman, R.; Haji-Akbari, A. J. Phys. Chem. B 2023, 127, 5273 10.1021/acs.jpcb.3c00670), we analytically derive and numerically validate a set of filtered covariance estimators (FCEs) for quantifying spatial variations of the diffusivity tensor from stochastic trajectories. In this work, we adapt these estimators to extract diffusivity profiles from MD trajectories and validate them by applying them to a Lennard-Jones fluid within a slit pore. We find our MD-adapted estimator to exhibit the same qualitative features as its stochastic counterpart, as it accurately estimates the lateral diffusivity across the pore while systematically underestimating the normal diffusivity close to hard boundaries. We introduce a conceptually simple and numerically efficient correction scheme based on simulated annealing and diffusion maps to resolve the latter artifact and obtain normal diffusivity profiles that are consistent with the self-part of the van Hove correlation functions. Our findings demonstrate the potential of this MD-adapted estimator in accurately characterizing spatial variations of diffusivity in confined materials.
Collapse
Affiliation(s)
- Tiago S Domingues
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Ronald R Coifman
- Department of Mathematics, Yale University, New Haven, Connecticut 06520, United States
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
29
|
Leung K. Finding Infinities in Nanoconfined Geothermal Electrolyte Static Dielectric Properties and Implications on Ion Adsorption/Pairing. NANO LETTERS 2023; 23:8868-8874. [PMID: 37531607 DOI: 10.1021/acs.nanolett.3c01865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Infinities should naturally occur in the dielectric responses of ionic solutions relevant to many geochemical, energy storage, and electrochemical applications at a strictly zero frequency. Using molecular dynamics simulations cross-referenced with coarse-grained Monte Carlo models, using nanoslit pore models at hydrothermal conditions, and treating confined mobile charges as polarization, we demonstrate the far reaching consequences. The dielectric permittivity profile perpendicular to the slit (ϵ⊥(z)) increases, not decreases, with ionic concentration, unlike in the more widely studied megahertz-to-gigahertz frequency range. In confined electrolytes, the divergences in ϵ⊥(z) correctly describe crossovers between bulk- and surface-dominated dielectric behavior. Nanoconfinement at low ionic concentrations changes monovalent ion energetics by 1-2 kJ/mol, but no dielectric property studied so far is universally correlated to ion adsorption or ion-ion interactions. We caution that infinities signal violation of the "electrical insulator" dielectric assumption.
Collapse
Affiliation(s)
- Kevin Leung
- Sandia National Laboratories, MS 0750, Albuquerque, New Mexico 87185, United States of America
| |
Collapse
|
30
|
Carr AJ, Lee SE, Uysal A. Ion and water adsorption to graphene and graphene oxide surfaces. NANOSCALE 2023; 15:14319-14337. [PMID: 37561081 DOI: 10.1039/d3nr02452k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Graphene and graphene oxide (GO) are two particularly promising nanomaterials for a range of applications including energy storage, catalysis, and separations. Understanding the nanoscale interactions between ions and water near graphene and GO surfaces is critical for advancing our fundamental knowledge of these systems and downstream application success. This minireview highlights the necessity of using surface-specific experimental probes and computational techniques to fully characterize these interfaces, including the nanomaterial, surrounding water, and any adsorbed ions, if present. Key experimental and simulation studies considering water and ion structures near both graphene and GO are discussed. The major findings are: water forms 1-3 hydration layers near graphene; ions adsorb electrostatically to graphene under an applied potential; the chemical and physical properties of GO vary considerably depending on the synthesis route; and these variations influence water and ion adsorption to GO. Lastly, we offer outlooks and perspectives for these research areas.
Collapse
Affiliation(s)
- Amanda J Carr
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Seung Eun Lee
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Ahmet Uysal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| |
Collapse
|
31
|
Butko AV, Butko VY, Kumzerov YA. General Capacitance Upper Limit and Its Manifestation for Aqueous Graphene Interfaces. Int J Mol Sci 2023; 24:10861. [PMID: 37446037 DOI: 10.3390/ijms241310861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Double-layer capacitance (Cdl) is essential for chemical and biological sensors and capacitor applications. The correct formula for Cdl is a controversial subject for practically useful graphene interfaces with water, aqueous solutions, and other liquids. We have developed a model of Cdl, considering the capacitance of a charge accumulation layer (Cca) and capacitance (Ce) of a capacitance-limiting edge region with negligible electric susceptibility and conductivity between this layer and the capacitor electrode. These capacitances are connected in series, and Cdl can be obtained from 1/Cdl = 1/Cca + 1/Ce. In the case of aqueous graphene interfaces, this model predicts that Cdl is significantly affected by Ce. We have studied the graphene/water interface capacitance by low-frequency impedance spectroscopy. Comparison of the model predictions with the experimental results implies that the distance from charge carriers in graphene to the nearest molecular charges at the interface can be ~(0.05-0.1)nm and is about a typical length of the carbon-hydrogen bond. Generalization of this model, assuming that such an edge region between a conducting electrode and a charge accumulating region is intrinsic for a broad range of non-faradaic capacitors and cannot be thinner than an atomic size of ~0.05 nm, predicts a general capacitance upper limit of ~18 μF/cm2.
Collapse
Affiliation(s)
- Alexey V Butko
- Ioffe Institute, Polytechnicheskaya 26, 194021 St. Petersburg, Russia
| | - Vladimir Y Butko
- Ioffe Institute, Polytechnicheskaya 26, 194021 St. Petersburg, Russia
| | - Yurii A Kumzerov
- Ioffe Institute, Polytechnicheskaya 26, 194021 St. Petersburg, Russia
| |
Collapse
|
32
|
Pivnic K, de Souza JP, Kornyshev AA, Urbakh M, Bazant MZ. Orientational Ordering in Nano-confined Polar Liquids. NANO LETTERS 2023. [PMID: 37285463 DOI: 10.1021/acs.nanolett.3c00927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Water and other polar liquids exhibit nanoscale structuring near charged interfaces. When a polar liquid is confined between two charged surfaces, the interfacial solvent layers begin to overlap, resulting in solvation forces. Here, we perform molecular dynamics simulations of polar liquids with different dielectric constants and molecular shapes and sizes confined between charged surfaces, demonstrating strong orientational ordering in the nanoconfined liquids. To rationalize the observed structures, we apply a coarse-grained continuum theory that captures the orientational ordering and solvation forces of those liquids. Our findings reveal the subtle behavior of different nanoconfined polar liquids and establish a simple law for the decay length of the interfacial orientations of the solvents, which depends on their molecular size and polarity. These insights shed light on the nature of solvation forces, which are important in colloid and membrane science, scanning probe microscopy, and nano-electrochemistry.
Collapse
Affiliation(s)
- Karina Pivnic
- School of Chemistry, The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexei A Kornyshev
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ 2AZ London, United Kingdom
- Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Michael Urbakh
- School of Chemistry, The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
33
|
Domingues TS, Coifman RR, Haji-Akbari A. Robust Estimation of Position-Dependent Anisotropic Diffusivity Tensors from Stochastic Trajectories. J Phys Chem B 2023. [PMID: 37261948 DOI: 10.1021/acs.jpcb.3c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Materials under confinement can possess properties that deviate considerably from their bulk counterparts. Indeed, confinement makes all physical properties position-dependent and possibly anisotropic, and characterizing such spatial variations and directionality has been an intense area of focus in experimental and computational studies of confined matter. While this task is fairly straightforward for simple mechanical observables, it is far more daunting for transport properties such as diffusivity that can only be estimated from autocorrelations of mechanical observables. For instance, there are well established methods for estimating diffusivity from experimentally observed or computationally generated trajectories in bulk systems. No rigorous generalizations of such methods, however, exist for confined systems. In this work, we present two filtered covariance estimators for computing anisotropic and position-dependent diffusivity tensors and validate them by applying them to stochastic trajectories generated according to known diffusivity profiles. These estimators can accurately capture spatial variations that span over several orders of magnitude and that assume different functional forms. Our kernel-based approach is also very robust to implementation details such as the localization function and time discretization and performs significantly better than estimators that are solely based on local covariance. Moreover, the kernel function does not have to be localized and can instead belong to a dictionary of orthogonal functions. Therefore, the proposed estimator can be readily used to obtain functional estimates of diffusivity rather than a tabulated collection of pointwise estimates. Nonetheless, the susceptibility of the proposed estimators to time discretization is higher at the immediate vicinity of hard boundaries. We demonstrate this heightened susceptibility to be common among all covariance-based estimators.
Collapse
Affiliation(s)
- Tiago S Domingues
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Ronald R Coifman
- Department of Mathematics, Yale University, New Haven, Connecticut 06520, United States
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
34
|
Pireddu G, Rotenberg B. Frequency-Dependent Impedance of Nanocapacitors from Electrode Charge Fluctuations as a Probe of Electrolyte Dynamics. PHYSICAL REVIEW LETTERS 2023; 130:098001. [PMID: 36930930 DOI: 10.1103/physrevlett.130.098001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The frequency-dependent impedance is a fundamental property of electrical components. We show that it can be determined from the equilibrium dynamical fluctuations of the electrode charge in constant-potential molecular simulations, extending in particular a fluctuation-dissipation relation for the capacitance recovered in the low-frequency limit and provide an illustration on water-gold nanocapacitors. This Letter opens the way to the interpretation of electrochemical impedance measurements in terms of microscopic mechanisms, directly from the dynamics of the electrolyte, or indirectly via equivalent circuit models as in experiments.
Collapse
Affiliation(s)
- Giovanni Pireddu
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| |
Collapse
|
35
|
Deißenbeck F, Wippermann S. Dielectric Properties of Nanoconfined Water from Ab Initio Thermopotentiostat Molecular Dynamics. J Chem Theory Comput 2023; 19:1035-1043. [PMID: 36705611 PMCID: PMC9933428 DOI: 10.1021/acs.jctc.2c00959] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 01/28/2023]
Abstract
We discuss how to include our recently proposed thermopotentiostat technique [Deissenbeck et al. Phys. Rev. Lett. 2021, 126, 136803] into any existing ab initio molecular dynamics (AIMD) package. Using thermopotentiostat AIMD simulations in the canonical NVTΦ ensemble at a constant electrode potential, we compute the polarization bound charge and dielectric response of interfacial water from first principles.
Collapse
Affiliation(s)
- Florian Deißenbeck
- Max-Planck-Institut
für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
| | - Stefan Wippermann
- Max-Planck-Institut
für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
- Philipps-Universität
Marburg, Renthof 5, 35032 Marburg, Germany
| |
Collapse
|
36
|
Das B, Ruiz-Barragan S, Marx D. Deciphering the Properties of Nanoconfined Aqueous Solutions by Vibrational Sum Frequency Generation Spectroscopy. J Phys Chem Lett 2023; 14:1208-1213. [PMID: 36716226 PMCID: PMC9923734 DOI: 10.1021/acs.jpclett.2c03409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
When confined between walls at nanometer distances, water exhibits surprisingly different properties with reference to bare interfacial water. Based on computer simulations, we demonstrate how vibrational sum frequency generation (VSFG) spectroscopy can be used-even with very mild symmetry breaking-to discriminate multilayer water in wide slit pores from both bilayer and monolayer water confined within molecularly narrow pores. Applying the technique, the VSFG lineshapes of monolayer, bilayer, and multilayer water are found to differ in characteristic ways, which is explained by their distinct density stratifications giving rise to different H-bonding patterns in the respective solvation layers.
Collapse
Affiliation(s)
- Banshi Das
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44780Bochum, Germany
| | - Sergi Ruiz-Barragan
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44780Bochum, Germany
- Departament
de Fisica, Universitat Politecnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrassa, Barcelona, Spain
| | - Dominik Marx
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44780Bochum, Germany
| |
Collapse
|
37
|
Dinpajooh M, Matyushov DV. Interface Dielectric Constant of Water at the Surface of a Spherical Solute. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
38
|
Yang S, Deng Y, Zhou S. RETRACTED: Capacitive Behavior of Aqueous Electrical Double Layer Based on Dipole Dimer Water Model. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:16. [PMID: 36615925 PMCID: PMC9824578 DOI: 10.3390/nano13010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 06/11/2023]
Abstract
The aim of the present paper is to investigate the possibility of using the dipole dimer as water model in describing the electrical double layer capacitor capacitance behaviors. Several points are confirmed. First, the use of the dipole dimer water model enables several experimental phenomena of aqueous electrical double layer capacitance to be achievable: suppress the differential capacitance values gravely overestimated by the hard sphere water model and continuum medium water model, respectively; reproduce the negative correlation effect between the differential capacitance and temperature, insensitivity of the differential capacitance to bulk electrolyte concentration, and camel-shaped capacitance-voltage curves; and more quantitatively describe the camel peak position of the capacitance-voltage curve and its dependence on the counter-ion size. Second, we fully illustrate that the electric dipole plays an irreplaceable role in reproducing the above experimentally confirmed capacitance behaviors and the previous hard sphere water model without considering the electric dipole is simply not competent. The novelty of the paper is that it shows the potential of the dipole dimer water model in helping reproduce experimentally verified aqueous electric double layer capacitance behaviors. One can expect to realize this potential by properly selecting parameters such as the dimer site size, neutral interaction, residual dielectric constant, etc.
Collapse
Affiliation(s)
- Songming Yang
- School of Physics and Electronics, Central South University, Changsha 410083, China
- Zhili College, Tsinghua University, Beijing 100084, China
| | - Youer Deng
- School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Shiqi Zhou
- School of Physics and Electronics, Central South University, Changsha 410083, China
| |
Collapse
|
39
|
Shoemaker BA, Domingues TS, Haji-Akbari A. Ideal Conductor Model: An Analytical Finite-Size Correction for Nonequilibrium Molecular Dynamics Simulations of Ion Transport through Nanoporous Membranes. J Chem Theory Comput 2022; 18:7142-7154. [PMID: 36327152 DOI: 10.1021/acs.jctc.2c00375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Modulating ion transport through nanoporous membranes is critical to many important chemical and biological separation processes. The corresponding transport timescales, however, are often too long to capture accurately using conventional molecular dynamics (MD). Recently, path sampling techniques, such as forward-flux sampling (FFS), have emerged as attractive alternatives for efficiently and accurately estimating arbitrarily long ionic passage times. Here, we use non-equilibrium MD and FFS to explore how the kinetics and mechanisms of pressure-driven chloride transport through a nanoporous graphitic membrane are affected by its lateral dimensions. We not only find ionic passage times and free energy barriers to decrease dramatically upon increasing the membrane surface area but also observe an abrupt and discontinuous change in the locus of the transition state. These strong finite size effects arise due to the cumulative effect of the periodic images of the leading ion entering the pore on the distribution of the induced excess charge at the membrane surface in the feed. By assuming that the feed is an ideal conductor, we analytically derive a finite size correction term that can be computed from the information obtained from a single simulation and successfully use it to obtain corrected free energy profiles with no dependence on the system size. We then estimate ionic passage times in the thermodynamic limit by assuming an Eyring-type dependence of rates on barriers with a size-independent prefactor. This approach constitutes a universal framework for removing finite size artifacts in molecular simulations of ion transport through nanoporous membranes and biological channel proteins.
Collapse
Affiliation(s)
- Brian A Shoemaker
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520, United States
| | - Tiago S Domingues
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520, United States
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520, United States
| |
Collapse
|
40
|
Estimation of the slow hydrogen–deuterium exchange rates for local water confined in 1-butyl-3-methylimidazolium tetrafluoroborate via nuclear magnetic resonance. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Chiang KY, Seki T, Yu CC, Ohto T, Hunger J, Bonn M, Nagata Y. The dielectric function profile across the water interface through surface-specific vibrational spectroscopy and simulations. Proc Natl Acad Sci U S A 2022; 119:e2204156119. [PMID: 36037357 PMCID: PMC9457560 DOI: 10.1073/pnas.2204156119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
The dielectric properties of interfacial water on subnanometer length scales govern chemical reactions, carrier transfer, and ion transport at interfaces. Yet, the nature of the interfacial dielectric function has remained under debate as it is challenging to access the interfacial dielectric with subnanometer resolution. Here we use the vibrational response of interfacial water molecules probed using surface-specific sum-frequency generation (SFG) spectra to obtain exquisite depth resolution. Different responses originate from water molecules at different depths and report back on the local interfacial dielectric environment via their spectral amplitudes. From experimental and simulated SFG spectra at the air/water interface, we find that the interfacial dielectric constant changes drastically across an ∼1 Å thin interfacial water region. The strong gradient of the interfacial dielectric constant leads, at charged planar interfaces, to the formation of an electric triple layer that goes beyond the standard double-layer model.
Collapse
Affiliation(s)
- Kuo-Yang Chiang
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Takakazu Seki
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Chun-Chieh Yu
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Tatsuhiko Ohto
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka 60-8531, Japan
| | - Johannes Hunger
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Yuki Nagata
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
42
|
Teschke O, Castro JR, Gomes WE, Soares DM. Variable Interfacial Water Nanosized Arrangements Measured by Atomic Force Microscopy. ACS OMEGA 2022; 7:28875-28884. [PMID: 36033701 PMCID: PMC9404190 DOI: 10.1021/acsomega.2c01982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
While there seems to be broad agreement that cluster formation does exist near solid surfaces, its presence at the liquid/vapor interface is controversial. We report experimental studies we have carried out on interfacial water attached on hydrophobic and hydrophilic surfaces. Nanosized steps in the measured force vs distance to the surface curves characterize water cluster profiles. An expansion of the interfacial structure with time is observed; the initial profile extent is typically ∼1 nm, and for longer times expanded structures of ∼70 nm are observed. Our previous results showed that the interfacial water structure has a relative permittivity of ε ≈ 3 at the air/water interface homogeneously increasing to ε ≈ 80 at 300 nm inside the bulk, but here we have shown that the interfacial dielectric permittivity may have an oscillating profile describing the spatial steps in the force vs distance curves. This low dielectric permittivity arrangements of clusters extend the region with ε ≈ 3 inside bulk water and exhibit a behavior similar to that of water networks that expand in time.
Collapse
Affiliation(s)
- Omar Teschke
- Laboratorio
de Nanoestruturas e Interfaces, Instituto de Fisica, UNICAMP, 13083-859 Campinas, São
Paulo, Brazil
| | - Jose Roberto Castro
- Laboratorio
de Nanoestruturas e Interfaces, Instituto de Fisica, UNICAMP, 13083-859 Campinas, São
Paulo, Brazil
| | - Wyllerson Evaristo Gomes
- Pontificia
Universidade Catolica de Campinas, Faculdade de Quimica, 13012-970 Campinas, São Paulo, Brazil
| | - David Mendez Soares
- Laboratorio
de Nanoestruturas e Interfaces, Instituto de Fisica, UNICAMP, 13083-859 Campinas, São
Paulo, Brazil
| |
Collapse
|
43
|
de Souza JP, Kornyshev AA, Bazant MZ. Polar liquids at charged interfaces: A dipolar shell theory. J Chem Phys 2022; 156:244705. [PMID: 35778078 DOI: 10.1063/5.0096439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The structure of polar liquids and electrolytic solutions, such as water and aqueous electrolytes, at interfaces underlies numerous phenomena in physics, chemistry, biology, and engineering. In this work, we develop a continuum theory that captures the essential features of dielectric screening by polar liquids at charged interfaces, including decaying spatial oscillations in charge and mass, starting from the molecular properties of the solvent. The theory predicts an anisotropic dielectric tensor of interfacial polar liquids previously studied in molecular dynamics simulations. We explore the effect of the interfacial polar liquid properties on the capacitance of the electrode/electrolyte interface and on hydration forces between two plane-parallel polarized surfaces. In the linear response approximation, we obtain simple formulas for the characteristic decay lengths of molecular and ionic profiles at the interface.
Collapse
Affiliation(s)
- J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Alexei A Kornyshev
- Department of Chemistry and Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, Molecular Sciences Research Hub, White City Campus, London W12 0BZ, United Kingdom
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
44
|
Fang F, Fu S, Lin J, Zhu J, Dai Z, Zhou G, Yang Z. Molecular-Level Insights into Unique Behavior of Water Molecules Confined in the Heterojunction between One- and Two-Dimensional Nanochannels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7300-7311. [PMID: 35635722 DOI: 10.1021/acs.langmuir.2c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the increasing importance of nanoconfined water in various heterostructures, it is quite essential to clarify the influence of nanoconfinement on the unique properties of water molecules in the pivotal heterojunction. In this work, we reported a series of classical molecular dynamics (MD) simulations to explore nanoconfined water in the subnanometer-sized and nanometer-sized heterostructures by adjusting one-dimensional (1-D) carbon nanotubes with different diameters and two-dimensional (2-D) graphene sheets with different interlayer distances. Our simulation results demonstrated that water molecules in the 1-D/2-D heterojunction show an obvious structural rearrangement associated with the remarkable breaking and formation of hydrogen bonds (HBs), and such rearrangements in the subnanometer-sized systems are much more pronounced than those in the nanometer-sized ones. When water molecules in the 1-D/2-D heterojunctions migrate from 2-D to 1-D confinements, the ordered multi-layer structure in the 2-D confinement are completely destroyed and then transform into different circular HB networks near the nanotube orifice for better connecting to the single-file or helical HB network in the 1-D nanotubes. Furthermore, water molecules in the 1-D/2-D heterojunctions can form stronger HBs with those water molecules further away from the 1-D confinement, leading to an asymmetrical orientational distribution near the orifice. More importantly, our comparison results revealed that the 1-D confinement plays a more important role than the 2-D confinement in determining both the structures and dynamics of water molecules in the 1-D/2-D heterojunction.
Collapse
Affiliation(s)
- Fang Fang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Shan Fu
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Jie Lin
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Jia Zhu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Zhongyang Dai
- National Supercomputing Center in Shenzhen, Shenzhen 518055, People's Republic of China
| | - Guobing Zhou
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Zhen Yang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| |
Collapse
|
45
|
Xiao C, Chen CC, Maier J. Discrete modeling of ionic space charge zones in solids. Phys Chem Chem Phys 2022; 24:11945-11957. [PMID: 35522234 DOI: 10.1039/d1cp05293d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The discrete model of space charge zones in solids reveals and remedies a variety of problems with the classic continuous Gouy-Chapman solution that occur for pronounced space charge potentials. Besides inherent problems of internal consistency, it is essentially the extremely steep profile close to the interface which makes this continuum approach questionable. Not only is quasi-1D discrete modeling a sensible approach for large space charge effects, it can also favorably be combined with the continuum description. A particularly useful application is the explicit implementation of crystallographic details and non-idealities close to the interface. This enables us to consider elastic, structural or saturation effects as well as permittivity variations in a simple but realistic way. We address details of the charge carrier profiles, but also overall properties such as space charge capacitance and space charge resistance. In the latter case the difference in the total charge (at identical concentration) is of importance, in the first case it is the inherent difference in the centroid of charge (at identical total charge) that is remarkable. The model is equally applicable for ionic charge carriers and small polarons.
Collapse
Affiliation(s)
- Chuanlian Xiao
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.
| | - Chia-Chin Chen
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.
| | - Joachim Maier
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.
| |
Collapse
|
46
|
Cox SJ, Geissler PL. Dielectric response of thin water films: a thermodynamic perspective. Chem Sci 2022; 13:9102-9111. [PMID: 36091210 PMCID: PMC9365083 DOI: 10.1039/d2sc01243j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022] Open
Abstract
The surface of a polar liquid presents a special environment for the solvation and organization of charged solutes, which differ from bulk behaviors in important ways. These differences have motivated many attempts to understand electrostatic response at aqueous interfaces in terms of a spatially varying dielectric permittivity, typically concluding that the dielectric constant of interfacial water is significantly lower than in the bulk liquid. Such analyses, however, are complicated by the potentially nonlocal nature of dielectric response over the short length scales of interfacial heterogeneity. Here we circumvent this problem for thin water films by adopting a thermodynamic approach. Using molecular simulations, we calculate the solvent's contribution to the reversible work of charging a parallel plate capacitor. We find good agreement with a simple dielectric continuum model that assumes bulk dielectric permittivity all the way up to the liquid's boundary, even for very thin (∼1 nm) films. This comparison requires careful attention to the placement of dielectric boundaries between liquid and vapor, which also resolves apparent discrepancies with dielectric imaging experiments. Free energy calculations from molecular simulations reveal that water's interfacial dielectric response is well-described by bulk properties.![]()
Collapse
Affiliation(s)
- Stephen J. Cox
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Phillip L. Geissler
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
47
|
Lynch CI, Klesse G, Rao S, Tucker SJ, Sansom MSP. Water Nanoconfined in a Hydrophobic Pore: Molecular Dynamics Simulations of Transmembrane Protein 175 and the Influence of Water Models. ACS NANO 2021; 15:19098-19108. [PMID: 34784172 PMCID: PMC7612143 DOI: 10.1021/acsnano.1c06443] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Water molecules within biological ion channels are in a nanoconfined environment and therefore exhibit behaviors which differ from that of bulk water. Here, we investigate the phenomenon of hydrophobic gating, the process by which a nanopore may spontaneously dewet to form a "vapor lock" if the pore is sufficiently hydrophobic and/or narrow. This occurs without steric occlusion of the pore. Using molecular dynamics simulations with both rigid fixed-charge and polarizable (AMOEBA) force fields, we investigate this wetting/dewetting behavior in the transmembrane protein 175 ion channel. We examine how a range of rigid fixed-charge and polarizable water models affect wetting/dewetting in both the wild-type structure and in mutants chosen to cover a range of nanopore radii and pore-lining hydrophobicities. Crucially, we find that the rigid fixed-charge water models lead to similar wetting/dewetting behaviors, but that the polarizable water model resulted in an increased wettability of the hydrophobic gating region of the pore. This has significant implications for molecular simulations of nanoconfined water, as it implies that polarizability may need to be included if we are to gain detailed mechanistic insights into wetting/dewetting processes. These findings are of importance for the design of functionalized biomimetic nanopores (e.g., sensing or desalination) as well as for furthering our understanding of the mechanistic processes underlying biological ion channel function.
Collapse
Affiliation(s)
- Charlotte I. Lynch
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK, OX1 3QU
| | - Gianni Klesse
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, UK, OX1 3PU
| | - Shanlin Rao
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK, OX1 3QU
| | - Stephen J. Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, UK, OX1 3PU
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK, OX1 3QU
| |
Collapse
|
48
|
Pireddu G, Scalfi L, Rotenberg B. A molecular perspective on induced charges on a metallic surface. J Chem Phys 2021; 155:204705. [PMID: 34852473 DOI: 10.1063/5.0076127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding the response of the surface of metallic solids to external electric field sources is crucial to characterize electrode-electrolyte interfaces. Continuum electrostatics offer a simple description of the induced charge density at the electrode surface. However, such a simple description does not take into account features related to the atomic structure of the solid and to the molecular nature of the solvent and of the dissolved ions. In order to illustrate such effects and assess the ability of continuum electrostatics to describe the induced charge distribution, we investigate the behavior of a gold electrode interacting with sodium or chloride ions fixed at various positions, in a vacuum or in water, using all-atom constant-potential classical molecular dynamics simulations. Our analysis highlights important similarities between the two approaches, especially under vacuum conditions and when the ion is sufficiently far from the surface, as well as some limitations of the continuum description, namely, neglecting the charges induced by the adsorbed solvent molecules and the screening effect of the solvent when the ion is close to the surface. While the detailed features of the charge distribution are system-specific, we expect some of our generic conclusions on the induced charge density to hold for other ions, solvents, and electrode surfaces. Beyond this particular case, the present study also illustrates the relevance of such molecular simulations to serve as a reference for the design of improved implicit solvent models of electrode-electrolyte interfaces.
Collapse
Affiliation(s)
- Giovanni Pireddu
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Laura Scalfi
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| |
Collapse
|
49
|
Guo C, Qin H, Zhu Y, Lü Y. Weakly Anisotropic Dielectric Properties of Water Droplets at the Nanoscale. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13059-13066. [PMID: 34709837 DOI: 10.1021/acs.langmuir.1c02207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The slab-confined water at the nanoscale exhibits anomalous dielectric properties compared to bulk water, for example, significantly low dielectric constant. In this work, we study the dielectric properties of nanoscale water droplets at room temperature using molecular dynamics simulations. We find that the nanoscale water droplets feature weakly anisotropic dielectric constant: the radial component of dielectric constants is distinctly smaller than the tangential component although they both decrease with reducing droplet size in a similar way. Such dielectric behavior is closely related to the orientational preference of water molecules near the convex surface. The molecular dipole prefers to slightly orientate toward the interior of droplets in contrast to the out-of-plane preference for free-standing water films and slab-confined water, which suppresses the fluctuation of dipole moments in the radial direction. Meanwhile, it facilitates the formation of the open hydrogen-bond network in the surface layer and ultimately leads to the relatively weak suppression of tangential fluctuations. The differential suppression is responsible for the anisotropic dielectric constant of water droplets. This anisotropic characteristic is also found in dielectric relaxation: both the radial and the tangential relaxation are consistently slowed down upon approaching surface but the latter is universally slower.
Collapse
Affiliation(s)
- Chenchen Guo
- School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hairong Qin
- School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yong Zhu
- Science and Technology on Electromagnetic Scattering Laboratory, Beijing 100854, P. R. China
| | - Yongjun Lü
- School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
50
|
Olivieri JF, Laage D, Hynes JT. A Model Electron Transfer Reaction in Confined Aqueous Solution. Chemphyschem 2021; 22:2247-2255. [PMID: 34427964 DOI: 10.1002/cphc.202100351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/24/2021] [Indexed: 11/09/2022]
Abstract
Liquid water confined within nanometer-sized channels exhibits a strongly reduced local dielectric constant perpendicular to the wall, especially at the interface, and this has been suggested to induce faster electron transfer kinetics at the interface than in the bulk. We study a model electron transfer reaction in aqueous solution confined between graphene sheets with classical molecular dynamics. We show that the solvent reorganization energy is reduced at the interface compared to the bulk, which explains the larger rate constant. However, this facilitated solvent reorganization is due to the partial desolvation by the graphene sheet of the ions involved in the electron transfer and not to a local dielectric constant reduction effect.
Collapse
Affiliation(s)
- Jean-François Olivieri
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Damien Laage
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - James T Hynes
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.,Department of Chemistry, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|