1
|
Kerr R, Macdonald TJ, Tanner AJ, Yu J, Davies JA, Fielding HH, Thornton G. Zero Threshold for Water Adsorption on MAPbBr 3. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301014. [PMID: 37267942 DOI: 10.1002/smll.202301014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/19/2023] [Indexed: 06/04/2023]
Abstract
Hybrid organic-inorganic perovskites (HOIPs) have shown great promise in a wide range of optoelectronic applications. However, this performance is inhibited by the sensitivity of HOIPs to various environmental factors, particularly high levels of relative humidity. This study uses X-ray photoelectron spectroscopy (XPS) to determine that there is essentially no threshold to water adsorption on the in situ cleaved MAPbBr3 (001) single crystal surface. Using scanning tunneling microscopy (STM), it shows that the initial surface restructuring upon exposure to water vapor occurs in isolated regions, which grow in area with increasing exposure, providing insight into the initial degradation mechanism of HOIPs. The electronic structure evolution of the surface was also monitored via ultraviolet photoemission spectroscopy (UPS), evidencing an increased bandgap state density following water vapor exposure, which is attributed to surface defect formation due to lattice swelling. This study will help to inform the surface engineering and designs of future perovskite-based optoelectronic devices.
Collapse
Affiliation(s)
- Robin Kerr
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Thomas J Macdonald
- Department of Chemistry & Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
- School of Engineering & Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Alex J Tanner
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Jiangdong Yu
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Julia A Davies
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Helen H Fielding
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Geoff Thornton
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| |
Collapse
|
2
|
Chen N, Zhang W, Li QS. A moderate intensity ligand works best: a theoretical study on passivation effects of pyridine-based molecules for perovskite solar cells. NANOSCALE 2023. [PMID: 37318378 DOI: 10.1039/d3nr01296d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Improving battery stability while maintaining high photoelectric conversion efficiency remains the bottleneck in the current development of perovskite solar cells (PSCs). Three π-conjugated pyridine-based molecules, pyridine (Py), bipyridine (Bpy), and terpyridine (Tpy), were adopted to passivate the PSCs in recent experiments (J. Chen, S.-G. Kim, X. Ren, H. S. Jung and N.-G. Park, J. Mater. Chem. A, 2019, 7, 4977-4987; J. Zhang, J. Duan, Q. Zhang, Q. Guo, F. Yan, X. Yang, Y. Duan and Q. Tang, Chem. Eng. J., 2022, 431, 134230), in which Bpy works best in terms of photovoltaic properties and moisture tolerance. In this work, based on density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) simulations, we demonstrate that Bpy displays the least structural fluctuation when adsorbed on the perovskite surface, enlarges the bandgap suppressing electron-hole recombination, and exhibits remarkable shielding effects against moisture. The appropriate anchoring ability of Bpy retains robust binding strength and preferable charge transfer ability compared to Py at the interfaces between the passivation molecules (PMs) and MAPbI3. In contrast, although Tpy possesses the strongest charge-transfer capability, it introduces midgap states owing to intense electronegativity, providing additional pathways for nonradiative charge relaxation. Besides, Tpy triggers rapid diffusions of water and larger atomic fluctuations, destroying the structures of the perovskite through the removal of lead atoms. Our computational results not only rationalize the experimental observations but also provide valuable guidance at the atomic level to design novel PMs that endow PSCs with outstanding photovoltaic performance as well as stability against moisture.
Collapse
Affiliation(s)
- Na Chen
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China.
| | - Weiyi Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China.
| | - Quan-Song Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China.
| |
Collapse
|
3
|
Temerov F, Baghdadi Y, Rattner E, Eslava S. A Review on Halide Perovskite-Based Photocatalysts: Key Factors and Challenges. ACS APPLIED ENERGY MATERIALS 2022; 5:14605-14637. [PMID: 36590880 PMCID: PMC9795418 DOI: 10.1021/acsaem.2c02680] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
A growing number of research articles have been published on the use of halide perovskite materials for photocatalytic reactions. These articles extend these materials' great success from solar cells to photocatalytic technologies such as hydrogen production, CO2 reduction, dye degradation, and organic synthesis. In the present review article, we first describe the background theory of photocatalysis, followed by a description on the properties of halide perovskites and their development for photocatalysis. We highlight key intrinsic factors influencing their photocatalytic performance, such as stability, electronic band structure, and sorption properties. We also discuss and shed light on key considerations and challenges for their development in photocatalysis, such as those related to reaction conditions, reactor design, presence of degradable organic species, and characterization, especially for CO2 photocatalytic reduction. This review on halide perovskite photocatalysts will provide a better understanding for their rational design and development and contribute to their scientific and technological adoption in the wide field of photocatalytic solar devices.
Collapse
Affiliation(s)
- Filipp Temerov
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, United Kingdom
- Department
of Chemistry, University of Eastern Finland, JoensuuFI-80101, Finland
| | - Yasmine Baghdadi
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, United Kingdom
| | - Ed Rattner
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, United Kingdom
| | - Salvador Eslava
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, United Kingdom
| |
Collapse
|
4
|
Kaiser W, Ricciarelli D, Mosconi E, Alothman AA, Ambrosio F, De Angelis F. Stability of Tin- versus Lead-Halide Perovskites: Ab Initio Molecular Dynamics Simulations of Perovskite/Water Interfaces. J Phys Chem Lett 2022; 13:2321-2329. [PMID: 35245058 PMCID: PMC8935372 DOI: 10.1021/acs.jpclett.2c00273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/28/2022] [Indexed: 05/27/2023]
Abstract
Tin-halide perovskites (THPs) have emerged as promising lead-free perovskites for photovoltaics and photocatalysis applications but still fall short in terms of stability and efficiency with respect to their lead-based counterpart. A detailed understanding of the degradation mechanism of THPs in a water environment is missing. This Letter presents ab initio molecular dynamics (AIMD) simulations to unravel atomistic details of THP/water interfaces comparing methylammonium tin iodide, MASnI3, with the lead-based MAPbI3. Our results reveal facile solvation of surface tin-iodine bonds in MASnI3, while MAPbI3 remains more robust to degradation despite a larger amount of adsorbed water molecules. Additional AIMD simulations on dimethylammonium tin bromide, DMASnBr3, investigate the origins of their unprecedented water stability. Our results indicate the presence of amorphous surface layers of hydrated zero-dimensional SnBr3 complexes which may protect the inner structure from degradation and explain their success as photocatalysts. We believe that the atomistic details of the mechanisms affecting THP (in-)stability may inspire new strategies to stabilize THPs.
Collapse
Affiliation(s)
- Waldemar Kaiser
- Computational
Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta”
(CNR-SCITEC), Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Damiano Ricciarelli
- Computational
Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta”
(CNR-SCITEC), Via Elce di Sotto 8, 06123 Perugia, Italy
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Edoardo Mosconi
- Computational
Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta”
(CNR-SCITEC), Via Elce di Sotto 8, 06123 Perugia, Italy
- Chemistry
Department, College of Science, King Saud
University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Asma A. Alothman
- Chemistry
Department, College of Science, King Saud
University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Francesco Ambrosio
- Computational
Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta”
(CNR-SCITEC), Via Elce di Sotto 8, 06123 Perugia, Italy
- Department
of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
- CNST@Polimi,
Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Filippo De Angelis
- Computational
Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta”
(CNR-SCITEC), Via Elce di Sotto 8, 06123 Perugia, Italy
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
5
|
Howard JM, Wang Q, Srivastava M, Gong T, Lee E, Abate A, Leite MS. Quantitative Predictions of Moisture-Driven Photoemission Dynamics in Metal Halide Perovskites via Machine Learning. J Phys Chem Lett 2022; 13:2254-2263. [PMID: 35239346 DOI: 10.1021/acs.jpclett.2c00131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal halide perovskite (MHP) photovoltaics may become a viable alternative to standard Si-based technologies, but the current lack of long-term stability precludes their commercial adoption. Exposure to standard operational stressors (light, temperature, bias, oxygen, and water) often instigate optical and electronic dynamics, calling for a systematic investigation into MHP photophysical processes and the development of quantitative models for their prediction. We resolve the moisture-driven light emission dynamics for both methylammonium lead tribromide and triiodide thin films as a function of relative humidity (rH). With the humidity and photoluminescence time series, we train recurrent neural networks and establish their ability to quantitatively predict the path of future light emission with 18% error over 4 h. Together, our in situ rH-PL measurements and machine learning forecasting models provide a framework for the rational design of future stable perovskite devices and, thus, a faster transition toward commercial applications.
Collapse
Affiliation(s)
- John M Howard
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, United States
| | - Qiong Wang
- Young Investigator Group Active Materials and Interfaces for Stable Perovskite Solar Cells, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, 12489 Berlin, Germany
| | - Meghna Srivastava
- Department of Materials Science and Engineering, University of California, Davis, Davis, California 95616, United States
| | - Tao Gong
- Department of Materials Science and Engineering, University of California, Davis, Davis, California 95616, United States
- Department of Electrical and Computer Engineering, University of California, Davis, Davis, California 95616, United States
| | - Erica Lee
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, United States
| | - Antonio Abate
- Young Investigator Group Active Materials and Interfaces for Stable Perovskite Solar Cells, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, 12489 Berlin, Germany
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Fuorigrotta, Naples, Italy
| | - Marina S Leite
- Department of Materials Science and Engineering, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
6
|
Zhang W, Ono LK, Xue J, Qi Y. Atomic Level Insights into Metal Halide Perovskite Materials by Scanning Tunneling Microscopy and Spectroscopy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wei Zhang
- Energy Materials and Surface Sciences Unit (EMSSU) Okinawa Institute of Science and Technology Graduate University (OIST) 1919-1 Tancha, Onna-son Kunigami-gun Okinawa 904-0495 Japan
| | - Luis K. Ono
- Energy Materials and Surface Sciences Unit (EMSSU) Okinawa Institute of Science and Technology Graduate University (OIST) 1919-1 Tancha, Onna-son Kunigami-gun Okinawa 904-0495 Japan
| | - Jiamin Xue
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Yabing Qi
- Energy Materials and Surface Sciences Unit (EMSSU) Okinawa Institute of Science and Technology Graduate University (OIST) 1919-1 Tancha, Onna-son Kunigami-gun Okinawa 904-0495 Japan
| |
Collapse
|
7
|
Wang S, Wang A, Hao F. Toward stable lead halide perovskite solar cells: A knob on the A/X sites components. iScience 2022; 25:103599. [PMID: 35005546 PMCID: PMC8717592 DOI: 10.1016/j.isci.2021.103599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Hybrid lead halide ABX3 perovskite solar cells (PSCs) have emerged as a strong competitor to the traditional solar cells with a certified power conversion efficiency beyond 25% and other remarkable features such as light weight, solution processability, and low manufacturing cost. Further development on the efficiency and stability brings forth increasing attention in the component regulation, such as partial or entire substitution of A/B/X sites by alternative elements with similar size. However, the relationships between composition, property, and performance are poorly understood. Here, the instability of PSCs from the photon-, moisture-, thermal-, and mechanical-induced degradation was first summarized and discussed. In addition, the component regulation from the A/X sites is highlighted from the aspects of band level alignment, charge-carrier dynamics, ion migration, crystallization behavior, residual strain, stoichiometry, and dimensionality control. Finally, the perspectives and future outlooks are highlighted to guide the rational design and practical application of PSCs.
Collapse
Affiliation(s)
- Shurong Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Aili Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Feng Hao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
8
|
Guo Z, Lin B. Machine learning stability and band gap of lead-free halide double perovskite materials for perovskite solar cells. SOLAR ENERGY 2021; 228:689-699. [DOI: 10.1016/j.solener.2021.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
9
|
Zhang W, Ono LK, Xue J, Qi Y. Atomic Level Insights into Metal Halide Perovskite Materials by Scanning Tunneling Microscopy and Spectroscopy. Angew Chem Int Ed Engl 2021; 61:e202112352. [PMID: 34647403 DOI: 10.1002/anie.202112352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 11/07/2022]
Abstract
Metal halide perovskite materials (MHPMs) have attracted significant attention because of their superior optoelectronic properties and versatile applications. The power conversion efficiency of MHPM solar cells (PSCs) has skyrocketed to 25.5 %. Although the performance of PSCs is already competitive, several important challenges still need to be solved to realize commercial applications. A thorough understanding of surface atomic structures and structure-property relationships is at the heart of these remaining issues. Scanning tunneling microscopy (STM) and spectroscopy (STS) can be used to characterize the surface properties of MHPMs, which can offer crucial insights into MHPMs at the atomic scale. This Review summarizes recent progress in STM and STS studies on MHPMs, with a focus on the surface properties. We provide understanding from the comparative perspective of several different MHPMs. We also highlight a series of novel phenomena observed by STM and STS. Finally, we outline a few research topics of primary importance for future studies.
Collapse
Affiliation(s)
- Wei Zhang
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Luis K Ono
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Jiamin Xue
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yabing Qi
- Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| |
Collapse
|
10
|
Zhu TY, Shu DJ. Polarization-Controlled Surface Defect Formation in a Hybrid Perovskite. J Phys Chem Lett 2021; 12:3898-3906. [PMID: 33861073 DOI: 10.1021/acs.jpclett.1c00702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hybrid perovskites have two properties that are absent in traditional inorganic photovoltaic materials, namely, polarization and mobile ionic defects, the interaction between which may introduce new features into the materials. By using the first-principles calculations, we find that the formation energies of the vacancy defects at a tetragonal MAPbI3(110) surface are highly related to the surface polarization. The positive total polarization and local polarization of MA facilitate the formation of surface MA vacancies, whereas the negative total polarization and local polarization of MAI are favorable for the formation of surface iodine vacancies. The phenomena can be explained quantitatively on the basis of the two kinds of Coulomb interactions between the charged defect and the polarization-induced electrostatic field. The comprehensive insights into the interaction between the polarization and the ionic defects in hybrid perovskites can provide a new avenue for defect control for high-performance perovskite solar cells via surface polarization.
Collapse
Affiliation(s)
- Tian-Yuan Zhu
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Da-Jun Shu
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
11
|
Kheralla A, Chetty N. A review of experimental and computational attempts to remedy stability issues of perovskite solar cells. Heliyon 2021; 7:e06211. [PMID: 33644476 PMCID: PMC7895729 DOI: 10.1016/j.heliyon.2021.e06211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/19/2020] [Accepted: 02/03/2021] [Indexed: 11/25/2022] Open
Abstract
Photovoltaic technology using perovskite solar cells has emerged as a potential solution in the photovoltaic makings for cost-effective manufacturing solutions deposition/coating solar cells. The hybrid perovskite-based materials possess a unique blend from low bulk snare concentrations, ambipolar, broad optical absorption properties, extended charge carrier diffusion, and charge transport/collection properties, making them favourable for solar cell applications. However, perovskite solar cells devices suffer from the effects of natural instability, leading to their rapid degradation while bared to water, oxygen, as well as ultraviolet rays, are irradiated and in case of high temperatures. It is essential to shield the perovskite film from damage, extend lifetime, and make it suitable for device fabrications. This paper focuses on various device strategies and computational attempts to address perovskite-based solar cells' environmental stability issues.
Collapse
Affiliation(s)
- Adam Kheralla
- School of Physics and Chemistry, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville 3209, South Africa
| | - Naven Chetty
- School of Physics and Chemistry, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville 3209, South Africa
| |
Collapse
|
12
|
Geng W, Tong C, Zhang Y, Liu L. Theoretical Progress on the Relationship between the Structures and Properties of Perovskite Solar Cells. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Wei Geng
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu Sichuan 610054 China
- School of Physics Beihang University Beijing 100191 China
| | - Chuan‐Jia Tong
- School of Physics Beihang University Beijing 100191 China
| | - Yanning Zhang
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu Sichuan 610054 China
| | - Li‐Min Liu
- School of Physics Beihang University Beijing 100191 China
| |
Collapse
|
13
|
Zhou H, Wang J, Wang M, Lin S. Competing Dissolution Pathways and Ligand Passivation-Enhanced Interfacial Stability of Hybrid Perovskites with Liquid Water. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23584-23594. [PMID: 32326693 DOI: 10.1021/acsami.0c03532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Material instability issues, especially moisture degradation in ambient operating environments, limit the practical application of hybrid perovskite in photovoltaic and light-emitting devices. Very recent experiments demonstrate that ligand passivation can effectively improve the surface moisture tolerance of hybrid perovskites. In this work, the interfacial stability of as-synthesized pristine and alkylammonium-passivated methylammonium lead iodide (MAPbI3) with liquid water is systematically investigated using molecular dynamics simulations and reaction kinetics models. Interestingly, the more hydrophilic [PbI2]0 surface is more stable than the less hydrophilic [MAI]0 surface because of the higher polarity of the former surface. Linear alkylammoniums significantly stabilize the [MAI]0 surface with highly reduced (by 1-2 orders of magnitude) dissociation rates of both MA+ and ligands themselves, while branched ligands, surprisingly, lead to higher dissociation rates as the surface coverage increases. Such anomalous behavior is attributed to the aggregation-assisted dissolution of surfactant-like ligands as micelles during the degradation process. Short-chain linear alkylammonium at the full surface coverage is found to be the optimal ligand to stabilize the [MAI]0 surface. This work not only provides fundamental insights into the ionic dissolution pathways and mechanisms of hybrid perovskites in water but also inspires the design of highly stable hybrid perovskites with ligand passivation layers. The computational framework developed here is also transferrable to the investigation of surface passivation chemistry for weak ionic materials in general.
Collapse
Affiliation(s)
- Huanhuan Zhou
- Department of Mechanical Engineering, Materials Science and Engineering Program, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Jingfan Wang
- Department of Mechanical Engineering, Materials Science and Engineering Program, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Mingchao Wang
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Shangchao Lin
- Institute of Engineering Thermophysics, School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Nan G, Beljonne D, Zhang X, Quarti C. Organic Cations Protect Methylammonium Lead Iodide Perovskites against Small Exciton-Polaron Formation. J Phys Chem Lett 2020; 11:2983-2991. [PMID: 32227856 DOI: 10.1021/acs.jpclett.0c00673] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Working organic-inorganic lead halide perovskite-based devices are notoriously sensitive to surface and interface effects. Using a combination of density functional theory (DFT) and time-dependent DFT methods, we report a comprehensive study of the changes (with respect to the bulk) in geometric and electronic structures going on at the (001) surface of a (tetragonal phase) methylammonium lead iodide perovskite slab, in the dark and upon photoexcitation. The formation of a hydrogen bonding pattern between the -NH3 groups of the organic cations and the iodine atoms of the outer inorganic layout is found to critically contribute to the relative thermodynamic stability of slabs with varying surface compositions and terminations. Most importantly, our results show that the hydrogen bond locking effects induced by the MA groups tend to protect the external two-dimensional lattice against large local structural deformations, i.e., the formation of a small exciton-polaron, at variance with purely inorganic lead halide perovskites.
Collapse
Affiliation(s)
- Guangjun Nan
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, B-7000 Mons, Belgium
| | - Xu Zhang
- Department of Physics and Astronomy, California State University Northridge, Northridge, California 91330-8268, United States
| | - Claudio Quarti
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, B-7000 Mons, Belgium
| |
Collapse
|
15
|
Ma JY, Yan HJ, Li MH, Sun JK, Chen YX, Wang D, Hu JS. Microscopic investigations on the surface-state dependent moisture stability of a hybrid perovskite. NANOSCALE 2020; 12:7759-7765. [PMID: 32211703 DOI: 10.1039/c9nr10137c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hybrid organic-inorganic perovskite (HOIP) materials have caught significant attention in photovoltaics and photoelectronics for their outstanding photovoltaic properties. However, their instability to various environment, such as illumination, temperature, moisture and oxygen, hinders their way to commercialization. To figure out the interaction mechanism between H2O and CH3NH3PbI3 (MAPbI3), extensive theoretical studies have been carried out; however, the experimental results are insufficient and inconsistent. Here, we systematically investigate and compare the influence of H2O on MAPbI3 perovskite films with or without DMF) post-annealing in dark or light condition. The interaction between H2O and the surface of pristine MAPbI3 leads to the fusion of grain boundaries thus grain growth into micron level in short-time moisture exposure. While the penetration of H2O into MAPbI3 results in swelled crystalline whisker, cracking into smaller grains in long-time exposure upon the release of H2O. However, no degradation occurs in dark condition. As the DMF post-annealing treatment changes the surface states of MAPbI3, the interactions between the external H2O and internal MAPbI3 significantly varies from the pristine MAPbI3. Three different surface states with different topographies have influence on the interaction process and mechanism with H2O, leading to different decomposition rates, the striped surface that is the most rough among the three and experiencing the minimum change in surface potential with exposure to 80% humidity decomposes into PbI2 fastest. However, the addition of light will once again affect the aforementioned process. It is found that even ambient light could severely speed up the moisture-induced decomposition of MAPbI3, while the N,N-dimethylformamide (DMF) post-annealing treatment significantly improves the stability of MAPbI3 films upon exposure to humidity and illumination, benefiting from the MAI-deficient thus H2O resistant surface.
Collapse
Affiliation(s)
- Jing-Yuan Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhang M, Chen X, Xiao J, Tai M, Legut D, Shi J, Qu J, Zhang Q, Li X, Chen L, Zhang R, Lin H, Zhang Q. Suppressed phase transition of a Rb/K incorporated inorganic perovskite with a water-repelling surface. NANOSCALE 2020; 12:6571-6581. [PMID: 32162624 DOI: 10.1039/c9nr10548d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inorganic cesium lead halide (CsPbI3) is a promising candidate for next-generation photovoltaic devices, but photoactive α-phase CsPbI3 can rapidly transform to non-photoactive yellow δ-CsPbI3 in a humid atmosphere. Here, we report that partial substitution of cesium by the potassium or rubidium element can effectively improve the phase stability against moisture by forming a water-repelling surface layer with Rb/K segregation. Using density functional theory, we found that the water-induced polarization, which triggers the PbI62- octahedron distortion and accelerates the phase transition, can be effectively alleviated by incorporating Rb/K elements. Further exploration of transition states suggests that Rb/K doped surface layers result in a higher activation barrier for water penetration. The electronic structure analysis further reveals that the barrier enhancement originates from the absence of the participation of inner 5p electrons in Rb/K-H2O binding, which induces a much lower energy barrier in pristine CsPbI3. Based on these improvements, the doped perovskites remained in the major α-phase after direct exposure to ambient air (RH ∼ 30%) for 5 hours, while pristine CsPbI3 showed an irreversible degradation. With the clarified mechanism of enhanced phase stability of Rb/K incorporation, we suggest such a doping method as a promising strategy to be widely applied in the field of photovoltaic devices.
Collapse
Affiliation(s)
- Minghua Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Xiangjun Chen
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
| | - Jiewen Xiao
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
| | - Meiqian Tai
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Dominik Legut
- IT4Innovations, VSB-Technical University of Ostrava, 17.listopadu 2172/15, CZ-70800 Ostrava-Poruba, Czech Republic
| | - Jianchao Shi
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
| | - Jiale Qu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
| | - Qi Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Xin Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Lan Chen
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Ruifeng Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
| | - Hong Lin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Qianfan Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
| |
Collapse
|
17
|
Aranda C, Guerrero A, Bisquert J. Crystalline Clear or Not: Beneficial and Harmful Effects of Water in Perovskite Solar Cells. Chemphyschem 2019; 20:2587-2599. [PMID: 31268613 DOI: 10.1002/cphc.201900393] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/23/2019] [Indexed: 11/10/2022]
Abstract
Clarification of how water affects the photovoltaic performance of perovskite solar cells is one of the major challenges to successfully develop a large-scale low-cost fabrication process. Many authors have reported beneficial effects of moisture during the fabrication of perovskite solar cells (PSCs), such as enhanced crystallinity, photoluminescence and photovoltage. However, the highest power conversion efficiency reported until this date was obtained under completely dry atmosphere conditions, avoiding the presence of water during perovskite formulation and preserving the damage caused by moisture exposure with encapsulation techniques. This apparent contradiction makes patent the necessity of an extensive clarification to establish the conditions in which water represents a beneficial or harmful factor in the development of high efficiency and stable perovskite devices. In this review, we summarized the effects of water, both as an additive into the perovskite formulation as an additive and as moisture exposure during fabrication. We discuss in depth the structural and chemical effects, analysing also the photovoltaic consequences during operation conditions. As a final input, we remark a useful method to perform high efficiency PSCs under different lab ambient conditions and highlight the latest advances in hydrophobic devices and encapsulation techniques.
Collapse
Affiliation(s)
- Clara Aranda
- Institute of Advanced Materials (INAM), Universitat Jaume I, 12006, Castelló, Spain
| | - Antonio Guerrero
- Institute of Advanced Materials (INAM), Universitat Jaume I, 12006, Castelló, Spain
| | - Juan Bisquert
- Institute of Advanced Materials (INAM), Universitat Jaume I, 12006, Castelló, Spain
| |
Collapse
|
18
|
Solanki A, Lim SS, Mhaisalkar S, Sum TC. Role of Water in Suppressing Recombination Pathways in CH 3NH 3PbI 3 Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25474-25482. [PMID: 31179683 DOI: 10.1021/acsami.9b00793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Moisture degradation of halide perovskites is the Achilles heel of perovskite solar cells. A surprising revelation in 2014 about the beneficial effects of controlled humidity in enhancing device efficiencies overthrew established paradigms on perovskite solar cell fabrication. Despite the extensive studies on water additives in perovskite solar cell processing that followed, detailed understanding of the role of water from the photophysical perspective remains lacking; specifically, the interplay between the induced morphological effects and the intrinsic recombination pathways. Through ultrafast optical spectroscopy, we show that both the monomolecular and bimolecular recombination rate constants decrease by approximately 1 order with the addition of an optimal 1% H2O by volume in CH3NH3PbI3 as compared to the reference (without the H2O additive). Correspondingly, the trap density reduces from 4.8 × 1017 cm-3 (reference) to 3.2 × 1017 cm-3 with 1% H2O. We obtained an efficiency of 12.3% for the champion inverted CH3NH3PbI3 perovskite solar cell (1% H2O additive) as compared to the 10% efficiency for the reference cell. Increasing the H2O content further is deleterious for the device. Trace amounts of H2O afford the benefits of surface trap passivation and suppression of trap-mediated recombination, whereas higher concentrations result in a preferential dissolution of methylammonium iodide during fabrication that increases the trap density (MA vacancies). Importantly, our study reveals the effects of trace H2O additives on the photophysical properties of CH3NH3PbI3 films.
Collapse
Affiliation(s)
- Ankur Solanki
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore
| | - Swee Sien Lim
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore
- Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School , Nanyang Technological University , 637553 , Singapore
| | - Subodh Mhaisalkar
- Energy Research Institute @NTU (ERI@N), Research Techno Plaza , X-Frontier Block, Level 5, 50 Nanyang Drive , 637553 , Singapore
- School of Materials Science and Engineering , Nanyang Technological University , Nanyang Avenue , 639798 , Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore
| |
Collapse
|
19
|
Zhang L, Lin S, Wu B, Li Q, Li J. Understanding structures and properties of phosphorene/perovskite heterojunction toward perovskite solar cell applications. J Mol Graph Model 2019; 89:96-101. [PMID: 30884451 DOI: 10.1016/j.jmgm.2019.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/18/2019] [Accepted: 03/08/2019] [Indexed: 11/25/2022]
Abstract
Two-dimensional black phosphorus (phosphorene) has drawn much attention in recent years due to its excellent electronic and optical properties. In this manuscript, we employ ab initio calculations to investigate the structural origin of the phosphorene/perovskite heterostructure. The calculations suggest that the chemical stability and the mechanical stability depend on the surface terminations, and the mechanical stability of the phosphorene/perovskite heterojunction should be further improved. The weak interactions between the P atoms in the phosphorene and the under-coordinated Pb atoms at the perovskite surfaces, as well as the weak interfacial charge transfer characters, are proposed to be mainly responsible for the moderate heterostructure stability. Suggestions to improve the stability of the heterojunction are provided. This study helps the fundamental understanding of the interaction between the phosphorene and the halide perovskite materials, and could provide a foundation for the better understanding of the low-dimensional materials in perovskite-based optoelectronic devices.
Collapse
Affiliation(s)
- Lei Zhang
- Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science & Technology, Nanjing, 210044, China; School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Shuai Lin
- Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science & Technology, Nanjing, 210044, China; School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Bo Wu
- Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science & Technology, Nanjing, 210044, China; School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Qingfang Li
- Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science & Technology, Nanjing, 210044, China; School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jingfa Li
- Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science & Technology, Nanjing, 210044, China; School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
20
|
Abstract
Design and modification of interfaces, always a critical issue for semiconductor devices, has become a primary tool to harness the full potential of halide perovskite (HaP)-based optoelectronics, including photovoltaics and light-emitting diodes. In particular, the outstanding improvements in HaP solar cell performance and stability can be primarily ascribed to a careful choice of the interfacial layout in the layer stack. In this review, we describe the unique challenges and opportunities of these approaches (section 1). For this purpose, we first elucidate the basic physical and chemical properties of the exposed HaP thin film and crystal surfaces, including topics such as surface termination, surface reactivity, and electronic structure (section 2). This is followed by discussing experimental results on the energetic alignment processes at the interfaces between the HaP and transport and buffer layers. This section includes understandings reached as well as commonly proposed and applied models, especially the often-questionable validity of vacuum level alignment, the importance of interface dipoles, and band bending as the result of interface formation (section 3). We follow this by elaborating on the impact of the interface formation on device performance, considering effects such as chemical reactions and surface passivation on interface energetics and stability. On the basis of these concepts, we propose a roadmap for the next steps in interfacial design for HaP semiconductors (section 4), emphasizing the importance of achieving control over the interface energetics and chemistry (i.e., reactivity) to allow predictive power for tailored interface optimization.
Collapse
Affiliation(s)
- Philip Schulz
- Institut Photovoltaïque d'Île-de-France (IPVF) , 91120 Palaiseau , France.,CNRS , Institut Photovoltaı̈que d'Île de France (IPVF) , UMR 9006 , 91120 Palaiseau , France.,National Center for Photovoltaics , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - David Cahen
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Antoine Kahn
- Department of Electrical Engineering , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
21
|
Fassl P, Lami V, Bausch A, Wang Z, Klug MT, Snaith HJ, Vaynzof Y. Fractional deviations in precursor stoichiometry dictate the properties, performance and stability of perovskite photovoltaic devices. ENERGY & ENVIRONMENTAL SCIENCE 2018; 11:3380-3391. [PMID: 30713584 PMCID: PMC6333261 DOI: 10.1039/c8ee01136b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/16/2018] [Indexed: 05/02/2023]
Abstract
The last five years have witnessed remarkable progress in the field of lead halide perovskite materials and devices. Examining the existing body of literature reveals staggering inconsistencies in the reported results among different research groups with a particularly wide spread in the photovoltaic performance and stability of devices. In this work we demonstrate that fractional, quite possibly unintentional, deviations in the precursor solution stoichiometry can cause significant changes in the properties of the perovskite layer as well as in the performance and stability of perovskite photovoltaic devices. We show that while the absorbance and morphology of the layers remain largely unaffected, the surface composition and energetics, crystallinity, emission efficiency, energetic disorder and storage stability are all very sensitive to the precise stoichiometry of the precursor solution. Our results elucidate the origin of the irreproducibility and inconsistencies of reported results among different groups as well as the wide spread in device performance even within individual studies. Finally, we propose a simple experimental method to identify the exact stoichiometry of the perovskite layer that researchers can employ to confirm their experiments are performed consistently without unintentional variations in precursor stoichiometry.
Collapse
Affiliation(s)
- Paul Fassl
- Kirchhoff-Institut für Physik and Centre for Advanced Materials , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 227 , 69120 Heidelberg , Germany .
| | - Vincent Lami
- Kirchhoff-Institut für Physik and Centre for Advanced Materials , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 227 , 69120 Heidelberg , Germany .
| | - Alexandra Bausch
- Kirchhoff-Institut für Physik and Centre for Advanced Materials , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 227 , 69120 Heidelberg , Germany .
| | - Zhiping Wang
- Clarendon Laboratory, Department of Physics, University of Oxford , Oxford , OX1 3PU , UK
| | - Matthew T Klug
- Clarendon Laboratory, Department of Physics, University of Oxford , Oxford , OX1 3PU , UK
| | - Henry J Snaith
- Clarendon Laboratory, Department of Physics, University of Oxford , Oxford , OX1 3PU , UK
| | - Yana Vaynzof
- Kirchhoff-Institut für Physik and Centre for Advanced Materials , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 227 , 69120 Heidelberg , Germany .
| |
Collapse
|
22
|
Ciccioli A, Latini A. Thermodynamics and the Intrinsic Stability of Lead Halide Perovskites CH 3NH 3PbX 3. J Phys Chem Lett 2018; 9:3756-3765. [PMID: 29901394 DOI: 10.1021/acs.jpclett.8b00463] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The role of thermodynamics in assessing the intrinsic instability of the CH3NH3PbX3 perovskites (X = Cl,Br,I) is outlined on the basis of the available experimental information. Possible decomposition/degradation pathways driven by the inherent instability of the material are considered. The decomposition to precursors CH3NH3X(s) and PbX2( s) is first analyzed, pointing out the importance of both the enthalpic and the entropic factor, the latter playing a stabilizing role making the stability higher than often asserted. For CH3NH3PbI3, the disagreement between the available calorimetric results makes the stability prediction uncertain. Subsequently, the gas-releasing decomposition paths are discussed, with emphasis on the discrepant results presently available, probably reflecting the predominance of thermodynamic or kinetic control. The competition between the formation of NH3(g) + CH3X(g), CH3NH2(g) + HX(g) or CH3NH3X(g) is analyzed, in comparison with the thermal decomposition of methylammonium halides. In view of the scarce and inconclusive thermodynamic studies to-date available, the need for further experimental data is emphasized.
Collapse
Affiliation(s)
- Andrea Ciccioli
- Department of Chemistry , Sapienza - University of Rome , Piazzale Aldo Moro 5 , 00185 Rome , Italy
| | - Alessandro Latini
- Department of Chemistry , Sapienza - University of Rome , Piazzale Aldo Moro 5 , 00185 Rome , Italy
| |
Collapse
|
23
|
Geng C, Xu S, Zhong H, Rogach AL, Bi W. Aqueous Synthesis of Methylammonium Lead Halide Perovskite Nanocrystals. Angew Chem Int Ed Engl 2018; 57:9650-9654. [PMID: 29878647 DOI: 10.1002/anie.201802670] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Indexed: 11/10/2022]
Abstract
Methylammonium lead halide perovskite nanocrystals offer attractive optoelectronic properties but suffer from fast degradation in the presence of water. In contradiction to this observation, we demonstrate the possibility of a direct aqueous synthesis of CH3 NH3 PbX3 (X=Br or Cl/Br) nanocrystals through the reaction between the lead halide complex and methylamine when the pH is maintained in the range of 0-5. Under these synthetic conditions, the positively charged surface of the perovskite nanocrystals and the proper ionic balance help to prevent their decomposition in water. Additional surface capping with organic amine ligands further improves the photoluminescence quantum yield of the perovskite nanocrystals to values close to 40 %, ensures their stability under ambient conditions for several months, and their photoluminescence performance under continuous 0.1 W mm-2 405 nm light irradiation for over 250 hours.
Collapse
Affiliation(s)
- Chong Geng
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics & Information Engineering, Hebei University of Technology, 5340 Xiping Road, Beichen District, Tianjin, 300401, China
| | - Shu Xu
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics & Information Engineering, Hebei University of Technology, 5340 Xiping Road, Beichen District, Tianjin, 300401, China
| | - Haizheng Zhong
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Wengang Bi
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics & Information Engineering, Hebei University of Technology, 5340 Xiping Road, Beichen District, Tianjin, 300401, China
| |
Collapse
|
24
|
Geng C, Xu S, Zhong H, Rogach AL, Bi W. Aqueous Synthesis of Methylammonium Lead Halide Perovskite Nanocrystals. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chong Geng
- Tianjin Key Laboratory of Electronic Materials and Devices; School of Electronics & Information Engineering; Hebei University of Technology; 5340 Xiping Road, Beichen District Tianjin 300401 China
| | - Shu Xu
- Tianjin Key Laboratory of Electronic Materials and Devices; School of Electronics & Information Engineering; Hebei University of Technology; 5340 Xiping Road, Beichen District Tianjin 300401 China
| | - Haizheng Zhong
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems; School of Materials Science & Engineering; Beijing Institute of Technology; 5 Zhongguancun South Street Haidian District, Beijing 100081 China
| | - Andrey L. Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP); City University of Hong Kong; 83 Tat Chee Avenue Kowloon Hong Kong SAR China
| | - Wengang Bi
- Tianjin Key Laboratory of Electronic Materials and Devices; School of Electronics & Information Engineering; Hebei University of Technology; 5340 Xiping Road, Beichen District Tianjin 300401 China
| |
Collapse
|
25
|
Kye YH, Yu CJ, Jong UG, Chen Y, Walsh A. Critical Role of Water in Defect Aggregation and Chemical Degradation of Perovskite Solar Cells. J Phys Chem Lett 2018; 9:2196-2201. [PMID: 29642701 DOI: 10.1021/acs.jpclett.8b00406] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The chemical stability of methylammonium lead iodide (MAPbI3) under humid conditions remains the primary challenge facing halide perovskite solar cells. We investigate defect processes in the water-intercalated iodide perovskite (MAPbI3_H2O) and monohydrated phase (MAPbI3·H2O) within a first-principles thermodynamic framework. We consider the formation energies of isolated and aggregated vacancy defects with different charge states under I-rich and I-poor conditions. It is found that a PbI2 (partial Schottky) vacancy complex can be formed readily, while the MAI vacancy complex is difficult to form in the hydrous compounds. Vacancies in the hydrous phases create deep charge transition levels, indicating the degradation of the lead halide perovskite upon exposure to moisture. Electronic structure analysis supports a mechanism of water-mediated vacancy pair formation.
Collapse
Affiliation(s)
- Yun-Hyok Kye
- Computational Materials Design (CMD), Faculty of Materials Science , Kim Il Sung University , Ryongnam-Dong, Taesong District, Pyongyang , Democratic People's Republic of Korea
| | - Chol-Jun Yu
- Computational Materials Design (CMD), Faculty of Materials Science , Kim Il Sung University , Ryongnam-Dong, Taesong District, Pyongyang , Democratic People's Republic of Korea
| | - Un-Gi Jong
- Computational Materials Design (CMD), Faculty of Materials Science , Kim Il Sung University , Ryongnam-Dong, Taesong District, Pyongyang , Democratic People's Republic of Korea
| | - Yue Chen
- Department of Mechanical Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| | - Aron Walsh
- Department of Materials , Imperial College London , London SW7 2AZ , United Kingdom
| |
Collapse
|
26
|
Giorgi G, Yamashita K, Segawa H. First-principles investigation of the Lewis acid-base adduct formation at the methylammonium lead iodide surface. Phys Chem Chem Phys 2018; 20:11183-11195. [PMID: 29629450 DOI: 10.1039/c8cp01019f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have here performed a campaign of ab initio calculations focusing on the anchoring mechanism and adduct formation of some Lewis bases, both aliphatic and aromatic, on a PbI2-rich flat (001) methylammonium lead iodide (MAPI) surface. Our goal is to provide theoretical support to the recently reported experimental techniques of MAPI surface passivation via Lewis acid-base neutralization and similarly of MAI·PbI2·(Lewis base) adduct formation. We tested several X-donor bases (X = :N, :O, :S), paying attention to the thermodynamic stability of the final MAPI·base adducts and to their electronic properties. Factors that impact on the passivation mechanism are the directionality of the Lewis base lone pair and its enhanced/reduced overlap with MAPI Pb p orbitals, the dipole moment of the base and, similarly, the electronegativity of the X donor atom. Also non-covalent interactions, both at the surface side (intra, MAPI) and at the very interface (inter, MAPI·Lewis base), seem to contribute to the stability of the final adducts. Here we show that the thermodynamic stability does not necessarily correspond to the most effective base → acid dative bond formation. Starting from a low coverage (12.5% of the undercoordinated Pb atoms available at the surface are passivated) this paper paves the way towards the study of cooperative and steric effects among Lewis bases at higher coverages representing, to the best of our knowledge, one of the very first studies focusing on the molecular anchoring on the surfaces of this very important class of materials.
Collapse
Affiliation(s)
- Giacomo Giorgi
- Dipartimento di Ingegneria Civile e Ambientale (DICA), Università degli Studi di Perugia, Via G. Duranti, 06125 Perugia, Italy.
| | | | | |
Collapse
|
27
|
Schlipf J, Bießmann L, Oesinghaus L, Berger E, Metwalli E, Lercher JA, Porcar L, Müller-Buschbaum P. In Situ Monitoring the Uptake of Moisture into Hybrid Perovskite Thin Films. J Phys Chem Lett 2018; 9:2015-2021. [PMID: 29613793 DOI: 10.1021/acs.jpclett.8b00687] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Solution-processed hybrid perovskites are of great interest for use in photovoltaics. However, polycrystalline perovskite thin films show strong degradation in humid atmospheres, which poses an important challenge for large-scale market introduction. With in situ grazing incidence neutron scattering (GISANS) we analyzed water content, degradation products, and morphological changes during prolonged exposure to several humidity levels. In high humidity, the formation of metastable hydrate phases is accompanied by domain swelling, which transforms the faceted crystals to a round-washed, pebble-like form. The films incorporate much more water than is integrated into the hydrates, with smaller crystals being more affected, making the degradation strongly dependent on film morphology. Even at low humidity, water is adsorbed on the crystal surfaces without the formation of crystalline degradation products. Thus, although production in an ambient atmosphere is of interest for industrial production it might lead to long-term degradation without appropriate countermeasures like postproduction drying below 30% RH.
Collapse
Affiliation(s)
- Johannes Schlipf
- Technische Universität München , Physik-Department, Lehrstuhl für Funktionelle Materialien , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Lorenz Bießmann
- Technische Universität München , Physik-Department, Lehrstuhl für Funktionelle Materialien , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Lukas Oesinghaus
- Technische Universität München , Physics-Department and ZNN, Physics of Synthetic Biological Systems , Am Coulombwall 4a , 85748 Garching , Germany
| | - Edith Berger
- Technische Universität München , Department of Chemistry and Catalysis Research Center , Lichtenbergstraße 4 , 85747 Garching , Germany
| | - Ezzeldin Metwalli
- Technische Universität München , Physik-Department, Lehrstuhl für Funktionelle Materialien , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Johannes A Lercher
- Technische Universität München , Department of Chemistry and Catalysis Research Center , Lichtenbergstraße 4 , 85747 Garching , Germany
| | - Lionel Porcar
- Institut Laue-Langevin (ILL) , 71 Avenue des Martyrs , 38042 Grenoble , France
| | - Peter Müller-Buschbaum
- Technische Universität München , Physik-Department, Lehrstuhl für Funktionelle Materialien , James-Franck-Str. 1 , 85748 Garching , Germany
| |
Collapse
|
28
|
Brenes R, Eames C, Bulović V, Islam MS, Stranks SD. The Impact of Atmosphere on the Local Luminescence Properties of Metal Halide Perovskite Grains. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706208. [PMID: 29512205 DOI: 10.1002/adma.201706208] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/17/2017] [Indexed: 05/24/2023]
Abstract
Metal halide perovskites are exceptional candidates for inexpensive yet high-performing optoelectronic devices. Nevertheless, polycrystalline perovskite films are still limited by nonradiative losses due to charge carrier trap states that can be affected by illumination. Here, in situ microphotoluminescence measurements are used to elucidate the impact of light-soaking individual methylammonium lead iodide grains in high-quality polycrystalline films while immersing them with different atmospheric environments. It is shown that emission from each grain depends sensitively on both the environment and the nature of the specific grain, i.e., whether it shows good (bright grain) or poor (dark grain) luminescence properties. It is found that the dark grains show substantial rises in emission, while the bright grain emission is steady when illuminated in the presence of oxygen and/or water molecules. The results are explained using density functional theory calculations, which reveal strong adsorption energies of the molecules to the perovskite surfaces. It is also found that oxygen molecules bind particularly strongly to surface iodide vacancies which, in the presence of photoexcited electrons, lead to efficient passivation of the carrier trap states that arise from these vacancies. The work reveals a unique insight into the nature of nonradiative decay and the impact of atmospheric passivation on the microscale properties of perovskite films.
Collapse
Affiliation(s)
- Roberto Brenes
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | | | - Vladimir Bulović
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - M Saiful Islam
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Samuel D Stranks
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| |
Collapse
|
29
|
Ma ZQ, Shao Y, Wong PK, Shi X, Pan H. Structural and Electronic Properties of Two-Dimensional Organic–inorganic Halide Perovskites and their Stability against Moisture. THE JOURNAL OF PHYSICAL CHEMISTRY C 2018; 122:5844-5853. [DOI: 10.1021/acs.jpcc.7b06673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Affiliation(s)
- Zi-Qian Ma
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, P. R. China
| | - Yangfan Shao
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, P. R. China
- Department of Physics, Southern University of Science and Technology, Shenzhen, China
| | - Pak Kin Wong
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macao SAR, P. R. China
| | - Xingqiang Shi
- Department of Physics, Southern University of Science and Technology, Shenzhen, China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, P. R. China
| |
Collapse
|
30
|
Zhang L, Wang Q. Spectroscopic and first principles investigation on 4-[(4-pyridinylmethylene)amino]-benzoic acid bearing pyridyl and carboxyl anchoring groups. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Li JC, Wei ZX, Huang WQ, Ma LL, Hu W, Peng P, Huang GF. Interfacial Interactions in Monolayer and Few-Layer SnS/CH3
NH3
PbI3
Perovskite van der Waals Heterostructures and Their Effects on Electronic and Optical Properties. Chemphyschem 2017; 19:291-299. [DOI: 10.1002/cphc.201701108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/23/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Jian-Cai Li
- Department of Applied Physics; School of Physics and Electronics; Hunan University; Changsha 410082 China
| | - Zeng-Xi Wei
- Department of Applied Physics; School of Physics and Electronics; Hunan University; Changsha 410082 China
| | - Wei-Qing Huang
- Department of Applied Physics; School of Physics and Electronics; Hunan University; Changsha 410082 China
| | - Li-Li Ma
- Department of Applied Physics; School of Physics and Electronics; Hunan University; Changsha 410082 China
| | - Wangyu Hu
- School of Materials Science and Engineering; Hunan University; Changsha 410082 China
| | - Ping Peng
- School of Materials Science and Engineering; Hunan University; Changsha 410082 China
| | - Gui-Fang Huang
- Department of Applied Physics; School of Physics and Electronics; Hunan University; Changsha 410082 China
| |
Collapse
|
32
|
Sundararaman R, Letchworth-Weaver K, Schwarz KA, Gunceler D, Ozhabes Y, Arias T. JDFTx: software for joint density-functional theory. SOFTWAREX 2017; 6:278-284. [PMID: 29892692 PMCID: PMC5992620 DOI: 10.1016/j.softx.2017.10.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) that combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.
Collapse
Affiliation(s)
- Ravishankar Sundararaman
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180
| | | | - Kathleen A. Schwarz
- National Institute of Standards and Technology, Material Measurement Laboratory, Gaithersburg, MD, 20899
| | - Deniz Gunceler
- Department of Physics, Cornell University, Ithaca, NY 14853
| | - Yalcin Ozhabes
- Department of Physics, Cornell University, Ithaca, NY 14853
| | - T.A. Arias
- Department of Physics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
33
|
Chen PT, Yung TY, Liu TY, Sher CW, Hayashi M. Water-resistance of macromolecules adsorbed on CH3NH3PbI3 surfaces: A first-principles study. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.08.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Caddeo C, Saba MI, Meloni S, Filippetti A, Mattoni A. Collective Molecular Mechanisms in the CH 3NH 3PbI 3 Dissolution by Liquid Water. ACS NANO 2017; 11:9183-9190. [PMID: 28783296 DOI: 10.1021/acsnano.7b04116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The origin of the dissolution of methylammonium lead trihalide (MAPI) crystals in liquid water is clarified by finite-temperature molecular dynamics by developing a MYP-based force field (MYP1) for water-MAPI systems. A thermally activated process is found with an energy barrier of 0.36 eV consisting of a layer-by-layer degradation with generation of inorganic PbI2 films and solvation of MA and I ions. We rationalize the effect of water on MAPI by identifying a transition from a reversible absorption and diffusion in the presence of vapor to the irreversible destruction of the crystal lattice in liquid due to a cooperative action of water molecules. A strong water-MAPI interaction is found with a binding energy of 0.41 eV/H2O and wetting energy of 0.23 N/m. The water vapor absorption is energetically favored (0.29 eV/H2O), and the infiltrated molecules can migrate within the crystal with a diffusion coefficient D = 1.7 × 10-8 cm2/s and activation energy of 0.28 eV.
Collapse
Affiliation(s)
- Claudia Caddeo
- Istituto Officina dei Materiali (CNR - IOM) Cagliari , Cittadella Universitaria, I-09042 Monserrato (Ca), Italy
| | - Maria Ilenia Saba
- Istituto Officina dei Materiali (CNR - IOM) Cagliari , Cittadella Universitaria, I-09042 Monserrato (Ca), Italy
| | - Simone Meloni
- Department of Mechanical and Aerospace Engineering, Università La Sapienza , Via Eudossiana 18, 00184 Roma, Italy
| | - Alessio Filippetti
- Istituto Officina dei Materiali (CNR - IOM) Cagliari , Cittadella Universitaria, I-09042 Monserrato (Ca), Italy
- Dipartimento di Fisica, Università degli Studi di Cagliari , Cittadella Universitaria, I-09042 Monserrato (Ca), Italy
| | - Alessandro Mattoni
- Istituto Officina dei Materiali (CNR - IOM) Cagliari , Cittadella Universitaria, I-09042 Monserrato (Ca), Italy
| |
Collapse
|
35
|
Ju MG, Dai J, Ma L, Zeng XC. Lead-Free Mixed Tin and Germanium Perovskites for Photovoltaic Application. J Am Chem Soc 2017; 139:8038-8043. [DOI: 10.1021/jacs.7b04219] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ming-Gang Ju
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Jun Dai
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Liang Ma
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Xiao Cheng Zeng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
36
|
Lv Q, He W, Lian Z, Ding J, Li Q, Yan Q. Anisotropic moisture erosion of CH3NH3PbI3single crystals. CrystEngComm 2017. [DOI: 10.1039/c6ce02317g] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Long R, Fang W, Prezhdo OV. Moderate Humidity Delays Electron-Hole Recombination in Hybrid Organic-Inorganic Perovskites: Time-Domain Ab Initio Simulations Rationalize Experiments. J Phys Chem Lett 2016; 7:3215-3222. [PMID: 27485025 DOI: 10.1021/acs.jpclett.6b01412] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Experiments show both positive and negative changes in performance of hybrid organic-inorganic perovskite solar cells upon exposure to moisture. Ab initio nonadiabatic molecular dynamics reveals the influence of humidity on nonradiative electron-hole recombination. In small amounts, water molecules perturb perovskite surface and localize photoexcited electron close to the surface. Importantly, deep electron traps are avoided. The electron-hole overlap decreases, and the excited state lifetime increases. In large amounts, water forms stable hydrogen-bonded networks, has a higher barrier to enter perovskite, and produces little impact on charge localization. At the same time, by contributing high frequency polar vibrations, water molecules increase nonadiabatic coupling and accelerate recombination. In general, short coherence between electron and hole benefits photovoltaic response of the perovskites. The calculated recombination time scales show excellent agreement with experiment. The time-domain atomistic simulations reveal the microscopic effects of humidity on perovskite excited-state lifetimes and rationalize the conflicting experimental observations.
Collapse
Affiliation(s)
- Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University , Beijing 100875, P. R. China
- School of Physics, Complex & Adaptive Systems Lab, University College Dublin , Belfield, Dublin 4, Ireland
| | - Weihai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University , Beijing 100875, P. R. China
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
38
|
Abstract
Hybrid organic-inorganic perovskites (HOIPs) are crystals with the structural formula ABX3, where A, B, and X are organic and inorganic ions, respectively. While known for several decades, HOIPs have only in recent years emerged as extremely promising semiconducting materials for solar energy applications. In particular, power-conversion efficiencies of HOIP-based solar cells have improved at a record speed and, after only little more than 6 years of photovoltaics research, surpassed the 20% threshold, which is an outstanding result for a solution-processable material. It is thus of fundamental importance to reveal physical and chemical phenomena that contribute to, or limit, these impressive photovoltaic efficiencies. To understand charge-transport and light-absorption properties of semiconducting materials, one often invokes a lattice of ions displaced from their static positions only by harmonic vibrations. However, a preponderance of recent studies suggests that this picture is not sufficient for HOIPs, where a variety of structurally dynamic effects, beyond small harmonic vibrations, arises already at room temperature. In this Account, we focus on these effects. First, we review structure and bonding in HOIPs and relate them to the promising charge-transport and absorption properties of these materials, in terms of favorable electronic properties. We point out that HOIPs are much "softer" mechanically, compared to other efficient solar-cell materials, and that this can result in large ionic displacements at room temperature. We therefore focus next on dynamic structural effects in HOIPs, going beyond a static band-structure picture. Specifically, we discuss pertinent experimental and theoretical findings as to phase-transition behavior and molecular/octahedral rearrangements. We then discuss atomic diffusion phenomena in HOIPs, with an emphasis on the migration of intrinsic and extrinsic ionic species. From this combined perspective, HOIPs appear as highly dynamic materials, in which structural fluctuations and long-range ionic motion have an unusually strong impact on charge-transport and optical properties. We highlight the potential implications of these effects for several intriguing phenomenological observations, ranging from scattering mechanisms and lifetimes of charge carriers to light-induced structural effects and ionic conduction.
Collapse
Affiliation(s)
- David A. Egger
- Department
of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Andrew M. Rappe
- The
Makineni Theoretical Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104−6323, United States
| | - Leeor Kronik
- Department
of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel
| |
Collapse
|
39
|
Zhang L, Sit PHL. Ab initio static and dynamic study of CH3NH3PbI3 degradation in the presence of water, hydroxyl radicals, and hydroxide ions. RSC Adv 2016. [DOI: 10.1039/c6ra12781a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Density functional theory calculations are combined with the ab initio molecular dynamics and nudged elastic band techniques to unveil the microscopic details of CH3NH3PbI3 degradation in the presence of water, hydroxyl radicals, and hydroxide ions.
Collapse
Affiliation(s)
- Linghai Zhang
- School of Energy and Environment
- City University of Hong Kong
- Kowloon
- China
| | - Patrick H.-L. Sit
- School of Energy and Environment
- City University of Hong Kong
- Kowloon
- China
| |
Collapse
|
40
|
Zhang L, Ju MG, Liang W. The effect of moisture on the structures and properties of lead halide perovskites: a first-principles theoretical investigation. Phys Chem Chem Phys 2016; 18:23174-83. [DOI: 10.1039/c6cp01994c] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The degradation mechanism of perovskite materials when exposed to moisture and sunlight has been fully explored.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Ming-Gang Ju
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
| |
Collapse
|
41
|
Kim SY, Jo HJ, Sung SJ, Kim KP, Heo YW, Kim DH. Preferential (100)-oriented CH3NH3PbI3 perovskite film formation by flash drying and elucidation of formation mechanism. RSC Adv 2016. [DOI: 10.1039/c6ra21423a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It was found that the amount of thermal energy delivered during annealing and the amount of residual solvent remaining after spin coating play critical roles in determining the growth properties of (100)-oriented perovskite films.
Collapse
Affiliation(s)
- Se-Yun Kim
- School of Materials Science and Engineering
- Kyungpook National University
- Daegu
- South Korea
- Convergence Research Center for Solar Energy
| | - Hyo-Jeong Jo
- Convergence Research Center for Solar Energy
- Daegu-Gyeongbuk Institute of Science and Technology (DGIST)
- Daegu
- South Korea
| | - Shi-Joon Sung
- Convergence Research Center for Solar Energy
- Daegu-Gyeongbuk Institute of Science and Technology (DGIST)
- Daegu
- South Korea
| | - Kang-Pil Kim
- Convergence Research Center for Solar Energy
- Daegu-Gyeongbuk Institute of Science and Technology (DGIST)
- Daegu
- South Korea
| | - Young-Woo Heo
- School of Materials Science and Engineering
- Kyungpook National University
- Daegu
- South Korea
| | - Dae-Hwan Kim
- Convergence Research Center for Solar Energy
- Daegu-Gyeongbuk Institute of Science and Technology (DGIST)
- Daegu
- South Korea
| |
Collapse
|
42
|
Kakekhani A, Ismail-Beigi S. Polarization-driven catalysis via ferroelectric oxide surfaces. Phys Chem Chem Phys 2016; 18:19676-95. [DOI: 10.1039/c6cp03170f] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ferroelectric polarization can tune the surface chemistry: enhancing technologically important catalytic reactions such as NOx direct decomposition and SO2 oxidation.
Collapse
Affiliation(s)
- Arvin Kakekhani
- Department of Physics
- Yale University
- New Haven
- USA
- Center for Research on Interface Structure and Phenomena (CRISP)
| | - Sohrab Ismail-Beigi
- Department of Physics
- Yale University
- New Haven
- USA
- Center for Research on Interface Structure and Phenomena (CRISP)
| |
Collapse
|
43
|
Zheng F, Saldana-Greco D, Liu S, Rappe AM. Material Innovation in Advancing Organometal Halide Perovskite Functionality. J Phys Chem Lett 2015; 6:4862-4872. [PMID: 26631361 DOI: 10.1021/acs.jpclett.5b01830] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Organometal halide perovskites (OMHPs) have garnered much attention recently for their unprecedented rate of increasing power conversion efficiency (PCE), positioning them as a promising basis for the next-generation photovoltaic devices. However, the gap between the rapid increasing PCE and the incomplete understanding of the structure-property-performance relationship prevents the realization of the true potential of OMHPs. This Perspective aims to provide a concise overview of the current status of OMHP research, highlighting the unique properties of OMHPs that are critical for solar applications but still not adequately explained. Stability and performance challenges of OMHP solar cells are discussed, calling upon combined experimental and theoretical efforts to address these challenges for pioneering commercialization of OMHP solar cells. Various material innovation strategies for improving the performance and stability of OMHPs are surveyed, showing that the OMHP architecture can serve as a promising and robust platform for the design and optimization of materials with desired functionalities.
Collapse
Affiliation(s)
- Fan Zheng
- The Makineni Theoretical Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Diomedes Saldana-Greco
- The Makineni Theoretical Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Shi Liu
- The Makineni Theoretical Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
- Geophysical Laboratory, Carnegie Institution for Science , Washington, DC 20015, United States
| | - Andrew M Rappe
- The Makineni Theoretical Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|