1
|
Fischer A, Fischer AJ, Gries R, Hung E, Lau K, Monfared A, Gries G. Identification and Seasonal Abundance of Web- and Air-Borne Sex Pheromone Components of Western Black Widow Spiders, Latrodectus hesperus. J Chem Ecol 2025; 51:36. [PMID: 40072636 PMCID: PMC11903603 DOI: 10.1007/s10886-025-01590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
Sex pheromones mediate mate location in many animal taxa. Widow spider males are attracted to sex pheromones disseminating from female webs. Upon arrival on a web, males court in response to web-borne contact pheromone components. N-3-Methylbutanoyl-O-methylpropanoyl-L-serine methyl ester (1) is the single known, weakly effective, contact pheromone component of female western black widows, Latrodectus hesperus. Moreover, the seasonal periodicity of pheromone signalling by female spiders is unknown. We tested the hypotheses that females of L. hesperus (1) deposit multiple contact pheromone components on their web that transition to mate-attractant pheromone components, and (2) increase pheromone signalling during the primary mating season. Analyses of web extract by gas and liquid chromatography-mass spectrometry (GC-MS; LC-MS) revealed N-3-methylbutanoyl-O-methylpropanoyl-L-serine (7), the corresponding acid of 1. Web extract of unmated female L. hesperus, and the synthetic blend of 1 and 7, were equally effective in eliciting courtship by males but web extract induced more sustained courtship. Tested singly, 7 prompted longer courtship behaviour by males than 1. Synthetic isobutyric acid (10), the hydrolysis product of 1 and 7, attracted male spiders in a field experiment. The abundance of 1 and 7 on female webs, with expected corresponding dissemination of 10 from webs, peaked during the summer when males are most abundant, indicating strategic sexual signalling by female spiders.
Collapse
Affiliation(s)
- Andreas Fischer
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.
- Department of General and Systematic Zoology, University of Greifswald, Greifswald, Germany.
| | - Alexandra J Fischer
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- Department of General and Systematic Zoology, University of Greifswald, Greifswald, Germany
| | - Regine Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Emmanuel Hung
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Kelvin Lau
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Aryan Monfared
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
2
|
Schmuck B, Greco G, Pessatti TB, Sonavane S, Langwallner V, Arndt T, Rising A. Strategies for Making High-Performance Artificial Spider Silk Fibers. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2305040. [PMID: 39355086 PMCID: PMC11440630 DOI: 10.1002/adfm.202305040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/08/2023] [Indexed: 10/03/2024]
Abstract
Artificial spider silk is an attractive material for many technical applications since it is a biobased fiber that can be produced under ambient conditions but still outcompetes synthetic fibers (e.g., Kevlar) in terms of toughness. Industrial use of this material requires bulk-scale production of recombinant spider silk proteins in heterologous host and replication of the pristine fiber's mechanical properties. High molecular weight spider silk proteins can be spun into fibers with impressive mechanical properties, but the production levels are too low to allow commercialization of the material. Small spider silk proteins, on the other hand, can be produced at yields that are compatible with industrial use, but the mechanical properties of such fibers need to be improved. Here, the literature on wet-spinning of artificial spider silk fibers is summarized and analyzed with a focus on mechanical performance. Furthermore, several strategies for how to improve the properties of such fibers, including optimized protein composition, smarter spinning setups, innovative protein engineering, chemical and physical crosslinking as well as the incorporation of nanomaterials in composite fibers, are outlined and discussed.
Collapse
Affiliation(s)
- Benjamin Schmuck
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Gabriele Greco
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tomas Bohn Pessatti
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Sumalata Sonavane
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Viktoria Langwallner
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tina Arndt
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Anna Rising
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| |
Collapse
|
3
|
Sonavane S, Hassan S, Chatterjee U, Soler L, Holm L, Mollbrink A, Greco G, Fereydouni N, Vinnere Pettersson O, Bunikis I, Churcher A, Lantz H, Johansson J, Reimegård J, Rising A. Origin, structure, and composition of the spider major ampullate silk fiber revealed by genomics, proteomics, and single-cell and spatial transcriptomics. SCIENCE ADVANCES 2024; 10:eadn0597. [PMID: 39141739 PMCID: PMC11323941 DOI: 10.1126/sciadv.adn0597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
Spiders produce nature's toughest fiber using renewable components at ambient temperatures and with water as solvent, making it highly interesting to replicate for the materials industry. Despite this, much remains to be understood about the bioprocessing and composition of spider silk fibers. Here, we identify 18 proteins that make up the spiders' strongest silk type, the major ampullate fiber. Single-cell RNA sequencing and spatial transcriptomics revealed that the secretory epithelium of the gland harbors six cell types. These cell types are confined to three distinct glandular zones that produce specific combinations of silk proteins. Image analysis of histological sections showed that the secretions from the three zones do not mix, and proteomics analysis revealed that these secretions form layers in the final fiber. Using a multi-omics approach, we provide substantial advancements in the understanding of the structure and function of the major ampullate silk gland as well as of the architecture and composition of the fiber it produces.
Collapse
Affiliation(s)
- Sumalata Sonavane
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sameer Hassan
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge, Sweden
| | - Urmimala Chatterjee
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge, Sweden
| | - Lucile Soler
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lena Holm
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Annelie Mollbrink
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Gabriele Greco
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Noah Fereydouni
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge, Sweden
| | - Olga Vinnere Pettersson
- Department of Immunology, Genetics and Pathology, National Genomics Infrastructure, SciLifeLab, Uppsala, Sweden
| | - Ignas Bunikis
- Department of Immunology, Genetics and Pathology, National Genomics Infrastructure, SciLifeLab, Uppsala, Sweden
| | - Allison Churcher
- Department of Molecular Biology, NBIS, SciLifeLab, Umeå University, Umeå, Sweden
| | - Henrik Lantz
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge, Sweden
| | - Johan Reimegård
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
| | - Anna Rising
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge, Sweden
| |
Collapse
|
4
|
Peng Z, Hu W, Yang X, Liu Q, Shi X, Tang X, Zhao P, Xia Q. Overexpression of bond-forming active protein for efficient production of silk with structural changes and properties enhanced in silkworm. Int J Biol Macromol 2024; 264:129780. [PMID: 38290638 DOI: 10.1016/j.ijbiomac.2024.129780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
Silkworm silk exhibits excellent mechanical properties, biocompatibility, and has potential applications in the biomedical sector. This study focused on enhancing the mechanical properties of Bombyx mori silk by overexpressing three bond-forming active proteins (BFAPs): AFP, HSP, and CRP in the silk glands of silkworms. Rheological tests confirmed increased viscoelasticity in the liquid fibroin stock solution of transgenic silkworms, and dynamic mechanical thermal analysis (DMTA) indicated that all three BFAPs participated in the interactions between fibroin molecular networks in transgenic silk. The mechanical property assay indicated that all three BFAPs improved the mechanical characteristics of transgenic silk, with AFP and HSP having the most significant effects. A synchrotron radiation Fourier transform infrared spectroscopy assay showed that all three BFAPs increased the β-sheet content of transgenic silk. Synchrotron radiation wide-angle X-ray diffraction assay showed that all three BFAPs changed the crystallinity, crystal size, and orientation factor of the silk. AFP and HSP significantly improved the mechanical attributes of transgenic silk through increased crystallinity, refined crystal size, and a slight decrease in orientation. This study opens new possibilities for modifying silk and other fiber materials.
Collapse
Affiliation(s)
- Zhangchuan Peng
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, China
| | - Wenbo Hu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Xi Yang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Qingsong Liu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - XiaoTing Shi
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Xin Tang
- Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China.
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China.
| |
Collapse
|
5
|
Oktaviani NA, Malay AD, Goto M, Nagashima T, Hayashi F, Numata K. NMR assignment and dynamics of the dimeric form of soluble C-terminal domain major ampullate spidroin 2 from Latrodectus hesperus. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:249-255. [PMID: 37668860 DOI: 10.1007/s12104-023-10150-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
Spider dragline silk has attracted great interest due to its outstanding mechanical properties, which exceed those of man-made synthetic materials. Dragline silk, which is composed of at least major ampullate spider silk protein 1 and 2 (MaSp1 and MaSp2), contains a long repetitive domain flanked by N-terminal and C-terminal domains (NTD and CTD). Despite the small size of the CTD, this domain plays a crucial role as a molecular switch that regulates and directs spider silk self-assembly. In this study, we report the 1H, 13C, and 15N chemical shift assignments of the Latrodectus hesperus MaSp2 CTD in dimeric form at pH 7. Our solution NMR data demonstrated that this protein contains five helix regions connected by a flexible linker.
Collapse
Affiliation(s)
- Nur Alia Oktaviani
- Biomacromolecules Research Team, RIKEN Center for the Sustainable Resource Sciences, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Ali D Malay
- Biomacromolecules Research Team, RIKEN Center for the Sustainable Resource Sciences, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mami Goto
- Biomacromolecules Research Team, RIKEN Center for the Sustainable Resource Sciences, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Toshio Nagashima
- RIKEN Center for Biosystem Dynamics Research, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Fumiaki Hayashi
- RIKEN Center for Biosystem Dynamics Research, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for the Sustainable Resource Sciences, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku, Katsura, Kyoto, 615-8510, Japan.
- Institute for Advanced Bioscience, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan.
| |
Collapse
|
6
|
Fischer A, Fernando Y, Preston A, Moniz-de-Sa S, Gries G. Widow spiders alter web architecture and attractiveness in response to same-sex competition for prey and mates, and predation risk. Commun Biol 2023; 6:1028. [PMID: 37821674 PMCID: PMC10567780 DOI: 10.1038/s42003-023-05392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Female-female competition in animals has rarely been studied. Responses of females that compete context-dependently for mates and prey, and seek safety from predators, are ideally studied with web-building spiders. Cobwebs possess unique sections for prey capture and safety, which can be quantified. We worked with Steaoda grossa females because their pheromone is known, and adjustments in response to mate competition could be measured. Females exposed to synthetic sex pheromone adjusted their webs, indicating a perception of intra-sexual competition via their sex pheromone. When females sequentially built their webs in settings of low and high intra-sexual competition, they adjusted their webs to increase prey capture and lower predation risk. In settings with strong mate competition, females deposited more contact pheromone components on their webs and accelerated their breakdown to mate-attractant pheromone components, essentially increasing their webs' attractiveness. We show that females respond to sexual, social and natural selection pressures originating from intra-sexual competition.
Collapse
Affiliation(s)
- Andreas Fischer
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | - Yasasi Fernando
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - April Preston
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Sarah Moniz-de-Sa
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
7
|
Nakamura H, Kono N, Mori M, Masunaga H, Numata K, Arakawa K. Composition of Minor Ampullate Silk Makes Its Properties Different from Those of Major Ampullate Silk. Biomacromolecules 2023; 24:2042-2051. [PMID: 37002945 DOI: 10.1021/acs.biomac.2c01474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Spider's minor ampullate silk, or MI-silk, exhibits distinct mechanical properties and water resistance compared to its major ampullate counterpart (MA-silk). The principal protein constituent of MI-silk is known as minor ampullate spidroin, or MiSp, and while its sequence has been deciphered and is thought to underlie the differences in properties with MA-silk, the composition of MI-silk and the relationship between its composition and properties remain elusive. In this study, we set out to investigate the mechanical properties, water resistance, and proteome of MA-silk and MI-silk from Araneus ventricosus and Trichonephila clavata. We also synthesized artificial fibers from major ampullate spidroin, MaSp1 and 2, and MiSp to compare their properties. Our proteomic analysis reveals that the MI-silk of both araneids is composed of MiSp, MaSp1, and spidroin constituting elements (SpiCEs). The absence of MaSp2 in the MI-silk proteome and the comparison of the water resistance of artificial fibers suggest that the presence of MaSp2 is the reason for the disparity in water resistance between MI-silk and MA-silk.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Keiji Numata
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Material Chemistry, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| |
Collapse
|
8
|
Rising A, Harrington MJ. Biological Materials Processing: Time-Tested Tricks for Sustainable Fiber Fabrication. Chem Rev 2023; 123:2155-2199. [PMID: 36508546 DOI: 10.1021/acs.chemrev.2c00465] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is an urgent need to improve the sustainability of the materials we produce and use. Here, we explore what humans can learn from nature about how to sustainably fabricate polymeric fibers with excellent material properties by reviewing the physical and chemical aspects of materials processing distilled from diverse model systems, including spider silk, mussel byssus, velvet worm slime, hagfish slime, and mistletoe viscin. We identify common and divergent strategies, highlighting the potential for bioinspired design and technology transfer. Despite the diversity of the biopolymeric fibers surveyed, we identify several common strategies across multiple systems, including: (1) use of stimuli-responsive biomolecular building blocks, (2) use of concentrated fluid precursor phases (e.g., coacervates and liquid crystals) stored under controlled chemical conditions, and (3) use of chemical (pH, salt concentration, redox chemistry) and physical (mechanical shear, extensional flow) stimuli to trigger the transition from fluid precursor to solid material. Importantly, because these materials largely form and function outside of the body of the organisms, these principles can more easily be transferred for bioinspired design in synthetic systems. We end the review by discussing ongoing efforts and challenges to mimic biological model systems, with a particular focus on artificial spider silks and mussel-inspired materials.
Collapse
Affiliation(s)
- Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 52, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | | |
Collapse
|
9
|
Hu W, Jia A, Ma S, Zhang G, Wei Z, Lu F, Luo Y, Zhang Z, Sun J, Yang T, Xia T, Li Q, Yao T, Zheng J, Jiang Z, Xu Z, Xia Q, Wang Y. A molecular atlas reveals the tri-sectional spinning mechanism of spider dragline silk. Nat Commun 2023; 14:837. [PMID: 36792670 PMCID: PMC9932165 DOI: 10.1038/s41467-023-36545-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
The process of natural silk production in the spider major ampullate (Ma) gland endows dragline silk with extraordinary mechanical properties and the potential for biomimetic applications. However, the precise genetic roles of the Ma gland during this process remain unknown. Here, we performed a systematic molecular atlas of dragline silk production through a high-quality genome assembly for the golden orb-weaving spider Trichonephila clavata and a multiomics approach to defining the Ma gland tri-sectional architecture: Tail, Sac, and Duct. We uncovered a hierarchical biosynthesis of spidroins, organic acids, lipids, and chitin in the sectionalized Ma gland dedicated to fine silk constitution. The ordered secretion of spidroins was achieved by the synergetic regulation of epigenetic and ceRNA signatures for genomic group-distributed spidroin genes. Single-cellular and spatial RNA profiling identified ten cell types with partitioned functional division determining the tri-sectional organization of the Ma gland. Convergence analysis and genetic manipulation further validated that this tri-sectional architecture of the silk gland was analogous across Arthropoda and inextricably linked with silk formation. Collectively, our study provides multidimensional data that significantly expand the knowledge of spider dragline silk generation and ultimately benefit innovation in spider-inspired fibers.
Collapse
Affiliation(s)
- Wenbo Hu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Anqiang Jia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Guoqing Zhang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Zhaoyuan Wei
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Fang Lu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Yongjiang Luo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Zhisheng Zhang
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiahe Sun
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Tianfang Yang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - TingTing Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Qinhui Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Ting Yao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Jiangyu Zheng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Zijie Jiang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Zehui Xu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China.
| | - Yi Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
10
|
Arguelles J, Baker RH, Perez-Rigueiro J, Guinea GV, Elices M, Hayashi CY. Relating spidroin motif prevalence and periodicity to the mechanical properties of major ampullate spider silks. J Comp Physiol B 2023; 193:25-36. [PMID: 36342510 PMCID: PMC9852138 DOI: 10.1007/s00360-022-01464-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Spider dragline fibers exhibit incredible mechanical properties, outperforming many synthetic polymers in toughness assays, and possess desirable properties for medical and other human applications. These qualities make dragline fibers popular subjects for biomimetics research. The enormous diversity of spiders presents both an opportunity for the development of new bioinspired materials and a challenge for the identification of fundamental design principles, as the mechanical properties of dragline fibers show both intraspecific and interspecific variations. In this regard, the stress-strain curves of draglines from different species have been shown to be effectively compared by the α* parameter, a value derived from maximum-supercontracted silk fibers. To identify potential molecular mechanisms impacting α* values, here we analyze spider fibroin (spidroin) sequences of the Western black widow (Latrodectus hesperus) and the black and yellow garden spider (Argiope aurantia). This study serves as a primer for investigating the molecular properties of spidroins that underlie species-specific α* values. Initial findings are that while overall motif composition was similar between species, certain motifs and higher level periodicities of glycine-rich region lengths showed variation, notably greater distances between poly-A motifs in A. aurantia sequences. In addition to increased period lengths, A. aurantia spidroins tended to have an increased prevalence of charged and hydrophobic residues. These increases may impact the number and strength of hydrogen bond networks within fibers, which have been implicated in conformational changes and formation of nanocrystals, contributing to the greater extensibility of A. aurantia draglines compared to those of L. hesperus.
Collapse
Affiliation(s)
- Joseph Arguelles
- Division of Invertebrate Zoology and Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024 USA
| | - Richard H. Baker
- Division of Invertebrate Zoology and Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024 USA
| | - Jose Perez-Rigueiro
- Center for Biomedical Engineering (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain ,Centro de Investigatión Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain ,Departamento de Ciencia de Materiales, Universidad Politécnica de Madrid, ETSI Caminos, Canales y Peurtos, 28040 Madrid, Spain ,Biomaterials and Regenerative Medicine Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040 Madrid, Spain
| | - Gustavo V. Guinea
- Center for Biomedical Engineering (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain ,Centro de Investigatión Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain ,Departamento de Ciencia de Materiales, Universidad Politécnica de Madrid, ETSI Caminos, Canales y Peurtos, 28040 Madrid, Spain ,Biomaterials and Regenerative Medicine Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040 Madrid, Spain
| | - M. Elices
- Centro de Investigatión Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Cheryl Y. Hayashi
- Division of Invertebrate Zoology and Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024 USA
| |
Collapse
|
11
|
Fischer A, Gries R, Alamsetti SK, Hung E, Roman Torres AC, Fernando Y, Meraj S, Ren W, Britton R, Gries G. Origin, structure and functional transition of sex pheromone components in a false widow spider. Commun Biol 2022; 5:1156. [DOI: 10.1038/s42003-022-04072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractFemale web-building spiders disseminate pheromone from their webs that attracts mate-seeking males and deposit contact pheromone on their webs that induces courtship by males upon arrival. The source of contact and mate attractant pheromone components, and the potential ability of females to adjust their web’s attractiveness, have remained elusive. Here, we report three new contact pheromone components produced by female false black widow spiders, Steatoda grossa: N-4-methylvaleroyl-O-butyroyl-L-serine, N-4-methylvaleroyl-O-isobutyroyl-L-serine and N-4-methylvaleroyl-O-hexanoyl-L-serine. The compounds originate from the posterior aggregate silk gland, induce courtship by males, and web pH-dependently hydrolyse at the carboxylic-ester bond, giving rise to three corresponding carboxylic acids that attract males. A carboxyl ester hydrolase (CEH) is present on webs and likely mediates the functional transition of contact sex pheromone components to the carboxylic acid mate attractant pheromone components. As CEH activity is pH-dependent, and female spiders can manipulate their silk’s pH, they might also actively adjust their webs’ attractiveness.
Collapse
|
12
|
Abstract
![]()
The tiny spider makes
dragline silk fibers with unbeatable toughness,
all under the most innocuous conditions. Scientists have persistently
tried to emulate its natural silk spinning process using recombinant
proteins with a view toward creating a new wave of smart materials,
yet most efforts have fallen short of attaining the native fiber’s
excellent mechanical properties. One reason for these shortcomings
may be that artificial spider silk systems tend to be overly simplified
and may not sufficiently take into account the true complexity of
the underlying protein sequences and of the multidimensional aspects
of the natural self-assembly process that give rise to the hierarchically
structured fibers. Here, we discuss recent findings regarding the
material constituents of spider dragline silk, including novel spidroin
subtypes, nonspidroin proteins, and possible involvement of post-translational
modifications, which together suggest a complexity that transcends
the two-component MaSp1/MaSp2 system. We subsequently consider insights
into the spidroin domain functions, structures, and overall mechanisms
for the rapid transition from disordered soluble protein into a highly
organized fiber, including the possibility of viewing spider silk
self-assembly through a framework relevant to biomolecular condensates.
Finally, we consider the concept of “biomimetics” as
it applies to artificial spider silk production with a focus on key
practical aspects of design and evaluation that may hopefully inform
efforts to more closely reproduce the remarkable structure and function
of the native silk fiber using artificial methods.
Collapse
Affiliation(s)
- Ali D Malay
- Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hamish C Craig
- Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jianming Chen
- Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Nur Alia Oktaviani
- Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Department of Material Chemistry, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
13
|
Geiser DL, Li W, Pham DQD, Wysocki VH, Winzerling JJ. Shotgun and TMT-Labeled Proteomic Analysis of the Ovarian Proteins of an Insect Vector, Aedes aegypti (Diptera: Culicidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:7. [PMID: 35303100 PMCID: PMC8932505 DOI: 10.1093/jisesa/ieac018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Indexed: 06/14/2023]
Abstract
Aedes aegypti [Linnaeus in Hasselquist; yellow fever mosquito] transmits several viruses that infect millions of people each year, including Zika, dengue, yellow fever, chikungunya, and West Nile. Pathogen transmission occurs during blood feeding. Only the females blood feed as they require a bloodmeal for oogenesis; in the bloodmeal, holo-transferrin and hemoglobin provide the females with a high iron load. We are interested in the effects of the bloodmeal on the expression of iron-associated proteins in oogenesis. Previous data showed that following digestion of a bloodmeal, ovarian iron concentrations doubles by 72 hr. We have used shotgun proteomics to identify proteins expressed in Ae. aegypti ovaries at two oogenesis developmental stages following blood feeding, and tandem mass tag-labeling proteomics to quantify proteins expressed at one stage following feeding of a controlled iron diet. Our findings provide the first report of mosquito ovarian protein expression in early and late oogenesis. We identify proteins differentially expressed in the two oogenesis development stages. We establish that metal-associated proteins play an important role in Ae. aegypti oogenesis and we identify new candidate proteins that might be involved in mosquito iron metabolism. Finally, this work identified a unique second ferritin light chain subunit, the first reported in any species. The shotgun proteomic data are available via ProteomeXchange with identifier PXD005893, while the tandem mass tag-labeled proteomic data are available with identifier PXD028242.
Collapse
Affiliation(s)
- Dawn L Geiser
- Nutritional Sciences, Division of Agriculture, Life and Veterinary Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Wenzhou Li
- Department of Chemistry and Biochemistry, College of Science, University of Arizona, Tucson, AZ 85721, USA
- Present Address: Amgen Incorporation, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Daphne Q-D Pham
- Department of Biological Sciences, University of Wisconsin-Parkside, Kenosha, WI 53141, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, College of Science, University of Arizona, Tucson, AZ 85721, USA
- Present Address: Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Joy J Winzerling
- Nutritional Sciences, Division of Agriculture, Life and Veterinary Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
14
|
Anti-Coagulant and Antimicrobial Recombinant Heparin-Binding Major Ampullate Spidroin 2 (MaSp2) Silk Protein. Bioengineering (Basel) 2022; 9:bioengineering9020046. [PMID: 35200400 PMCID: PMC8869596 DOI: 10.3390/bioengineering9020046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 01/26/2023] Open
Abstract
Governed by established structure–property relationships, peptide motifs comprising major ampullate spider silk confer a balance of strength and extensibility. Other biologically inspired small peptide motifs correlated to specific functionalities can be combined within these units to create designer silk materials with new hybrid properties. In this study, a small basic peptide, (ARKKAAKA) known to both bind heparin and mimic an antimicrobial peptide, was genetically linked to a protease-resistant, mechanically robust silk-like peptide, MaSp2. Purified fusion proteins (four silk domains and four heparin-binding peptide repeats) were expressed in E. coli. Successful fusion of a MaSp2 spider silk peptide with the heparin-binding motif was shown using a variety of analytical assays. The ability of the fusion peptide to bind heparin was assessed with ELISA and was further tested for its anticoagulant property using aPTT assay. Its intrinsic property to inhibit bacterial growth was evaluated using zone of inhibition and crystal violet (CV) assays. Using this strategy, we were able to link the two types of genetic motifs to create a designer silk-like protein with improved hemocompatibility and antimicrobial properties.
Collapse
|
15
|
Kono N, Ohtoshi R, Malay AD, Mori M, Masunaga H, Yoshida Y, Nakamura H, Numata K, Arakawa K. Darwin's bark spider shares a spidroin repertoire with Caerostris extrusa but achieves extraordinary silk toughness through gene expression. Open Biol 2021; 11:210242. [PMID: 34932907 PMCID: PMC8692038 DOI: 10.1098/rsob.210242] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Spider silk is a protein-based material whose toughness suggests possible novel applications. A particularly fascinating example of silk toughness is provided by Darwin's bark spider (Caerostris darwini) found in Madagascar. This spider produces extraordinarily tough silk, with an average toughness of 350 MJ m-1 and over 50% extensibility, and can build river-bridging webs with a size of 2.8 m2. Recent studies have suggested that specific spidroins expressed in C. darwini are responsible for the mechanical properties of its silk. Therefore, a more comprehensive investigation of spidroin sequences, silk thread protein contents and phylogenetic conservation among closely related species is required. Here, we conducted genomic, transcriptomic and proteomic analyses of C. darwini and its close relative Caerostris extrusa. A variety of spidroins and low-molecular-weight proteins were found in the dragline silk of these species; all of the genes encoding these proteins were conserved in both genomes, but their genes were more expressed in C. darwini. The potential to produce very tough silk is common in the genus Caerostris, and our results may suggest the existence of plasticity allowing silk mechanical properties to be changed by optimizing related gene expression in response to the environment.
Collapse
Affiliation(s)
- Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan,Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Rintaro Ohtoshi
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ali D. Malay
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan,Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yuki Yoshida
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan,Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Hiroyuki Nakamura
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Keiji Numata
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan,Department of Material Chemistry, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan,Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| |
Collapse
|
16
|
Caruso MB, Lauria PSS, de Souza CMV, Casais-E-Silva LL, Zingali RB. Widow spiders in the New World: a review on Latrodectus Walckenaer, 1805 (Theridiidae) and latrodectism in the Americas. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210011. [PMID: 34745240 PMCID: PMC8553018 DOI: 10.1590/1678-9199-jvatitd-2021-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/08/2021] [Indexed: 11/21/2022] Open
Abstract
Humankind has always been fascinated by venomous animals, as their toxic substances have transformed them into symbols of power and mystery. Over the centuries, researchers have been trying to understand animal venoms, unveiling intricate mixtures of molecules and their biological effects. Among venomous animals, Latrodectus Walckenaer, 1805 (widow spiders) have become feared in many cultures worldwide due to their extremely neurotoxic venom. The Latrodectus genus encompasses 32 species broadly spread around the globe, 14 of which occur in the Americas. Despite the high number of species found in the New World, the knowledge on these spiders is still scarce. This review covers the general knowledge on Latrodectus spp. from the Americas. We address widow spiders' taxonomy; geographical distribution and epidemiology; symptoms and treatments of envenomation (latrodectism); venom collection, experimental studies, proteome and transcriptome; and biotechnological studies on these Latrodectus spp. Moreover, we discuss the main challenges and limitations faced by researchers when trying to comprehend this neglected group of medically important spiders. We expect this review to help overcome the lack of information regarding widow spiders in the New World.
Collapse
Affiliation(s)
- Marjolly Brigido Caruso
- Laboratory of Hemostasis and Venoms, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Pedro Santana Sales Lauria
- Laboratory of Pharmacology and Experimental Therapeutics, School of Pharmacy, Federal University of Bahia (UFBA), Salvador, BA, Brazil
| | | | - Luciana Lyra Casais-E-Silva
- Laboratory of Neuroimmunoendocrinology and Toxinology, Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador, BA, Brazil
| | - Russolina Benedeta Zingali
- Laboratory of Hemostasis and Venoms, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
17
|
Egg Case Protein 3: A Constituent of Black Widow Spider Tubuliform Silk. Molecules 2021; 26:molecules26165088. [PMID: 34443676 PMCID: PMC8399404 DOI: 10.3390/molecules26165088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
Spider silk has outstanding mechanical properties, rivaling some of the best materials on the planet. Biochemical analyses of tubuliform silk have led to the identification of TuSp1, egg case protein 1, and egg case protein 2. TuSp1 belongs to the spidroin superfamily, containing a non-repetitive N- and C-terminal domain and internal block repeats. ECP1 and ECP2, which lack internal block repeats and sequence similarities to the highly conserved N- and C-terminal domains of spidroins, have cysteine-rich N-terminal domains. In this study, we performed an in-depth proteomic analysis of tubuliform glands, spinning dope, and egg sacs, which led to the identification of a novel molecular constituent of black widow tubuliform silk, referred to as egg case protein 3 or ECP3. Analysis of the translated ECP3 cDNA predicts a low molecular weight protein of 11.8 kDa. Real-time reverse transcription–quantitative PCR analysis performed with different silk-producing glands revealed ECP3 mRNA is predominantly expressed within tubuliform glands of spiders. Taken together, these findings reveal a novel protein that is secreted into black widow spider tubuliform silk.
Collapse
|
18
|
Kono N, Nakamura H, Mori M, Yoshida Y, Ohtoshi R, Malay AD, Pedrazzoli Moran DA, Tomita M, Numata K, Arakawa K. Multicomponent nature underlies the extraordinary mechanical properties of spider dragline silk. Proc Natl Acad Sci U S A 2021; 118:e2107065118. [PMID: 34312234 PMCID: PMC8346794 DOI: 10.1073/pnas.2107065118] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dragline silk of golden orb-weaver spiders (Nephilinae) is noted for its unsurpassed toughness, combining extraordinary extensibility and tensile strength, suggesting industrial application as a sustainable biopolymer material. To pinpoint the molecular composition of dragline silk and the roles of its constituents in achieving its mechanical properties, we report a multiomics approach, combining high-quality genome sequencing and assembly, silk gland transcriptomics, and dragline silk proteomics of four Nephilinae spiders. We observed the consistent presence of the MaSp3B spidroin unique to this subfamily as well as several nonspidroin SpiCE proteins. Artificial synthesis and the combination of these components in vitro showed that the multicomponent nature of dragline silk, including MaSp3B and SpiCE, along with MaSp1 and MaSp2, is essential to realize the mechanical properties of spider dragline silk.
Collapse
Affiliation(s)
- Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Hiroyuki Nakamura
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Yuki Yoshida
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Rintaro Ohtoshi
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ali D Malay
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Keiji Numata
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Depertment of Material Chemistry, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata 997-0017, Japan;
- Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| |
Collapse
|
19
|
Chaw RC, Clarke TH, Arensburger P, Ayoub NA, Hayashi CY. Gene expression profiling reveals candidate genes for defining spider silk gland types. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 135:103594. [PMID: 34052321 DOI: 10.1016/j.ibmb.2021.103594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Molecular studies of the secretory glands involved in spider silk production have revealed candidate genes for silk synthesis and a complicated history of spider silk gene evolution. However, differential gene expression profiles of the multiple silk gland types within an individual orb-web weaving spider are lacking. Each of these gland types produces a functionally distinct silk type. Comparison of gene expression among spider silk gland types would provide insight into the genes that define silk glands generally from non-silk gland tissues, and the genes that define silk glands from each other. Here, we perform 3' tag digital gene expression profiling of the seven silk gland types of the silver garden orb weaver Argiope argentata. Five of these gland types produce silks that are non-adhesive fibers, one silk includes both fibers and glue-like adhesives, and one silk is exclusively glue-like. We identify 1275 highly expressed, significantly upregulated, and tissue specific silk gland specific transcripts (SSTs). These SSTs include seven types of spider silk protein encoding genes known as spidroin genes. We find that the fiber-producing major ampullate and minor ampullate silk glands have more similar expression profiles than any other pair of glands. We also find that a subset of the SSTs is enriched for transmembrane transport and oxidoreductases, and that these transcripts highlight differences and similarities among the major ampullate, minor ampullate, and aggregate silk glands. Furthermore, we show that the wet glue-producing aggregate glands have the most unique SSTs, but still share some SSTs with fiber producing glands. Aciniform glands were the only gland type to share a majority of SSTs with other silk gland types, supporting previous hypotheses that duplication of aciniform glands and subsequent divergence of the duplicates gave rise to the multiple silk gland types within an individual spider.
Collapse
Affiliation(s)
- R Crystal Chaw
- University of California, Riverside, Department of Evolution, Ecology, and Organismal Biology, 2710 Life Science Building, Riverside, CA, 92521, USA.
| | - Thomas H Clarke
- Washington and Lee University, Department of Biology, Howe Hall, Lexington, VA, 24450, USA.
| | - Peter Arensburger
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, 91768, USA.
| | - Nadia A Ayoub
- Washington and Lee University, Department of Biology, Howe Hall, Lexington, VA, 24450, USA.
| | - Cheryl Y Hayashi
- University of California, Riverside, Department of Evolution, Ecology, and Organismal Biology, 2710 Life Science Building, Riverside, CA, 92521, USA.
| |
Collapse
|
20
|
Li F, Bian C, Li D, Shi Q. Spider Silks: An Overview of Their Component Proteins for Hydrophobicity and Biomedical Applications. Protein Pept Lett 2021; 28:255-269. [PMID: 32895035 DOI: 10.2174/0929866527666200907104401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
Spider silks have received extensive attention from scientists and industries around the world because of their remarkable mechanical properties, which include high tensile strength and extensibility. It is a leading-edge biomaterial resource, with a wide range of potential applications. Spider silks are composed of silk proteins, which are usually very large molecules, yet many silk proteins still remain largely underexplored. While there are numerous reviews on spider silks from diverse perspectives, here we provide a most up-to-date overview of the spider silk component protein family in terms of its molecular structure, evolution, hydrophobicity, and biomedical applications. Given the confusion regarding spidroin naming, we emphasize the need for coherent and consistent nomenclature for spidroins and provide recommendations for pre-existing spidroin names that are inconsistent with nomenclature. We then review recent advances in the components, identification, and structures of spidroin genes. We next discuss the hydrophobicity of spidroins, with particular attention on the unique aquatic spider silks. Aquatic spider silks are less known but may inspire innovation in biomaterials. Furthermore, we provide new insights into antimicrobial peptides from spider silk glands. Finally, we present possibilities for future uses of spider silks.
Collapse
Affiliation(s)
- Fan Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Chao Bian
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Daiqin Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Qiong Shi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
21
|
Berger CA, Brewer MS, Kono N, Nakamura H, Arakawa K, Kennedy SR, Wood HM, Adams SA, Gillespie RG. Shifts in morphology, gene expression, and selection underlie web loss in Hawaiian Tetragnatha spiders. BMC Ecol Evol 2021; 21:48. [PMID: 33752590 PMCID: PMC7983290 DOI: 10.1186/s12862-021-01779-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/10/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND A striking aspect of evolution is that it often converges on similar trajectories. Evolutionary convergence can occur in deep time or over short time scales, and is associated with the imposition of similar selective pressures. Repeated convergent events provide a framework to infer the genetic basis of adaptive traits. The current study examines the genetic basis of secondary web loss within web-building spiders (Araneoidea). Specifically, we use a lineage of spiders in the genus Tetragnatha (Tetragnathidae) that has diverged into two clades associated with the relatively recent (5 mya) colonization of, and subsequent adaptive radiation within, the Hawaiian Islands. One clade has adopted a cursorial lifestyle, and the other has retained the ancestral behavior of capturing prey with sticky orb webs. We explore how these behavioral phenotypes are reflected in the morphology of the spinning apparatus and internal silk glands, and the expression of silk genes. Several sister families to the Tetragnathidae have undergone similar web loss, so we also ask whether convergent patterns of selection can be detected in these lineages. RESULTS The cursorial clade has lost spigots associated with the sticky spiral of the orb web. This appears to have been accompanied by loss of silk glands themselves. We generated phylogenies of silk proteins (spidroins), which showed that the transcriptomes of cursorial Tetragnatha contain all major spidroins except for flagelliform. We also found an uncharacterized spidroin that has higher expression in cursorial species. We found evidence for convergent selection acting on this spidroin, as well as genes involved in protein metabolism, in the cursorial Tetragnatha and divergent cursorial lineages in the families Malkaridae and Mimetidae. CONCLUSIONS Our results provide strong evidence that independent web loss events and the associated adoption of a cursorial lifestyle are based on similar genetic mechanisms. Many genes we identified as having evolved convergently are associated with protein synthesis, degradation, and processing, which are processes that play important roles in silk production. This study demonstrates, in the case of independent evolution of web loss, that similar selective pressures act on many of the same genes to produce the same phenotypes and behaviors.
Collapse
Affiliation(s)
- Cory A Berger
- Department of Environmental Science, Policy and Management, University of California, Berkeley, 130 Mulford Hall, #3114, Berkeley, CA, 94720-3114, USA.
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge, Woods Hole, MA, USA.
| | - Michael S Brewer
- Department of Biology, N1088 Howell Science Complex, East Carolina University, Greenville, NC, 27858, USA
| | - Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Hiroyuki Nakamura
- Enzyme Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Susan R Kennedy
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa, 904-0495, Japan
| | - Hannah M Wood
- Smithsonian Institution, Entomology, MRC105, Natural History Bldg. E519, 1000 Constitution Ave NW, Washington DC, 20560-0188, USA
| | - Seira A Adams
- Department of Environmental Science, Policy and Management, University of California, Berkeley, 130 Mulford Hall, #3114, Berkeley, CA, 94720-3114, USA
| | - Rosemary G Gillespie
- Department of Environmental Science, Policy and Management, University of California, Berkeley, 130 Mulford Hall, #3114, Berkeley, CA, 94720-3114, USA
| |
Collapse
|
22
|
Esteves FG, Dos Santos-Pinto JRA, Ferro M, Sialana FJ, Smidak R, Rares LC, Nussbaumer T, Rattei T, Bilban M, Bacci Júnior M, Lubec G, Palma MS. Revealing the Venomous Secrets of the Spider's Web. J Proteome Res 2020; 19:3044-3059. [PMID: 32538095 DOI: 10.1021/acs.jproteome.0c00086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Orb-weaving spiders use a highly strong, sticky and elastic web to catch their prey. These web properties alone would be enough for the entrapment of prey; however, these spiders may be hiding venomous secrets in the web, which current research is revealing. Here, we provide strong proteotranscriptomic evidence for the presence of toxin/neurotoxin-like proteins, defensins, and proteolytic enzymes on the web silk from Nephila clavipes spider. The results from quantitative-based transcriptomic and proteomic approaches showed that silk-producing glands produce an extensive repertoire of toxin/neurotoxin-like proteins, similar to those already reported in spider venoms. Meanwhile, the insect toxicity results demonstrated that these toxic components can be lethal and/or paralytic chemical weapons used for prey capture on the web, and the presence of fatty acids in the web may be a responsible mechanism opening the way to the web toxins for accessing the interior of prey's body, as shown here. Comparative phylogenomic-level evolutionary analyses revealed orthologous genes among two spider groups, Araneomorphae and Mygalomorphae, and the findings showed protein sequences similar to toxins found in the taxa Scorpiones and Hymenoptera in addition to Araneae. Overall, these data represent a valuable resource to further investigate other spider web toxin systems and also suggest that N. clavipes web is not a passive mechanical trap for prey capture, but it exerts an active role in prey paralysis/killing using a series of neurotoxins.
Collapse
Affiliation(s)
- Franciele Grego Esteves
- Center of the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Rio Claro, SP 13506-900, Brazil
| | - José Roberto Aparecido Dos Santos-Pinto
- Center of the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Rio Claro, SP 13506-900, Brazil
| | - Milene Ferro
- Center of the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Rio Claro, SP 13506-900, Brazil
| | - Fernando J Sialana
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna 1090, Austria
| | - Roman Smidak
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna 1090, Austria
| | - Lucaciu Calin Rares
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Thomas Nussbaumer
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Thomas Rattei
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine and Core Facility Genomics, Medical University of Vienna, 1090 Vienna, Austria
| | - Mauricio Bacci Júnior
- Center of the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Rio Claro, SP 13506-900, Brazil
| | - Gert Lubec
- Paracelsus Medical University, A 5020 Salzburg, Austria
| | - Mario Sergio Palma
- Center of the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Rio Claro, SP 13506-900, Brazil
| |
Collapse
|
23
|
Kang V, Lengerer B, Wattiez R, Flammang P. Molecular insights into the powerful mucus-based adhesion of limpets ( Patella vulgata L.). Open Biol 2020; 10:200019. [PMID: 32543352 PMCID: PMC7333891 DOI: 10.1098/rsob.200019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/14/2020] [Indexed: 12/23/2022] Open
Abstract
Limpets (Patella vulgata L.) are renowned for their powerful attachments to rocks on wave-swept seashores. Unlike adult barnacles and mussels, limpets do not adhere permanently; instead, they repeatedly transition between long-term adhesion and locomotive adhesion depending on the tide. Recent studies on the adhesive secretions (bio-adhesives) of marine invertebrates have expanded our knowledge on the composition and function of temporary and permanent bio-adhesives. In comparison, our understanding of the limpets' transitory adhesion remains limited. In this study, we demonstrate that suction is not the primary attachment mechanism in P. vulgata; rather, they secrete specialized pedal mucus for glue-like adhesion. Through combined transcriptomics and proteomics, we identified 171 protein sequences from the pedal mucus. Several of these proteins contain conserved domains found in temporary bio-adhesives from sea stars, sea urchins, marine flatworms and sea anemones. Many of these proteins share homology with fibrous gel-forming glycoproteins, including fibrillin, hemolectin and SCO-spondin. Moreover, proteins with potential protein- and glycan-degrading domains could have an immune defence role or assist degrading adhesive mucus to facilitate the transition from stationary to locomotive states. We also discovered glycosylation patterns unique to the pedal mucus, indicating that specific sugars may be involved in transitory adhesion. Our findings elucidate the mechanisms underlying P. vulgata adhesion and provide opportunities for future studies on bio-adhesives that form strong attachments and resist degradation until necessary for locomotion.
Collapse
Affiliation(s)
- Victor Kang
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Birgit Lengerer
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Mons 7000, Belgium
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons 7000, Belgium
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Mons 7000, Belgium
| |
Collapse
|
24
|
Wilczek G, Surmiak K, Wawszczak B, Sajewicz M, Kowalska T, Sindera P, Wiśniewska K, Szulinska E. Effect of long-term cadmium and copper intoxication on the efficiency of ampullate silk glands in false black widow Steatoda grossa (Theridiidae) spiders. Comp Biochem Physiol C Toxicol Pharmacol 2019; 224:108564. [PMID: 31276814 DOI: 10.1016/j.cbpc.2019.108564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 11/19/2022]
Abstract
The aim of the study was to compare cellular effects of xenobiotic cadmium and biogenic copper in ampullate silk glands of false black widow Steatoda grossa spider after long-term exposure via ingestion under laboratory conditions. Both the level of selected detoxification parameters (glutathione S-transferase, catalase, and the level of total antioxidant capacity) and degree of genotoxic changes (comet assay) were determined in the silk glands. Additionally the contents of selected amino acids (L-Ala, L-Pro, L-His, L-Phe, DL-Ile, and DL-Asn) in the hunting webs produced by spiders of this species were assessed. The ability of S. grossa females to accumulate cadmium was higher than that for copper. Long-term exposure of spiders to copper did not change the level of detoxification parameters, and the level of DNA damage in the cells of ampullate silk glands was also low. Cadmium had a stronger prooxidative and genotoxic effect than copper in the cells of the analyzed silk glands. However, regardless of the type of metal used, no significant changes in the level of amino acids in silk were found. The obtained results confirmed the effectiveness of metal neutralization mechanisms in the body of the studied spider species, which results in the protection of the function of ampullate silk glands.
Collapse
Affiliation(s)
- Grażyna Wilczek
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland.
| | - Kinga Surmiak
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland
| | - Beata Wawszczak
- Department of General Chemistry and Chromatography, Institute of Chemistry, University of Silesia, Szkolna 9, Katowice 40-006, Poland
| | - Mieczysław Sajewicz
- Department of General Chemistry and Chromatography, Institute of Chemistry, University of Silesia, Szkolna 9, Katowice 40-006, Poland
| | - Teresa Kowalska
- Department of General Chemistry and Chromatography, Institute of Chemistry, University of Silesia, Szkolna 9, Katowice 40-006, Poland
| | - Piotr Sindera
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland
| | - Kamila Wiśniewska
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland
| | - Elżbieta Szulinska
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland
| |
Collapse
|
25
|
Correa-Garhwal SM, Clarke TH, Janssen M, Crevecoeur L, McQuillan BN, Simpson AH, Vink CJ, Hayashi CY. Spidroins and Silk Fibers of Aquatic Spiders. Sci Rep 2019; 9:13656. [PMID: 31541123 PMCID: PMC6754431 DOI: 10.1038/s41598-019-49587-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/24/2019] [Indexed: 12/21/2022] Open
Abstract
Spiders are commonly found in terrestrial environments and many rely heavily on their silks for fitness related tasks such as reproduction and dispersal. Although rare, a few species occupy aquatic or semi-aquatic habitats and for them, silk-related specializations are also essential to survive in aquatic environments. Most spider silks studied to date are from cob-web and orb-web weaving species, leaving the silks from many other terrestrial spiders as well as water-associated spiders largely undescribed. Here, we characterize silks from three Dictynoidea species: the aquatic spiders Argyroneta aquatica and Desis marina as well as the terrestrial Badumna longinqua. From silk gland RNA-Seq libraries, we report a total of 47 different homologs of the spidroin (spider fibroin) gene family. Some of these 47 spidroins correspond to known spidroin types (aciniform, ampullate, cribellar, pyriform, and tubuliform), while other spidroins represent novel branches of the spidroin gene family. We also report a hydrophobic amino acid motif (GV) that, to date, is found only in the spidroins of aquatic and semi-aquatic spiders. Comparison of spider silk sequences to the silks from other water-associated arthropods, shows that there is a diversity of strategies to function in aquatic environments.
Collapse
Affiliation(s)
- Sandra M Correa-Garhwal
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92591, USA.
| | - Thomas H Clarke
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92591, USA
- J. Craig Venter Institute, Rockville, MD, 28050, USA
| | | | - Luc Crevecoeur
- Limburg Dome for Nature Study, Provincial Nature Center, Genk, 3600, Belgium
| | | | | | - Cor J Vink
- Canterbury Museum, Christchurch, 8013, New Zealand
| | - Cheryl Y Hayashi
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92591, USA
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA
| |
Collapse
|
26
|
Garb JE, Haney RA, Schwager EE, Gregorič M, Kuntner M, Agnarsson I, Blackledge TA. The transcriptome of Darwin's bark spider silk glands predicts proteins contributing to dragline silk toughness. Commun Biol 2019; 2:275. [PMID: 31372514 PMCID: PMC6658490 DOI: 10.1038/s42003-019-0496-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 05/30/2019] [Indexed: 11/17/2022] Open
Abstract
Darwin's bark spider (Caerostris darwini) produces giant orb webs from dragline silk that can be twice as tough as other silks, making it the toughest biological material. This extreme toughness comes from increased extensibility relative to other draglines. We show C. darwini dragline-producing major ampullate (MA) glands highly express a novel silk gene transcript (MaSp4) encoding a protein that diverges markedly from closely related proteins and contains abundant proline, known to confer silk extensibility, in a unique GPGPQ amino acid motif. This suggests C. darwini evolved distinct proteins that may have increased its dragline's toughness, enabling giant webs. Caerostris darwini's MA spinning ducts also appear unusually long, potentially facilitating alignment of silk proteins into extremely tough fibers. Thus, a suite of novel traits from the level of genes to spinning physiology to silk biomechanics are associated with the unique ecology of Darwin's bark spider, presenting innovative designs for engineering biomaterials.
Collapse
Affiliation(s)
- Jessica E. Garb
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Olsen Hall 414, Lowell, MA 01854 USA
| | - Robert A. Haney
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Olsen Hall 414, Lowell, MA 01854 USA
| | - Evelyn E. Schwager
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Olsen Hall 414, Lowell, MA 01854 USA
| | - Matjaž Gregorič
- Evolutionary Zoology Laboratory, Biological Institute Jovan Hadži ZRC SAZU, Novi trg 2, P.O. Box 306, 1001 Ljubljana, Slovenia
| | - Matjaž Kuntner
- Evolutionary Zoology Laboratory, Biological Institute Jovan Hadži ZRC SAZU, Novi trg 2, P.O. Box 306, 1001 Ljubljana, Slovenia
- Evolutionary Zoology Laboratory, Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Ingi Agnarsson
- Department of Biology, University of Vermont, Burlington, VT 05405 USA
| | - Todd A. Blackledge
- Integrated Bioscience Program, Department of Biology, The University of Akron, Akron, OH 44325 USA
| |
Collapse
|
27
|
Orb-weaving spider Araneus ventricosus genome elucidates the spidroin gene catalogue. Sci Rep 2019; 9:8380. [PMID: 31182776 PMCID: PMC6557832 DOI: 10.1038/s41598-019-44775-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/22/2019] [Indexed: 02/02/2023] Open
Abstract
Members of the family Araneidae are common orb-weaving spiders, and they produce several types of silks throughout their behaviors and lives, from reproduction to foraging. Egg sac, prey capture thread, or dragline silk possesses characteristic mechanical properties, and its variability makes it a highly attractive material for ecological, evolutional, and industrial fields. However, the complete set of constituents of silks produced by a single species is still unclear, and novel spidroin genes as well as other proteins are still being found. Here, we present the first genome in genus Araneus together with the full set of spidroin genes with unamplified long reads and confirmed with transcriptome of the silk glands and proteome analysis of the dragline silk. The catalogue includes the first full length sequence of a paralog of major ampullate spidroin MaSp3, and several spider silk-constituting elements designated SpiCE. Family-wide phylogenomic analysis of Araneidae suggests the relatively recent acquisition of these genes, and multiple-omics analyses demonstrate that these proteins are critical components in the abdominal spidroin gland and dragline silk, contributing to the outstanding mechanical properties of silk in this group of species.
Collapse
|
28
|
Correa-Garhwal SM, Chaw RC, Dugger T, Clarke TH, Chea KH, Kisailus D, Hayashi CY. Semi-aquatic spider silks: transcripts, proteins, and silk fibres of the fishing spider, Dolomedes triton (Pisauridae). INSECT MOLECULAR BIOLOGY 2019; 28:35-51. [PMID: 30059178 DOI: 10.1111/imb.12527] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To survive in terrestrial and aquatic environments, spiders often rely heavily on their silk. The vast majority of silks that have been studied are from orb-web or cob-web weaving species, leaving the silks of water-associated spiders largely undescribed. We characterize transcripts, proteins, and silk fibres from the semi-aquatic spider Dolomedes triton. From silk gland RNAseq libraries, we report 18 silk transcripts representing four categories of known silk protein types: aciniform, ampullate, pyriform, and tubuliform. Proteomic and structural analyses (scanning electron microscopy, energy dispersive X-ray spectrometry, contact angle) of the D. triton submersible egg sac reveal similarities to silks from aquatic caddisfly larvae. We identified two layers in D. triton egg sacs, notably a highly hydrophobic outer layer with a different elemental composition compared to egg sacs of terrestrial spiders. These features may provide D. triton egg sacs with their water repellent properties.
Collapse
Affiliation(s)
- S M Correa-Garhwal
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - R C Chaw
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - T Dugger
- Materials Science and Engineering Program, University of California, Riverside, CA, USA
| | - T H Clarke
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
- J. Craig Venter Institute, Rockville, MD, USA
| | - K H Chea
- Materials Science and Engineering Program, University of California, Riverside, CA, USA
| | - D Kisailus
- Materials Science and Engineering Program, University of California, Riverside, CA, USA
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - C Y Hayashi
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
29
|
dos Santos-Pinto JRA, Esteves FG, Sialana FJ, Ferro M, Smidak R, Rares LC, Nussbaumer T, Rattei T, Bilban M, Bacci Júnior M, Palma MS, Lübec G. A proteotranscriptomic study of silk-producing glands from the orb-weaving spiders. Mol Omics 2019; 15:256-270. [DOI: 10.1039/c9mo00087a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A proteotranscriptomic approach provides a biochemical basis for understanding the intricate spinning process and complex structural features of spider silk proteins.
Collapse
Affiliation(s)
| | - Franciele Grego Esteves
- Center of the Study of Social Insects
- Department of Biology
- Institute of Biosciences of Rio Claro
- São Paulo State University
- Rio Claro
| | | | - Milene Ferro
- Center of the Study of Social Insects
- Department of Biology
- Institute of Biosciences of Rio Claro
- São Paulo State University
- Rio Claro
| | - Roman Smidak
- Department of Pharmaceutical Chemistry
- University of Vienna
- Austria
| | - Lucaciu Calin Rares
- Division of Computational System Biology
- Department of Microbiology and Ecosystem Science
- University of Vienna
- 1090 Vienna
- Austria
| | - Thomas Nussbaumer
- Division of Computational System Biology
- Department of Microbiology and Ecosystem Science
- University of Vienna
- 1090 Vienna
- Austria
| | - Thomas Rattei
- Division of Computational System Biology
- Department of Microbiology and Ecosystem Science
- University of Vienna
- 1090 Vienna
- Austria
| | - Martin Bilban
- Department of Laboratory Medicine and Core Facility Genomics
- Medical University of Vienna
- Vienna
- Austria
| | - Maurício Bacci Júnior
- Center of the Study of Social Insects
- Department of Biology
- Institute of Biosciences of Rio Claro
- São Paulo State University
- Rio Claro
| | - Mario Sergio Palma
- Center of the Study of Social Insects
- Department of Biology
- Institute of Biosciences of Rio Claro
- São Paulo State University
- Rio Claro
| | - Gert Lübec
- Paracelsus Medical University
- A 5020 Salzburg
- Austria
| |
Collapse
|
30
|
Nanostructured, Self-Assembled Spider Silk Materials for Biomedical Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:187-221. [PMID: 31713200 DOI: 10.1007/978-981-13-9791-2_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The extraordinary mechanical properties of spider silk fibers result from the interplay of composition, structure and self-assembly of spider silk proteins (spidroins). Genetic approaches enabled the biotechnological production of recombinant spidroins which have been employed to unravel the self-assembly and spinning process. Various processing conditions allowed to explore non-natural morphologies including nanofibrils, particles, capsules, hydrogels, films or foams. Recombinant spider silk proteins and materials made thereof can be utilized for biomedical applications, such as drug delivery, tissue engineering or 3D-biomanufacturing.
Collapse
|
31
|
Whaite AD, Wang T, Macdonald J, Cummins SF. Major ampullate silk gland transcriptomes and fibre proteomes of the golden orb-weavers, Nephila plumipes and Nephila pilipes (Araneae: Nephilidae). PLoS One 2018; 13:e0204243. [PMID: 30332416 PMCID: PMC6192577 DOI: 10.1371/journal.pone.0204243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/04/2018] [Indexed: 11/18/2022] Open
Abstract
Natural spider silk is one of the world’s toughest proteinaceous materials, yet a truly biomimetic spider silk is elusive even after several decades of intense focus. In this study, Next-Generation Sequencing was utilised to produce transcriptomes of the major ampullate gland of two Australian golden orb-weavers, Nephila plumipes and Nephila pilipes, in order to identify highly expressed predicted proteins that may co-factor in the construction of the final polymer. Furthermore, proteomics was performed by liquid chromatography tandem-mass spectroscopy to analyse the natural solid silk fibre of each species to confirm highly expressed predicted proteins within the silk gland are present in the final silk product. We assembled the silk gland transcriptomes of N. plumipes and N. pilipes into 69,812 and 70,123 contigs, respectively. Gene expression analysis revealed that silk gene sequences were among the most highly expressed and we were able to procure silk sequences from both species in excess of 1,300 amino acids. However, some of the genes with the highest expression values were not able to be identified from our proteomic analysis. Proteome analysis of “reeled” silk fibres of N. plumipes and N. pilipes revealed 29 and 18 proteins, respectively, most of which were identified as silk fibre proteins. This study is the first silk gland specific transcriptome and proteome analysis for these species and will assist in the future development of a biomimetic spider silk.
Collapse
Affiliation(s)
- Alessandra D Whaite
- GeneCology Research Centre and School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Tianfang Wang
- GeneCology Research Centre and School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Joanne Macdonald
- GeneCology Research Centre and School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia.,Division of Experimental Therapeutics, Columbia University, New York City, New York, United States of America
| | - Scott F Cummins
- GeneCology Research Centre and School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
32
|
Collin MA, Clarke TH, Ayoub NA, Hayashi CY. Genomic perspectives of spider silk genes through target capture sequencing: Conservation of stabilization mechanisms and homology-based structural models of spidroin terminal regions. Int J Biol Macromol 2018; 113:829-840. [DOI: 10.1016/j.ijbiomac.2018.02.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/06/2018] [Indexed: 11/30/2022]
|
33
|
Blamires SJ, Nobbs M, Martens PJ, Tso IM, Chuang WT, Chang CK, Sheu HS. Multiscale mechanisms of nutritionally induced property variation in spider silks. PLoS One 2018; 13:e0192005. [PMID: 29390013 PMCID: PMC5794138 DOI: 10.1371/journal.pone.0192005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/14/2018] [Indexed: 12/14/2022] Open
Abstract
Variability in spider major ampullate (MA) silk properties at different scales has proven difficult to determine and remains an obstacle to the development of synthetic fibers mimicking MA silk performance. A multitude of techniques may be used to measure multiscale aspects of silk properties. Here we fed five species of Araneoid spider solutions that either contained protein or were protein deprived and performed silk tensile tests, small and wide-angle X-ray scattering (SAXS/WAXS), amino acid composition analyses, and silk gene expression analyses, to resolve persistent questions about how nutrient deprivation induces variations in MA silk mechanical properties across scales. Our analyses found that the properties of each spider's silk varied differently in response to variations in their protein intake. We found changes in the crystalline and non-crystalline nanostructures to play specific roles in inducing the property variations we found. Across treatment MaSp expression patterns differed in each of the five species. We found that in most species MaSp expression and amino acid composition variations did not conform with our predictions based on a traditional MaSp expression model. In general, changes to the silk's alanine and proline compositions influenced the alignment of the proteins within the silk's amorphous region, which influenced silk extensibility and toughness. Variations in structural alignment in the crystalline and non-crystalline regions influenced ultimate strength independent of genetic expression. Our study provides the deepest insights thus far into the mechanisms of how MA silk properties vary from gene expression to nanostructure formations to fiber mechanics. Such knowledge is imperative for promoting the production of synthetic silk fibers.
Collapse
Affiliation(s)
- Sean J. Blamires
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences D26, The University of New South Wales, Sydney, Australia
| | - Madeleine Nobbs
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences D26, The University of New South Wales, Sydney, Australia
| | - Penny J. Martens
- Graduate School of Biomedical Engineering, Samuels Building F25, The University of New South Wales, Sydney, Australia
| | - I-Min Tso
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | | | - Chung-Kai Chang
- National Synchrotron Radiation Research Centre, Hsinchu, Taiwan
| | - Hwo-Shuenn Sheu
- National Synchrotron Radiation Research Centre, Hsinchu, Taiwan
| |
Collapse
|
34
|
Hui WW, Hercik K, Belsare S, Alugubelly N, Clapp B, Rinaldi C, Edelmann MJ. Salmonella enterica Serovar Typhimurium Alters the Extracellular Proteome of Macrophages and Leads to the Production of Proinflammatory Exosomes. Infect Immun 2018; 86:e00386-17. [PMID: 29158431 PMCID: PMC5778363 DOI: 10.1128/iai.00386-17] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/10/2017] [Indexed: 12/22/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a Gram-negative bacterium, which can invade and survive within macrophages. Pathogenic salmonellae induce the secretion of specific cytokines from these phagocytic cells and interfere with the host secretory pathways. In this study, we describe the extracellular proteome of human macrophages infected with S Typhimurium, followed by analysis of canonical pathways of proteins isolated from the extracellular milieu. We demonstrate that some of the proteins secreted by macrophages upon S Typhimurium infection are released via exosomes. Moreover, we show that infected macrophages produce CD63+ and CD9+ subpopulations of exosomes at 2 h postinfection. Exosomes derived from infected macrophages trigger the Toll-like receptor 4-dependent release of tumor necrosis factor alpha (TNF-α) from naive macrophages and dendritic cells, but they also stimulate secretion of such cytokines as RANTES, IL-1ra, MIP-2, CXCL1, MCP-1, sICAM-1, GM-CSF, and G-CSF. Proinflammatory effects of exosomes are partially attributed to lipopolysaccharide, which is encapsulated within exosomes. In summary, we show for the first time that proinflammatory exosomes are formed in the early phase of macrophage infection with S Typhimurium and that they can be used to transfer cargo to naive cells, thereby leading to their stimulation.
Collapse
Affiliation(s)
- Winnie W Hui
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Kamil Hercik
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Sayali Belsare
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Navatha Alugubelly
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Beata Clapp
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida, USA
| | - Carlos Rinaldi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Mariola J Edelmann
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
35
|
Evolutionary shifts in gene expression decoupled from gene duplication across functionally distinct spider silk glands. Sci Rep 2017; 7:8393. [PMID: 28827773 PMCID: PMC5566633 DOI: 10.1038/s41598-017-07388-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/28/2017] [Indexed: 11/08/2022] Open
Abstract
Spider silk synthesis is an emerging model for the evolution of tissue-specific gene expression and the role of gene duplication in functional novelty, but its potential has not been fully realized. Accordingly, we quantified transcript (mRNA) abundance in seven silk gland types and three non-silk gland tissues for three cobweb-weaving spider species. Evolutionary analyses based on expression levels of thousands of homologous transcripts and phylogenetic reconstruction of 605 gene families demonstrated conservation of expression for each gland type among species. Despite serial homology of all silk glands, the expression profiles of the glue-forming aggregate glands were divergent from fiber-forming glands. Also surprising was our finding that shifts in gene expression among silk gland types were not necessarily coupled with gene duplication, even though silk-specific genes belong to multi-paralog gene families. Our results challenge widely accepted models of tissue specialization and significantly advance efforts to replicate silk-based high-performance biomaterials.
Collapse
|
36
|
The Nephila clavipes genome highlights the diversity of spider silk genes and their complex expression. Nat Genet 2017; 49:895-903. [PMID: 28459453 DOI: 10.1038/ng.3852] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/29/2017] [Indexed: 12/11/2022]
Abstract
Spider silks are the toughest known biological materials, yet are lightweight and virtually invisible to the human immune system, and they thus have revolutionary potential for medicine and industry. Spider silks are largely composed of spidroins, a unique family of structural proteins. To investigate spidroin genes systematically, we constructed the first genome of an orb-weaving spider: the golden orb-weaver (Nephila clavipes), which builds large webs using an extensive repertoire of silks with diverse physical properties. We cataloged 28 Nephila spidroins, representing all known orb-weaver spidroin types, and identified 394 repeated coding motif variants and higher-order repetitive cassette structures unique to specific spidroins. Characterization of spidroin expression in distinct silk gland types indicates that glands can express multiple spidroin types. We find evidence of an alternatively spliced spidroin, a spidroin expressed only in venom glands, evolutionary mechanisms for spidroin diversification, and non-spidroin genes with expression patterns that suggest roles in silk production.
Collapse
|
37
|
Chetia H, Kabiraj D, Singh D, Mosahari PV, Das S, Sharma P, Neog K, Sharma S, Jayaprakash P, Bora U. De novo transcriptome of the muga silkworm, Antheraea assamensis (Helfer). Gene 2017; 611:54-65. [DOI: 10.1016/j.gene.2017.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/29/2017] [Accepted: 02/15/2017] [Indexed: 12/30/2022]
|
38
|
Correa-Garhwal SM, Chaw RC, Clarke TH, Ayoub NA, Hayashi CY. Silk gene expression of theridiid spiders: implications for male-specific silk use. ZOOLOGY 2017; 122:107-114. [PMID: 28536006 DOI: 10.1016/j.zool.2017.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 01/15/2023]
Abstract
Spiders (order Araneae) rely on their silks for essential tasks, such as dispersal, prey capture, and reproduction. Spider silks are largely composed of spidroins, members of a protein family that are synthesized in silk glands. As needed, silk stored in silk glands is extruded through spigots on the spinnerets. Nearly all studies of spider silks have been conducted on females; thus, little is known about male silk biology. To shed light on silk use by males, we compared silk gene expression profiles of mature males to those of females from three cob-web weaving species (Theridiidae). We de novo assembled species-specific male transcriptomes from Latrodectus hesperus, Latrodectus geometricus, and Steatoda grossa followed by differential gene expression analyses. Consistent with their complement of silk spigots, male theridiid spiders express appreciable amounts of aciniform, major ampullate, minor ampullate, and pyriform spidroin genes but not tubuliform spidroin genes. The relative expression levels of particular spidroin genes varied between sexes and species. Because mature males desert their prey-capture webs and become cursorial in their search for mates, we anticipated that major ampullate (dragline) spidroin genes would be the silk genes most highly expressed by males. Indeed, major ampullate spidroin genes had the highest expression in S. grossa males. However, minor ampullate spidroin genes were the most highly expressed spidroin genes in L. geometricus and L. hesperus males. Our expression profiling results suggest species-specific adaptive divergence of silk use by male theridiids.
Collapse
Affiliation(s)
| | - R Crystal Chaw
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | - Thomas H Clarke
- Department of Biology, University of California, Riverside, CA 92521, USA; Department of Biology, Washington and Lee University, Lexington, VA 24450, USA; J. Craig Venter Institute, Rockville, MD 20850, USA.
| | - Nadia A Ayoub
- Department of Biology, Washington and Lee University, Lexington, VA 24450, USA.
| | - Cheryl Y Hayashi
- Department of Biology, University of California, Riverside, CA 92521, USA; Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA.
| |
Collapse
|
39
|
Chaw RC, Arensburger P, Clarke TH, Ayoub NA, Hayashi CY. Candidate egg case silk genes for the spider Argiope argentata from differential gene expression analyses. INSECT MOLECULAR BIOLOGY 2016; 25:757-768. [PMID: 27500384 DOI: 10.1111/imb.12260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Orb-web weaving spiders produce a variety of task-specific silks from specialized silk glands. The genetics underlying the synthesis of specific silk types are largely unknown, and transcriptome analysis could be a powerful approach for identifying candidate genes. However, de novo assembly and expression profiling of silk glands with RNA-sequencing (RNAseq) are problematic because the few known gene transcripts for silk proteins are extremely long and highly repetitive. To identify candidate genes for tubuliform (egg case) silk synthesis by the orb-weaver Argiope argentata (Araneidae), we estimated transcript abundance using two sequencing methods: RNAseq reads from throughout the length of mRNA molecules, and 3' digital gene expression reads from the 3' region of mRNA molecules. Both analyses identified similar sets of genes as differentially expressed when comparing tubuliform and nonsilk gland tissue. However, incompletely assembled silk gene transcripts were identified as differentially expressed because of RNAseq read alignments to highly repetitive regions, confounding interpretation of RNAseq results. Homologues of egg case silk protein (ECP) genes were upregulated in tubuliform glands. This discovery is the first description of ECP homologues in an araneid. We also propose additional candidate genes involved in synthesis of tubuliform or other silk types.
Collapse
Affiliation(s)
- R C Chaw
- Department of Biology, University of California, Riverside, CA, USA
| | - P Arensburger
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, USA
| | - T H Clarke
- Department of Biology, University of California, Riverside, CA, USA
- Department of Biology, Washington and Lee University, Lexington, VA, USA
| | - N A Ayoub
- Department of Biology, Washington and Lee University, Lexington, VA, USA
| | - C Y Hayashi
- Department of Biology, University of California, Riverside, CA, USA
| |
Collapse
|
40
|
Comprehensive Proteomic Analysis of Spider Dragline Silk from Black Widows: A Recipe to Build Synthetic Silk Fibers. Int J Mol Sci 2016; 17:ijms17091537. [PMID: 27649139 PMCID: PMC5037812 DOI: 10.3390/ijms17091537] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 12/15/2022] Open
Abstract
The outstanding material properties of spider dragline silk fibers have been attributed to two spidroins, major ampullate spidroins 1 and 2 (MaSp1 and MaSp2). Although dragline silk fibers have been treated with different chemical solvents to elucidate the relationship between protein structure and fiber mechanics, there has not been a comprehensive proteomic analysis of the major ampullate (MA) gland, its spinning dope, and dragline silk using a wide range of chaotropic agents, inorganic salts, and fluorinated alcohols to elucidate their complete molecular constituents. In these studies, we perform in-solution tryptic digestions of solubilized MA glands, spinning dope and dragline silk fibers using five different solvents, followed by nano liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis with an Orbitrap Fusion™ Tribrid™. To improve protein identification, we employed three different tryptic peptide fragmentation modes, which included collision-induced dissociation (CID), electron transfer dissociation (ETD), and high energy collision dissociation (HCD) to discover proteins involved in the silk assembly pathway and silk fiber. In addition to MaSp1 and MaSp2, we confirmed the presence of a third spidroin, aciniform spidroin 1 (AcSp1), widely recognized as the major constituent of wrapping silk, as a product of dragline silk. Our findings also reveal that MA glands, spinning dope, and dragline silk contain at least seven common proteins: three members of the Cysteine-Rich Protein Family (CRP1, CRP2 and CRP4), cysteine-rich secretory protein 3 (CRISP3), fasciclin and two uncharacterized proteins. In summary, this study provides a proteomic blueprint to construct synthetic silk fibers that most closely mimic natural fibers.
Collapse
|
41
|
Kumar V, Krishna KV, Khanna S, Joshi KB. Aggregation propensity of amyloidogenic and elastomeric dipeptides constituents. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Blamires SJ, Kasumovic MM, Tso IM, Martens PJ, Hook JM, Rawal A. Evidence of Decoupling Protein Structure from Spidroin Expression in Spider Dragline Silks. Int J Mol Sci 2016; 17:ijms17081294. [PMID: 27517909 PMCID: PMC5000691 DOI: 10.3390/ijms17081294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/28/2016] [Accepted: 08/01/2016] [Indexed: 11/16/2022] Open
Abstract
The exceptional strength and extensibility of spider dragline silk have been thought to be facilitated by two spidroins, major ampullate spidroin 1 (MaSp1) and major ampullate spidroin 2 (MaSp2), under the assumption that protein secondary structures are coupled with the expressed spidroins. We tested this assumption for the dragline silk of three co-existing Australian spiders, Argiope keyserlingi, Latrodectus hasselti and Nephila plumipes. We found that silk amino acid compositions did not differ among spiders collected in May. We extended these analyses temporally and found the amino acid compositions of A. keyserlingi silks to differ when collected in May compared to November, while those of L. hasselti did not. To ascertain whether their secondary structures were decoupled from spidroin expression, we performed solid-state nuclear magnetic resonance spectroscopy (NMR) analysis on the silks of all spiders collected in May. We found the distribution of alanine toward β-sheet and 3,10helix/random coil conformations differed between species, as did their relative crystallinities, with A. keyserlingi having the greatest 3,10helix/random coil composition and N. plumipes the greatest crystallinity. The protein secondary structures correlated with the mechanical properties for each of the silks better than the amino acid compositions. Our findings suggested that a differential distribution of alanine during spinning could decouple secondary structures from spidroin expression ensuring that silks of desirable mechanical properties are consistently produced. Alternative explanations include the possibility that other spidroins were incorporated into some silks.
Collapse
Affiliation(s)
- Sean J Blamires
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney 2052, Australia.
| | - Michael M Kasumovic
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney 2052, Australia.
| | - I-Min Tso
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan.
| | - Penny J Martens
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, Australia.
| | - James M Hook
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney 2052, Australia.
| | - Aditya Rawal
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
43
|
Dos Santos-Pinto JRA, Garcia AMC, Arcuri HA, Esteves FG, Salles HC, Lubec G, Palma MS. Silkomics: Insight into the Silk Spinning Process of Spiders. J Proteome Res 2016; 15:1179-93. [PMID: 26923066 DOI: 10.1021/acs.jproteome.5b01056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The proteins from the silk-producing glands were identified using both a bottom-up gel-based proteomic approach as well as from a shotgun proteomic approach. Additionally, the relationship between the functions of identified proteins and the spinning process was studied. A total of 125 proteins were identified in the major ampullate, 101 in the flagelliform, 77 in the aggregate, 75 in the tubuliform, 68 in the minor ampullate, and 23 in aciniform glands. On the basis of the functional classification using Gene Ontology, these proteins were organized into seven different groups according to their general function: (i) web silk proteins-spidroins, (ii) proteins related to the folding/conformation of spidroins, (iii) proteins that protect silk proteins from oxidative stress, (iv) proteins involved in fibrillar preservation of silks in the web, (v) proteins related to ion transport into and out of the glands during silk fiber spinning, (vi) proteins involved in prey capture and pre-digestion, and (vii) housekeeping proteins from all of the glands. Thus, a general mechanism of action for the identified proteins in the silk-producing glands from the Nephila clavipes spider was proposed; the current results also indicate that the webs play an active role in prey capture.
Collapse
Affiliation(s)
- José Roberto Aparecido Dos Santos-Pinto
- Center of Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP) , Rio Claro, São Paulo 13500, Brazil.,Department of Pediatrics, Medical University of Vienna , Vienna 1090, Austria
| | - Ana Maria Caviquioli Garcia
- Center of Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP) , Rio Claro, São Paulo 13500, Brazil
| | - Helen Andrade Arcuri
- Center of Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP) , Rio Claro, São Paulo 13500, Brazil
| | - Franciele Grego Esteves
- Center of Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP) , Rio Claro, São Paulo 13500, Brazil
| | - Heliana Clara Salles
- Center of Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP) , Rio Claro, São Paulo 13500, Brazil
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna , Vienna 1090, Austria
| | - Mario Sergio Palma
- Center of Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP) , Rio Claro, São Paulo 13500, Brazil
| |
Collapse
|
44
|
Giesa T, Perry CC, Buehler MJ. Secondary Structure Transition and Critical Stress for a Model of Spider Silk Assembly. Biomacromolecules 2016; 17:427-36. [PMID: 26669270 DOI: 10.1021/acs.biomac.5b01246] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spiders spin their silk from an aqueous solution to a solid fiber in ambient conditions. However, to date, the assembly mechanism in the spider silk gland has not been satisfactorily explained. In this paper, we use molecular dynamics simulations to model Nephila clavipes MaSp1 dragline silk formation under shear flow and determine the secondary structure transitions leading to the experimentally observed fiber structures. While no experiments are performed on the silk fiber itself, insights from this polypeptide model can be transferred to the fiber scale. The novelty of this study lies in the calculation of the shear stress (300-700 MPa) required for fiber formation and identification of the amino acid residues involved in the transition. This is the first time that the shear stress has been quantified in connection with a secondary structure transition. By study of molecules containing varying numbers of contiguous MaSp1 repeats, we determine that the smallest molecule size giving rise to a "silk-like" structure contains six polyalanine repeats. Through a probability analysis of the secondary structure, we identify specific amino acids that transition from α-helix to β-sheet. In addition to portions of the polyalanine section, these amino acids include glycine, leucine, and glutamine. The stability of β-sheet structures appears to arise from a close proximity in space of helices in the initial spidroin state. Our results are in agreement with the forces exerted by spiders in the silking process and the experimentally determined global secondary structure of spidroin and pulled MaSp1 silk. Our study emphasizes the role of shear in the assembly process of silk and can guide the design of microfluidic devices that attempt to mimic the natural spinning process and predict molecular requirements for the next generation of silk-based functional materials.
Collapse
Affiliation(s)
- Tristan Giesa
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Carole C Perry
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|