1
|
van Wijk KJ, Leppert T, Sun Z, Guzchenko I, Debley E, Sauermann G, Routray P, Mendoza L, Sun Q, Deutsch EW. The Zea mays PeptideAtlas: A New Maize Community Resource. J Proteome Res 2024; 23:3984-4004. [PMID: 39101213 DOI: 10.1021/acs.jproteome.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
This study presents the Maize PeptideAtlas resource (www.peptideatlas.org/builds/maize) to help solve questions about the maize proteome. Publicly available raw tandem mass spectrometry (MS/MS) data for maize collected from ProteomeXchange were reanalyzed through a uniform processing and metadata annotation pipeline. These data are from a wide range of genetic backgrounds and many sample types and experimental conditions. The protein search space included different maize genome annotations for the B73 inbred line from MaizeGDB, UniProtKB, NCBI RefSeq, and for the W22 inbred line. 445 million MS/MS spectra were searched, of which 120 million were matched to 0.37 million distinct peptides. Peptides were matched to 66.2% of proteins in the most recent B73 nuclear genome annotation. Furthermore, most conserved plastid- and mitochondrial-encoded proteins (NCBI RefSeq annotations) were identified. Peptides and proteins identified in the other B73 genome annotations will improve maize genome annotation. We also illustrate the high-confidence detection of unique W22 proteins. N-terminal acetylation, phosphorylation, ubiquitination, and three lysine acylations (K-acetyl, K-malonyl, and K-hydroxyisobutyryl) were identified and can be inspected through a PTM viewer in PeptideAtlas. All matched MS/MS-derived peptide data are linked to spectral, technical, and biological metadata. This new PeptideAtlas is integrated in MaizeGDB with a peptide track in JBrowse.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Tami Leppert
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Isabell Guzchenko
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Erica Debley
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Georgia Sauermann
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Pratyush Routray
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Luis Mendoza
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853, United States
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| |
Collapse
|
2
|
Ashkarran AA, Gharibi H, Modaresi SM, Saei AA, Mahmoudi M. Standardizing Protein Corona Characterization in Nanomedicine: A Multicenter Study to Enhance Reproducibility and Data Homogeneity. NANO LETTERS 2024; 24:9874-9881. [PMID: 39096192 PMCID: PMC11328176 DOI: 10.1021/acs.nanolett.4c02076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
We recently revealed significant variability in protein corona characterization across various proteomics facilities, indicating that data sets are not comparable between independent studies. This heterogeneity mainly arises from differences in sample preparation protocols, mass spectrometry workflows, and raw data processing. To address this issue, we developed standardized protocols and unified sample preparation workflows, distributing uniform protein corona digests to several top-performing proteomics centers from our previous study. We also examined the influence of using similar mass spectrometry instruments on data homogeneity and standardized database search parameters and data processing workflows. Our findings reveal a remarkable stepwise improvement in protein corona data uniformity, increasing overlaps in protein identification from 11% to 40% across facilities using similar instruments and through a uniform database search. We identify the key parameters behind data heterogeneity and provide recommendations for designing experiments. Our findings should significantly advance the robustness of protein corona analysis for diagnostic and therapeutics applications.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Hassan Gharibi
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 171 77, Sweden
| | | | - Amir Ata Saei
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
3
|
Sciandra F, Desiderio C, Vincenzoni F, Viscuso S, Bozzi M, Hübner W, Jimenez-Gutierrez GE, Cisneros B, Brancaccio A. Analysis of the GFP-labelled β-dystroglycan interactome in HEK-293 transfected cells reveals novel intracellular networks. Biochem Biophys Res Commun 2024; 703:149656. [PMID: 38364681 DOI: 10.1016/j.bbrc.2024.149656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Dystroglycan (DG) is a cell adhesion complex that is widely expressed in tissues. It is composed by two subunits, α-DG, a highly glycosylated protein that interacts with several extracellular matrix proteins, and transmembrane β-DG whose, cytodomain binds to the actin cytoskeleton. Glycosylation of α-DG is crucial for functioning as a receptor for its multiple extracellular binding partners. Perturbation of α-DG glycosylation is the central event in the pathogenesis of severe pathologies such as muscular dystrophy and cancer. β-DG acts as a scaffold for several cytoskeletal and nuclear proteins and very little is known about the fine regulation of some of these intracellular interactions and how they are perturbed in diseases. To start filling this gap by identifying uncharacterized intracellular networks preferentially associated with β-DG, HEK-293 cells were transiently transfected with a plasmid carrying the β-DG subunit with GFP fused at its C-terminus. With this strategy, we aimed at forcing β-DG to occupy multiple intracellular locations instead of sitting tightly at its canonical plasma membrane milieu, where it is commonly found in association with α-DG. Immunoprecipitation by anti-GFP antibodies followed by shotgun proteomic analysis led to the identification of an interactome formed by 313 exclusive protein matches for β-DG binding. A series of already known β-DG interactors have been found, including ezrin and emerin, whilst significant new matches, which include potential novel β-DG interactors and their related networks, were identified in diverse subcellular compartments, such as cytoskeleton, endoplasmic reticulum/Golgi, mitochondria, nuclear membrane and the nucleus itself. Of particular interest amongst the novel identified matches, Lamina-Associated Polypeptide-1B (LAP1B), an inner nuclear membrane protein, whose mutations are known to cause nuclear envelopathies characterized by muscular dystrophy, was found to interact with β-DG in HEK-293 cells. This evidence was confirmed by immunoprecipitation, Western blotting and immunofluorescence experiments. We also found by immunofluorescence experiments that LAP1B looses its nuclear envelope localization in C2C12 DG-knock-out cells, suggesting that LAP1B requires β-DG for a proper nuclear localization. These results expand the role of β-DG as a nuclear scaffolding protein and provide novel evidence of a possible link between dystroglycanopathies and nuclear envelopathies displaying with muscular dystrophy.
Collapse
Affiliation(s)
- Francesca Sciandra
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"- SCITEC (CNR), Largo F. Vito, 00168, Roma, Italy
| | - Claudia Desiderio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"- SCITEC (CNR), Largo F. Vito, 00168, Roma, Italy
| | - Federica Vincenzoni
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie, Sezione di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Roma, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Simona Viscuso
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie, Sezione di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Roma, Italy
| | - Manuela Bozzi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"- SCITEC (CNR), Largo F. Vito, 00168, Roma, Italy; Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie, Sezione di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Roma, Italy
| | - Wolfgang Hübner
- Biomolecular Photonics, University of Bielefeld, 33615, Bielefeld, Germany
| | | | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, CINVESTAV Zacatenco IPN, Ciudad de México, 07360, Mexico
| | - Andrea Brancaccio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"- SCITEC (CNR), Largo F. Vito, 00168, Roma, Italy; School of Biochemistry, University of Bristol, BS8 1TD, UK.
| |
Collapse
|
4
|
Omenn GS, Lane L, Overall CM, Lindskog C, Pineau C, Packer NH, Cristea IM, Weintraub ST, Orchard S, Roehrl MHA, Nice E, Guo T, Van Eyk JE, Liu S, Bandeira N, Aebersold R, Moritz RL, Deutsch EW. The 2023 Report on the Proteome from the HUPO Human Proteome Project. J Proteome Res 2024; 23:532-549. [PMID: 38232391 PMCID: PMC11026053 DOI: 10.1021/acs.jproteome.3c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Since 2010, the Human Proteome Project (HPP), the flagship initiative of the Human Proteome Organization (HUPO), has pursued two goals: (1) to credibly identify the protein parts list and (2) to make proteomics an integral part of multiomics studies of human health and disease. The HPP relies on international collaboration, data sharing, standardized reanalysis of MS data sets by PeptideAtlas and MassIVE-KB using HPP Guidelines for quality assurance, integration and curation of MS and non-MS protein data by neXtProt, plus extensive use of antibody profiling carried out by the Human Protein Atlas. According to the neXtProt release 2023-04-18, protein expression has now been credibly detected (PE1) for 18,397 of the 19,778 neXtProt predicted proteins coded in the human genome (93%). Of these PE1 proteins, 17,453 were detected with mass spectrometry (MS) in accordance with HPP Guidelines and 944 by a variety of non-MS methods. The number of neXtProt PE2, PE3, and PE4 missing proteins now stands at 1381. Achieving the unambiguous identification of 93% of predicted proteins encoded from across all chromosomes represents remarkable experimental progress on the Human Proteome parts list. Meanwhile, there are several categories of predicted proteins that have proved resistant to detection regardless of protein-based methods used. Additionally there are some PE1-4 proteins that probably should be reclassified to PE5, specifically 21 LINC entries and ∼30 HERV entries; these are being addressed in the present year. Applying proteomics in a wide array of biological and clinical studies ensures integration with other omics platforms as reported by the Biology and Disease-driven HPP teams and the antibody and pathology resource pillars. Current progress has positioned the HPP to transition to its Grand Challenge Project focused on determining the primary function(s) of every protein itself and in networks and pathways within the context of human health and disease.
Collapse
Affiliation(s)
- Gilbert S. Omenn
- University of Michigan, Ann Arbor, Michigan 48109, United States
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Lydie Lane
- CALIPHO Group, SIB Swiss Institute of Bioinformatics and University of Geneva, 1015 Lausanne, Switzerland
| | - Christopher M. Overall
- University of British Columbia, Vancouver, BC V6T 1Z4, Canada, Yonsei University Republic of Korea
| | | | - Charles Pineau
- University Rennes, Inserm U1085, Irset, 35042 Rennes, France
| | | | | | - Susan T. Weintraub
- University of Texas Health Science Center-San Antonio, San Antonio, Texas 78229-3900, United States
| | | | - Michael H. A. Roehrl
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | | | - Tiannan Guo
- Westlake Center for Intelligent Proteomics, Westlake Laboratory, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Jennifer E. Van Eyk
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Pavilion, 9th Floor, Los Angeles, CA, 90048, United States
| | - Siqi Liu
- BGI Group, Shenzhen 518083, China
| | - Nuno Bandeira
- University of California, San Diego, La Jolla, CA, 92093, United States
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology in ETH Zurich, 8092 Zurich, Switzerland
- University of Zurich, 8092 Zurich, Switzerland
| | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Eric W. Deutsch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| |
Collapse
|
5
|
Gharibi H, Ashkarran AA, Jafari M, Voke E, Landry MP, Saei AA, Mahmoudi M. A uniform data processing pipeline enables harmonized nanoparticle protein corona analysis across proteomics core facilities. Nat Commun 2024; 15:342. [PMID: 38184668 PMCID: PMC10771434 DOI: 10.1038/s41467-023-44678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/20/2023] [Indexed: 01/08/2024] Open
Abstract
Protein corona, a layer of biomolecules primarily comprising proteins, forms dynamically on nanoparticles in biological fluids and is crucial for predicting nanomedicine safety and efficacy. The protein composition of the corona layer is typically analyzed using liquid chromatography-mass spectrometry (LC-MS/MS). Our recent study, involving identical samples analyzed by 17 proteomics facilities, highlighted significant data variability, with only 1.8% of proteins consistently identified across these centers. Here, we implement an aggregated database search unifying parameters such as variable modifications, enzyme specificity, number of allowed missed cleavages and a stringent 1% false discovery rate at the protein and peptide levels. Such uniform search dramatically harmonizes the proteomics data, increasing the reproducibility and the percentage of consistency-identified unique proteins across distinct cores. Specifically, out of the 717 quantified proteins, 253 (35.3%) are shared among the top 5 facilities (and 16.2% among top 11 facilities). Furthermore, we note that reduction and alkylation are important steps in protein corona sample processing and as expected, omitting these steps reduces the number of total quantified peptides by around 20%. These findings underscore the need for standardized procedures in protein corona analysis, which is vital for advancing clinical applications of nanoscale biotechnologies.
Collapse
Affiliation(s)
- Hassan Gharibi
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ali Akbar Ashkarran
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA
| | - Maryam Jafari
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Elizabeth Voke
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Amir Ata Saei
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden.
- Biozentrum, University of Basel, 4056, Basel, Switzerland.
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
6
|
van Wijk KJ, Leppert T, Sun Z, Kearly A, Li M, Mendoza L, Guzchenko I, Debley E, Sauermann G, Routray P, Malhotra S, Nelson A, Sun Q, Deutsch EW. Detection of the Arabidopsis Proteome and Its Post-translational Modifications and the Nature of the Unobserved (Dark) Proteome in PeptideAtlas. J Proteome Res 2024; 23:185-214. [PMID: 38104260 DOI: 10.1021/acs.jproteome.3c00536] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
This study describes a new release of the Arabidopsis thaliana PeptideAtlas proteomics resource (build 2023-10) providing protein sequence coverage, matched mass spectrometry (MS) spectra, selected post-translational modifications (PTMs), and metadata. 70 million MS/MS spectra were matched to the Araport11 annotation, identifying ∼0.6 million unique peptides and 18,267 proteins at the highest confidence level and 3396 lower confidence proteins, together representing 78.6% of the predicted proteome. Additional identified proteins not predicted in Araport11 should be considered for the next Arabidopsis genome annotation. This release identified 5198 phosphorylated proteins, 668 ubiquitinated proteins, 3050 N-terminally acetylated proteins, and 864 lysine-acetylated proteins and mapped their PTM sites. MS support was lacking for 21.4% (5896 proteins) of the predicted Araport11 proteome: the "dark" proteome. This dark proteome is highly enriched for E3 ligases, transcription factors, and for certain (e.g., CLE, IDA, PSY) but not other (e.g., THIONIN, CAP) signaling peptides families. A machine learning model trained on RNA expression data and protein properties predicts the probability that proteins will be detected. The model aids in discovery of proteins with short half-life (e.g., SIG1,3 and ERF-VII TFs) and for developing strategies to identify the missing proteins. PeptideAtlas is linked to TAIR, tracks in JBrowse, and several other community proteomics resources.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Tami Leppert
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Alyssa Kearly
- Boyce Thompson Institute, Ithaca, New York 14853, United States
| | - Margaret Li
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Luis Mendoza
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Isabell Guzchenko
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Erica Debley
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Georgia Sauermann
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Pratyush Routray
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Sagunya Malhotra
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Andrew Nelson
- Boyce Thompson Institute, Ithaca, New York 14853, United States
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853, United States
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| |
Collapse
|
7
|
Wacholder A, Carvunis AR. Biological factors and statistical limitations prevent detection of most noncanonical proteins by mass spectrometry. PLoS Biol 2023; 21:e3002409. [PMID: 38048358 PMCID: PMC10721188 DOI: 10.1371/journal.pbio.3002409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 12/14/2023] [Accepted: 10/30/2023] [Indexed: 12/06/2023] Open
Abstract
Ribosome profiling experiments indicate pervasive translation of short open reading frames (ORFs) outside of annotated protein-coding genes. However, shotgun mass spectrometry (MS) experiments typically detect only a small fraction of the predicted protein products of this noncanonical translation. The rarity of detection could indicate that most predicted noncanonical proteins are rapidly degraded and not present in the cell; alternatively, it could reflect technical limitations. Here, we leveraged recent advances in ribosome profiling and MS to investigate the factors limiting detection of noncanonical proteins in yeast. We show that the low detection rate of noncanonical ORF products can largely be explained by small size and low translation levels and does not indicate that they are unstable or biologically insignificant. In particular, proteins encoded by evolutionarily young genes, including those with well-characterized biological roles, are too short and too lowly expressed to be detected by shotgun MS at current detection sensitivities. Additionally, we find that decoy biases can give misleading estimates of noncanonical protein false discovery rates, potentially leading to false detections. After accounting for these issues, we found strong evidence for 4 noncanonical proteins in MS data, which were also supported by evolution and translation data. These results illustrate the power of MS to validate unannotated genes predicted by ribosome profiling, but also its substantial limitations in finding many biologically relevant lowly expressed proteins.
Collapse
Affiliation(s)
- Aaron Wacholder
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
8
|
Prensner JR, Abelin JG, Kok LW, Clauser KR, Mudge JM, Ruiz-Orera J, Bassani-Sternberg M, Moritz RL, Deutsch EW, van Heesch S. What Can Ribo-Seq, Immunopeptidomics, and Proteomics Tell Us About the Noncanonical Proteome? Mol Cell Proteomics 2023; 22:100631. [PMID: 37572790 PMCID: PMC10506109 DOI: 10.1016/j.mcpro.2023.100631] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/21/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023] Open
Abstract
Ribosome profiling (Ribo-Seq) has proven transformative for our understanding of the human genome and proteome by illuminating thousands of noncanonical sites of ribosome translation outside the currently annotated coding sequences (CDSs). A conservative estimate suggests that at least 7000 noncanonical ORFs are translated, which, at first glance, has the potential to expand the number of human protein CDSs by 30%, from ∼19,500 annotated CDSs to over 26,000 annotated CDSs. Yet, additional scrutiny of these ORFs has raised numerous questions about what fraction of them truly produce a protein product and what fraction of those can be understood as proteins according to conventional understanding of the term. Adding further complication is the fact that published estimates of noncanonical ORFs vary widely by around 30-fold, from several thousand to several hundred thousand. The summation of this research has left the genomics and proteomics communities both excited by the prospect of new coding regions in the human genome but searching for guidance on how to proceed. Here, we discuss the current state of noncanonical ORF research, databases, and interpretation, focusing on how to assess whether a given ORF can be said to be "protein coding."
Collapse
Affiliation(s)
- John R Prensner
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | | | - Leron W Kok
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Karl R Clauser
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, Agora Center Bugnon 25A, University of Lausanne, Lausanne, Switzerland; Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland
| | - Robert L Moritz
- Institute for Systems Biology (ISB), Seattle, Washington, USA
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington, USA
| | | |
Collapse
|
9
|
van Wijk KJ, Leppert T, Sun Z, Kearly A, Li M, Mendoza L, Guzchenko I, Debley E, Sauermann G, Routray P, Malhotra S, Nelson A, Sun Q, Deutsch EW. Mapping the Arabidopsis thaliana proteome in PeptideAtlas and the nature of the unobserved (dark) proteome; strategies towards a complete proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543322. [PMID: 37333403 PMCID: PMC10274743 DOI: 10.1101/2023.06.01.543322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
This study describes a new release of the Arabidopsis thaliana PeptideAtlas proteomics resource providing protein sequence coverage, matched mass spectrometry (MS) spectra, selected PTMs, and metadata. 70 million MS/MS spectra were matched to the Araport11 annotation, identifying ∼0.6 million unique peptides and 18267 proteins at the highest confidence level and 3396 lower confidence proteins, together representing 78.6% of the predicted proteome. Additional identified proteins not predicted in Araport11 should be considered for building the next Arabidopsis genome annotation. This release identified 5198 phosphorylated proteins, 668 ubiquitinated proteins, 3050 N-terminally acetylated proteins and 864 lysine-acetylated proteins and mapped their PTM sites. MS support was lacking for 21.4% (5896 proteins) of the predicted Araport11 proteome - the 'dark' proteome. This dark proteome is highly enriched for certain ( e.g. CLE, CEP, IDA, PSY) but not other ( e.g. THIONIN, CAP,) signaling peptides families, E3 ligases, TFs, and other proteins with unfavorable physicochemical properties. A machine learning model trained on RNA expression data and protein properties predicts the probability for proteins to be detected. The model aids in discovery of proteins with short-half life ( e.g. SIG1,3 and ERF-VII TFs) and completing the proteome. PeptideAtlas is linked to TAIR, JBrowse, PPDB, SUBA, UniProtKB and Plant PTM Viewer.
Collapse
|
10
|
Prensner JR, Abelin JG, Kok LW, Clauser KR, Mudge JM, Ruiz-Orera J, Bassani-Sternberg M, Deutsch EW, van Heesch S. What can Ribo-seq and proteomics tell us about the non-canonical proteome? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541049. [PMID: 37292611 PMCID: PMC10245706 DOI: 10.1101/2023.05.16.541049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ribosome profiling (Ribo-seq) has proven transformative for our understanding of the human genome and proteome by illuminating thousands of non-canonical sites of ribosome translation outside of the currently annotated coding sequences (CDSs). A conservative estimate suggests that at least 7,000 non-canonical open reading frames (ORFs) are translated, which, at first glance, has the potential to expand the number of human protein-coding sequences by 30%, from ∼19,500 annotated CDSs to over 26,000. Yet, additional scrutiny of these ORFs has raised numerous questions about what fraction of them truly produce a protein product and what fraction of those can be understood as proteins according to conventional understanding of the term. Adding further complication is the fact that published estimates of non-canonical ORFs vary widely by around 30-fold, from several thousand to several hundred thousand. The summation of this research has left the genomics and proteomics communities both excited by the prospect of new coding regions in the human genome, but searching for guidance on how to proceed. Here, we discuss the current state of non-canonical ORF research, databases, and interpretation, focusing on how to assess whether a given ORF can be said to be "protein-coding". In brief The human genome encodes thousands of non-canonical open reading frames (ORFs) in addition to protein-coding genes. As a nascent field, many questions remain regarding non-canonical ORFs. How many exist? Do they encode proteins? What level of evidence is needed for their verification? Central to these debates has been the advent of ribosome profiling (Ribo-seq) as a method to discern genome-wide ribosome occupancy, and immunopeptidomics as a method to detect peptides that are processed and presented by MHC molecules and not observed in traditional proteomics experiments. This article provides a synthesis of the current state of non-canonical ORF research and proposes standards for their future investigation and reporting. Highlights Combined use of Ribo-seq and proteomics-based methods enables optimal confidence in detecting non-canonical ORFs and their protein products.Ribo-seq can provide more sensitive detection of non-canonical ORFs, but data quality and analytical pipelines will impact results.Non-canonical ORF catalogs are diverse and span both high-stringency and low-stringency ORF nominations.A framework for standardized non-canonical ORF evidence will advance the research field.
Collapse
Affiliation(s)
- John R. Prensner
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Leron W. Kok
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Karl R. Clauser
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jonathan M. Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Agora Center Bugnon 25A, 1005 Lausanne, Switzerland
- Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland
- Agora Cancer Research Centre, 1011 Lausanne, Switzerland
| | - Eric W. Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Sebastiaan van Heesch
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| |
Collapse
|
11
|
Lucchetti D, Luongo F, Colella F, Gurreri E, Artemi G, Desiderio C, Serra S, Giuliante F, De Maria R, Sgambato A, Vitali A, Fiori ME. Exploiting bioactive natural products of marine origin: Evaluation of the meroterpenoid metachromin V as a novel potential therapeutic drug for colorectal cancer. Biomed Pharmacother 2023; 162:114679. [PMID: 37068332 DOI: 10.1016/j.biopha.2023.114679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/26/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer death, leading to almost 1 million deaths per year. Despite constant progress in surgical and therapeutic protocols, the 5-year survival rate of advanced CRC patients remains extremely poor. Colorectal Cancer Stem Cells (CRC-CSCs) are endowed with unique stemness-related properties responsible for resistance, relapse and metastasis. The development of novel therapeutics able to tackle CSCs while avoiding undesired toxicity is a major need for cancer treatment. Natural products are a large reservoir of unexplored compounds with possible anticancer bioactivity, sustainability, and safety. The family of meroterpenoids derived from sponges share interesting bioactive properties. Bioassay-guided fractionation of a meroterpenoids extract led to the isolation of three compounds, all cytotoxic against several cancer cell lines: Metachromins U, V and W. In this study, we evaluated the anticancer potential of the most active one, Metachromins V (MV), on patient-derived CRC-CSCs. MV strongly impairs CSCs-viability regardless their mutational background and the cytotoxic effect is maintained on therapy-resistant metastatic CSCs. MV affects cell cycle progression, inducing a block in G2 phase in all the cell lines tested and more pronouncedly in CRC-CSCs. Moreover, MV triggers an important reorganization of the cytoskeleton and a strong reduction of Rho GTPases expression, impairing CRC-CSCs motility and invasion ability. By Proteomic analysis identified a potential molecular target of MV: CCAR1, that regulates apoptosis under chemotherapy treatments and affect β-catenin pathway. Further studies will be needed to confirm and validate these data in in vivo experimental models.
Collapse
Affiliation(s)
- Donatella Lucchetti
- Dipartimento di Medicina e Chirurgia traslazionale - Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
| | - Francesca Luongo
- Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
| | - Filomena Colella
- Dipartimento di Medicina e Chirurgia traslazionale - Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Enrico Gurreri
- Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
| | - Giulia Artemi
- Dipartimento di Medicina e Chirurgia traslazionale - Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudia Desiderio
- Istituto di Scienze e Tecnologie Chimiche"Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Stefano Serra
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche (CNR),. Milano, Italy
| | - Felice Giuliante
- Dipartimento di Scienze Mediche e Chirurgiche, Chirurgia Generale ed Epato-Biliare, Fondazione Policlinico Universitario "A. Gemelli= - IRCCS, Rome, Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia traslazionale - Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
| | - Alessandro Sgambato
- Dipartimento di Medicina e Chirurgia traslazionale - Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy.
| | - Alberto Vitali
- Istituto di Scienze e Tecnologie Chimiche"Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Micol Eleonora Fiori
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
12
|
Omenn GS, Lane L, Overall CM, Pineau C, Packer NH, Cristea IM, Lindskog C, Weintraub ST, Orchard S, Roehrl MH, Nice E, Liu S, Bandeira N, Chen YJ, Guo T, Aebersold R, Moritz RL, Deutsch EW. The 2022 Report on the Human Proteome from the HUPO Human Proteome Project. J Proteome Res 2023; 22:1024-1042. [PMID: 36318223 PMCID: PMC10081950 DOI: 10.1021/acs.jproteome.2c00498] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The 2022 Metrics of the Human Proteome from the HUPO Human Proteome Project (HPP) show that protein expression has now been credibly detected (neXtProt PE1 level) for 18 407 (93.2%) of the 19 750 predicted proteins coded in the human genome, a net gain of 50 since 2021 from data sets generated around the world and reanalyzed by the HPP. Conversely, the number of neXtProt PE2, PE3, and PE4 missing proteins has been reduced by 78 from 1421 to 1343. This represents continuing experimental progress on the human proteome parts list across all the chromosomes, as well as significant reclassifications. Meanwhile, applying proteomics in a vast array of biological and clinical studies continues to yield significant findings and growing integration with other omics platforms. We present highlights from the Chromosome-Centric HPP, Biology and Disease-driven HPP, and HPP Resource Pillars, compare features of mass spectrometry and Olink and Somalogic platforms, note the emergence of translation products from ribosome profiling of small open reading frames, and discuss the launch of the initial HPP Grand Challenge Project, "A Function for Each Protein".
Collapse
Affiliation(s)
- Gilbert S. Omenn
- University of Michigan, Ann Arbor, Michigan 48109, United States
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Lydie Lane
- CALIPHO Group, SIB Swiss Institute of Bioinformatics and University of Geneva, 1015 Lausanne, Switzerland
| | | | - Charles Pineau
- French Institute of Health and Medical Research, 35042 RENNES Cedex, France
| | - Nicolle H. Packer
- Macquarie University, Sydney, NSW 2109, Australia
- Griffith University’s Institute for Glycomics, Sydney, NSW 2109, Australia
| | | | | | - Susan T. Weintraub
- University of Texas Health Science Center-San Antonio, San Antonio, Texas 78229-3900, United States
| | - Sandra Orchard
- EMBL-EBI, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| | - Michael H.A. Roehrl
- Memorial Sloan Kettering Cancer Center, New York, New York, 10065, United States
| | | | - Siqi Liu
- BGI Group, Shenzhen 518083, China
| | - Nuno Bandeira
- University of California, San Diego, La Jolla, California 92093, United States
| | - Yu-Ju Chen
- National Taiwan University, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Tiannan Guo
- Westlake University Guomics Laboratory of Big Proteomic Data, Hangzhou 310024, Zhejiang Province, China
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology in ETH Zurich, 8092 Zurich, Switzerland
| | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Eric W. Deutsch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| |
Collapse
|
13
|
LI Z, WANG C, XU B, CHEN J, ZHANG Y, GUO L, XIE J. [Analysis and identification of suspected snake venom samples using nano-ultra-high performance liquid chromatography-high resolution mass spectrometry]. Se Pu 2023; 41:122-130. [PMID: 36725708 PMCID: PMC9892974 DOI: 10.3724/sp.j.1123.2022.08009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Snake venom is a complex mixture secreted from the glands of poisonous snakes, which contains proteins, peptides, lipids, nucleosides, sugars, amino acids, amines, metal ions, and other components. According to the toxicological classification, snake venoms can be classified as neurotoxins, anticoagulants and procoagulant toxins, cardiac toxins, other toxin proteins, and enzymes. Proteins and peptides are the key components of snake venom. The establishment of rapid, accurate analysis and identification methods for proteins in snake venom is a prerequisite for snake venom-related forensic identification, intoxication events, and pharmaceutical development. Until now, the classical analysis and identification methods have mainly been biochemical or immunoassays for DNA or proteins, such as polymerase chain reaction, agglutination test, enzyme-linked immunosorbent assay, fluorescent immunoassay, and various biosensing approaches. These methods have some limitations such as a high false-positive ratio, low sensitivity, poor anti-interference ability, and limited species discrimination capability. In recent years, with the rapid development of mass spectrometry (MS) techniques, the proteomics of snake venom has also attracted much attention and has contributed to the identification of snake species, in which non-targeted and targeted proteomics represent two main divisions. However, species identification via proteomics is in its infancy in forensic science. First, the tandem MS spectra of peptide sequences are highly complex, which poses a great challenge for the strict and accurate matching of peptides based on the rational speculation of MS fragmentation rules and theoretical calculations in non-targeted proteomics. Second, for the confirmation and identification of unknown substances, reference substances are commonly needed, but those for snake venom are lacking. Proteomics in snake venom identification is still in progress to improve the identification confidence and clarify the identification rules. In this work, a method based on nano-ultra-high performance liquid chromatography-quadrupole-orbitrap high-resolution mass spectrometry (Nano LC-MS/HRMS) and size exclusion chromatography (SEC) was developed for identifying proteins and their source species, with strict rules for five suspected snake venom samples and their contamination in one case. Three SEC elution peaks were obtained from each of the five samples, which were lyophilized and treated with trypsin in solution, and then separated and analyzed by Nano LC-MS/HRMS. First, the Full MS/dd MS2 mode was used for the non-targeted acquisition of peptide information in the samples, and after submission to the Swiss-Prot database, the protein databases of Serpentes, Colubroidea, Elapidae, Elapinae, and Naja were contracted stepwise and compared. A total of 32 proteins from Naja atra were identified under the conditions of both peptide spectrum match and false discovery rate less than 1%, and number of characteristic peptides greater than or equal to two. All of these were derived from ten families of Naja atra, mainly three-finger toxins, metalloproteinases, and phospholipase A2. Proteins D3TTC2, D5LMJ3, Q7T1K6, Q9DEQ3, and Q9YGI4 were the most common among the five samples. Finally, the parallel reaction monitoring mode was adopted to select two unique peptides for each protein for targeted verification. It was considered that a protein in the samples was truly identified when it met the strict standard "the Δm/z of at least 75% y+ and b+ ions of each unique peptide was less than 5 ppm". After these consequently procedures, we identified that all five samples contained the venom of the Naja atra. Our identification method is a systematic and strict example that can provide effective technical support for the forensic identification of snake venom poisoning, as well as for pharmaceutical development toward snake venoms.
Collapse
|
14
|
Deutsch EW, Vizcaíno JA, Jones AR, Binz PA, Lam H, Klein J, Bittremieux W, Perez-Riverol Y, Tabb DL, Walzer M, Ricard-Blum S, Hermjakob H, Neumann S, Mak TD, Kawano S, Mendoza L, Van Den Bossche T, Gabriels R, Bandeira N, Carver J, Pullman B, Sun Z, Hoffmann N, Shofstahl J, Zhu Y, Licata L, Quaglia F, Tosatto SCE, Orchard SE. Proteomics Standards Initiative at Twenty Years: Current Activities and Future Work. J Proteome Res 2023; 22:287-301. [PMID: 36626722 PMCID: PMC9903322 DOI: 10.1021/acs.jproteome.2c00637] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 01/11/2023]
Abstract
The Human Proteome Organization (HUPO) Proteomics Standards Initiative (PSI) has been successfully developing guidelines, data formats, and controlled vocabularies (CVs) for the proteomics community and other fields supported by mass spectrometry since its inception 20 years ago. Here we describe the general operation of the PSI, including its leadership, working groups, yearly workshops, and the document process by which proposals are thoroughly and publicly reviewed in order to be ratified as PSI standards. We briefly describe the current state of the many existing PSI standards, some of which remain the same as when originally developed, some of which have undergone subsequent revisions, and some of which have become obsolete. Then the set of proposals currently being developed are described, with an open call to the community for participation in the forging of the next generation of standards. Finally, we describe some synergies and collaborations with other organizations and look to the future in how the PSI will continue to promote the open sharing of data and thus accelerate the progress of the field of proteomics.
Collapse
Affiliation(s)
- Eric W. Deutsch
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Juan Antonio Vizcaíno
- European
Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Andrew R. Jones
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Pierre-Alain Binz
- Clinical
Chemistry Service, Lausanne University Hospital, 1011 976 Lausanne, Switzerland
| | - Henry Lam
- Department
of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, P. R. China.
| | - Joshua Klein
- Program for
Bioinformatics, Boston University, Boston, Massachusetts 02215, United States
| | - Wout Bittremieux
- Skaggs
School
of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- Department
of Computer Science, University of Antwerp, 2020 Antwerpen, Belgium
| | - Yasset Perez-Riverol
- European
Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - David L. Tabb
- SA MRC
Centre for TB Research, DST/NRF Centre of Excellence for Biomedical
TB Research, Division of Molecular Biology and Human Genetics, Faculty
of Medicine and Health Sciences, Stellenbosch
University, Cape Town 7602, South Africa
| | - Mathias Walzer
- European
Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Sylvie Ricard-Blum
- Univ.
Lyon, Université Lyon 1, ICBMS, UMR 5246, 69622 Villeurbanne, France
| | - Henning Hermjakob
- European
Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Steffen Neumann
- Bioinformatics
and Scientific Data, Leibniz Institute of
Plant Biochemistry, 06120 Halle, Germany
- German
Centre for Integrative Biodiversity Research (iDiv), 04103 Halle-Jena-Leipzig, Germany
| | - Tytus D. Mak
- Mass Spectrometry
Data Center, National Institute of Standards
and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United
States
| | - Shin Kawano
- Database
Center for Life Science, Joint Support Center for Data Science Research, Research Organization of Information and Systems, Chiba 277-0871, Japan
- Faculty
of Contemporary Society, Toyama University
of International Studies, Toyama 930-1292, Japan
- School
of Frontier Engineering, Kitasato University, Sagamihara 252-0373, Japan
| | - Luis Mendoza
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Tim Van Den Bossche
- VIB-UGent
Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
- Department
of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9052 Ghent, Belgium
| | - Ralf Gabriels
- VIB-UGent
Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
- Department
of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9052 Ghent, Belgium
| | - Nuno Bandeira
- Skaggs
School
of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- Center
for Computational Mass Spectrometry, Department of Computer Science
and Engineering, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego 92093-0404, United States
| | - Jeremy Carver
- Center
for Computational Mass Spectrometry, Department of Computer Science
and Engineering, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego 92093-0404, United States
| | - Benjamin Pullman
- Center
for Computational Mass Spectrometry, Department of Computer Science
and Engineering, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego 92093-0404, United States
| | - Zhi Sun
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Nils Hoffmann
- Institute
for Bio- and Geosciences (IBG-5), Forschungszentrum
Jülich GmbH, 52428 Jülich, Germany
| | - Jim Shofstahl
- Thermo
Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Yunping Zhu
- National
Center for Protein Sciences (Beijing), Beijing
Institute of Lifeomics, #38, Life Science Park, Changping District, Beijing 102206, China
| | - Luana Licata
- Fondazione
Human Technopole, 20157 Milan, Italy
- Department
of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Federica Quaglia
- Institute
of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR-IBIOM), 70126 Bari, Italy
- Department
of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | | | - Sandra E. Orchard
- European
Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| |
Collapse
|
15
|
Tebani A, Bekri S. [The promise of omics in the precision medicine era]. Rev Med Interne 2022; 43:649-660. [PMID: 36041909 DOI: 10.1016/j.revmed.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/12/2022] [Indexed: 10/15/2022]
Abstract
The rise of omics technologies that simultaneously measure thousands of molecules in a complex biological sample represents the core of systems biology. These technologies have profoundly impacted biomarkers and therapeutic targets discovery in the precision medicine era. Systems biology aims to perform a systematic probing of complex interactions in biological systems. Powered by high-throughput omics technologies and high-performance computing, systems biology provides relevant, resolving, and multi-scale overviews from cells to populations. Precision medicine takes advantage of these conceptual and technological developments and is based on two main pillars: the generation of multimodal data and their subsequent modeling. High-throughput omics technologies enable the comprehensive and holistic extraction of biological information, while computational capabilities enable multidimensional modeling and, as a result, offer an intuitive and intelligible visualization. Despite their promise, translating these technologies into clinically actionable tools has been slow. In this contribution, we present the most recent multi-omics data generation and analysis strategies and their clinical deployment in the post-genomic era. Furthermore, medical application challenges of omics-based biomarkers are discussed.
Collapse
Affiliation(s)
- A Tebani
- UNIROUEN, Inserm U1245, Department of Metabolic Biochemistry, Normandie University, CHU Rouen, 76000 Rouen, France.
| | - S Bekri
- UNIROUEN, Inserm U1245, Department of Metabolic Biochemistry, Normandie University, CHU Rouen, 76000 Rouen, France
| |
Collapse
|
16
|
Ilgisonis EV, Pogodin PV, Kiseleva OI, Tarbeeva SN, Ponomarenko EA. Evolution of Protein Functional Annotation: Text Mining Study. J Pers Med 2022; 12:jpm12030479. [PMID: 35330478 PMCID: PMC8952229 DOI: 10.3390/jpm12030479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
Within the Human Proteome Project initiative framework for creating functional annotations of uPE1 proteins, the neXt-CP50 Challenge was launched in 2018. In analogy with the missing-protein challenge, each command deciphers the functional features of the proteins in the chromosome-centric mode. However, the neXt-CP50 Challenge is more complicated than the missing-protein challenge: the approaches and methods for solving the problem are clear, but neither the concept of protein function nor specific experimental and/or bioinformatics protocols have been standardized to address it. We proposed using a retrospective analysis of the key HPP repository, the neXtProt database, to identify the most frequently used experimental and bioinformatic methods for analyzing protein functions, and the dynamics of accumulation of functional annotations. It has been shown that the dynamics of the increase in the number of proteins with known functions are greater than the progress made in the experimental confirmation of the existence of questionable proteins in the framework of the missing-protein challenge. At the same time, the functional annotation is based on the guilty-by-association postulate, according to which, based on large-scale experiments on API-MS and Y2H, proteins with unknown functions are most likely mapped through “handshakes” to biochemical processes.
Collapse
|
17
|
Bu F, Cheng Q, Zhang Y, Zhang X, Yan K, Liu F, Li Z, Lu X, Ren Y, Liu S. Discovery of Missing Proteins from an Aneuploidy Cell Line Using a Proteogenomic Approach. J Proteome Res 2021; 20:5329-5339. [PMID: 34748338 DOI: 10.1021/acs.jproteome.1c00772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With the steadfast development of proteomic technology, the number of missing proteins (MPs) has been continuously shrinking, with approximately 1470 MPs that have not been explored yet. Due to this phenomenon, the discovery of MPs has been increasingly more difficult and elusive. In order to face this challenge, we have hypothesized that a stable aneuploid cell line with increased chromosomes serves as a useful material for assisting MP exploration. Ker-CT cell line with trisomy at chromosome 5 and 20 was selected for this purpose. With a combination strategy of RNA-Seq and LC-MS/MS, a total of 22 178 transcripts and 8846 proteins were identified in Ker-CT. Although the transcripts corresponding to 15 and 15 MP genes located at chromosome 5 and 20 were detected, none of the MPs were found in Ker-CT. Surprisingly, 3 MPs containing at least two unique non-nest peptides of length ≥9 amino acids were identified in Ker-CT, whose genes are located on chromosome 3 and 10, respectively. Furthermore, the 3 MPs were verified using the method of parallel reaction monitoring (PRM). These results suggest that the abnormal status of chromosomes may not only impact the expression of the corresponding genes in trisomy chromosomes, but also influence that of other chromosomes, which benefits MP discovery. The data obtained in this study are available via ProteomeXchange (PXD028647) and PeptideAtlas (PASS01700), respectively.
Collapse
Affiliation(s)
- Fanyu Bu
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China.,Department of BGI Education, School of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, China
| | - Qingqiu Cheng
- Clinical Laboratory Center of Dongguan Eighth People's Hospital, Dongguan 523325, China
| | - Yuxing Zhang
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China.,Department of BGI Education, School of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, China
| | - Xia Zhang
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China.,Department of BGI Education, School of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, China
| | - Keqiang Yan
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China.,Department of BGI Education, School of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, China
| | - Frank Liu
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Zelong Li
- Biological Resource Center of Plants, Animals and Microorganisms, China National Gene Bank, BGI-Shenzhen, Guangdong 518120, China
| | - Xiaomei Lu
- Clinical Laboratory Center of Dongguan Eighth People's Hospital, Dongguan 523325, China
| | - Yan Ren
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Siqi Liu
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China.,Department of BGI Education, School of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, China
| |
Collapse
|
18
|
Omenn GS, Lane L, Overall CM, Paik YK, Cristea IM, Corrales FJ, Lindskog C, Weintraub S, Roehrl MHA, Liu S, Bandeira N, Srivastava S, Chen YJ, Aebersold R, Moritz RL, Deutsch EW. Progress Identifying and Analyzing the Human Proteome: 2021 Metrics from the HUPO Human Proteome Project. J Proteome Res 2021; 20:5227-5240. [PMID: 34670092 PMCID: PMC9340669 DOI: 10.1021/acs.jproteome.1c00590] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 2021 Metrics of the HUPO Human Proteome Project (HPP) show that protein expression has now been credibly detected (neXtProt PE1 level) for 18 357 (92.8%) of the 19 778 predicted proteins coded in the human genome, a gain of 483 since 2020 from reports throughout the world reanalyzed by the HPP. Conversely, the number of neXtProt PE2, PE3, and PE4 missing proteins has been reduced by 478 to 1421. This represents remarkable progress on the proteome parts list. The utilization of proteomics in a broad array of biological and clinical studies likewise continues to expand with many important findings and effective integration with other omics platforms. We present highlights from the Immunopeptidomics, Glycoproteomics, Infectious Disease, Cardiovascular, Musculo-Skeletal, Liver, and Cancers B/D-HPP teams and from the Knowledgebase, Mass Spectrometry, Antibody Profiling, and Pathology resource pillars, as well as ethical considerations important to the clinical utilization of proteomics and protein biomarkers.
Collapse
Affiliation(s)
- Gilbert S Omenn
- University of Michigan, Ann Arbor, Michigan 48109, United States
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Lydie Lane
- CALIPHO Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | | | - Young-Ki Paik
- Yonsei Proteome Research Center and Yonsei University, Seoul 03722, Korea
| | - Ileana M Cristea
- Princeton University, Princeton, New Jersey 08544, United States
| | | | | | - Susan Weintraub
- University of Texas Health, San Antonio, San Antonio, Texas 78229-3900, United States
| | - Michael H A Roehrl
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Siqi Liu
- BGI Group, Shenzhen 518083, China
| | - Nuno Bandeira
- University of California, San Diego, La Jolla, California 92093, United States
| | | | - Yu-Ju Chen
- National Taiwan University, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Ruedi Aebersold
- ETH-Zurich and University of Zurich, 8092 Zurich, Switzerland
| | - Robert L Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Eric W Deutsch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| |
Collapse
|
19
|
van Wijk KJ, Leppert T, Sun Q, Boguraev SS, Sun Z, Mendoza L, Deutsch EW. The Arabidopsis PeptideAtlas: Harnessing worldwide proteomics data to create a comprehensive community proteomics resource. THE PLANT CELL 2021; 33:3421-3453. [PMID: 34411258 PMCID: PMC8566204 DOI: 10.1093/plcell/koab211] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/13/2021] [Indexed: 05/02/2023]
Abstract
We developed a resource, the Arabidopsis PeptideAtlas (www.peptideatlas.org/builds/arabidopsis/), to solve central questions about the Arabidopsis thaliana proteome, such as the significance of protein splice forms and post-translational modifications (PTMs), or simply to obtain reliable information about specific proteins. PeptideAtlas is based on published mass spectrometry (MS) data collected through ProteomeXchange and reanalyzed through a uniform processing and metadata annotation pipeline. All matched MS-derived peptide data are linked to spectral, technical, and biological metadata. Nearly 40 million out of ∼143 million MS/MS (tandem MS) spectra were matched to the reference genome Araport11, identifying ∼0.5 million unique peptides and 17,858 uniquely identified proteins (only isoform per gene) at the highest confidence level (false discovery rate 0.0004; 2 non-nested peptides ≥9 amino acid each), assigned canonical proteins, and 3,543 lower-confidence proteins. Physicochemical protein properties were evaluated for targeted identification of unobserved proteins. Additional proteins and isoforms currently not in Araport11 were identified that were generated from pseudogenes, alternative start, stops, and/or splice variants, and small Open Reading Frames; these features should be considered when updating the Arabidopsis genome. Phosphorylation can be inspected through a sophisticated PTM viewer. PeptideAtlas is integrated with community resources including TAIR, tracks in JBrowse, PPDB, and UniProtKB. Subsequent PeptideAtlas builds will incorporate millions more MS/MS data.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, USA
- Authors for correspondence: (K.J.V.W.), (E.W.D.)
| | - Tami Leppert
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853, USA
| | - Sascha S Boguraev
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, USA
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Luis Mendoza
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
- Authors for correspondence: (K.J.V.W.), (E.W.D.)
| |
Collapse
|
20
|
Deutsch EW, Omenn GS, Sun Z, Maes M, Pernemalm M, Palaniappan KK, Letunica N, Vandenbrouck Y, Brun V, Tao SC, Yu X, Geyer PE, Ignjatovic V, Moritz RL, Schwenk JM. Advances and Utility of the Human Plasma Proteome. J Proteome Res 2021; 20:5241-5263. [PMID: 34672606 PMCID: PMC9469506 DOI: 10.1021/acs.jproteome.1c00657] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The study of proteins circulating in blood offers tremendous opportunities to diagnose, stratify, or possibly prevent diseases. With recent technological advances and the urgent need to understand the effects of COVID-19, the proteomic analysis of blood-derived serum and plasma has become even more important for studying human biology and pathophysiology. Here we provide views and perspectives about technological developments and possible clinical applications that use mass-spectrometry(MS)- or affinity-based methods. We discuss examples where plasma proteomics contributed valuable insights into SARS-CoV-2 infections, aging, and hemostasis and the opportunities offered by combining proteomics with genetic data. As a contribution to the Human Proteome Organization (HUPO) Human Plasma Proteome Project (HPPP), we present the Human Plasma PeptideAtlas build 2021-07 that comprises 4395 canonical and 1482 additional nonredundant human proteins detected in 240 MS-based experiments. In addition, we report the new Human Extracellular Vesicle PeptideAtlas 2021-06, which comprises five studies and 2757 canonical proteins detected in extracellular vesicles circulating in blood, of which 74% (2047) are in common with the plasma PeptideAtlas. Our overview summarizes the recent advances, impactful applications, and ongoing challenges for translating plasma proteomics into utility for precision medicine.
Collapse
Affiliation(s)
- Eric W Deutsch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Gilbert S Omenn
- Institute for Systems Biology, Seattle, Washington 98109, United States.,Departments of Computational Medicine & Bioinformatics, Internal Medicine, and Human Genetics and School of Public Health, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| | - Zhi Sun
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Michal Maes
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Maria Pernemalm
- Department of Oncology and Pathology/Science for Life Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
| | | | - Natasha Letunica
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville 3052, Victoria, Australia
| | - Yves Vandenbrouck
- Université Grenoble Alpes, CEA, Inserm U1292, Grenoble 38000, France
| | - Virginie Brun
- Université Grenoble Alpes, CEA, Inserm U1292, Grenoble 38000, France
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, B207 SCSB Building, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Philipp E Geyer
- OmicEra Diagnostics GmbH, Behringstr. 6, 82152 Planegg, Germany
| | - Vera Ignjatovic
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville 3052, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, 50 Flemington Road, Parkville 3052, Victoria, Australia
| | - Robert L Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Jochen M Schwenk
- Affinity Proteomics, Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23, SE-171 65 Solna, Sweden
| |
Collapse
|
21
|
Shao D, Huang L, Wang Y, Cui X, Li Y, Wang Y, Ma Q, Du W, Cui J. HBFP: a new repository for human body fluid proteome. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6395039. [PMID: 34642750 PMCID: PMC8516408 DOI: 10.1093/database/baab065] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022]
Abstract
Body fluid proteome has been intensively studied as a primary source for disease
biomarker discovery. Using advanced proteomics technologies, early research
success has resulted in increasingly accumulated proteins detected in different
body fluids, among which many are promising biomarkers. However, despite a
handful of small-scale and specific data resources, current research is clearly
lacking effort compiling published body fluid proteins into a centralized and
sustainable repository that can provide users with systematic analytic tools. In
this study, we developed a new database of human body fluid proteome (HBFP) that
focuses on experimentally validated proteome in 17 types of human body fluids.
The current database archives 11 827 unique proteins reported by 164
scientific publications, with a maximal false discovery rate of 0.01 on both the
peptide and protein levels since 2001, and enables users to query, analyze and
download protein entries with respect to each body fluid. Three unique features
of this new system include the following: (i) the protein annotation page
includes detailed abundance information based on relative qualitative measures
of peptides reported in the original references, (ii) a new score is calculated
on each reported protein to indicate the discovery confidence and (iii) HBFP
catalogs 7354 proteins with at least two non-nested uniquely mapping peptides of
nine amino acids according to the Human Proteome Project Data Interpretation
Guidelines, while the remaining 4473 proteins have more than two unique peptides
without given sequence information. As an important resource for human protein
secretome, we anticipate that this new HBFP database can be a powerful tool that
facilitates research in clinical proteomics and biomarker discovery. Database URL:https://bmbl.bmi.osumc.edu/HBFP/
Collapse
Affiliation(s)
- Dan Shao
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, 122E Avery Hall, 1144 T St., Lincoln, NE 68588, USA.,Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China.,Department of Computer Science and Technology, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Lan Huang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yan Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xueteng Cui
- Department of Computer Science and Technology, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Yufei Li
- Department of Computer Science and Technology, Changchun University, 6543 Weixing Road, Changchun 130022, China
| | - Yao Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 310G Lincoln tower, 1800 cannon drive, Columbus, OH 43210, USA
| | - Wei Du
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Juan Cui
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, 122E Avery Hall, 1144 T St., Lincoln, NE 68588, USA
| |
Collapse
|
22
|
Equine Mesenchymal Stem/Stromal Cells Freeze-Dried Secretome (Lyosecretome) for the Treatment of Musculoskeletal Diseases: Production Process Validation and Batch Release Test for Clinical Use. Pharmaceuticals (Basel) 2021; 14:ph14060553. [PMID: 34200627 PMCID: PMC8226765 DOI: 10.3390/ph14060553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
In the last decades, it has been demonstrated that the regenerative therapeutic efficacy of mesenchymal stromal cells is primarily due to the secretion of soluble factors and extracellular vesicles, collectively known as secretome. In this context, our work described the preparation and characterization of a freeze-dried secretome (Lyosecretome) from adipose tissue-derived mesenchymal stromal cells for the therapy of equine musculoskeletal disorder. An intraarticular injectable pharmaceutical powder has been formulated, and the technological process has been validated in an authorized facility for veterinary clinical-use medicinal production. Critical parameters for quality control and batch release have been identified regarding (i) physicochemical properties; (ii) extracellular vesicle morphology, size distribution, and surface biomarker; (iii) protein and lipid content; (iv) requirements for injectable pharmaceutical dosage forms such as sterility, bacterial endotoxin, and Mycoplasma; and (v) in vitro potency tests, as anti-elastase activity and proliferative activity on musculoskeletal cell lines (tenocytes and chondrocytes) and mesenchymal stromal cells. Finally, proteins putatively responsible for the biological effects have been identified by Lyosecretome proteomic investigation: IL10RA, MXRA5, RARRES2, and ANXA1 modulate the inflammatory process RARRES2, NOD1, SERPINE1, and SERPINB9 with antibacterial activity. The work provides a proof-of-concept for the manufacturing of clinical-grade equine freeze-dried secretome, and prototypes are now available for safety and efficacy clinical trials in the treatment of equine musculoskeletal diseases
Collapse
|
23
|
Li H, Funk CC, McFarland K, Dammer EB, Allen M, Carrasquillo MM, Levites Y, Chakrabarty P, Burgess JD, Wang X, Dickson D, Seyfried NT, Duong DM, Lah JJ, Younkin SG, Levey AI, Omenn GS, Ertekin‐Taner N, Golde TE, Price ND. Integrative functional genomic analysis of intron retention in human and mouse brain with Alzheimer's disease. Alzheimers Dement 2021; 17:984-1004. [PMID: 33480174 PMCID: PMC8248162 DOI: 10.1002/alz.12254] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 10/08/2020] [Accepted: 10/17/2020] [Indexed: 12/21/2022]
Abstract
Intron retention (IR) has been implicated in the pathogenesis of complex diseases such as cancers; its association with Alzheimer's disease (AD) remains unexplored. We performed genome-wide analysis of IR through integrating genetic, transcriptomic, and proteomic data of AD subjects and mouse models from the Accelerating Medicines Partnership-Alzheimer's Disease project. We identified 4535 and 4086 IR events in 2173 human and 1736 mouse genes, respectively. Quantitation of IR enabled the identification of differentially expressed genes that conventional exon-level approaches did not reveal. There were significant correlations of intron expression within innate immune genes, like HMBOX1, with AD in humans. Peptides with a high probability of translation from intron-retained mRNAs were identified using mass spectrometry. Further, we established AD-specific intron expression Quantitative Trait Loci, and identified splicing-related genes that may regulate IR. Our analysis provides a novel resource for the search for new AD biomarkers and pathological mechanisms.
Collapse
Affiliation(s)
- Hong‐Dong Li
- Hunan Provincial Key Lab on BioinformaticsSchool of Computer Science and EngineeringCentral South UniversityChangshaHunanP.R. China
- Institute for Systems BiologySeattleWashingtonUSA
| | - Cory C. Funk
- Institute for Systems BiologySeattleWashingtonUSA
| | - Karen McFarland
- Department of Neuroscience and NeurologyCenter for Translational Research in Neurodegenerative diseaseand McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Eric B. Dammer
- Department of BiochemistryEmory UniversityAtlantaGeorgiaUSA
| | - Mariet Allen
- Mayo ClinicDepartment ofNeuroscienceJacksonvilleFloridaUSA
| | | | - Yona Levites
- Department of Neuroscience and NeurologyCenter for Translational Research in Neurodegenerative diseaseand McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Paramita Chakrabarty
- Department of Neuroscience and NeurologyCenter for Translational Research in Neurodegenerative diseaseand McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
| | | | - Xue Wang
- Mayo ClinicDepartment of Health Sciences ResearchJacksonvilleFloridaUSA
| | - Dennis Dickson
- Mayo ClinicDepartment ofNeuroscienceJacksonvilleFloridaUSA
| | - Nicholas T. Seyfried
- Department of BiochemistryEmory UniversityAtlantaGeorgiaUSA
- Department of NeurologyEmory UniversityAtlantaGeorgiaUSA
| | - Duc M. Duong
- Department of BiochemistryEmory UniversityAtlantaGeorgiaUSA
| | - James J. Lah
- Department of NeurologyEmory UniversityAtlantaGeorgiaUSA
| | | | - Allan I. Levey
- Department of NeurologyEmory UniversityAtlantaGeorgiaUSA
| | - Gilbert S. Omenn
- Institute for Systems BiologySeattleWashingtonUSA
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMichiganUSA
| | - Nilüfer Ertekin‐Taner
- Mayo ClinicDepartment ofNeuroscienceJacksonvilleFloridaUSA
- Mayo ClinicDepartment of NeurologyJacksonvilleFloridaUSA
| | - Todd E. Golde
- Department of Neuroscience and NeurologyCenter for Translational Research in Neurodegenerative diseaseand McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
| | | |
Collapse
|
24
|
Vitorino Carvalho A, Soler L, Thélie A, Grasseau I, Cordeiro L, Tomas D, Teixeira-Gomes AP, Labas V, Blesblois E. Proteomic Changes Associated With Sperm Fertilizing Ability in Meat-Type Roosters. Front Cell Dev Biol 2021; 9:655866. [PMID: 33898456 PMCID: PMC8063615 DOI: 10.3389/fcell.2021.655866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
The molecular basis of male fertility remains unclear, especially in chickens, where decades of genetic selection increased male fertility variability as a side effect. As transcription and translation are highly limited in sperm, proteins are key molecules defining their functionality, making proteomic approaches one of the most adequate methods to investigate sperm capacity. In this context, it is interesting to combine complementary proteomic approaches to maximize the identification of proteins related to sperm-fertilizing ability. In the present study, we aimed at identifying proteins related to fertility in meat-type roosters, showing fertility variability. Fertile roosters (fertility rates higher than 70% after artificial insemination) differed from subfertile roosters (fertility rates lower than 40%) in their sperm mass motility. Fertile and subfertile sperm protein contents were compared using two complementary label-free quantitative proteomic methods: Intact Cell MALDI-TOF-Mass Spectrometry and GeLC-MS/MS. Combining the two strategies, 57 proteins were identified as differentially abundant. Most of them were described for the first time as differentially abundant according to fertility in this species. These proteins were involved in various molecular pathways including flagellum integrity and movement, mitochondrial functions, sperm maturation, and storage in female tract as well as oocyte-sperm interaction. Collectively, our data improved our understanding of chicken sperm biology by revealing new actors involved in the complexity of male fertility that depends on multiple cell functions to reach optimal rates. This explains the inability of reductionist in vitro fertility testing in predicting male fertility and suggests that the use of a combination of markers is a promising approach.
Collapse
Affiliation(s)
| | - Laura Soler
- INRAE, ENVT, INP-Purpan, UPS, UMR Toxalim, Toulouse, France
| | - Aurore Thélie
- CNRS, INRAE, Université de Tours, IFCE, Nouzilly, France
| | | | - Luiz Cordeiro
- CNRS, INRAE, Université de Tours, IFCE, Nouzilly, France
| | - Daniel Tomas
- CNRS, INRAE, Université de Tours, IFCE, Nouzilly, France
- INRAE, ENVT, INP-Purpan, UPS, UMR Toxalim, Toulouse, France
- INRAE, Université de Tours, CHU de Tours, Plate-forme PIXANIM (Phénotypage par Imagerie in/ex vivo de l’Animal à la Molécule), Nouzilly, France
| | - Ana-Paula Teixeira-Gomes
- INRAE, Université de Tours, CHU de Tours, Plate-forme PIXANIM (Phénotypage par Imagerie in/ex vivo de l’Animal à la Molécule), Nouzilly, France
- INRAE, ISP, Université de Tours, Nouzilly, France
| | - Valérie Labas
- CNRS, INRAE, Université de Tours, IFCE, Nouzilly, France
- INRAE, ENVT, INP-Purpan, UPS, UMR Toxalim, Toulouse, France
- INRAE, Université de Tours, CHU de Tours, Plate-forme PIXANIM (Phénotypage par Imagerie in/ex vivo de l’Animal à la Molécule), Nouzilly, France
| | | |
Collapse
|
25
|
Omenn GS. Reflections on the HUPO Human Proteome Project, the Flagship Project of the Human Proteome Organization, at 10 Years. Mol Cell Proteomics 2021; 20:100062. [PMID: 33640492 PMCID: PMC8058560 DOI: 10.1016/j.mcpro.2021.100062] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/08/2023] Open
Abstract
We celebrate the 10th anniversary of the launch of the HUPO Human Proteome Project (HPP) and its major milestone of confident detection of at least one protein from each of 90% of the predicted protein-coding genes, based on the output of the entire proteomics community. The Human Genome Project reached a similar decadal milestone 20 years ago. The HPP has engaged proteomics teams around the world, strongly influenced data-sharing, enhanced quality assurance, and issued stringent guidelines for claims of detecting previously "missing proteins." This invited perspective complements papers on "A High-Stringency Blueprint of the Human Proteome" and "The Human Proteome Reaches a Major Milestone" in special issues of Nature Communications and Journal of Proteome Research, respectively, released in conjunction with the October 2020 virtual HUPO Congress and its celebration of the 10th anniversary of the HUPO HPP.
Collapse
Affiliation(s)
- Gilbert S Omenn
- University of Michigan Medical School, Departments of Computational Medicine & Bioinformatics, Internal Medicine, Human Genetics, and School of Public Health, Ann Arbor, Michigan, USA.
| |
Collapse
|
26
|
Palma C, La Rocca C, Gigantino V, Aquino G, Piccaro G, Di Silvestre D, Brambilla F, Rossi R, Bonacina F, Lepore MT, Audano M, Mitro N, Botti G, Bruzzaniti S, Fusco C, Procaccini C, De Rosa V, Galgani M, Alviggi C, Puca A, Grassi F, Rezzonico-Jost T, Norata GD, Mauri P, Netea MG, de Candia P, Matarese G. Caloric Restriction Promotes Immunometabolic Reprogramming Leading to Protection from Tuberculosis. Cell Metab 2021; 33:300-318.e12. [PMID: 33421383 DOI: 10.1016/j.cmet.2020.12.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/13/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
Abstract
There is a strong relationship between metabolic state and susceptibility to Mycobacterium tuberculosis (MTB) infection, with energy metabolism setting the basis for an exaggerated immuno-inflammatory response, which concurs with MTB pathogenesis. Herein, we show that controlled caloric restriction (CR), not leading to malnutrition, protects susceptible DBA/2 mice against pulmonary MTB infection by reducing bacterial load, lung immunopathology, and generation of foam cells, an MTB reservoir in lung granulomas. Mechanistically, CR induced a metabolic shift toward glycolysis, and decreased both fatty acid oxidation and mTOR activity associated with induction of autophagy in immune cells. An integrated multi-omics approach revealed a specific CR-induced metabolomic, transcriptomic, and proteomic signature leading to reduced lung damage and protective remodeling of lung interstitial tightness able to limit MTB spreading. Our data propose CR as a feasible immunometabolic manipulation to control MTB infection, and this approach offers an unexpected strategy to boost immunity against MTB.
Collapse
Affiliation(s)
- Carla Palma
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy.
| | - Claudia La Rocca
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy
| | - Vincenzo Gigantino
- Pathology Unit, Istituto Nazionale Tumori, Fondazione G. Pascale, IRCCS, 80131 Naples, Italy
| | - Gabriella Aquino
- Pathology Unit, Istituto Nazionale Tumori, Fondazione G. Pascale, IRCCS, 80131 Naples, Italy
| | - Giovanni Piccaro
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Dario Di Silvestre
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, Consiglio Nazionale delle Ricerche (ITB-CNR), 20090 Segrate, Milano, Italy
| | - Francesca Brambilla
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, Consiglio Nazionale delle Ricerche (ITB-CNR), 20090 Segrate, Milano, Italy
| | - Rossana Rossi
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, Consiglio Nazionale delle Ricerche (ITB-CNR), 20090 Segrate, Milano, Italy
| | - Fabrizia Bonacina
- Department of Excellence in Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Maria Teresa Lepore
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy
| | - Matteo Audano
- Department of Excellence in Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Nico Mitro
- Department of Excellence in Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Gerardo Botti
- Scientific Directorate, Istituto Nazionale Tumori, Fondazione G. Pascale, IRCCS, 80131 Naples, Italy
| | - Sara Bruzzaniti
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", 80126 Napoli, Italy
| | - Clorinda Fusco
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Claudio Procaccini
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, 00143 Roma, Italy
| | - Veronica De Rosa
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, 00143 Roma, Italy
| | - Mario Galgani
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Carlo Alviggi
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Department of Neuroscience, Reproductive Science, and Odontostomatology, University of Naples, Federico II, Naples, Italy
| | - Annibale Puca
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi-Salerno, Italy; IRCCS MultiMedica, 20138 Milano, Italy
| | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Tanja Rezzonico-Jost
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Giuseppe Danilo Norata
- Department of Excellence in Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy; Center for the Study of Atherosclerosis, Società Italiana Studio Aterosclerosi, Bassini Hospital, 20092 Cinisello Balsamo, Milano, Italy
| | - Pierluigi Mauri
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, Consiglio Nazionale delle Ricerche (ITB-CNR), 20090 Segrate, Milano, Italy; Istituto di Scienze della Vita, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Mihai G Netea
- Radboud Center for Infectious Diseases and Department of Internal Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | | | - Giuseppe Matarese
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy.
| |
Collapse
|
27
|
Mann SP, Treit PV, Geyer PE, Omenn GS, Mann M. Ethical Principles, Constraints and Opportunities in Clinical Proteomics. Mol Cell Proteomics 2021; 20:100046. [PMID: 33453411 PMCID: PMC7950205 DOI: 10.1016/j.mcpro.2021.100046] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Recent advances in mass spectrometry (MS)-based proteomics have vastly increased the quality and scope of biological information that can be derived from human samples. These advances have rendered current workflows increasingly applicable in biomedical and clinical contexts. As proteomics is poised to take an important role in the clinic, associated ethical responsibilities increase in tandem with impacts on the health, privacy, and wellbeing of individuals. We conducted and here report a systematic literature review of ethical issues in clinical proteomics. We add our perspectives from a background of bioethics, the results of our accompanying paper extracting individual-sensitive results from patient samples, and the literature addressing similar issues in genomics. The spectrum of potential issues ranges from patient re-identification to incidental findings of clinical significance. The latter can be divided into actionable and unactionable findings. Some of these have the potential to be employed in discriminatory or privacy-infringing ways. However, incidental findings may also have great positive potential. A plasma proteome profile, for instance, could inform on the general health or disease status of an individual regardless of the narrow diagnostic question that prompted it. We suggest that early discussion of ethical issues in clinical proteomics can ensure that eventual healthcare practices and regulations reflect the considered judgment of the community and anticipate opportunities and problems that may arise as the technology matures.
Collapse
Affiliation(s)
- Sebastian Porsdam Mann
- Department of Media, Cognition and Communication, University of Copenhagen, Copenhagen, Denmark; Uehiro Center for Practical Ethics, University of Oxford, Oxford, UK; New address: Faculty of Law, University of Oxford, Oxford, UK.
| | - Peter V Treit
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Philipp E Geyer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany; NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; New address: OmicEra Diagnostics GmbH, Planegg, Germany
| | - Gilbert S Omenn
- Departments of Computational Medicine & Bioinformatics, Internal Medicine, Human Genetics, and School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany; NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
28
|
Glioblastoma CUSA Fluid Protein Profiling: A Comparative Investigation of the Core and Peripheral Tumor Zones. Cancers (Basel) 2020; 13:cancers13010030. [PMID: 33374813 PMCID: PMC7795841 DOI: 10.3390/cancers13010030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The biological processes responsible for the high infiltration and recurrence rate of glioblastoma multiforme, the most frequent and aggressive primary brain tumor (GBM), are still under investigation. By the original analysis of cavitating ultrasound aspirator fluid as the biological specimen, the present study aimed to preliminarily explore and compare the protein profiles of the tumor core and tumor periphery, as defined by 5-aminolevulinic acid fluorescence, in newly diagnosed and recurrent glioblastoma sampled pools. The results showed distinguished protein elements in the different tumor and peritumoral zones, as well as in the two tumor states (newly diagnosed vs recurrent), and suggested the presence of pathological aspects in the fluorescent negative periphery, possibly contributing to the comprehension of the molecular mechanisms underlying this tumor’s onset and development, opening to potential clinical applications. Abstract The present investigation aimed to characterize the protein profile of cavitating ultrasound aspirator fluid of newly diagnosed and recurrent glioblastoma comparing diverse zones of collection, i.e., tumor core and tumor periphery, with the aid of 5-aminolevulinic acid fluorescence. The samples were pooled and analyzed in triplicate by LC-MS following the shotgun proteomic approach. The identified proteins were then grouped to disclose elements exclusive and common to the tumor state or tumor zones and submitted to gene ontology classification and pathway overrepresentation analysis. The proteins common to the distinct zones were further investigated by relative quantitation, following a label free approach, to disclose possible differences of expression. Nine proteins, i.e., tubulin 2B chain, CD59, far upstream element-binding, CD44, histone H1.4, caldesmon, osteopontin, tropomyosin chain and metallothionein-2, marked the core of newly diagnosed glioblastoma with respect to tumor periphery. Considering the tumor zone, including the core and the fluorescence positive periphery, the serine glycine biosynthesis, pentose phosphate, 5-hydroxytryptamine degredation, de novo purine biosynthesis and huntington disease pathways resulted statistically significantly overrepresented with respect to the human genome of reference. The fluorescence negative zone shared several protein elements with the tumor zone, possibly indicating the presence of pathological aspects of glioblastoma rather than of normal brain parenchyma. On the other hand, its exclusive protein elements were considered to represent the healthy zone and, accordingly, exhibiting no pathways overrepresentation. On the contrary to newly diagnosed glioblastoma, pathway overrepresentation was recognized only in the healthy zone of recurrent glioblastoma. The TGFβ signaling pathway, exclusively classified in the fluorescence negative periphery in newly diagnosed glioblastoma, was instead the exclusive pathway classified in the tumor core of recurrent glioblastoma. These results, preliminary obtained on sample pools, demonstrated the potential of cavitron ultrasonic surgical aspirate fluid for proteomic profiling of glioblastoma able to distinguish molecular features specific of the diverse tumor zones and tumor states, possibly contributing to the understanding of the highly infiltrative capability and recurrent rate of this aggressive brain tumor and opening to potential clinical applications to be further investigated.
Collapse
|
29
|
Alikhani M, Karamzadeh R, Rahimi P, Adib S, Baharvand H, Salekdeh GH. Human Proteome Project and Human Pluripotent Stem Cells: Odd Bedfellows or a Perfect Match? J Proteome Res 2020; 19:4747-4753. [PMID: 33124832 DOI: 10.1021/acs.jproteome.0c00689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Chromosome-Centric Human Proteome Project (C-HPP) aims at the identification of missing proteins (MPs) and the functional characterization of functionally unannotated PE1 (uPE1) proteins. A major challenge in addressing this goal is that many human proteins and MPs are silent in adult cells. A promising approach to overcome such challenge is to exploit the advantage of novel tools such as pluripotent stem cells (PSCs), which are capable of differentiation into three embryonic germ layers, namely, the endoderm, mesoderm, and ectoderm. Here we present several examples of how the Human Y Chromosome Proteome Project (Y-HPP) benefited from this approach to meet C-HPP goals. Furthermore, we discuss how integrating CRISPR engineering, human-induced pluripotent stem cell (hiPSC)-derived disease modeling systems, and organoid technologies provides a unique platform for Y-HPP and C-HPP for MP identification and the functional characterization of human proteins, especially uPE1s.
Collapse
Affiliation(s)
- Mehdi Alikhani
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Razieh Karamzadeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Pardis Rahimi
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Samane Adib
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran 146196815, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran.,Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
30
|
Na K, Kim M, Kim CY, Lim JS, Cho JY, Shin H, Lee HJ, Kang BJ, Han DH, Kim H, Baik JH, Swiatek-de Lange M, Karl J, Paik YK. Potential Regulatory Role of Human-Carboxylesterase-1 Glycosylation in Liver Cancer Cell Growth. J Proteome Res 2020; 19:4867-4883. [PMID: 33206527 DOI: 10.1021/acs.jproteome.0c00787] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We previously reported that human carboxylesterase 1 (CES1), a serine esterase containing a unique N-linked glycosyl group at Asn79 (N79 CES1), is a candidate serological marker of hepatocellular carcinoma (HCC). CES1 is normally present at low-to-undetectable levels in normal human plasma, HCC tumors, and major liver cancer cell lines. To investigate the potential mechanism underlying the suppression of CES1 expression in liver cancer cells, we took advantage of the low detectability of this marker in tumors by overexpressing CES1 in multiple HCC cell lines, including stable Hep3B cells. We found that the population of CES1-overexpressing (OE) cells decreased and that their doubling time was longer compared with mock control liver cancer cells. Using interactive transcriptome, proteome, and subsequent Gene Ontology enrichment analysis of CES1-OE cells, we found substantial decreases in the expression levels of genes involved in cell cycle regulation and proliferation. This antiproliferative function of the N79 glycan of CES1 was further supported by quantitative real-time polymerase chain reaction, flow cytometry, and an apoptosis protein array assay. An analysis of the levels of key signaling target proteins via Western blotting suggested that CES1 overexpression exerted an antiproliferative effect via the PKD1/PKCμ signaling pathway. Similar results were also seen in another HCC cell line (PLC/RFP/5) after transient transfection with CES1 but not in similarly treated non-HCC cell lines (e.g., HeLa and Tera-1 cells), suggesting that CES1 likely exerts a liver cell-type-specific suppressive effect. Given that the N-linked glycosyl group at Asn79 (N79 glycan) of CES1 is known to influence CES1 enzyme activity, we hypothesized that the post-translational modification of CES1 at N79 may be linked to its antiproliferative activity. To investigate the regulatory effect of the N79 glycan on cellular growth, we mutated the single N-glycosylation site in CES1 from Asn to Gln (CES1-N79Q) via site-directed mutagenesis. Fluorescence 2-D difference gel electrophoresis protein expression analysis of cell lysates revealed an increase in cell growth and a decrease in doubling time in cells carrying the N79Q mutation. Thus our results suggest that CES1 exerts an antiproliferative effect in liver cancer cells and that the single N-linked glycosylation at Asn79 plays a potential regulatory role. These functions may underlie the undetectability of CES1 in human HCC tumors and liver cancer cell lines. Mass spectrometry data are available via ProteomeXchange under the identifier PXD021573.
Collapse
Affiliation(s)
- Keun Na
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| | - Minjoo Kim
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| | - Chae-Yeon Kim
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| | - Jong-Sun Lim
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| | - Jin-Young Cho
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| | - Heon Shin
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| | - Hyo Jin Lee
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-ku, Seoul 02841, South Korea
| | - Byeong Jun Kang
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-ku, Seoul 02841, South Korea
| | | | | | - Ja-Hyun Baik
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-ku, Seoul 02841, South Korea
| | | | - Johann Karl
- Roche Diagnostics, GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Young-Ki Paik
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| |
Collapse
|
31
|
Uzbekova S, Almiñana C, Labas V, Teixeira-Gomes AP, Combes-Soia L, Tsikis G, Carvalho AV, Uzbekov R, Singina G. Protein Cargo of Extracellular Vesicles From Bovine Follicular Fluid and Analysis of Their Origin From Different Ovarian Cells. Front Vet Sci 2020; 7:584948. [PMID: 33330709 PMCID: PMC7672127 DOI: 10.3389/fvets.2020.584948] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Follicular fluid (FF) fills the interior portion of the ovarian antral follicle and provides a suitable microenvironment for the growth of the enclosed oocyte through molecular factors that originate from plasma and the secretions of follicular cells. FF contains extracellular nanovesicles (ffEVs), including 30-100-nm membrane-coated exosomes, which carry different types of RNA, proteins, and lipids and directly influence oocyte competence to develop embryo. In the present study, we aimed to characterize the protein cargo of EVs from the FF of 3-6-mm follicles and uncover the origins of ffEVs by assessing expression levels of corresponding mRNAs in bovine follicular cells and oocyte and cell proteomes. Isolated exosome-like ffEVs were 53.6 + 23.3 nm in size and could be internalized by cumulus-oocyte complex. Proteomes of ffEVs and granulosa cells (GC) were assessed using nanoflow liquid chromatography coupled with high-resolution tandem mass spectrometry after the gel fractionation of total proteins. In total, 460 protein isoforms corresponding to 322 unique proteins were identified in ffEVs; among them, 190 were also identified via GC. Gene Ontology terms related to the ribosome, protein and RNA folding, molecular transport, endocytosis, signal transduction, complement and coagulation cascades, apoptosis, and developmental biology pathways, including PI3K-Akt signaling, were significantly enriched features of ffEV proteins. FfEVs contain numerous ribosome and RNA-binding proteins, which may serve to compact different RNAs to regulate gene expression and RNA degradation, and might transfer ribosomal constituents to the oocyte. Majority of genes encoding ffEV proteins expressed at different levels in follicular cells and oocyte, corroborating with numerous proteins, which were reported in bovine oocyte and cumulus cells in other studies thus indicating possible origin of ffEV proteins. The limited abundance of several mRNAs within follicular cells indicated that corresponding ffEV proteins likely originated from circulating exosomes released by other tissues. Analysis of bovine ffEV transcriptome revealed that mRNAs present in ffEV accounted for only 18.3% of detected ffEV proteins. In conclusion, our study revealed numerous proteins within ffEVs, which originated from follicular and other cells. These proteins are likely involved in the maintenance of follicular homeostasis and may affect oocyte competence.
Collapse
Affiliation(s)
| | - Carmen Almiñana
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France.,Functional Genomics, Vetsuisse Faculty Zurich, Institute of Veterinary Anatomy, University of Zurich, Zurich, Switzerland
| | - Valerie Labas
- CHU de Tours, INRAE, Université de Tours, PRC, CIRE, Tours, France
| | - Ana-Paula Teixeira-Gomes
- CHU de Tours, INRAE, Université de Tours, PRC, CIRE, Tours, France.,INRAE, Université de Tours, ISP, Nouzilly, France
| | | | | | | | - Rustem Uzbekov
- Faculty of Medecine, University of Tours, Tours, France.,Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Galina Singina
- L. K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| |
Collapse
|
32
|
Omenn GS, Lane L, Overall CM, Cristea IM, Corrales FJ, Lindskog C, Paik YK, Van Eyk JE, Liu S, Pennington SR, Snyder MP, Baker MS, Bandeira N, Aebersold R, Moritz RL, Deutsch EW. Research on the Human Proteome Reaches a Major Milestone: >90% of Predicted Human Proteins Now Credibly Detected, According to the HUPO Human Proteome Project. J Proteome Res 2020; 19:4735-4746. [PMID: 32931287 DOI: 10.1021/acs.jproteome.0c00485] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
According to the 2020 Metrics of the HUPO Human Proteome Project (HPP), expression has now been detected at the protein level for >90% of the 19 773 predicted proteins coded in the human genome. The HPP annually reports on progress made throughout the world toward credibly identifying and characterizing the complete human protein parts list and promoting proteomics as an integral part of multiomics studies in medicine and the life sciences. NeXtProt release 2020-01 classified 17 874 proteins as PE1, having strong protein-level evidence, up 180 from 17 694 one year earlier. These represent 90.4% of the 19 773 predicted coding genes (all PE1,2,3,4 proteins in neXtProt). Conversely, the number of neXtProt PE2,3,4 proteins, termed the "missing proteins" (MPs), was reduced by 230 from 2129 to 1899 since the neXtProt 2019-01 release. PeptideAtlas is the primary source of uniform reanalysis of raw mass spectrometry data for neXtProt, supplemented this year with extensive data from MassIVE. PeptideAtlas 2020-01 added 362 canonical proteins between 2019 and 2020 and MassIVE contributed 84 more, many of which converted PE1 entries based on non-MS evidence to the MS-based subgroup. The 19 Biology and Disease-driven B/D-HPP teams continue to pursue the identification of driver proteins that underlie disease states, the characterization of regulatory mechanisms controlling the functions of these proteins, their proteoforms, and their interactions, and the progression of transitions from correlation to coexpression to causal networks after system perturbations. And the Human Protein Atlas published Blood, Brain, and Metabolic Atlases.
Collapse
Affiliation(s)
- Gilbert S Omenn
- University of Michigan, Ann Arbor, Michigan 48109, United States.,Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Lydie Lane
- CALIPHO Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | | | - Ileana M Cristea
- Princeton University, Princeton, New Jersey 08544, United States
| | | | | | | | | | - Siqi Liu
- BGI Group, Shenzhen 518083, China
| | | | | | - Mark S Baker
- Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Nuno Bandeira
- University of California, San Diego, La Jolla, California 92093, United States
| | - Ruedi Aebersold
- ETH-Zurich and University of Zurich, 8092 Zurich, Switzerland
| | - Robert L Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Eric W Deutsch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| |
Collapse
|
33
|
Adhikari S, Nice EC, Deutsch EW, Lane L, Omenn GS, Pennington SR, Paik YK, Overall CM, Corrales FJ, Cristea IM, Van Eyk JE, Uhlén M, Lindskog C, Chan DW, Bairoch A, Waddington JC, Justice JL, LaBaer J, Rodriguez H, He F, Kostrzewa M, Ping P, Gundry RL, Stewart P, Srivastava S, Srivastava S, Nogueira FCS, Domont GB, Vandenbrouck Y, Lam MPY, Wennersten S, Vizcaino JA, Wilkins M, Schwenk JM, Lundberg E, Bandeira N, Marko-Varga G, Weintraub ST, Pineau C, Kusebauch U, Moritz RL, Ahn SB, Palmblad M, Snyder MP, Aebersold R, Baker MS. A high-stringency blueprint of the human proteome. Nat Commun 2020; 11:5301. [PMID: 33067450 PMCID: PMC7568584 DOI: 10.1038/s41467-020-19045-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
The Human Proteome Organization (HUPO) launched the Human Proteome Project (HPP) in 2010, creating an international framework for global collaboration, data sharing, quality assurance and enhancing accurate annotation of the genome-encoded proteome. During the subsequent decade, the HPP established collaborations, developed guidelines and metrics, and undertook reanalysis of previously deposited community data, continuously increasing the coverage of the human proteome. On the occasion of the HPP's tenth anniversary, we here report a 90.4% complete high-stringency human proteome blueprint. This knowledge is essential for discerning molecular processes in health and disease, as we demonstrate by highlighting potential roles the human proteome plays in our understanding, diagnosis and treatment of cancers, cardiovascular and infectious diseases.
Collapse
Affiliation(s)
- Subash Adhikari
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Edouard C Nice
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Faculty of Medicine, Nursing and Health Sciences, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Eric W Deutsch
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98109, USA
| | - Lydie Lane
- Faculty of Medicine, SIB-Swiss Institute of Bioinformatics and Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Michel-Servet 1, 1211, Geneva, Switzerland
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109-2218, USA
| | - Stephen R Pennington
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Young-Ki Paik
- Yonsei Proteome Research Center, 50 Yonsei-ro, Sudaemoon-ku, Seoul, 120-749, South Korea
| | | | - Fernando J Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología-CSIC, Proteored-ISCIII, 28049, Madrid, Spain
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Jennifer E Van Eyk
- Cedars Sinai Medical Center, Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Los Angeles, CA, 90048, USA
| | - Mathias Uhlén
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 17121, Solna, Sweden
| | - Cecilia Lindskog
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden
| | - Daniel W Chan
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Amos Bairoch
- Faculty of Medicine, SIB-Swiss Institute of Bioinformatics and Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Michel-Servet 1, 1211, Geneva, Switzerland
| | - James C Waddington
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Joshua L Justice
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Joshua LaBaer
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Markus Kostrzewa
- Bruker Daltonik GmbH, Microbiology and Diagnostics, Fahrenheitstrasse, 428359, Bremen, Germany
| | - Peipei Ping
- Cardiac Proteomics and Signaling Laboratory, Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Rebekah L Gundry
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter Stewart
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | | | - Sudhir Srivastava
- Cancer Biomarkers Research Branch, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Suite 5E136, Rockville, MD, 20852, USA
| | - Fabio C S Nogueira
- Proteomics Unit and Laboratory of Proteomics, Institute of Chemistry, Federal University of Rio de Janeiro, Av Athos da Silveria Ramos, 149, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Gilberto B Domont
- Proteomics Unit and Laboratory of Proteomics, Institute of Chemistry, Federal University of Rio de Janeiro, Av Athos da Silveria Ramos, 149, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Yves Vandenbrouck
- University of Grenoble Alpes, Inserm, CEA, IRIG-BGE, U1038, 38000, Grenoble, France
| | - Maggie P Y Lam
- Departments of Medicine-Cardiology and Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Consortium for Fibrosis Research and Translation, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Sara Wennersten
- Division of Cardiology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Juan Antonio Vizcaino
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Marc Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jochen M Schwenk
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 17121, Solna, Sweden
| | - Emma Lundberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 17121, Solna, Sweden
| | - Nuno Bandeira
- Department of Computer Science and Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0404, La Jolla, CA, 92093-0404, USA
| | | | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center San Antonio, UT Health, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Charles Pineau
- University of Rennes, Inserm, EHESP, IREST, UMR_S 1085, F-35042, Rennes, France
| | - Ulrike Kusebauch
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98109, USA
| | - Robert L Moritz
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98109, USA
| | - Seong Beom Ahn
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Magnus Palmblad
- Leiden University Medical Center, Leiden, 2333, The Netherlands
| | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Ruedi Aebersold
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98109, USA
- Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Mark S Baker
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
- Department of Genetics, Stanford School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
34
|
Lau E, Han Y, Williams DR, Thomas CT, Shrestha R, Wu JC, Lam MPY. Splice-Junction-Based Mapping of Alternative Isoforms in the Human Proteome. Cell Rep 2020; 29:3751-3765.e5. [PMID: 31825849 PMCID: PMC6961840 DOI: 10.1016/j.celrep.2019.11.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/24/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022] Open
Abstract
The protein-level translational status and function of many alternative splicing events remain poorly understood. We use an RNA sequencing (RNA-seq)-guided proteomics method to identify protein alternative splicing isoforms in the human proteome by constructing tissue-specific protein databases that prioritize transcript splice junction pairs with high translational potential. Using the custom databases to reanalyze ~80 million mass spectra in public proteomics datasets, we identify more than 1,500 noncanonical protein isoforms across 12 human tissues, including ~400 sequences undocumented on TrEMBL and RefSeq databases. We apply the method to original quantitative mass spectrometry experiments and observe widespread isoform regulation during human induced pluripotent stem cell cardiomyocyte differentiation. On a proteome scale, alternative isoform regions overlap frequently with disordered sequences and post-translational modification sites, suggesting that alternative splicing may regulate protein function through modulating intrinsically disordered regions. The described approach may help elucidate functional consequences of alternative splicing and expand the scope of proteomics investigations in various systems. The translation and function of many alternative splicing events await confirmation at the protein level. Lau et al. use an integrated proteotranscriptomics approach to identify non-canonical and undocumented isoforms from 12 organs in the human proteome. Alternative isoforms interfere with functional sequence features and are differentially regulated during iPSC cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Edward Lau
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Yu Han
- Consortium for Fibrosis Research and Translation, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA; Departments of Medicine-Cardiology and Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Damon R Williams
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Cody T Thomas
- Departments of Medicine-Cardiology and Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Rajani Shrestha
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University, Palo Alto, CA, USA; Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Maggie P Y Lam
- Consortium for Fibrosis Research and Translation, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA; Departments of Medicine-Cardiology and Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
35
|
Paik YK, Overall CM, Corrales F, Deutsch EW, Lane L, Omenn GS. Advances in Identifying and Characterizing the Human Proteome. J Proteome Res 2020; 18:4079-4084. [PMID: 31805768 DOI: 10.1021/acs.jproteome.9b00745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Young-Ki Paik
- Yonsei Proteome Research Center, College of Life Science and Technology , Yonsei University
| | - Christopher M Overall
- Centre for Blood Research, Departments of Oral Biological & Medical Sciences and Biochemistry & Molecular Biology, Faculty of Dentistry , University of British Columbia
| | - Fernando Corrales
- Functional Proteomics Laboratory National Center of Biotechnology , CSIC
| | | | - Lydie Lane
- CALIPHO Group, SIB Swiss Institute of Bioinformatics and Department of Microbiology and Molecular Medicine, Faculty of Medicine, CMU , University of Geneva
| | - Gilbert S Omenn
- Institute for Systems Biology, Departments of Computational Medicine & Bioinformatics, Internal Medicine, and Human Genetics & School of Public Health , University of Michigan
| |
Collapse
|
36
|
Bari E, Di Silvestre D, Mastracci L, Grillo F, Grisoli P, Marrubini G, Nardini M, Mastrogiacomo M, Sorlini M, Rossi R, Torre ML, Mauri P, Sesana G, Perteghella S. GMP-compliant sponge-like dressing containing MSC lyo-secretome: Proteomic network of healing in a murine wound model. Eur J Pharm Biopharm 2020; 155:37-48. [PMID: 32784044 DOI: 10.1016/j.ejpb.2020.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/19/2020] [Accepted: 08/05/2020] [Indexed: 12/22/2022]
Abstract
Chronic wounds account for 3% of total healthcare expenditure of developed countries; thus, innovative therapies, including Mesenchymal Stem Cells (MSCs) end their exosomes are increasingly considered, even if the activity depends on the whole secretome, made of both soluble proteins and extracellular vesicles. In this work, we prove for the first time the in vivo activity of the whole secretome formulated in a sponge-like alginate wound dressing to obtain the controlled release of bioactive substances. The product has been prepared in a public GMP-compliant facility by a scalable process; based on the murine model, treated wounds healed faster than controls without complications or infections. The treatment induced a higher acute inflammatory process in a short time and sustained the proliferative phase by accelerating fibroblast migration, granulation tissue formation, neovascularization and collagen deposition. The efficacy was substantially supported by the agreement between histological and proteomic findings. In addition to functional modules related to proteolysis, complement and coagulation cascades, protein folding and ECM remodeling, in treated skin, emerged the role of specific wound healing related proteins, including Tenascin (Tnc), Decorin (Dcn) and Epidermal growth factor receptor (EGFR). Of note, Decorin and Tenascin were also components of secretome, and network analysis suggests a potential role in regulating EGFR. Although further experiments will be necessary to characterize better the molecular keys induced by treatment, overall, our results confirm the whole secretome efficacy as novel "cell-free therapy". Also, sponge-like topical dressing containing the whole secretome, GMP- compliant and "ready-off-the-shelf", may represent a relevant point to facilitate its translation into the clinic.
Collapse
Affiliation(s)
- Elia Bari
- University of Pavia, Department of Drug Sciences, Pavia, Italy
| | - Dario Di Silvestre
- Institute for Biomedical Technologies, F.lli Cervi 93, Segrate, Milan, Italy
| | - Luca Mastracci
- University of Genoa, Department of Surgical Science and Integrated Diagnostics, Genoa, Italy; University of Genoa, Department of Experimental Medicine, Genoa, Italy
| | - Federica Grillo
- University of Genoa, Department of Surgical Science and Integrated Diagnostics, Genoa, Italy; University of Genoa, Department of Experimental Medicine, Genoa, Italy
| | - Pietro Grisoli
- University of Pavia, Department of Drug Sciences, Pavia, Italy
| | | | - Marta Nardini
- University of Genoa, Department of Internal Medicine, Genoa, Italy
| | | | - Marzio Sorlini
- PharmaExceed S.r.l., Pavia, Italy; University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Rossana Rossi
- Institute for Biomedical Technologies, F.lli Cervi 93, Segrate, Milan, Italy
| | - Maria Luisa Torre
- University of Pavia, Department of Drug Sciences, Pavia, Italy; PharmaExceed S.r.l., Pavia, Italy.
| | - Pierluigi Mauri
- Institute for Biomedical Technologies, F.lli Cervi 93, Segrate, Milan, Italy
| | - Giovanni Sesana
- Tissue Bank and Tissue Therapy Unit, Emergency and Acceptance Department, ASST Niguarda Hospital, Piazza Ospedale Maggiore 3, Milan, Italy
| | - Sara Perteghella
- University of Pavia, Department of Drug Sciences, Pavia, Italy; PharmaExceed S.r.l., Pavia, Italy
| |
Collapse
|
37
|
Understanding the proteome encoded by "non-coding RNAs": new insights into human genome. SCIENCE CHINA. LIFE SCIENCES 2020; 63:986-995. [PMID: 32318910 DOI: 10.1007/s11427-019-1677-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/12/2020] [Indexed: 01/19/2023]
Abstract
A great number of non-coding RNAs (ncRNAs) account for the majority of the genome. The translation of these ncRNAs has been noted but seriously underestimated due to both technological and theoretical limitations. Based on the development of ribosome profiling (Ribo-seq), full length translating RNA analysis (RNC-seq) and mass spectrometry technology, more and more ncRNAs are being found to be translated in different organism, and some of them can produce functional peptides. While recently, not only individual new functional proteins, but also a new proteome have been experimentally discovered to be encoded by endogenous lncRNAs and circRNAs. These new proteins are of biological significance, suggesting the connection of the translation of ncRNAs to human physiology and diseases. Therefore, an in-depth and systematic understanding of the coding capabilities of ncRNAs is necessary for basic biology and medicine. In this review, we summarize the advances in the field of discovering this new proteome, i.e. "ncRNA-coded" proteins.
Collapse
|
38
|
Zahn-Zabal M, Michel PA, Gateau A, Nikitin F, Schaeffer M, Audot E, Gaudet P, Duek PD, Teixeira D, Rech de Laval V, Samarasinghe K, Bairoch A, Lane L. The neXtProt knowledgebase in 2020: data, tools and usability improvements. Nucleic Acids Res 2020; 48:D328-D334. [PMID: 31724716 PMCID: PMC7145669 DOI: 10.1093/nar/gkz995] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/10/2019] [Accepted: 10/18/2019] [Indexed: 11/23/2022] Open
Abstract
The neXtProt knowledgebase (https://www.nextprot.org) is an integrative resource providing both data on human protein and the tools to explore these. In order to provide comprehensive and up-to-date data, we evaluate and add new data sets. We describe the incorporation of three new data sets that provide expression, function, protein-protein binary interaction, post-translational modifications (PTM) and variant information. New SPARQL query examples illustrating uses of the new data were added. neXtProt has continued to develop tools for proteomics. We have improved the peptide uniqueness checker and have implemented a new protein digestion tool. Together, these tools make it possible to determine which proteases can be used to identify trypsin-resistant proteins by mass spectrometry. In terms of usability, we have finished revamping our web interface and completely rewritten our API. Our SPARQL endpoint now supports federated queries. All the neXtProt data are available via our user interface, API, SPARQL endpoint and FTP site, including the new PEFF 1.0 format files. Finally, the data on our FTP site is now CC BY 4.0 to promote its reuse.
Collapse
Affiliation(s)
- Monique Zahn-Zabal
- CALIPHO group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | | | - Alain Gateau
- CALIPHO group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Frédéric Nikitin
- CALIPHO group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Mathieu Schaeffer
- CALIPHO group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland.,Department of microbiology and molecular medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Estelle Audot
- CALIPHO group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Pascale Gaudet
- CALIPHO group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Paula D Duek
- CALIPHO group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Daniel Teixeira
- CALIPHO group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Valentine Rech de Laval
- CALIPHO group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland.,Department of microbiology and molecular medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Haute école spécialisée de Suisse occidentale, Haute Ecole de Gestion de Genève, Carouge, Switzerland
| | - Kasun Samarasinghe
- CALIPHO group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland.,Department of microbiology and molecular medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Amos Bairoch
- CALIPHO group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland.,Department of microbiology and molecular medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lydie Lane
- CALIPHO group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland.,Department of microbiology and molecular medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
39
|
Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, Pérez E, Uszkoreit J, Pfeuffer J, Sachsenberg T, Yilmaz S, Tiwary S, Cox J, Audain E, Walzer M, Jarnuczak AF, Ternent T, Brazma A, Vizcaíno JA. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 2020; 47:D442-D450. [PMID: 30395289 PMCID: PMC6323896 DOI: 10.1093/nar/gky1106] [Citation(s) in RCA: 5157] [Impact Index Per Article: 1289.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
The PRoteomics IDEntifications (PRIDE) database (https://www.ebi.ac.uk/pride/) is the world’s largest data repository of mass spectrometry-based proteomics data, and is one of the founding members of the global ProteomeXchange (PX) consortium. In this manuscript, we summarize the developments in PRIDE resources and related tools since the previous update manuscript was published in Nucleic Acids Research in 2016. In the last 3 years, public data sharing through PRIDE (as part of PX) has definitely become the norm in the field. In parallel, data re-use of public proteomics data has increased enormously, with multiple applications. We first describe the new architecture of PRIDE Archive, the archival component of PRIDE. PRIDE Archive and the related data submission framework have been further developed to support the increase in submitted data volumes and additional data types. A new scalable and fault tolerant storage backend, Application Programming Interface and web interface have been implemented, as a part of an ongoing process. Additionally, we emphasize the improved support for quantitative proteomics data through the mzTab format. At last, we outline key statistics on the current data contents and volume of downloads, and how PRIDE data are starting to be disseminated to added-value resources including Ensembl, UniProt and Expression Atlas.
Collapse
Affiliation(s)
- Yasset Perez-Riverol
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Attila Csordas
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jingwen Bai
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Manuel Bernal-Llinares
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Suresh Hewapathirana
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Deepti J Kundu
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Avinash Inuganti
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Johannes Griss
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.,Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, 1090, Austria
| | - Gerhard Mayer
- Ruhr University Bochum, Medical Faculty, Medizinisches Proteom-Center, D-44801 Bochum, Germany
| | - Martin Eisenacher
- Ruhr University Bochum, Medical Faculty, Medizinisches Proteom-Center, D-44801 Bochum, Germany
| | - Enrique Pérez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Julian Uszkoreit
- Ruhr University Bochum, Medical Faculty, Medizinisches Proteom-Center, D-44801 Bochum, Germany
| | - Julianus Pfeuffer
- Applied Bioinformatics, Department for Computer Science, University of Tuebingen, Sand 14, 72076 Tuebingen, Germany
| | - Timo Sachsenberg
- Applied Bioinformatics, Department for Computer Science, University of Tuebingen, Sand 14, 72076 Tuebingen, Germany
| | - Sule Yilmaz
- Computational Systems Biochemistry, Max Planck Institute for Biochemistry, Martinsried, 82152, Germany
| | - Shivani Tiwary
- Computational Systems Biochemistry, Max Planck Institute for Biochemistry, Martinsried, 82152, Germany
| | - Jürgen Cox
- Computational Systems Biochemistry, Max Planck Institute for Biochemistry, Martinsried, 82152, Germany
| | - Enrique Audain
- Department of Congenital Heart Disease and Pediatric Cardiology, Universitätsklinikum Schleswig-Holstein Kiel, Kiel, 24105, Germany
| | - Mathias Walzer
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Andrew F Jarnuczak
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Tobias Ternent
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Alvis Brazma
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|
40
|
Radko S, Ptitsyn K, Novikova S, Kiseleva Y, Moysa A, Kurbatov L, Mannanova M, Zgoda V, Ponomarenko E, Lisitsa A, Archakov A. Evaluation of Aptamers as Affinity Reagents for an Enhancement of SRM-Based Detection of Low-Abundance Proteins in Blood Plasma. Biomedicines 2020; 8:E133. [PMID: 32456365 PMCID: PMC7277749 DOI: 10.3390/biomedicines8050133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Selected reaction monitoring (SRM) is a mass spectrometric technique characterized by the exceptionally high selectivity and sensitivity of protein detection. However, even with this technique, the quantitative detection of low- and ultralow-abundance proteins in blood plasma, which is of great importance for the search and verification of novel protein disease markers, is a challenging task due to the immense dynamic range of protein abundance levels. One approach used to overcome this problem is the immunoaffinity enrichment of target proteins for SRM analysis, employing monoclonal antibodies. Aptamers appear as a promising alternative to antibodies for affinity enrichment. Here, using recombinant protein SMAD4 as a model target added at known concentrations to human blood plasma and SRM as a detection method, we investigated a relationship between the initial amount of the target protein and its amount in the fraction enriched with SMAD4 by an anti-SMAD4 DNA-aptamer immobilized on magnetic beads. It was found that the aptamer-based enrichment provided a 30-fold increase in the sensitivity of SRM detection of SMAD4. These results indicate that the aptamer-based affinity enrichment of target proteins can be successfully employed to improve quantitative detection of low-abundance proteins by SRM in undepleted human blood plasma.
Collapse
Affiliation(s)
- Sergey Radko
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Konstantin Ptitsyn
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Svetlana Novikova
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Yana Kiseleva
- Russian Scientific Center of Roentgenoradiology, Moscow 117485, Russia;
| | - Alexander Moysa
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Leonid Kurbatov
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Maria Mannanova
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Elena Ponomarenko
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Andrey Lisitsa
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Alexander Archakov
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| |
Collapse
|
41
|
Is It Possible to Find Needles in a Haystack? Meta-Analysis of 1000+ MS/MS Files Provided by the Russian Proteomic Consortium for Mining Missing Proteins. Proteomes 2020; 8:proteomes8020012. [PMID: 32456206 PMCID: PMC7356824 DOI: 10.3390/proteomes8020012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/04/2022] Open
Abstract
Despite direct or indirect efforts of the proteomic community, the fraction of blind spots on the protein map is still significant. Almost 11% of human genes encode missing proteins; the existence of which proteins is still in doubt. Apparently, proteomics has reached a stage when more attention and curiosity need to be exerted in the identification of every novel protein in order to expand the unusual types of biomaterials and/or conditions. It seems that we have exhausted the current conventional approaches to the discovery of missing proteins and may need to investigate alternatives. Here, we present an approach to deciphering missing proteins based on the use of non-standard methodological solutions and encompassing diverse MS/MS data, obtained for rare types of biological samples by members of the Russian Proteomic community in the last five years. These data were re-analyzed in a uniform manner by three search engines, which are part of the SearchGUI package. The study resulted in the identification of two missing and five uncertain proteins detected with two peptides. Moreover, 149 proteins were detected with a single proteotypic peptide. Finally, we analyzed the gene expression levels to suggest feasible targets for further validation of missing and uncertain protein observations, which will fully meet the requirements of the international consortium. The MS data are available on the ProteomeXchange platform (PXD014300).
Collapse
|
42
|
Ependymoma Pediatric Brain Tumor Protein Fingerprinting by Integrated Mass Spectrometry Platforms: A Pilot Investigation. Cancers (Basel) 2020; 12:cancers12030674. [PMID: 32183175 PMCID: PMC7140025 DOI: 10.3390/cancers12030674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 11/16/2022] Open
Abstract
Ependymoma pediatric brain tumor occurs at approximate frequencies of 10-15% in supratentorial and 20-30% in posterior fossa regions. These tumors have an almost selective response to surgery and relative and confirmed resistance to radiotherapy and chemotherapic agents, respectively. Alongside histopathological grading, clinical and treatment evaluation of ependymomas currently consider the tumor localization and the genomic outlined associated molecular subgroups, with the supratentorial and the posterior fossa ependymomas nowadays considered diverse diseases. On these grounds and in trying to better understand the molecular features of these tumors, the present investigation aimed to originally investigate the proteomic profile of pediatric ependymoma tissues of different grade and localization by mass spectrometry platforms to disclose potential distinct protein phenotypes. To this purpose, acid-soluble and acid-insoluble fractions of ependymoma tumor tissues homogenates were analyzed by LC-MS following both the top-down and the shotgun proteomic approaches, respectively, to either investigate the intact proteome or its digested form. The two approaches were complementary in profiling the ependymoma tumor tissues and showed distinguished profiles for supratentorial and posterior fossa ependymomas and for WHO II and III tumor grades. Top-down proteomic analysis revealed statistically significant higher levels of thymosin beta 4, 10 kDa heat shock protein, non-histone chromosomal protein HMG-17, and mono-/uncitrullinated forms ratio of the glial fibrillary acidic protein (GFAP) fragment 388-432 in supratentorial ependymomas-the same GFAP fragment as well as the hemoglobin alpha- and the beta-chain marked grade II with respect to grade III posterior fossa ependymomas. Gene ontology classification of shotgun data of the identified cancer and the non-cancer related proteins disclosed protein elements exclusively marking tumor localization and pathways that were selectively overrepresented. These results, although preliminary, seem consistent with different protein profiles of ependymomas of diverse grade of aggressiveness and brain region development and contributed to enlarging the molecular knowledge of this still enigmatic tumor.
Collapse
|
43
|
Shin H, Cha HJ, Lee MJ, Na K, Park D, Kim CY, Han DH, Kim H, Paik YK. Identification of ALDH6A1 as a Potential Molecular Signature in Hepatocellular Carcinoma via Quantitative Profiling of the Mitochondrial Proteome. J Proteome Res 2020; 19:1684-1695. [PMID: 31985234 DOI: 10.1021/acs.jproteome.9b00846] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Various liver diseases, including hepatocellular carcinoma (HCC), have been linked to mitochondrial dysfunction, reduction of reactive oxygen species (ROS), and elevation of nitric oxide (NO). In this study, we subjected the human liver mitochondrial proteome to extensive quantitative proteomic profiling analysis and molecular characterization to identify potential signatures indicative of cancer cell growth and progression. Sequential proteomic analysis identified 2452 mitochondrial proteins, of which 1464 and 2010 were classified as nontumor and tumor (HCC) mitochondrial proteins, respectively, with 1022 overlaps. Further metabolic mapping of the HCC mitochondrial proteins narrowed our biological characterization to four proteins, namely, ALDH4A1, LRPPRC, ATP5C1, and ALDH6A1. The latter protein, a mitochondrial methylmalonate semialdehyde dehydrogenase (ALDH6A1), was most strongly suppressed in HCC tumor regions (∼10-fold decrease) in contrast to LRPPRC (∼6-fold increase) and was predicted to be present in plasma. Accordingly, we selected ALDH6A1 for functional analysis and engineered Hep3B cells to overexpress this protein, called ALDH6A1-O/E cells. Since ALDH6A1 is predicted to be involved in mitochondrial respiration, we assessed changes in the levels of NO and ROS in the overexpressed cell lines. Surprisingly, in ALDH6A1-O/E cells, NO was decreased nearly 50% but ROS was increased at a similar level, while the former was restored by treatment with S-nitroso-N-acetyl-penicillamine. The lactate levels were also decreased relative to control cells. Propidium iodide and Rhodamine-123 staining suggested that the decrease in NO and increase in ROS in ALDH6A1-O/E cells could be caused by depolarization of the mitochondrial membrane potential (ΔΨ). Taken together, our results suggest that hepatic neoplastic transformation appears to suppress the expression of ALDH6A1, which is accompanied by a respective increase and decrease in NO and ROS in cancer cells. Given the close link between ALDH6A1 suppression and abnormal cancer cell growth, this protein may serve as a potential molecular signature or biomarker of hepatocarcinogenesis and treatment responses.
Collapse
Affiliation(s)
- Heon Shin
- Yonsei Proteome Research Center, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyun-Jeong Cha
- Yonsei Proteome Research Center, Yonsei University, Seoul 03722, Republic of Korea
| | - Min Jung Lee
- Yonsei Proteome Research Center, Yonsei University, Seoul 03722, Republic of Korea
| | - Keun Na
- Yonsei Proteome Research Center, Yonsei University, Seoul 03722, Republic of Korea
| | - Donha Park
- Yonsei Proteome Research Center, Yonsei University, Seoul 03722, Republic of Korea
| | - Chae-Yeon Kim
- Yonsei Proteome Research Center, Yonsei University, Seoul 03722, Republic of Korea.,Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Republic of Korea
| | - Dai Hoon Han
- Department of Surgery and Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,Department of Pathology, College of Medicine, Severance Hospital, Yonsei University, Seoul 03722, Republic of Korea
| | - Hoguen Kim
- Department of Pathology, College of Medicine, Severance Hospital, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Ki Paik
- Yonsei Proteome Research Center, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
44
|
Deutsch EW, Bandeira N, Sharma V, Perez-Riverol Y, Carver JJ, Kundu DJ, García-Seisdedos D, Jarnuczak AF, Hewapathirana S, Pullman BS, Wertz J, Sun Z, Kawano S, Okuda S, Watanabe Y, Hermjakob H, MacLean B, MacCoss MJ, Zhu Y, Ishihama Y, Vizcaíno JA. The ProteomeXchange consortium in 2020: enabling 'big data' approaches in proteomics. Nucleic Acids Res 2020; 48:D1145-D1152. [PMID: 31686107 PMCID: PMC7145525 DOI: 10.1093/nar/gkz984] [Citation(s) in RCA: 339] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 11/24/2022] Open
Abstract
The ProteomeXchange (PX) consortium of proteomics resources (http://www.proteomexchange.org) has standardized data submission and dissemination of mass spectrometry proteomics data worldwide since 2012. In this paper, we describe the main developments since the previous update manuscript was published in Nucleic Acids Research in 2017. Since then, in addition to the four PX existing members at the time (PRIDE, PeptideAtlas including the PASSEL resource, MassIVE and jPOST), two new resources have joined PX: iProX (China) and Panorama Public (USA). We first describe the updated submission guidelines, now expanded to include six members. Next, with current data submission statistics, we demonstrate that the proteomics field is now actively embracing public open data policies. At the end of June 2019, more than 14 100 datasets had been submitted to PX resources since 2012, and from those, more than 9 500 in just the last three years. In parallel, an unprecedented increase of data re-use activities in the field, including 'big data' approaches, is enabling novel research and new data resources. At last, we also outline some of our future plans for the coming years.
Collapse
Affiliation(s)
| | - Nuno Bandeira
- Center for Computational Mass Spectrometry, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Department Computer Science and Engineering, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | | | - Yasset Perez-Riverol
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Jeremy J Carver
- Center for Computational Mass Spectrometry, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Department Computer Science and Engineering, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Deepti J Kundu
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - David García-Seisdedos
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Andrew F Jarnuczak
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Suresh Hewapathirana
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Benjamin S Pullman
- Center for Computational Mass Spectrometry, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Department Computer Science and Engineering, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Julie Wertz
- Center for Computational Mass Spectrometry, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Department Computer Science and Engineering, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Zhi Sun
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Shin Kawano
- Faculty of Contemporary Society, Toyama University of International Studies, Toyama 930–1292, Japan
- Database Center for Life Science (DBCLS), Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Chiba 277–0871, Japan
| | - Shujiro Okuda
- Niigata University Graduate School of Medical and Dental Sciences, Niigata 951–8510, Japan
| | - Yu Watanabe
- Niigata University Graduate School of Medical and Dental Sciences, Niigata 951–8510, Japan
| | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing 102206, China
| | | | | | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing 102206, China
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606–8501, Japan
| | - Juan A Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| |
Collapse
|
45
|
Lu S, Zhang J, Lian X, Sun L, Meng K, Chen Y, Sun Z, Yin X, Li Y, Zhao J, Wang T, Zhang G, He QY. A hidden human proteome encoded by 'non-coding' genes. Nucleic Acids Res 2019; 47:8111-8125. [PMID: 31340039 PMCID: PMC6735797 DOI: 10.1093/nar/gkz646] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/07/2019] [Accepted: 07/15/2019] [Indexed: 01/27/2023] Open
Abstract
It has been a long debate whether the 98% ‘non-coding’ fraction of human genome can encode functional proteins besides short peptides. With full-length translating mRNA sequencing and ribosome profiling, we found that up to 3330 long non-coding RNAs (lncRNAs) were bound to ribosomes with active translation elongation. With shotgun proteomics, 308 lncRNA-encoded new proteins were detected. A total of 207 unique peptides of these new proteins were verified by multiple reaction monitoring (MRM) and/or parallel reaction monitoring (PRM); and 10 new proteins were verified by immunoblotting. We found that these new proteins deviated from the canonical proteins with various physical and chemical properties, and emerged mostly in primates during evolution. We further deduced the protein functions by the assays of translation efficiency, RNA folding and intracellular localizations. As the new protein UBAP1-AST6 is localized in the nucleoli and is preferentially expressed by lung cancer cell lines, we biologically verified that it has a function associated with cell proliferation. In sum, we experimentally evidenced a hidden human functional proteome encoded by purported lncRNAs, suggesting a resource for annotating new human proteins.
Collapse
Affiliation(s)
- Shaohua Lu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jing Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xinlei Lian
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Li Sun
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Kun Meng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yang Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhenghua Sun
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xingfeng Yin
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yaxing Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jing Zhao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tong Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
46
|
Omenn GS, Lane L, Overall CM, Corrales FJ, Schwenk JM, Paik YK, Van Eyk JE, Liu S, Pennington S, Snyder MP, Baker MS, Deutsch EW. Progress on Identifying and Characterizing the Human Proteome: 2019 Metrics from the HUPO Human Proteome Project. J Proteome Res 2019; 18:4098-4107. [PMID: 31430157 PMCID: PMC6898754 DOI: 10.1021/acs.jproteome.9b00434] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Human Proteome Project (HPP) annually reports on progress made throughout the field in credibly identifying and characterizing the complete human protein parts list and making proteomics an integral part of multiomics studies in medicine and the life sciences. NeXtProt release 2019-01-11 contains 17 694 proteins with strong protein-level evidence (PE1), compliant with HPP Guidelines for Interpretation of MS Data v2.1; these represent 89% of all 19 823 neXtProt predicted coding genes (all PE1,2,3,4 proteins), up from 17 470 one year earlier. Conversely, the number of neXtProt PE2,3,4 proteins, termed the "missing proteins" (MPs), has been reduced from 2949 to 2129 since 2016 through efforts throughout the community, including the chromosome-centric HPP. PeptideAtlas is the source of uniformly reanalyzed raw mass spectrometry data for neXtProt; PeptideAtlas added 495 canonical proteins between 2018 and 2019, especially from studies designed to detect hard-to-identify proteins. Meanwhile, the Human Protein Atlas has released version 18.1 with immunohistochemical evidence of expression of 17 000 proteins and survival plots as part of the Pathology Atlas. Many investigators apply multiplexed SRM-targeted proteomics for quantitation of organ-specific popular proteins in studies of various human diseases. The 19 teams of the Biology and Disease-driven B/D-HPP published a total of 160 publications in 2018, bringing proteomics to a broad array of biomedical research.
Collapse
Affiliation(s)
- Gilbert S. Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, Michigan 48109-2218, United States
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109-5263, United States
| | - Lydie Lane
- CALIPHO Group, SIB Swiss Institute of Bioinformatics and Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CMU, Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Christopher M. Overall
- Life Sciences Institute, Faculty of Dentistry, University of British Columbia, 2350 Health Sciences Mall, Room 4.401, Vancouver, British Columbia V6T 1Z3, Canada
| | | | - Jochen M. Schwenk
- Science for Life Laboratory, KTH Royal Institute of Technology, Tomtebodavägen 23A, 17165 Solna, Sweden
| | - Young-Ki Paik
- Yonsei Proteome Research Center, Yonsei University, Room 425, Building #114, 50 Yonsei-ro, Seodaemoon-ku, Seoul 120-749, South Korea
| | - Jennifer E. Van Eyk
- Advanced Clinical BioSystems Research Institute, Cedars Sinai Precision Biomarker Laboratories, Barbra Streisand Women’s Heart Center, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Siqi Liu
- BGI Group-Shenzhen, Yantian District, Shenzhen 518083, China
| | - Stephen Pennington
- School of Medicine, University College Dublin, Conway Institute Belfield, Dublin 4, Ireland
| | - Michael P. Snyder
- Department of Genetics, Stanford University, Alway Building, 300 Pasteur Drive and 3165 Porter Drive, Palo Alto, California 94304, United States
| | - Mark S. Baker
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, 75 Talavera Road, North Ryde, NSW 2109, Australia
| | - Eric W. Deutsch
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109-5263, United States
| |
Collapse
|
47
|
Zhang Y, Lin Z, Tan Y, Bu F, Hao P, Zhang K, Yang H, Liu S, Ren Y. Exploration of Missing Proteins by a Combination Approach to Enrich the Low-Abundance Hydrophobic Proteins from Four Cancer Cell Lines. J Proteome Res 2019; 19:401-408. [DOI: 10.1021/acs.jproteome.9b00590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yuanliang Zhang
- BGI-Shenzhen, Beishan Industrial Zone, 11th Building, Yantian District, Shenzhen 518083, Guangdong, China
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China
| | - Zhilong Lin
- BGI-Shenzhen, Beishan Industrial Zone, 11th Building, Yantian District, Shenzhen 518083, Guangdong, China
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China
| | - Yifan Tan
- BGI-Shenzhen, Beishan Industrial Zone, 11th Building, Yantian District, Shenzhen 518083, Guangdong, China
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China
| | - Fanyu Bu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, Guangdong, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Keren Zhang
- BGI-Shenzhen, Beishan Industrial Zone, 11th Building, Yantian District, Shenzhen 518083, Guangdong, China
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China
| | - Huanming Yang
- BGI-Shenzhen, Beishan Industrial Zone, 11th Building, Yantian District, Shenzhen 518083, Guangdong, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Siqi Liu
- BGI-Shenzhen, Beishan Industrial Zone, 11th Building, Yantian District, Shenzhen 518083, Guangdong, China
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China
| | - Yan Ren
- BGI-Shenzhen, Beishan Industrial Zone, 11th Building, Yantian District, Shenzhen 518083, Guangdong, China
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
48
|
Liu Y, Lu S, Liu K, Wang S, Huang L, Guo L. Proteomics: a powerful tool to study plant responses to biotic stress. PLANT METHODS 2019; 15:135. [PMID: 31832077 PMCID: PMC6859632 DOI: 10.1186/s13007-019-0515-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/29/2019] [Indexed: 05/08/2023]
Abstract
In recent years, mass spectrometry-based proteomics has provided scientists with the tremendous capability to study plants more precisely than previously possible. Currently, proteomics has been transformed from an isolated field into a comprehensive tool for biological research that can be used to explain biological functions. Several studies have successfully used the power of proteomics as a discovery tool to uncover plant resistance mechanisms. There is growing evidence that indicates that the spatial proteome and post-translational modifications (PTMs) of proteins directly participate in the plant immune response. Therefore, understanding the subcellular localization and PTMs of proteins is crucial for a comprehensive understanding of plant responses to biotic stress. In this review, we discuss current approaches to plant proteomics that use mass spectrometry, with particular emphasis on the application of spatial proteomics and PTMs. The purpose of this paper is to investigate the current status of the field, discuss recent research challenges, and encourage the application of proteomics techniques to further research.
Collapse
Affiliation(s)
- Yahui Liu
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- National Institute of Metrology, Beijing, China
| | - Song Lu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Kefu Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Sheng Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
49
|
Lin Z, Zhang Y, Pan H, Hao P, Li S, He Y, Yang H, Liu S, Ren Y. Alternative Strategy To Explore Missing Proteins with Low Molecular Weight. J Proteome Res 2019; 18:4180-4188. [PMID: 31592669 DOI: 10.1021/acs.jproteome.9b00353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Identifying more missing proteins (MPs) is an important mission of C-HPP. With the number of identified MPs being attenuated year by year (2,949 to 2,129 MPs from 2016 to 2019), we have realized that the difficulty of exploring the remaining MPs is a challenge in technique. Herein, we propose a comprehensive strategy to effectively enrich, separate, and identify proteins with low molecular weights, aiming at the discovery of MPs. Basically, a protein extract from human placenta was passed through a C18 SPE column, and the bound proteins that were eluted were further separated with an SDS-PAGE gel or a 50 kDa cutoff filter. The separated proteins were subjected to trypsin digestion, and the MS/MS signals were searched against data sets with two different digestion modes (full-trypsin and semitrypsin). The strategy was adopted, resulting in the identification of 4 MPs with 8 unique peptides (≥2 non-nested unique peptides with ≥9 amino acids). Importantly, the identification of 6 out of 8 of the unique peptides derived from the MPs was further supported by parallel reaction monitoring, which confirmed the identification of 3 MPs from human placenta tissues (Q6NT89: TMF-regulated nuclear protein 1; A0A183: late cornified envelope protein 6A; and Q6UWQ7: insulin growth factor-like family member 2, mapped to chromosomes 1, 1, and 19, respectively). The three proteins ranged in length from 80 aa to 227 aa. The study not only establishes a feasible strategy for analyzing proteins with low molecular weights but also fills a small part of a large gap in the list of MPs. The data obtained in this study are available via ProteomeXchange (PXD014083) and PeptideAtlas (PASS01389).
Collapse
Affiliation(s)
- Zhilong Lin
- BGI-Shenzhen , Beishan Industrial Zone 11th building , Yantian District, Shenzhen , Guangdong 518083 , China.,Clinical laboratory of BGI Health , BGI-Shenzhen , Shenzhen 518083 , China
| | - Yuanliang Zhang
- BGI-Shenzhen , Beishan Industrial Zone 11th building , Yantian District, Shenzhen , Guangdong 518083 , China.,Clinical laboratory of BGI Health , BGI-Shenzhen , Shenzhen 518083 , China
| | - Huozhen Pan
- BGI-Shenzhen , Beishan Industrial Zone 11th building , Yantian District, Shenzhen , Guangdong 518083 , China.,Clinical laboratory of BGI Health , BGI-Shenzhen , Shenzhen 518083 , China
| | - Piliang Hao
- School of Life Science and Technology , ShanghaiTech University , 393 Middle Huaxia Road , Shanghai 201210 , China
| | - Siqi Li
- BGI-Shenzhen , Beishan Industrial Zone 11th building , Yantian District, Shenzhen , Guangdong 518083 , China.,Clinical laboratory of BGI Health , BGI-Shenzhen , Shenzhen 518083 , China
| | - Yanbin He
- BGI-Shenzhen , Beishan Industrial Zone 11th building , Yantian District, Shenzhen , Guangdong 518083 , China.,Clinical laboratory of BGI Health , BGI-Shenzhen , Shenzhen 518083 , China
| | - Huanming Yang
- BGI-Shenzhen , Beishan Industrial Zone 11th building , Yantian District, Shenzhen , Guangdong 518083 , China.,James D. Watson Institute of Genome Sciences , Hangzhou 310058 , China
| | - Siqi Liu
- BGI-Shenzhen , Beishan Industrial Zone 11th building , Yantian District, Shenzhen , Guangdong 518083 , China.,Clinical laboratory of BGI Health , BGI-Shenzhen , Shenzhen 518083 , China
| | - Yan Ren
- BGI-Shenzhen , Beishan Industrial Zone 11th building , Yantian District, Shenzhen , Guangdong 518083 , China.,Clinical laboratory of BGI Health , BGI-Shenzhen , Shenzhen 518083 , China
| |
Collapse
|
50
|
Sun J, Shi J, Wang Y, Wu S, Zhao L, Li Y, Wang H, Chang L, Lyu Z, Wu J, Liu F, Li W, He F, Zhang Y, Xu P. Open-pFind Enhances the Identification of Missing Proteins from Human Testis Tissue. J Proteome Res 2019; 18:4189-4196. [DOI: 10.1021/acs.jproteome.9b00376] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jinshuai Sun
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Jiahui Shi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Yihao Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Shujia Wu
- Key Laboratory of Combinational Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Science, Wuhan University, Wuhan 430072, China
| | - Liping Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Guizhou University School of Medicine, Guiyang 550025, China
| | - Yanchang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Hong Wang
- School of Public Health, North China University Science and Technology, Tangshan 063210, China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Zhitang Lyu
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Junzhu Wu
- Key Laboratory of Combinational Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Science, Wuhan University, Wuhan 430072, China
| | - Fengsong Liu
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Wenjun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yao Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
- Key Laboratory of Combinational Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Science, Wuhan University, Wuhan 430072, China
- Guizhou University School of Medicine, Guiyang 550025, China
| |
Collapse
|