1
|
Arshad S, Cameron B, Joglekar AV. Immunopeptidomics for autoimmunity: unlocking the chamber of immune secrets. NPJ Syst Biol Appl 2025; 11:10. [PMID: 39833247 DOI: 10.1038/s41540-024-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
T cells mediate pathogenesis of several autoimmune disorders by recognizing self-epitopes presented on Major Histocompatibility Complex (MHC) or Human Leukocyte Antigen (HLA) complex. The majority of autoantigens presented to T cells in various autoimmune disorders are not known, which has impeded autoantigen identification. Recent advances in immunopeptidomics have started to unravel the repertoire of antigenic epitopes presented on MHC. In several autoimmune diseases, immunopeptidomics has led to the identification of novel autoantigens and has enhanced our understanding of the mechanisms behind autoimmunity. Especially, immunopeptidomics has provided key evidence to explain the genetic risk posed by HLA alleles. In this review, we shed light on how immunopeptidomics can be leveraged to discover potential autoantigens. We highlight the application of immunopeptidomics in Type 1 Diabetes (T1D), Systemic Lupus Erythematosus (SLE), and Rheumatoid Arthritis (RA). Finally, we highlight the practical considerations of implementing immunopeptidomics successfully and the technical challenges that need to be addressed. Overall, this review will provide an important context for using immunopeptidomics for understanding autoimmunity.
Collapse
Affiliation(s)
- Sanya Arshad
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin Cameron
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alok V Joglekar
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Soh WT, Roetschke HP, Cormican JA, Teo BF, Chiam NC, Raabe M, Pflanz R, Henneberg F, Becker S, Chari A, Liu H, Urlaub H, Liepe J, Mishto M. Protein degradation by human 20S proteasomes elucidates the interplay between peptide hydrolysis and splicing. Nat Commun 2024; 15:1147. [PMID: 38326304 PMCID: PMC10850103 DOI: 10.1038/s41467-024-45339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024] Open
Abstract
If and how proteasomes catalyze not only peptide hydrolysis but also peptide splicing is an open question that has divided the scientific community. The debate has so far been based on immunopeptidomics, in vitro digestions of synthetic polypeptides as well as ex vivo and in vivo experiments, which could only indirectly describe proteasome-catalyzed peptide splicing of full-length proteins. Here we develop a workflow-and cognate software - to analyze proteasome-generated non-spliced and spliced peptides produced from entire proteins and apply it to in vitro digestions of 15 proteins, including well-known intrinsically disordered proteins such as human tau and α-Synuclein. The results confirm that 20S proteasomes produce a sizeable variety of cis-spliced peptides, whereas trans-spliced peptides are a minority. Both peptide hydrolysis and splicing produce peptides with well-defined characteristics, which hint toward an intricate regulation of both catalytic activities. At protein level, both non-spliced and spliced peptides are not randomly localized within protein sequences, but rather concentrated in hotspots of peptide products, in part driven by protein sequence motifs and proteasomal preferences. At sequence level, the different peptide sequence preference of peptide hydrolysis and peptide splicing suggests a competition between the two catalytic activities of 20S proteasomes during protein degradation.
Collapse
Affiliation(s)
- Wai Tuck Soh
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Hanna P Roetschke
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- Centre for Inflammation Biology and Cancer Immunology & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL, London, UK
- Research Group of Molecular Immunology, Francis Crick Institute, NW1 1AT, London, UK
| | - John A Cormican
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Bei Fang Teo
- Centre for Inflammation Biology and Cancer Immunology & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL, London, UK
- Research Group of Molecular Immunology, Francis Crick Institute, NW1 1AT, London, UK
- Immunology Programme, Life Sciences Institute; Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Nyet Cheng Chiam
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Monika Raabe
- Research Group of Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Ralf Pflanz
- Research Group of Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Fabian Henneberg
- Department of Structural Dynamics, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Ashwin Chari
- Research Group of Structural Biochemistry and Mechanisms, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute; Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Henning Urlaub
- Research Group of Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- Institute of Clinical Chemistry, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Juliane Liepe
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany.
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL, London, UK.
- Research Group of Molecular Immunology, Francis Crick Institute, NW1 1AT, London, UK.
| |
Collapse
|
3
|
Pang Z, Lu MM, Zhang Y, Gao Y, Bai JJ, Gu JY, Xie L, Wu WZ. Neoantigen-targeted TCR-engineered T cell immunotherapy: current advances and challenges. Biomark Res 2023; 11:104. [PMID: 38037114 PMCID: PMC10690996 DOI: 10.1186/s40364-023-00534-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/22/2023] [Indexed: 12/02/2023] Open
Abstract
Adoptive cell therapy using T cell receptor-engineered T cells (TCR-T) is a promising approach for cancer therapy with an expectation of no significant side effects. In the human body, mature T cells are armed with an incredible diversity of T cell receptors (TCRs) that theoretically react to the variety of random mutations generated by tumor cells. The outcomes, however, of current clinical trials using TCR-T cell therapies are not very successful especially involving solid tumors. The therapy still faces numerous challenges in the efficient screening of tumor-specific antigens and their cognate TCRs. In this review, we first introduce TCR structure-based antigen recognition and signaling, then describe recent advances in neoantigens and their specific TCR screening technologies, and finally summarize ongoing clinical trials of TCR-T therapies against neoantigens. More importantly, we also present the current challenges of TCR-T cell-based immunotherapies, e.g., the safety of viral vectors, the mismatch of T cell receptor, the impediment of suppressive tumor microenvironment. Finally, we highlight new insights and directions for personalized TCR-T therapy.
Collapse
Affiliation(s)
- Zhi Pang
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Man-Man Lu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yu Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yuan Gao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Jin-Jin Bai
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian-Ying Gu
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lu Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
| | - Wei-Zhong Wu
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Cormican JA, Soh WT, Mishto M, Liepe J. iBench: A ground truth approach for advanced validation of mass spectrometry identification method. Proteomics 2023; 23:e2200271. [PMID: 36189881 PMCID: PMC10078205 DOI: 10.1002/pmic.202200271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 01/19/2023]
Abstract
The discovery of many noncanonical peptides detectable with sensitive mass spectrometry inside, outside, and on cells shepherded the development of novel methods for their identification, often not supported by a systematic benchmarking with other methods. We here propose iBench, a bioinformatic tool that can construct ground truth proteomics datasets and cognate databases, thereby generating a training court wherein methods, search engines, and proteomics strategies can be tested, and their performances estimated by the same tool. iBench can be coupled to the main database search engines, allows the selection of customized features of mass spectrometry spectra and peptides, provides standard benchmarking outputs, and is open source. The proof-of-concept application to tryptic proteome digestions, immunopeptidomes, and synthetic peptide libraries dissected the impact that noncanonical peptides could have on the identification of canonical peptides by Mascot search with rescoring via Percolator (Mascot+Percolator).
Collapse
Affiliation(s)
- John A. Cormican
- Max‐Planck‐Institute for Multidisciplinary Sciences (MPI‐NAT)GöttingenGermany
| | - Wai Tuck Soh
- Max‐Planck‐Institute for Multidisciplinary Sciences (MPI‐NAT)GöttingenGermany
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of ImmunobiologyKing's College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Juliane Liepe
- Max‐Planck‐Institute for Multidisciplinary Sciences (MPI‐NAT)GöttingenGermany
| |
Collapse
|
5
|
Sources of Cancer Neoantigens beyond Single-Nucleotide Variants. Int J Mol Sci 2022; 23:ijms231710131. [PMID: 36077528 PMCID: PMC9455963 DOI: 10.3390/ijms231710131] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The success of checkpoint blockade therapy against cancer has unequivocally shown that cancer cells can be effectively recognized by the immune system and eliminated. However, the identity of the cancer antigens that elicit protective immunity remains to be fully explored. Over the last decade, most of the focus has been on somatic mutations derived from non-synonymous single-nucleotide variants (SNVs) and small insertion/deletion mutations (indels) that accumulate during cancer progression. Mutated peptides can be presented on MHC molecules and give rise to novel antigens or neoantigens, which have been shown to induce potent anti-tumor immune responses. A limitation with SNV-neoantigens is that they are patient-specific and their accurate prediction is critical for the development of effective immunotherapies. In addition, cancer types with low mutation burden may not display sufficient high-quality [SNV/small indels] neoantigens to alone stimulate effective T cell responses. Accumulating evidence suggests the existence of alternative sources of cancer neoantigens, such as gene fusions, alternative splicing variants, post-translational modifications, and transposable elements, which may be attractive novel targets for immunotherapy. In this review, we describe the recent technological advances in the identification of these novel sources of neoantigens, the experimental evidence for their presentation on MHC molecules and their immunogenicity, as well as the current clinical development stage of immunotherapy targeting these neoantigens.
Collapse
|
6
|
Fotakis G, Trajanoski Z, Rieder D. Computational cancer neoantigen prediction: current status and recent advances. IMMUNO-ONCOLOGY TECHNOLOGY 2021; 12:100052. [PMID: 35755950 PMCID: PMC9216660 DOI: 10.1016/j.iotech.2021.100052] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last few decades, immunotherapy has shown significant therapeutic efficacy in a broad range of cancer types. Antitumor immune responses are contingent on the recognition of tumor-specific antigens, which are termed neoantigens. Tumor neoantigens are ideal targets for immunotherapy since they can be recognized as non-self antigens by the host immune system and thus are able to elicit an antitumor T-cell response. There are an increasing number of studies that highlight the importance of tumor neoantigens in immunoediting and in the sensitivity to immune checkpoint blockade. Therefore, one of the most fundamental tasks in the field of immuno-oncology research is the identification of patient-specific neoantigens. To this end, a plethora of computational approaches have been developed in order to predict tumor-specific aberrant peptides and quantify their likelihood of binding to patients' human leukocyte antigen molecules in order to be recognized by T cells. In this review, we systematically summarize and present the most recent advances in computational neoantigen prediction, and discuss the challenges and novel methods that are being developed to resolve them. Tumors have the ability to acquire immune escape mechanisms. Tumor-specific aberrant peptides (neoantigens) can elicit an immune response by the host immune system. The identification of neoantigens is one of the most fundamental tasks in the field of immuno-oncology research. A plethora of computational approaches have been developed in order to predict patient-specificneoantigens.
Collapse
Affiliation(s)
- G Fotakis
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Z Trajanoski
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - D Rieder
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Identification of tumor antigens with immunopeptidomics. Nat Biotechnol 2021; 40:175-188. [PMID: 34635837 DOI: 10.1038/s41587-021-01038-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/29/2021] [Indexed: 12/18/2022]
Abstract
The identification of actionable tumor antigens is indispensable for the development of several cancer immunotherapies, including T cell receptor-transduced T cells and patient-specific mRNA or peptide vaccines. Most known tumor antigens have been identified through extensive molecular characterization and are considered canonical if they derive from protein-coding regions of the genome. By eluting human leukocyte antigen-bound peptides from tumors and subjecting these to mass spectrometry analysis, the peptides can be identified by matching the resulting spectra against reference databases. Recently, mass-spectrometry-based immunopeptidomics has enabled the discovery of noncanonical antigens-antigens derived from sequences outside protein-coding regions or generated by noncanonical antigen-processing mechanisms. Coupled with transcriptomics and ribosome profiling, this method enables the identification of thousands of noncanonical peptides, of which a substantial fraction may be detected exclusively in tumors. Spectral matching against the immense noncanonical reference may generate false positives. However, sensitive mass spectrometry, analytical validation and advanced bioinformatics solutions are expected to uncover the full landscape of presented antigens and clinically relevant targets.
Collapse
|
8
|
Watts E, Potts GK, Ready DB, George Thompson AM, Lee J, Escobar EE, Patterson MJ, Brodbelt JS. Characterization of HLA-A*02:01 MHC Immunopeptide Antigens Enhanced by Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2021; 93:13134-13142. [PMID: 34553926 DOI: 10.1021/acs.analchem.1c01002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Identifying major histocompatibility complex (MHC) class I immunopeptide antigens represents a key step in the development of immune-based targeted therapeutics and vaccines. However, the complete characterization of these antigens by tandem mass spectrometry remains challenging due to their short sequence length, high degree of hydrophobicity, and/or lack of sufficiently basic amino acids. This study seeks to address the potential for 193 nm ultraviolet photodissociation (UVPD) to improve the analysis of MHC class I immunopeptides by offering enhanced characterization of these sequences in lower charge states and differentiation of prominent isomeric leucine and isoleucine residues in the HLA-A*02:01 motif. Although electron transfer dissociation-higher energy collisional dissociation (EThcD) offered some success in the differentiation of leucine and isoleucine, 193 nm UVPD was able to confirm the identity of nearly 60% of leucine and isoleucine residues in a synthetic peptide mixture. Furthermore, 193 nm UVPD led to significantly more peptide identifications and higher scoring metrics than EThcD for peptides obtained from immunoprecipitation of MHC class I immunopeptides from in vitro cell culture. Additionally, 193 nm UVPD represents a promising complementary technique to higher-energy collisional dissociation (HCD), in which 424 of the 2593 peptides identified by 193 nm UVPD were not identified by HCD in HLA-A*02:01-specific immunoprecipitation and 804 of the 3300 peptides identified by 193 nm UVPD were not identified by HCD for pan HLA-A, -B, and -C immunoprecipitation. These results highlight that 193 nm UVPD offers an option for the characterization of immunopeptides, including differentiation of leucine and isoleucine residues.
Collapse
Affiliation(s)
- Eleanor Watts
- Department of Chemistry, University of Texas at Austin, Austin 78712-1139, Texas, United States
| | - Gregory K Potts
- AbbVie, Inc., North Chicago 60064-1802, Illinois, United States
| | - Damien B Ready
- AbbVie, Inc., North Chicago 60064-1802, Illinois, United States
| | | | - Janice Lee
- AbbVie, Inc., North Chicago 60064-1802, Illinois, United States
| | - Edwin E Escobar
- Department of Chemistry, University of Texas at Austin, Austin 78712-1139, Texas, United States
| | | | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin 78712-1139, Texas, United States
| |
Collapse
|
9
|
Purcell AW. Is the Immunopeptidome Getting Darker?: A Commentary on the Discussion around Mishto et al., 2019. Front Immunol 2021; 12:720811. [PMID: 34326850 PMCID: PMC8315041 DOI: 10.3389/fimmu.2021.720811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Anthony W Purcell
- Department of Biochemistry and Molecular Biology, and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
10
|
Faridi P, Dorvash M, Purcell AW. Spliced HLA-bound peptides: a Black Swan event in immunology. Clin Exp Immunol 2021; 204:179-188. [PMID: 33644851 PMCID: PMC8062993 DOI: 10.1111/cei.13589] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Peptides that bind to and are presented on the cell surface by human leucocyte antigen (HLA) molecules play a critical role in adaptive immunity. For a long time it was believed that all the HLA-bound peptides were generated through simple proteolysis of linear sequences of cellular proteins, and therefore are templated in the genome and proteome. However, evidence for untemplated peptide ligands of HLA molecules has accumulated during the last two decades, with a recent global analysis of HLA-bound peptides suggesting that a considerable proportion of HLA-bound peptides are potentially generated through splicing/fusion of discontinuous peptide segments from one or two distinct proteins. In this review, we will evaluate recent discoveries and debates on the contribution of spliced peptides to the HLA class I immunopeptidome, consider biochemical rules for splicing and the potential role of these spliced peptides in immune recognition.
Collapse
Affiliation(s)
- P. Faridi
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityViewbankVICAustralia
| | - M. Dorvash
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityViewbankVICAustralia
| | - A. W. Purcell
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityViewbankVICAustralia
| |
Collapse
|
11
|
Shukla A, Cloutier M, Appiya Santharam M, Ramanathan S, Ilangumaran S. The MHC Class-I Transactivator NLRC5: Implications to Cancer Immunology and Potential Applications to Cancer Immunotherapy. Int J Mol Sci 2021; 22:ijms22041964. [PMID: 33671123 PMCID: PMC7922096 DOI: 10.3390/ijms22041964] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
The immune system constantly monitors the emergence of cancerous cells and eliminates them. CD8+ cytotoxic T lymphocytes (CTLs), which kill tumor cells and provide antitumor immunity, select their targets by recognizing tumor antigenic peptides presented by MHC class-I (MHC-I) molecules. Cancer cells circumvent immune surveillance using diverse strategies. A key mechanism of cancer immune evasion is downregulation of MHC-I and key proteins of the antigen processing and presentation machinery (APM). Even though impaired MHC-I expression in cancers is well-known, reversing the MHC-I defects remains the least advanced area of tumor immunology. The discoveries that NLRC5 is the key transcriptional activator of MHC-I and APM genes, and genetic lesions and epigenetic modifications of NLRC5 are the most common cause of MHC-I defects in cancers, have raised the hopes for restoring MHC-I expression. Here, we provide an overview of cancer immunity mediated by CD8+ T cells and the functions of NLRC5 in MHC-I antigen presentation pathways. We describe the impressive advances made in understanding the regulation of NLRC5 expression, the data supporting the antitumor functions of NLRC5 and a few reports that argue for a pro-tumorigenic role. Finally, we explore the possible avenues of exploiting NLRC5 for cancer immunotherapy.
Collapse
Affiliation(s)
- Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Maryse Cloutier
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Madanraj Appiya Santharam
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
- Correspondence: ; Tel.: +1-819-346-1110 (ext. 14834)
| |
Collapse
|
12
|
Rolfs Z, Millikin RJ, Smith LM. An Algorithm to Improve the Speed of Semi and Non-Specific Enzyme Searches in Proteomics. Curr Bioinform 2021; 15:1065-1074. [PMID: 33692656 DOI: 10.2174/1574893615999200429123334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background The identification of non-specifically cleaved peptides in proteomics and peptidomics poses a significant computational challenge. Current strategies for the identification of such peptides are typically time consuming and hinder routine data analysis. Objective We aimed to design an algorithm that would improve the speed of semi- and non-specific enzyme searches and could be applicable to existing search programs. Method We developed a novel search algorithm that leverages fragment-ion redundancy to simultaneously search multiple non-specifically cleaved peptides at once. Briefly, a theoretical peptide tandem mass spectrum is generated using only the fragment-ion series from a single terminus. This spectrum serves as a proxy for several shorter theoretical peptides sharing the same terminus. After database searching, amino acids are removed from the opposing terminus until the observed and theoretical precursor masses match within a given mass tolerance. Results The algorithm was implemented in the search program MetaMorpheus and found to perform an order of magnitude faster than the traditional MetaMorpheus search and produce superior results. Conclusion We report a speedy non-specific enzyme search algorithm which is open-source and enables search programs to utilize fragment-ion redundancy to achieve a notable increase in search speed.
Collapse
Affiliation(s)
- Zach Rolfs
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Robert J Millikin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
13
|
Wiles TA, Saba LM, Delong T. Peptide-Spectrum Match Validation with Internal Standards (P-VIS): Internally-Controlled Validation of Mass Spectrometry-Based Peptide Identifications. J Proteome Res 2020; 20:236-249. [PMID: 32924495 DOI: 10.1021/acs.jproteome.0c00355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Liquid chromatography-tandem mass spectrometry is an increasingly powerful tool for studying proteins in the context of disease. As technological advances in instrumentation and data analysis have enabled deeper profiling of proteomes and peptidomes, the need for a rigorous, standardized approach to validate individual peptide-spectrum matches (PSMs) has emerged. To address this need, we developed a novel and broadly applicable workflow: PSM validation with internal standards (P-VIS). In this approach, the fragmentation spectrum and chromatographic retention time of a peptide within a biological sample are compared with those of a synthetic version of the putative peptide sequence match. Similarity measurements obtained for a panel of internal standard peptides are then used to calculate a prediction interval for valid matches. If the observed degree of similarity between the biological and the synthetic peptide falls within this prediction interval, then the match is considered valid. P-VIS enables systematic and objective assessment of the validity of individual PSMs, providing a measurable degree of confidence when identifying peptides by mass spectrometry.
Collapse
Affiliation(s)
- Timothy Aaron Wiles
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045-0508, United States States
| | - Laura M Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045-0508, United States States
| | - Thomas Delong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045-0508, United States States
| |
Collapse
|
14
|
A few good peptides: MHC class I-based cancer immunosurveillance and immunoevasion. Nat Rev Immunol 2020; 21:116-128. [PMID: 32820267 DOI: 10.1038/s41577-020-0390-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 12/25/2022]
Abstract
The remarkable success of immune checkpoint inhibitors demonstrates the potential of tumour-specific CD8+ T cells to prevent and treat cancer. Although the number of lives saved by immunotherapy mounts, only a relatively small fraction of patients are cured. Here, we review two of the factors that limit the application of CD8+ T cell immunotherapies: difficulties in identifying tumour-specific peptides presented by MHC class I molecules and the ability of tumour cells to impair antigen presentation as they evolve under T cell selection. We describe recent advances in understanding how peptides are generated from non-canonical translation of defective ribosomal products, relate this to the dysregulated translation that is a feature of carcinogenesis and propose dysregulated translation as an important new source of tumour-specific peptides. We discuss how the synthesis and function of components of the antigen-processing and presentation pathway, including the recently described immunoribosome, are manipulated by tumours for immunoevasion and point to common druggable targets that may enhance immunotherapy.
Collapse
|
15
|
Rolfs Z, Müller M, Shortreed MR, Smith LM, Bassani-Sternberg M. Comment on "A subset of HLA-I peptides are not genomically templated: Evidence for cis- and trans-spliced peptide ligands". Sci Immunol 2020; 4:4/38/eaaw1622. [PMID: 31420320 DOI: 10.1126/sciimmunol.aaw1622] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/16/2019] [Indexed: 12/21/2022]
Abstract
There is still no convincing evidence for the frequent occurrence of posttranslationally spliced HLA-I peptides.
Collapse
Affiliation(s)
- Zach Rolfs
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Markus Müller
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Michal Bassani-Sternberg
- Ludwig Cancer Research Center, University of Lausanne, 1066 Epalinges, Switzerland. .,Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
16
|
Sarkizova S, Klaeger S, Le PM, Li LW, Oliveira G, Keshishian H, Hartigan CR, Zhang W, Braun DA, Ligon KL, Bachireddy P, Zervantonakis IK, Rosenbluth JM, Ouspenskaia T, Law T, Justesen S, Stevens J, Lane WJ, Eisenhaure T, Lan Zhang G, Clauser KR, Hacohen N, Carr SA, Wu CJ, Keskin DB. A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nat Biotechnol 2020; 38:199-209. [PMID: 31844290 PMCID: PMC7008090 DOI: 10.1038/s41587-019-0322-9] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
Abstract
Prediction of HLA epitopes is important for the development of cancer immunotherapies and vaccines. However, current prediction algorithms have limited predictive power, in part because they were not trained on high-quality epitope datasets covering a broad range of HLA alleles. To enable prediction of endogenous HLA class I-associated peptides across a large fraction of the human population, we used mass spectrometry to profile >185,000 peptides eluted from 95 HLA-A, -B, -C and -G mono-allelic cell lines. We identified canonical peptide motifs per HLA allele, unique and shared binding submotifs across alleles and distinct motifs associated with different peptide lengths. By integrating these data with transcript abundance and peptide processing, we developed HLAthena, providing allele-and-length-specific and pan-allele-pan-length prediction models for endogenous peptide presentation. These models predicted endogenous HLA class I-associated ligands with 1.5-fold improvement in positive predictive value compared with existing tools and correctly identified >75% of HLA-bound peptides that were observed experimentally in 11 patient-derived tumor cell lines.
Collapse
Affiliation(s)
- Siranush Sarkizova
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Susan Klaeger
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Phuong M Le
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Letitia W Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Giacomo Oliveira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Wandi Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David A Braun
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Keith L Ligon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Patient Derived Models, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Neuropathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Pavan Bachireddy
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | - Travis Law
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jonathan Stevens
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - William J Lane
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Guang Lan Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Computer Science, Metropolitan College, Boston University, Boston, MA, USA
| | | | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Center for Cancer Immunology, Massachusetts General Hospital, Boston, MA, USA.
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Catherine J Wu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Derin B Keskin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Computer Science, Metropolitan College, Boston University, Boston, MA, USA.
| |
Collapse
|
17
|
Paes W, Leonov G, Partridge T, Chikata T, Murakoshi H, Frangou A, Brackenridge S, Nicastri A, Smith AG, Learn GH, Li Y, Parker R, Oka S, Pellegrino P, Williams I, Haynes BF, McMichael AJ, Shaw GM, Hahn BH, Takiguchi M, Ternette N, Borrow P. Contribution of proteasome-catalyzed peptide cis-splicing to viral targeting by CD8 + T cells in HIV-1 infection. Proc Natl Acad Sci U S A 2019; 116:24748-24759. [PMID: 31748275 PMCID: PMC6900506 DOI: 10.1073/pnas.1911622116] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Peptides generated by proteasome-catalyzed splicing of noncontiguous amino acid sequences have been shown to constitute a source of nontemplated human leukocyte antigen class I (HLA-I) epitopes, but their role in pathogen-specific immunity remains unknown. CD8+ T cells are key mediators of HIV type 1 (HIV-1) control, and identification of novel epitopes to enhance targeting of infected cells is a priority for prophylactic and therapeutic strategies. To explore the contribution of proteasome-catalyzed peptide splicing (PCPS) to HIV-1 epitope generation, we developed a broadly applicable mass spectrometry-based discovery workflow that we employed to identify spliced HLA-I-bound peptides on HIV-infected cells. We demonstrate that HIV-1-derived spliced peptides comprise a relatively minor component of the HLA-I-bound viral immunopeptidome. Although spliced HIV-1 peptides may elicit CD8+ T cell responses relatively infrequently during infection, CD8+ T cells primed by partially overlapping contiguous epitopes in HIV-infected individuals were able to cross-recognize spliced viral peptides, suggesting a potential role for PCPS in restricting HIV-1 escape pathways. Vaccine-mediated priming of responses to spliced HIV-1 epitopes could thus provide a novel means of exploiting epitope targets typically underutilized during natural infection.
Collapse
Affiliation(s)
- Wayne Paes
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom;
| | - German Leonov
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York YO10 5DD, United Kingdom
| | - Thomas Partridge
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Takayuki Chikata
- Centre for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hayato Murakoshi
- Centre for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Anna Frangou
- Big Data Institute, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Simon Brackenridge
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Annalisa Nicastri
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Andrew G Smith
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Gerald H Learn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Yingying Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Robert Parker
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Shinichi Oka
- Centre for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
- AIDS Clinical Centre, National Centre for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Pierre Pellegrino
- Centre for Sexual Health and HIV Research, University College London, London WC1E 6JB, United Kingdom
| | - Ian Williams
- Centre for Sexual Health and HIV Research, University College London, London WC1E 6JB, United Kingdom
| | - Barton F Haynes
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - George M Shaw
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Nicola Ternette
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom;
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom;
| |
Collapse
|
18
|
Mishto M, Mansurkhodzhaev A, Ying G, Bitra A, Cordfunke RA, Henze S, Paul D, Sidney J, Urlaub H, Neefjes J, Sette A, Zajonc DM, Liepe J. An in silico-in vitro Pipeline Identifying an HLA-A *02:01 + KRAS G12V + Spliced Epitope Candidate for a Broad Tumor-Immune Response in Cancer Patients. Front Immunol 2019; 10:2572. [PMID: 31803176 PMCID: PMC6872521 DOI: 10.3389/fimmu.2019.02572] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/16/2019] [Indexed: 12/22/2022] Open
Abstract
Targeting CD8+ T cells to recurrent tumor-specific mutations can profoundly contribute to cancer treatment. Some of these mutations are potential tumor antigens although they can be displayed by non-spliced epitopes only in a few patients, because of the low affinity of the mutated non-spliced peptides for the predominant HLA class I alleles. Here, we describe a pipeline that uses the large sequence variety of proteasome-generated spliced peptides and identifies spliced epitope candidates, which carry the mutations and bind the predominant HLA-I alleles with high affinity. They could be used in adoptive T cell therapy and other anti-cancer immunotherapies for large cohorts of cancer patients. As a proof of principle, the application of this pipeline led to the identification of a KRAS G12V mutation-carrying spliced epitope candidate, which is produced by proteasomes, transported by TAPs and efficiently presented by the most prevalent HLA class I molecules, HLA-A*02:01 complexes.
Collapse
Affiliation(s)
- Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institut für Biochemie, Berlin, Germany
| | - Artem Mansurkhodzhaev
- Quantitative and Systems Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ge Ying
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Aruna Bitra
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Robert A Cordfunke
- Department of Immunohematology and Bloodbank, Leiden University Medical Center LUMC, Leiden, Netherlands
| | - Sarah Henze
- Quantitative and Systems Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Debdas Paul
- Quantitative and Systems Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany.,Institut for Clinical Chemistry, University Medical Center Goettingen Bioanalytics, Goettingen, Germany
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden, Netherlands
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Dirk M Zajonc
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Juliane Liepe
- Quantitative and Systems Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Life Sciences, Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, United Kingdom
| |
Collapse
|
19
|
Bichmann L, Nelde A, Ghosh M, Heumos L, Mohr C, Peltzer A, Kuchenbecker L, Sachsenberg T, Walz JS, Stevanović S, Rammensee HG, Kohlbacher O. MHCquant: Automated and Reproducible Data Analysis for Immunopeptidomics. J Proteome Res 2019; 18:3876-3884. [DOI: 10.1021/acs.jproteome.9b00313] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Stefan Stevanović
- German Cancer Consortium (DKTK), DKFZ Partner Site, Tübingen 72076, Germany
| | | | - Oliver Kohlbacher
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| |
Collapse
|
20
|
Abstract
Mounting evidence implicates hybrid insulin peptides (HIPs) as important autoantigens in the development of type 1 diabetes (T1D). These fusion peptides formed between insulin and other pancreatic beta cell-derived peptides contain non-genomically encoded amino acid sequences, making them plausible targets for autoreactive T cells in T1D. HIPs are detectable by mass spectrometry in human and murine islets and are targeted by diabetes-inducing T cells in non-obese diabetic mice as well as by T cells isolated from the residual pancreatic islets of human organ donors with T1D. The discovery of HIPs comes with numerous new challenges, as well as opportunities to study the pathogenesis of T1D. Here we review the original discovery of HIPs and describe recent studies investigating the role of HIP-reactive T cells in the development of diabetes. We also discuss potential mechanisms that may be responsible for the generation of HIPs in beta cells and describe challenges that need to be addressed in the field of mass spectrometry to enable the discovery of new HIPs. The identification of these potentially disease-driving antigens in T1D is of key interest to the field as it may provide new tools to predict, prevent and potentially reverse the disease.
Collapse
Affiliation(s)
- T A Wiles
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz, Aurora, CO, USA
| | - T Delong
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz, Aurora, CO, USA
| |
Collapse
|
21
|
Wiles TA, Powell R, Michel C, Beard KS, Hohenstein A, Bradley B, Reisdorph N, Haskins K, Delong T. Identification of Hybrid Insulin Peptides (HIPs) in Mouse and Human Islets by Mass Spectrometry. J Proteome Res 2019; 18:814-825. [PMID: 30585061 DOI: 10.1021/acs.jproteome.8b00875] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We recently discovered hybrid insulin peptides (HIPs) as a novel class of post-translationally modified peptides in murine-derived beta cell tumors, and we demonstrated that these molecules are autoantigens in type 1 diabetes (T1D). A HIP consists of an insulin fragment linked to another secretory granule peptide via a peptide bond. We verified that autoreactive CD4 T cells in both mouse and human autoimmune diabetes recognize these modified peptides. Here, we use mass spectrometric analyses to confirm the presence of HIPs in both mouse and human pancreatic islets. We also present criteria for the confident identification of these peptides. This work supports the hypothesis that HIPs are autoantigens in human T1D and provides a foundation for future efforts to interrogate this previously unknown component of the beta cell proteome.
Collapse
Affiliation(s)
- T. Aaron Wiles
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045,
United States
| | - Roger Powell
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045,
United States
| | - Cole Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045,
United States
| | - K. Scott Beard
- Barbara Davis Center for Childhood Diabetes , Aurora , Colorado 80045 , United States
| | - Anita Hohenstein
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045,
United States,Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045,
United States
| | - Brenda Bradley
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045,
United States
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045,
United States
| | - Kathryn Haskins
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045,
United States
| | - Thomas Delong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045,
United States
| |
Collapse
|