1
|
Hong X, Fan L, Li J. Edible nonaqueous foams: Recent advances in the formation, stabilization, characterization, and applications. Food Chem 2025; 466:142152. [PMID: 39608114 DOI: 10.1016/j.foodchem.2024.142152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
Edible nonaqueous foam has emerged as a novel direction for the development of fat-reducing products in recent years. This review critically summarizes the current progress of research on this foam mainly over the past decade. Initially, destabilization mechanisms that hinder its rational design are highlighted. Then, the preparation of nonaqueous foam is discussed, focusing on the types of stabilizers and foam properties. Additionally, the characterization methods of this foam and its applications are discussed. Finally, the gaps in the current research on edible nonaqueous foam and future perspectives are pointed out. Edible nonaqueous foam offers a novel avenue for developing fat replacers while preserving desirable sensory attributes. Moreover, this foam has demonstrated its potential in encapsulating flavor ingredients as well as developing responsive systems, thereby contributing to future advancements in personalized nutrition. This review has the potential to inspire innovative ideas for future research endeavors within the field of foam.
Collapse
Affiliation(s)
- Xin Hong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Ribourg-Birault L, Meynier A, Vergé S, Sallan E, Kermarrec A, Falourd X, Berton-Carabin C, Fameau AL. Oleofoams: The impact of formulating air-in-oil systems from a lipid oxidation perspective. Curr Res Food Sci 2024; 8:100690. [PMID: 38328464 PMCID: PMC10847802 DOI: 10.1016/j.crfs.2024.100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024] Open
Abstract
Air-in-oil foams, or oleofoams, have a great potential for food applications as they can at least partially replace animal or hydrogenated fats, without compromising on textural properties. Yet, there are some challenges to tackle before they can largely be implemented for real-life applications. One of those is the lack of data regarding their oxidative stability. This is an important point to consider, as although using oils rich in polyunsaturated fatty acids (PUFAs) is highly desirable from a nutritional perspective, these fatty acids are particularly prone to oxidation, which leads to major degradations of food quality. This work thus aimed to investigate the oxidative stability of oleofoams prepared with omega-3 PUFA-rich vegetable oils (rapeseed or flaxseed oil) and various types of high melting point lipid-based oleogelators (stearic acid, glyceryl monostearate and stearyl alcohol) when incubated at room temperature. The physical structure and stability of the oleofoams was monitored by various techniques (visual observations, microscopy, DSC, NMR, SAXS and WAXS). Lipid oxidation was assessed by combined measurements of primary (conjugated diene hydroperoxides) and secondary (thiobarbituric acid reactive substances - TBARS) products. We found that the oxidative stability of oleofoams was higher compared to that of the corresponding bulk oil. This protective effect was also found when the oil was simply mixed with the oleogelator without incorporation of air bubbles (i.e., forming an oleogel), and was somewhat modulated depending on the type of oleogelator. These results suggest that oleogelators and the structural changes that they induce limit the cascaded propagation of lipid oxidation in oil-continuous matrices, which is promising in the perspective of future applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Xavier Falourd
- INRAE, UR BIA, F-44300, Nantes, France
- INRAE, PROBE/CALIS Research Infrastructures, BIBS Facility, F-44300, Nantes, France
| | - Claire Berton-Carabin
- INRAE, UR BIA, F-44300, Nantes, France
- Wageningen University & Research, Laboratory of Food Process Engineering, 6700 AA, Wageningen, the Netherlands
| | - Anne-Laure Fameau
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMET, F-59000, Lille, France
| |
Collapse
|
3
|
Hu X, Meng Z. An overview of edible foams in food and modern cuisine: Destabilization and stabilization mechanisms and applications. Compr Rev Food Sci Food Saf 2024; 23:e13284. [PMID: 38284578 DOI: 10.1111/1541-4337.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024]
Abstract
Foam, as a structured multi-scale colloidal system, is becoming increasingly popular in food because it gives a series of unique textures, structures, and appearances to foods while maintaining clean labels. Recently, developing green and healthy food-grade foaming agents, improving the stability of edible foams, and exploring the application of foam structures and new foaming agents have been the focus of foam systems. This review comprehensively introduces the destabilization mechanisms of foam and summarizes the main mechanisms controlling the foam stability and progress of different food-grade materials (small-molecular surfactants, biopolymers, and edible Pickering particles). Furthermore, the classic foam systems in food and modern cuisine, their applications, developments, and challenges are also underlined. Natural small-molecular surfactants, novel plant/microalgae proteins, and edible colloidal particles are the research hotspots of high-efficiency food-grade foam stabilizers. They have apparent differences in foam stability mechanisms, and each exerts its advantages. However, the development of foam stabilizers remains to be enriched compared with emulsions. Food foams are diverse and widely used, bringing unique enjoyment and benefit to consumers regarding sense, innovation, and health attributes. In addition to industrial inflatable foods, the foam foods in molecular gastronomy are also worthy of exploration. Moreover, edible foams may have greater potential in structured food design, 3D/4D printing, and controlled flavor release in the future. This review will provide a reference for the efficient development of functional inflatable foods and the advancement of foam technologies in modern cuisine.
Collapse
Affiliation(s)
- Xiangfang Hu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
4
|
Hashemi B, Assadpour E, Zhang F, Jafari SM. Oleo-foams and emulsion-foams as lipid-based foam systems: a review of their formulation, characterization, and applications. Crit Rev Food Sci Nutr 2023; 65:787-810. [PMID: 38095599 DOI: 10.1080/10408398.2023.2281622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Lipid-based foam systems (LBFs) have grown in popularity recently because of their effectiveness and potential uses. As a result, in order to stabilize them, considerable work has been put into developing more biodegradable and environmentally friendly materials. However, the use of natural stabilizing agents has been constrained due to a lack of thorough knowledge of them. This review offers insightful data that will encourage more studies into the development and use of LBFs. Emulsifiers or gelling agents, as well as new preparation and characterization methods, can be used to increase or prolong the functional performance of LBFs. Special emphasis has been given on the connections between their structures and properties and expanding the range of industries in which they can be applied. In conclusion, it is crucial to gain a deeper understanding of the preparation mechanisms and influencing factors in order to improve the quality of foam products and create novel LBFs.
Collapse
Affiliation(s)
- Behnaz Hashemi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
5
|
Matsuo K, Fujii Y, Ueno S. Fabrication and Characterization of Oleofoams Composed of Tribehenoyl-glycerol: Toward a Stable and Higher Air-content Colloidal System. J Oleo Sci 2023; 72:819-829. [PMID: 37574284 DOI: 10.5650/jos.ess23068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Oleofoams have garnered significant attention in many personal care applications because of their favorable physicochemical properties, including texture and detergency. To explore the potential use of mixtures of high-melting-point fat crystals (tribehenoyl-glycerol [BBB]) and edible oils as low-cost and stable aeration systems, we created oleofoams composed of olive oil and BBB. By whipping the BBB/olive oil oleogels after rapid cooling and subsequent heating, we successfully prepared oleofoams without emulsifier additives. Mixtures of the BBB/olive oil formed oleofoams at BBB concentrations of 4.0-20.0 wt.%. The resultant oleofoams maintained their overrun rates and did not coalesce, even with additional whipping after the overrun rate was maximized. More closely packed bubbles, concentrated bubble size distributions, and stronger interfacial elasticity were attributed to the increasing BBB concentrations, and the thermal results revealed that further heating was required to damage the foam structure. The characteristics of these new oleofoams are closely related to their BBB concentrations, and the observed effects are attributed to the network structure of the thickened crystal layer and enhanced gelling in the oil phase.
Collapse
Affiliation(s)
| | - Yoko Fujii
- Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Satoru Ueno
- Graduate School of Integrated Sciences for Life, Hiroshima University
| |
Collapse
|
6
|
Grossi M, Fang B, Rao J, Chen B. Oleofoams stabilized by monoacylglycerides: Impact of chain length and concentration. Food Res Int 2023; 169:112914. [PMID: 37254346 DOI: 10.1016/j.foodres.2023.112914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Oleofoams are plant oil based whipped systems which have drawn academic and industry attention in recent years. The aim of this study was to determine the effect of fatty acid chain length and monoacylglyceride (MAG) concentration on the performance and structural properties of MAG-based oleofoams. Four different MAGs (monolaurin, monomyrystin, monopalmitin, and monostearin) were studied at three concentration levels (5, 10, and 15 wt%). The fatty acid chain length had a statistically significant impact on the size and shape of crystals formed, while higher MAG concentrations led to higher numbers of crystals in the continuous oil phase. These differences affected the performance and physical properties of the oleofoams: compared to other MAGs, monostearin based oleofoams were harder and exhibited higher values of G' and G″, had higher overrun and showed better stability. Lastly, through microscopy techniques it was successfully proved that monostearin-based oleofoams are stabilized by both bulk and Pickering stabilization.
Collapse
Affiliation(s)
- Matteo Grossi
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Baochen Fang
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
7
|
Li Z, Ying Lee Y, Wang Y, Qiu C. Interfacial behavior, gelation and foaming properties of diacylglycerols with different acyl chain lengths and isomer ratios. Food Chem 2023; 427:136696. [PMID: 37392626 DOI: 10.1016/j.foodchem.2023.136696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023]
Abstract
Diacylglycerols (DAG) of varying chain lengths were synthesized and the acyl migrated samples with different 1,3-DAG/1,2-DAG ratios were obtained. The crystallization profile and surface adsorption differed depending on DAG structure. C12 and C14 DAGs formed small platelet- and needle-like crystals at the oil-air interface which can better reduce surface tension and pack in an ordered lamellar structure in oil. The acyl migrated DAGs with higher ratios of 1,2-DAG showed reduced crystal size and lower oil-air interfacial activity. C14 and C12 DAG oleogels exhibited higher elasticity and whipping ability with crystal shells surrounding bubbles, whereas C16 and C18 DAG oleogels had low elasticity and limited whipping ability due to the formation of aggregated needle-like crystals and loose gel network. Thus, acyl chain length dramatically influences the gelation and foaming behaviors of DAGs whereas the isomers exert little influence. This study provides basis for applying DAG of different structures in food products.
Collapse
Affiliation(s)
- Ziwei Li
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yee Ying Lee
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
8
|
Tirgarian B, Farmani J. A novel approach for the development of edible oleofoams using double network oleogelation systems. Food Chem 2023; 426:136634. [PMID: 37348400 DOI: 10.1016/j.foodchem.2023.136634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Whipped oleogels (oleofoams) are commonly stabilized by crystalline particles. Still, external factors like temperature fluctuations could change the state of the crystals (phase transitions), leading to the destabilization and disruption of oleofoams. Herein, a double network oleogelation system comprised of a primary crystalline network (using glycerol monostearate) and a secondary colloidal network (stabilized by soy protein isolate-anionic polysaccharides Mailard conjugates) is proposed as a novel strategy to overcome these challenges. It was observed that the incorporation of the secondary network resulted in a lower over-run, but a higher melting point, elasticity, foam stability, and more uniform bubble size distribution. This was explained by the strong interfacial stabilization provided by the colloidal network that can protect the crystalline particle against coarsening and oil drainage. These double network oleofoams, which could retain 41-48 % air (oleogel-based), display great potential for utilization in low-calorie lipid-based products.
Collapse
Affiliation(s)
- Behraad Tirgarian
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran
| | - Jamshid Farmani
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran.
| |
Collapse
|
9
|
Basu A, Okello LB, Castellanos N, Roh S, Velev OD. Assembly and manipulation of responsive and flexible colloidal structures by magnetic and capillary interactions. SOFT MATTER 2023; 19:2466-2485. [PMID: 36946137 DOI: 10.1039/d3sm00090g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The long-ranged interactions induced by magnetic fields and capillary forces in multiphasic fluid-particle systems facilitate the assembly of a rich variety of colloidal structures and materials. We review here the diverse structures assembled from isotropic and anisotropic particles by independently or jointly using magnetic and capillary interactions. The use of magnetic fields is one of the most efficient means of assembling and manipulating paramagnetic particles. By tuning the field strength and configuration or by changing the particle characteristics, the magnetic interactions, dynamics, and responsiveness of the assemblies can be precisely controlled. Concurrently, the capillary forces originating at the fluid-fluid interfaces can serve as means of reconfigurable binding in soft matter systems, such as Pickering emulsions, novel responsive capillary gels, and composites for 3D printing. We further discuss how magnetic forces can be used as an auxiliary parameter along with the capillary forces to assemble particles at fluid interfaces or in the bulk. Finally, we present examples how these interactions can be used jointly in magnetically responsive foams, gels, and pastes for 3D printing. The multiphasic particle gels for 3D printing open new opportunities for making of magnetically reconfigurable and "active" structures.
Collapse
Affiliation(s)
- Abhirup Basu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Lilian B Okello
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Natasha Castellanos
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Sangchul Roh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
10
|
Sakurai Y, Kakiuchi R, Hirai T, Nakamura Y, Fujii S. Aqueous Bubbles Stabilized with Millimeter-Sized Polymer Plates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3800-3809. [PMID: 36853615 DOI: 10.1021/acs.langmuir.3c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
(Sub)millimeter-sized hexagonal polymer plates that were monodisperse in shape and size were utilized as stabilizers for aqueous bubbles, and the effects of the hydrophilic-hydrophobic property, size, and solid concentration of the plates on the formability, stability, and shape and structure of aqueous bubbles were investigated. The formability and stability of the bubbles were improved by increasing the hydrophobicity of the plate surface, decreasing the plate size, and increasing the solid concentration of the plates. For plates with suitable water wettability, three-dimensional bubbles with nearly spherical and polyhedral shapes were formed by the adsorption of plates to the bare air bubbles introduced into the continuous water phase by air-water mixing. On the contrary, two-dimensional bubbles with accordion-type structures consisting of alternating layers of plates and entrapped air bubbles were formed by the transfer of multiple plates with poor wettability from the air phase to the water phase by air-water mixing. Furthermore, a correlation was found between the bubble/stabilizer size ratio and bubble shape for plates with the suitable wettability: bubbles with nearly spherical shapes were formed when the bubble/plate size ratios were >2, bubbles with hexahedral, pentahedral, and tetrahedral shapes were formed when the size ratios were approximately 1, and bubbles with triangular and sandwich shapes were formed when the size ratios were <0.8. Additionally, bubbles with similar shapes were formed when the bubble/plate size ratios were close, even when the sizes of the plates and bubbles were different.
Collapse
Affiliation(s)
- Yuri Sakurai
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Rina Kakiuchi
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
11
|
Liu Y, Binks BP. Fabrication of Stable Oleofoams with Sorbitan Ester Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14779-14788. [PMID: 36410861 PMCID: PMC9730906 DOI: 10.1021/acs.langmuir.2c02413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Sorbitan esters have been extensively used as surfactants to stabilize emulsions in many fields. However, the preparation of an oleofoam with sorbitan ester alone has not been reported. Here, we apply a novel protocol to fabricate stable oleofoams of high air volume fraction from mixtures of vegetable oil and sorbitan ester. To incorporate more air bubbles into the oil matrix, aeration is first carried out in the one-phase region at high temperatures, during which the highest over-run can reach 280%. Due to foam instability at high temperatures, the foam is then submitted to rapid cooling, followed by storage at low temperatures. For high-melting sorbitan monostearate, the resulting foams containing many crystal-encased air bubbles are ultrastable to drainage, coarsening, and coalescence for several months. On the contrary, the cooled foams with low-melting sorbitan monooleate go through a gradual decay lasting for more than 1 month. We highlight the importance of hydrogen bond formation between surfactant and oil in enhancing foam stability. The generic nature of the above findings is demonstrated by preparing oil foams with various vegetable oils and sorbitan monooleate.
Collapse
|
12
|
Arnaudova T, Mitrinova Z, Denkov N, Growney D, Brenda R, Tcholakova S. Foamability and foam stability of oily mixtures. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Conversion of Pulse Protein Foam-Templated Oleogels into Oleofoams for Improved Baking Application. Foods 2022; 11:foods11182887. [PMID: 36141019 DOI: 10.3390/foods11182887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The food industry has long been searching for an efficient replacement for saturated-fatty-acid-rich fats for baking applications. Although oleogels have been considered a potential alternative for saturated and trans fats, their success in food application has been poor. The present study explored the use of oleofoams obtained by whipping the pulse protein foam-templated oleogels for cake baking. Oleogels were prepared at room temperature by adding canola oil containing high-melting monoglyceride (MAG) or candelilla wax (CW) to the freeze-dried pea or faba bean protein-stabilized foams. Oleogels were then whipped to create the oleofoams; however, only the oleogels containing MAG could form oleofoams. CW-oleogel could not form any oleofoam. The most stable oleofoams with the highest overrun, stability, and storage modulus were obtained from 3% MAG+pulse protein foam-templated oleogels. The MAG plus protein foam-templated oleogels showed smaller and more packed air bubbles than MAG-only oleofoam, which was ascribed to the protein's ability to stabilize air bubbles and provide a network in the continuous oil phase to restrict air bubble movement. A novel batter preparation method for oleofoam was developed to increase air bubble incorporation. The X-ray microtomography images of the cakes showed a non-homogeneous distribution of larger air bubbles in the oleofoam cake compared to the shortening cake although their total porosity was not much different. The oleofoam cakes made with the new method yielded similar hardness and chewiness compared to the shortening cakes. By improving rheology and increasing air incorporation in the batter, high-quality cakes can be obtained with MAG-containing oleofoams made from pulse protein foam-templated oleogels.
Collapse
|
14
|
Qiu C, Wang S, Wang Y, Lee WJ, Fu J, Binks BP, Wang Y. Stabilisation of oleofoams by lauric acid and its glycerol esters. Food Chem 2022; 386:132776. [PMID: 35509162 DOI: 10.1016/j.foodchem.2022.132776] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/19/2022]
Abstract
Four types of pure lipid, namely lauric acid (LA), glycerol monolaurate (MAG), diglycerol laurate (DAG) and triglyceride laurate (TAG) were used to prepare oleofoams. The relationship between crystal profiles and their performance in oleofoams was established. DAG formed small needle-like crystals while MAG formed large flake-like crystals in oleogels, and crystal shells around air bubbles were observed in LA-, MAG- and DAG-based oleofoams. LA and DAG displayed higher over-run whereas DAG-stabilised foam possessed smaller bubbles and higher physical stability due to the presence of small β and β' crystals. Upon heating, DAG and TAG-based foams showed varying extents of oil drainage indicating the crystals were distributed in a different manner. Therefore, DAG was shown to be an excellent gelator in the fabrication of ultra-stable oleofoams. This work extends the lipid varieties with nutritional features and allows a better understanding on the stabilization mechanisms of lauric acid lipids in oleofoams.
Collapse
Affiliation(s)
- Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety (POPS), Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
| | - Shaolin Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety (POPS), Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Ying Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety (POPS), Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
| | - Wan Jun Lee
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety (POPS), Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
| | - Junning Fu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety (POPS), Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK.
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety (POPS), Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China.
| |
Collapse
|
15
|
Silva PM, Cerqueira MA, Martins AJ, Fasolin LH, Cunha RL, Vicente AA. Oleogels and bigels as alternatives to saturated fats: A review on their application by the food industry. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pedro M. Silva
- Centre of Biological Engineering University of Minho Braga Portugal
- International Iberian Nanotechnology Laboratory Braga Portugal
| | | | | | - Luiz H. Fasolin
- Department of Food Engineering and Technology School of Food Engineering, University of Campinas – UNICAMP Campinas São Paulo Brazil
| | - Rosiane L. Cunha
- Department of Food Engineering and Technology School of Food Engineering, University of Campinas – UNICAMP Campinas São Paulo Brazil
| | | |
Collapse
|
16
|
Zheng R, Chen Y, Wang Y, Rogers MA, Cao Y, Lan Y. Microstructure and physical properties of novel bigel-based foamed emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
17
|
Zheng R, Zheng Q, Hu B, Cao Y, Lan Y. Gelation and foaming properties of fatty acid mixtures in sunflower oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3513-3521. [PMID: 34841529 DOI: 10.1002/jsfa.11695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/09/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The development of lipid-lowering products has become the focus of the food industry due to increasing consumer awareness of the relationship between diet and health. Recently, edible oleofoams have drawn attention due to their enormous potential in reformulating food products with reduced fat content and unique mouth feel. RESULTS We have developed an edible oleofoam system by whipping oleogel composed of fatty acid mixtures in sunflower oil. The crystal morphology, gelation properties, and foaming properties of these oleogels could be tailored by changing the ratio of stearic acid (SA) and myristic acid (MA). Specifically, SA/MA = 2:8 (2S8M) was demonstrated to have superior foaming capability and foam stability, likely due to the densely packed and uniformly distributed crystals formed at this fatty acid ratio. Small lipid crystals in 2S8M absorbed to the air-oil interface more efficiently, and together with the strengthened network established in the bulk phase, helped stabilize the foam structure. As a result, the 2S8M oleofoam showed excellent foaming properties: strong plasticity, significantly increased overrun (up to 63.56 ± 2.58%), and significantly improved foam stability. The X-ray diffraction (XRD) results indicated that the diffraction pattern observed for 2S8M samples at d-spacing of 4.20 and 3.79 Å was related to the characteristic peak of β' type crystals, which were responsible for the enhanced foaming capability of 2S8M oleogels. Oleophobic property of 2S8M increased, as indicated by wettability in oil phase, which could possibly drive crystals to the air-oil interface. CONCLUSIONS These results highlighted the importance of lipid crystal morphology in determining the whippability of oleogels. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruting Zheng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Food, College of Food Sciences, South China Agricultural University, Guangzhou, P. R. China
| | - Qianwang Zheng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Food, College of Food Sciences, South China Agricultural University, Guangzhou, P. R. China
| | - Bingjie Hu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Food, College of Food Sciences, South China Agricultural University, Guangzhou, P. R. China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Food, College of Food Sciences, South China Agricultural University, Guangzhou, P. R. China
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Food, College of Food Sciences, South China Agricultural University, Guangzhou, P. R. China
| |
Collapse
|
18
|
Double network oleogels co-stabilized by hydroxypropyl methylcellulose and monoglyceride crystals: Baking applications. Int J Biol Macromol 2022; 209:180-187. [PMID: 35395279 DOI: 10.1016/j.ijbiomac.2022.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 11/22/2022]
Abstract
Edible double network oleogels were prepared by hydroxypropyl methylcellulose (HPMC) and glyceryl monostearate (GMS) by the cryogel-templated method. Hot GMS soybean oil solutions were absorbed by HPMC cryogels, which were further homogenized and cooled to form oleogels containing both the HPMC network and GMS network. The crystal network constructed by GMS crystal clusters significantly enhanced the mechanical and rheological attributes of oleogels. Both the HPMC network and the GMS network were built up due to hydrogen bonds. According to the normalization analysis of FTIR and the deepening of the shift of the absorption peak, hydrogen bonds could also be formed between HPMC and GMS to connect the two independent networks. Double network oleogels were further used to fabricate cookies and cakes, assessed by the texture profile analysis. The combination of the HPMC network and GMS network in preparing oleogels will promote the application of oleogels as the fat replacer.
Collapse
|
19
|
Jiang Q, Li P, Ji M, Du L, Li S, Liu Y, Meng Z. Synergetic effects of water-soluble polysaccharides for intensifying performances of oleogels fabricated by oil-absorbing cryogels. Food Chem 2022; 372:131357. [PMID: 34655833 DOI: 10.1016/j.foodchem.2021.131357] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/05/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
Oleogels were prepared by the cryogel-templated method from porous cryogels, which were co-structured using hydroxypropyl-methylcellulose and structural enhancers (such as flaxseed gum, κ-carrageenan, carboxymethyl-cellulose, arabic gum, and guar gum). The hardness, network density, pore size, pore volume, and SEM micrographs of cryogels showed that κ-carrageenan and flaxseed gum could keep the integrity of aqueous foams during freeze-drying and endow cryogels with the high hardness and content to hold oils (>98%). Oil absorption curves indicated that flaxseed gum and guar gum-enhanced cryogels provided the fastest oil absorption rate due to bigger pores. The absorption model was fitted well with all experimental data. Physical and mechanical properties of cryogels were positively related to the rheological property and oil bonding capacity of oleogels. κ-carrageenan and flaxseed gum were more suitable as structural enhancers to improve hydroxypropyl-methylcellulose-based cryogels for preparing oleogels to replace plastic fats in foods.
Collapse
Affiliation(s)
- Qinbo Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Peiyuan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Meiru Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Liyang Du
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Shaoyang Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
20
|
Mishra K, Kämpf F, Ehrengruber S, Merkel J, Kummer N, Pauer R, Fischer P, Windhab EJ. The rheology and foamability of crystal-melt suspensions composed of triacylglycerols. SOFT MATTER 2022; 18:1183-1193. [PMID: 35037667 PMCID: PMC8826217 DOI: 10.1039/d1sm01646f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The rheology of triacylglycerol (TAG) crystal-melt suspensions (CMSs) consisting of anhydrous milk fat (AMF), cocoa butter (CB), and palm kernel oil (PKO) as function of crystallization shear rate cryst and crystal volume fraction ΦSFC is investigated by in-line ultrasound velocity profiling - pressure difference (UVP-PD) rheometry. Measurements up to ΦSFC = 8.8% are presented. Below the percolation threshold Φc, no yield stress τ0 is observed and the viscosity η scales linearly with ΦSFC. Above Φc, a non-linear dependency of both τ0 and η as function of ΦSFC is apparent. For AMF and CB, the increase in cryst leads to a decrease in η and τ0 as function of ΦSFC, whereas for PKO based CMSs the opposite is the case. Scanning electron microscopy (SEM) and polarized light microscopy (PLM) relate these rheological findings to the microstructure of the investigated CMSs by taking the effective aspect ratio aeff and the concept of the effective crystal volume fraction ΦeffSFC into account. Foam formation by dynamically enhanced membrane foaming (DEMF) is performed directly after crystallization and reveals that depending on the CMS rheology and crystallite-, crystallite cluster- and crystal floc microstructure, a wide range of gas volume fractions between 0.05-0.6 are achievable.
Collapse
Affiliation(s)
- Kim Mishra
- Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | - Fabian Kämpf
- Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | - Silas Ehrengruber
- Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | - Julia Merkel
- Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | - Nico Kummer
- Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
- Laboratory for Cellulose & Wood Materials, EMPA - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Robin Pauer
- Electron Microscopy Center, EMPA - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Peter Fischer
- Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | - Erich J Windhab
- Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| |
Collapse
|
21
|
Metilli L, Storm M, Marathe S, Lazidis A, Marty-Terrade S, Simone E. Application of X-ray Microcomputed Tomography for the Static and Dynamic Characterization of the Microstructure of Oleofoams. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1638-1650. [PMID: 35050635 PMCID: PMC8812118 DOI: 10.1021/acs.langmuir.1c03318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Oleofoams are a novel, versatile, and biocompatible soft material that finds application in drug, cosmetic or nutraceuticals delivery. However, due to their temperature-sensitive and opaque nature, the characterization of oleofoams' microstructure is challenging. Here, synchrotron X-ray microcomputed tomography and radiography are applied to study the microstructure of a triglyceride-based oleofoam. These techniques enable non-destructive, quantitative, 3D measurements of native samples to determine the thermodynamic and kinetic behavior of oleofoams at different stages of their life cycle. During processing, a constant bubble size distribution is reached after few minutes of shearing, while the number of bubbles incorporated keeps increasing until saturation of the continuous phase. Low amounts of solid triglycerides in oleofoams allow faster aeration and a more homogeneous microstructure but lower thermodynamic stability, with bubble disproportionation and shape relaxation over time. Radiography shows that heating causes Ostwald ripening and coalescence of bubbles, with an increase of their diameter and sphericity.
Collapse
Affiliation(s)
- Lorenzo Metilli
- School
of Food Science and Nutrition, Food Colloids and Bioprocessing group, University of Leeds, Woodhouse Lane, Leeds LS29JT, U.K.
| | - Malte Storm
- Diamond
Light Source Ltd., Harwell Science and Innovation
Campus, Didcot OX110DE, U.K.
- Helmholtz-Zentrum
hereon, Max-Planck-Str 1, 21502 Geesthacht, Germany
| | - Shashidhara Marathe
- Diamond
Light Source Ltd., Harwell Science and Innovation
Campus, Didcot OX110DE, U.K.
| | - Aris Lazidis
- Nestlé
Product Technology Centre Confectionery, Haxby Road, York YO31 8TA, U.K.
| | | | - Elena Simone
- School
of Food Science and Nutrition, Food Colloids and Bioprocessing group, University of Leeds, Woodhouse Lane, Leeds LS29JT, U.K.
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| |
Collapse
|
22
|
|
23
|
Saha S, Pagaud F, Binks BP, Garbin V. Buckling versus Crystal Expulsion Controlled by Deformation Rate of Particle-Coated Air Bubbles in Oil. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1259-1265. [PMID: 35023336 PMCID: PMC8793140 DOI: 10.1021/acs.langmuir.1c03171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Oil foams stabilized by crystallizing agents exhibit outstanding stability and show promise for applications in consumer products. The stability and mechanics imparted by the interfacial layer of crystals underpin product shelf life, as well as optimal processing conditions and performance in applications. Shelf life is affected by the stability against bubble dissolution over a long time scale, which leads to slow compression of the interfacial layer. In processing flow conditions, the imposed deformation is characterized by much shorter time scales. In practical situations, the crystal layer is therefore subjected to deformation on extremely different time scales. Despite its importance, our understanding of the behavior of such interfacial layers at different time scales remains limited. To address this gap, here we investigate the dynamics of single, crystal-coated bubbles isolated from an oleofoam, at two extreme time scales: the diffusion-limited time scale characteristic of bubble dissolution, ∼104 s, and a fast time scale characteristic of processing flow conditions, ∼10-3 s. In our experiments, slow deformation is obtained by bubble dissolution, and fast deformation in controlled conditions with real-time imaging is obtained using ultrasound-induced bubble oscillations. The experiments reveal that the fate of the interfacial layer is dramatically affected by the dynamics of deformation: after complete bubble dissolution, a continuous solid layer remains; after fast, oscillatory deformation of the layer, small crystals are expelled from the layer. This observation shows promise toward developing stimuli-responsive systems, with sensitivity to deformation rate, in addition to the already known thermoresponsiveness and photoresponsiveness of oleofoams.
Collapse
Affiliation(s)
- Saikat Saha
- Department
of Chemical Engineering, Delft University
of Technology, 2629 HZ Delft, The Netherlands
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Francis Pagaud
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Bernard P. Binks
- Department
of Chemistry, University of Hull, Hull HU6 7RX, United Kingdom
| | - Valeria Garbin
- Department
of Chemical Engineering, Delft University
of Technology, 2629 HZ Delft, The Netherlands
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| |
Collapse
|
24
|
Jia W, Xian C, Wu J. Temperature-sensitive foaming agent developed for smart foam drainage technology. RSC Adv 2022; 12:23447-23453. [PMID: 36090426 PMCID: PMC9382362 DOI: 10.1039/d2ra04034d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
A temperature-sensitive surfactant with Gemini structure, possessing intelligent temperature response switching performance, was synthesized for smart foam drainage technology.
Collapse
Affiliation(s)
- Wenfeng Jia
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
- Unconventional Oil and Gas Institute, China University of Petroleum, Beijing, 102249, PR China
| | - Chenggang Xian
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
- Unconventional Oil and Gas Institute, China University of Petroleum, Beijing, 102249, PR China
| | - Junwen Wu
- Sinopec Research Institute of Petroleum Exploration and Development, Beijing 102206, PR China
| |
Collapse
|
25
|
Polysaccharide-stabilized aqueous foams to fabricate highly oil-absorbing cryogels: Application and formation process for preparation of edible oleogels. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Du L, Li S, Jiang Q, Tan Y, Liu Y, Meng Z. Interfacial interaction of small molecular emulsifiers tea saponin and monoglyceride: Relationship to the formation and stabilization of emulsion gels. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Liu Y, Binks BP. A novel strategy to fabricate stable oil foams with sucrose ester surfactant. J Colloid Interface Sci 2021; 594:204-216. [PMID: 33761395 DOI: 10.1016/j.jcis.2021.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/10/2021] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
HYPOTHESIS Can a mixture of sucrose ester surfactant in vegetable oil be aerated to yield stable oleofoams? Is foaming achievable from one-phase molecular solutions and/or two-phase crystal dispersions? Does cooling a foam after formation induce surfactant crystallisation and enhance foam stability? EXPERIMENTS Concentrating on extra virgin olive oil, we first study the effect of aeration temperature and surfactant concentration on foamability and foam stability of mixtures cooled from a one-phase oil solution. Based on this, we introduce a strategy to increase foam stability by rapidly cooling foam prepared at high temperature which induces surfactant crystallisation in situ. Differential scanning calorimetry, X-ray diffraction, infra-red spectroscopy, surface tension and rheology are used to elucidate the mechanisms. FINDINGS Unlike previous reports, both foamability and foam stability decrease upon decreasing the aeration temperature into the two-phase region containing surfactant crystals. At high temperature in the one-phase region, substantial foaming is achieved (over-run 170%) within minutes of whipping but foams ultimately collapse within a week. We show that surfactant molecules are surface-active at high temperature and that hydrogen bonds form between surfactant and oil molecules. Cooling these foams substantially increases foam stability due to both interfacial and bulk surfactant crystallisation. The generic nature of our findings is demonstrated for a range of vegetable oil foams with a maximum over-run of 330% and the absence of drainage, coalescence and disproportionation being achievable.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|
28
|
Binks BP, Vishal B. Particle-stabilized oil foams. Adv Colloid Interface Sci 2021; 291:102404. [PMID: 33839623 DOI: 10.1016/j.cis.2021.102404] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/26/2022]
Abstract
The area of oil foams although important industrially has received little academic attention until the last decade. The early work using molecular surfactants for stabilisation was limited and as such it is difficult to obtain general rules of thumb. Recently however, interest has grown in the area partly fuelled by the understanding gained in the general area of colloidal particles at fluid interfaces. We review the use of solid particles as foaming agents for oil foams in cases where particles (inorganic or polymer) are prepared ex situ and in cases where crystals of surfactant or fat are prepared in situ. There is considerable activity in the latter area which is particularly relevant to the food industry. Discussion of crude oil/lubricating oil foams is excluded from this review.
Collapse
Affiliation(s)
- Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK.
| | - Badri Vishal
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
29
|
Fameau AL, Binks BP. Aqueous and Oil Foams Stabilized by Surfactant Crystals: New Concepts and Perspectives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4411-4418. [PMID: 33825479 DOI: 10.1021/acs.langmuir.1c00410] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Surfactant crystals can stabilize liquid foams. The crystals are adsorbed at bubble surfaces, slowing down coarsening and coalescence. Excess crystals in the liquid channels between bubbles arrest drainage, leading to ultrastable foams. The melting of crystals upon raising the temperature allows thermoresponsive foams to be designed. In the case of oil foams, the stabilization by crystals received substantial renewed interest in the last 5 years due to their potential applications, particularly in the food industry. For aqueous foams, several reports exist on foams stabilized by crystals. However, these two kinds of liquid foams possess similarities in terms of stabilization mechanisms and the design of surfactant crystal systems. This field will certainly grow in the coming years, and it will contribute to the engineering of new soft materials not only for food but also for cosmetics, pharmaceuticals, and biomedical applications.
Collapse
Affiliation(s)
- Anne-Laure Fameau
- L'Oréal Research and Innovation, 13 rue Dora Maar, 93400 Saint-Ouen, France
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, U.K
| |
Collapse
|
30
|
Ewens H, Metilli L, Simone E. Analysis of the effect of recent reformulation strategies on the crystallization behaviour of cocoa butter and the structural properties of chocolate. Curr Res Food Sci 2021; 4:105-114. [PMID: 33748777 PMCID: PMC7957023 DOI: 10.1016/j.crfs.2021.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/28/2022] Open
Abstract
Chocolate is a complex soft material characterized by solid particles (cocoa powder, milk solid particles and sugar crystals) dispersed in a crystallized fat matrix mostly composed of cocoa butter (CB). Important chocolate properties such as snap, and visual appearance are strongly dependent on the internal molecular arrangement (polymorph), size and shape, as well as the spatial distribution of CB crystals within the chocolate mix. In recent years confectionary companies have put increasing effort in developing novel chocolate recipes to improve the nutritional profile of chocolate products (e.g., by reducing the amount of high saturated fat and sugar content) and to counteract the increasing price of cocoa butter as well as sustainability issues related to some chocolate ingredients. Different reformulation strategies can dramatically affect the crystallization thermodynamic and kinetic behaviour of cocoa butter; therefore, affecting the structural and sensorial properties of chocolate. In this review we analyse how different reformulation strategies affect the crystallization behaviour of cocoa butter and, hence, the structural and sensorial properties of chocolate. In particular, this work discusses the effect of: (1) CB replacement with emulsions, hydrogels, oleogels and oleofoams; (2) CB dilution with limonene or cocoa butter equivalents; (3) replacement or reduction of the amount of sugar and milk in chocolate. We found that there is certainly potential for successful novel alternative chocolate products with controlled crystalline properties; however, further research is still needed to ensure sensory acceptance and reasonable shelf-life of these novel products.
Collapse
Affiliation(s)
- H. Ewens
- School of Food Science and Nutrition, Food Colloids and Bioprocessing Group, University of Leeds, Leeds, United Kingdom
| | - L. Metilli
- School of Food Science and Nutrition, Food Colloids and Bioprocessing Group, University of Leeds, Leeds, United Kingdom
| | - E. Simone
- School of Food Science and Nutrition, Food Colloids and Bioprocessing Group, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
31
|
Microstructure evolution and partial coalescence in the whipping process of oleofoams stabilized by monoglycerides. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Qiu C, Lei M, Lee WJ, Zhang N, Wang Y. Fabrication and characterization of stable oleofoam based on medium-long chain diacylglycerol and β-sitosterol. Food Chem 2021; 350:129275. [PMID: 33601090 DOI: 10.1016/j.foodchem.2021.129275] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/08/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
Oleofoams have emerged as attractive low-calorie aeration systems, but saturated lipids or large amount of surfactants are commonly required. Herein, an innovative strategy was proposed to create oleofoams using medium-long chain diacylglycerol (MLCD) and β-sitosterol (St). The oleofoams prepared using MLCD and St in ratios of 15:5 and 12:8 exhibited smaller bubble size and much higher stability. MLCD crystals formed rigid Pickering shell, whereby air bubbles acted as "active fillers" leading to enhanced rigidity. Both Pickering and network stabilization for the MLCD-St oleofoam provided a steric hindrance against coalescence. The gelators interacted via hydrogen bonding, causing a condensing effect in improving the gel elasticity. The oleofoams and foam-based emulsions exhibited a favorable capacity in controlling volatile release where the maximum headspace concentrations and partition coefficients showed a significantly decrease. Overall, the oleofoams have shown great potential for development of low-calorie foods and delivery systems with enhanced textural and nutritional features.
Collapse
Affiliation(s)
- Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Mengting Lei
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Wan Jun Lee
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Ning Zhang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China.
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China.
| |
Collapse
|
33
|
Foams of vegetable oils containing long-chain triglycerides. J Colloid Interface Sci 2021; 583:522-534. [DOI: 10.1016/j.jcis.2020.09.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 01/09/2023]
|
34
|
Callau M, Sow-Kébé K, Jenkins N, Fameau AL. Effect of the ratio between fatty alcohol and fatty acid on foaming properties of whipped oleogels. Food Chem 2020; 333:127403. [DOI: 10.1016/j.foodchem.2020.127403] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/05/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023]
|
35
|
|
36
|
|
37
|
Fameau AL, Saint-Jalmes A. Recent Advances in Understanding and Use of Oleofoams. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00110] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
38
|
Mishra K, Bergfreund J, Bertsch P, Fischer P, Windhab EJ. Crystallization-Induced Network Formation of Tri- and Monopalmitin at the Middle-Chain Triglyceride Oil/Air Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7566-7572. [PMID: 32520568 DOI: 10.1021/acs.langmuir.0c01195] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Crystalline glycerides play an important role in the formation of multiphase systems such as emulsions and foams. The stabilization of oil/water interfaces by glyceride crystals has been extensively studied compared to only few studies which have been dedicated to oil/air interfaces. This study investigates the crystallization and network formation of tripalmitin (TP) and monopalmitin (MP) at the middle-chain triglyceride (MCT) oil/air interface. TP crystals were found to crystallize in the bulk before aggregating as large rectangular crystal conglomerates at the MCT oil/air interface. This leads to the slow formation of a plastic deformable, macroscopic crystal layer with high interfacial rheological moduli. MP crystals form directly at the MCT oil/air interface resulting in a comparatively fast formation of an elastic deformable network. Crystals with tentacle-like morphology were found to be responsible for the network elasticity. In this work, we show how interfacial crystallization dynamics and mechanical strength can be linked to the molecular structure and crystallization behavior of glyceride crystals.
Collapse
Affiliation(s)
- Kim Mishra
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Jotam Bergfreund
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Pascal Bertsch
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Peter Fischer
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Erich J Windhab
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
39
|
Non-aqueous foams formed by whipping diacylglycerol stabilized oleogel. Food Chem 2020; 312:126047. [DOI: 10.1016/j.foodchem.2019.126047] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 11/18/2022]
|
40
|
Guo Y, Cai Z, Xie Y, Ma A, Zhang H, Rao P, Wang Q. Synthesis, physicochemical properties, and health aspects of structured lipids: A review. Compr Rev Food Sci Food Saf 2020; 19:759-800. [PMID: 33325163 DOI: 10.1111/1541-4337.12537] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/04/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Structured lipids (SLs) refer to a new type of functional lipids obtained by chemically, enzymatically, or genetically modifying the composition and/or distribution of fatty acids in the glycerol backbone. Due to the unique physicochemical characteristics and health benefits of SLs (for example, calorie reduction, immune function improvement, and reduction in serum triacylglycerols), there is increasing interest in the research and application of novel SLs in the food industry. The chemical structures and molecular architectures of SLs define mainly their physicochemical properties and nutritional values, which are also affected by the processing conditions. In this regard, this holistic review provides coverage of the latest developments and applications of SLs in terms of synthesis strategies, physicochemical properties, health aspects, and potential food applications. Enzymatic synthesis of SLs particularly with immobilized lipases is presented with a short introduction to the genetic engineering approach. Some physical features such as solid fat content, crystallization and melting behavior, rheology and interfacial properties, as well as oxidative stability are discussed as influenced by chemical structures and processing conditions. Health-related considerations of SLs including their metabolic characteristics, biopolymer-based lipid digestion modulation, and oleogelation of liquid oils are also explored. Finally, potential food applications of SLs are shortly introduced. Major challenges and future trends in the industrial production of SLs, physicochemical properties, and digestion behavior of SLs in complex food systems, as well as further exploration of SL-based oleogels and their food application are also discussed.
Collapse
Affiliation(s)
- Yalong Guo
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Advanced Rheology Institute, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Zhixiang Cai
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Advanced Rheology Institute, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yanping Xie
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Advanced Rheology Institute, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Aiqin Ma
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, P. R. China
| | - Hongbin Zhang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Advanced Rheology Institute, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Pingfan Rao
- Food Nutrition Sciences Centre, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
41
|
Grizopoulou S, Karagiorgou M, Karageorgiou V, Shao P, Petridis D, Ritzoulis C. Spontaneous Oleofoams from Water‐in‐Oil Emulsions. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sofia Grizopoulou
- Department of Food Science and TechnologyInternational Hellenic University Sindos Campus Thessaloniki 57400 Greece
| | - Maria Karagiorgou
- Department of Food Science and TechnologyInternational Hellenic University Sindos Campus Thessaloniki 57400 Greece
| | - Vassilis Karageorgiou
- Department of Food Science and TechnologyInternational Hellenic University Sindos Campus Thessaloniki 57400 Greece
| | - Ping Shao
- Department of Food Science and TechnologyZhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Dimitrios Petridis
- Department of Food Science and TechnologyInternational Hellenic University Sindos Campus Thessaloniki 57400 Greece
| | - Christos Ritzoulis
- Department of Food Science and TechnologyInternational Hellenic University Sindos Campus Thessaloniki 57400 Greece
- School of Food Science and BiotechnologyZhejiang Gongshang University Xiasha Hangzhou Zhejiang 310016 China
| |
Collapse
|
42
|
|
43
|
Effect of the ratio between behenyl alcohol and behenic acid on the oleogel properties. J Colloid Interface Sci 2019; 560:874-884. [PMID: 31711663 DOI: 10.1016/j.jcis.2019.10.111] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 11/19/2022]
Abstract
HYPOTHESIS In oleogel food systems (based on the mixture between stearic acid and stearyl alcohol) the strong effect of the weight ratio (R) between these two components on the textural and structural properties is well described. The effect of R for other fatty acids and fatty alcohols is less explored. Moreover, they do not show an enhancement of the oleogel properties for specific R. The effect of R on the oleogel properties, for a mixture of fatty acid and fatty alcohol with longer alkyl chains (behenyl alcohol and behenic acid) in sunflower and soybean oils, which are raw materials widely used in cosmetic and pharmaceutical industries, was investigated. EXPERIMENTS We characterized the oleogel properties as a function of R in terms of structuring potential: hardness, oil loss and gel stability. This information was correlated with microstructural data obtained at different length scales by coupling optical microscopy, DSC, SFC, SAXS and WAXS experiments. FINDINGS Our results highlight that R tunes the oleogel properties in a comparable manner to previous results obtained for stearic acid and stearyl alcohol-based oleogels. Two specific R (8:2 and 7:3) close to the 3:1 molecular ratio gave oleogels with both the highest hardness and stability. The morphology and size of the mixed crystals obtained for these R cannot solely explain why they are stronger gels with low oil loss in comparison to the other R. The almost complete crystallization for these two R is one of the key parameters controlling the oleogel properties. As described in the literature, we also suggest that the differences in oleogel properties come from the spatial distribution of the crystalline mass. In this study, we confirm that the effect of the 3:1 molecular ratio in mixed surfactant systems described more than 50 years ago for foams, emulsions and Langmuir monolayers occurs also on the crystallization of mixed fatty alcohol and fatty acid in oils leading to better oleogels properties.
Collapse
|
44
|
Rutkevičius M, Allred S, Velev OD, Velikov KP. Stabilization of oil continuous emulsions with colloidal particles from water-insoluble plant proteins. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Wan Z, Sun Y, Ma L, Zhou F, Guo J, Hu S, Yang X. Long-Lived and Thermoresponsive Emulsion Foams Stabilized by Self-Assembled Saponin Nanofibrils and Fibrillar Network. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3971-3980. [PMID: 29546991 DOI: 10.1021/acs.langmuir.8b00128] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanofibrils from the self-assembly of the naturally occurring saponin glycyrrhizic acid (GA) can be used to produce an oil-in-water emulsion foam with a long-term stability. Through homogenization and aeration followed by rapid cooling, stable emulsion foams can be produced from the mixtures of sunflower oil and saponin nanofibrils. At high temperatures, the GA fibrils form a multilayer assembly at the interface, creating an interfacial fibrillar network to stabilize the oil droplets and air bubbles generated during homogenization. A subsequent rapid cooling can trigger the self-assembly of free GA fibrils in the continuous phase, forming a fibrillar hydrogel and thus trapping the oil droplets and air bubbles. The viscoelastic bulk hydrogel showed a high yield stress and storage modulus, which lead to a complete arrest of the liquid drainage and a strong slowdown of the bubble coarsening in emulsion foams. The jamming of the emulsion droplets in the liquid channels as well as around the bubbles was also found to be able to enhance the foam stability. We show that such stable foam systems can be destroyed rapidly and on demand by heating because of the melting of the bulk hydrogel. The reversible gel-sol phase transition of the GA hydrogel leads to thermoresponsive emulsion foams, for which the foam stability can be switched from stable to unstable states by simply raising the temperature. The emulsion foams can be further developed to be photoresponsive by incorporating internal heat sources such as carbon black particles, which can absorb UV irradiation and convert the absorbed light energy into heat. This new class of smart responsive emulsion foams stabilized by the natural, sustainable saponin nanofibrils has potential applications in the food, pharmaceutical, and personal care industries.
Collapse
|
46
|
Yang DX, Chen XW, Yang XQ. Phytosterol-based oleogels self-assembled with monoglyceride for controlled volatile release. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:582-589. [PMID: 28653331 DOI: 10.1002/jsfa.8500] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/04/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Oleogels have recently emerged as a subject of growing interest among industrial and academic researchers as an alternative to saturated/trans-fat and delivery of functional ingredients. Phytosterols, comprising plant-derived natural steroid compounds, are preferred for oleogel production because they are both natural and healthy. In the present study, phytosterol-based oleogels self-assembled with monoglyceride were studied with respect to tuning volatile release. RESULTS Microscopy images of the bicomponent oleogels of β-sitosterol and monoglyceride showed the formation of a new three-dimensional network of entangled crystals and a controllable microstructure. Our analysis from differential scanning calorimetry and small angle X-ray scattering results suggests the self-assembly of β-sitosterol and monoglyceride via intermolecular hydrogen bonds into spherulitic microstructures. The results showed that the release rate (v0 ), maximum headspace concentrations (Cmax ) and partition coefficients (ka/o ) for oleogels showed a significantly controlled release and were tunable via the microstructure of phytosterol-based oleogels under both dynamic and static conditions. In addition, the solid-like oleogels had interesting thixotropic and thermoresponsive behaviors, probably as a result of intermolecular hydrogen bonding. CONCLUSION The self-assembly of phytosterol-based oleogels with monoglyceride was attributed to intermolecular hydrogen and is demonstrated to be a promising tunable and functional strategy for delivering flavor compounds. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dan-Xia Yang
- Food Protein Research and Development Center, Department of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiao-Wei Chen
- Food Protein Research and Development Center, Department of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiao-Quan Yang
- Food Protein Research and Development Center, Department of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| |
Collapse
|
47
|
Heymans R, Tavernier I, Danthine S, Rimaux T, Van der Meeren P, Dewettinck K. Food-grade monoglyceride oil foams: the effect of tempering on foamability, foam stability and rheological properties. Food Funct 2018; 9:3143-3154. [DOI: 10.1039/c8fo00536b] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The time-temperature history of monoglyceride-oleogels has a large influence on the foamability and foam stability of the corresponding oil foams.
Collapse
Affiliation(s)
- Robbe Heymans
- Laboratory of Food Technology & Engineering
- Department of Food Technology
- Safety and Health
- Ghent University
- 9000 Gent
| | - Iris Tavernier
- Laboratory of Food Technology & Engineering
- Department of Food Technology
- Safety and Health
- Ghent University
- 9000 Gent
| | - Sabine Danthine
- Department of Food Science
- University of Liège
- 5030 Gembloux
- Belgium
| | - Tom Rimaux
- Vandemoortele R&D Centre
- 8870 Izegem
- Belgium
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group
- Department of Applied Analytical and Physical Chemistry
- Faculty of Bioscience Engineering
- Ghent University
- 9000 Gent
| | - Koen Dewettinck
- Laboratory of Food Technology & Engineering
- Department of Food Technology
- Safety and Health
- Ghent University
- 9000 Gent
| |
Collapse
|
48
|
Heymans R, Tavernier I, Dewettinck K, Van der Meeren P. Crystal stabilization of edible oil foams. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.08.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Fameau AL, Saint-Jalmes A. Non-aqueous foams: Current understanding on the formation and stability mechanisms. Adv Colloid Interface Sci 2017; 247:454-464. [PMID: 28245904 DOI: 10.1016/j.cis.2017.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 10/20/2022]
Abstract
The most common types of liquid foams are aqueous ones, and correspond to gas bubbles dispersed in an aqueous liquid phase. Non-aqueous foams are also composed of gas bubbles, but dispersed in a non-aqueous solvent. In the literature, articles on such non-aqueous foams are scarce; however, the study of these foams has recently emerged, especially because of their potential use as low calories food products and of their increasing importance in various other industries (such as, for instance, the petroleum industry). Non-aqueous foams can be based on three different foam stabilizers categories: specialty surfactants, solid particles and crystalline particles. In this review, we only focus on recent advances explaining how solid and crystalline particles can lead to the formation of non-aqueous foams, and stabilize them. In fact, as discussed here, the foaming is both driven by the physical properties of the liquid phase and by the interactions between the foam stabilizer and this liquid phase. Therefore, for a given stabilizer, different foaming and stability behavior can be found when the solvent is varied. This is different from aqueous systems for which the foaming properties are only set by the foam stabilizer. We also highlight how these non-aqueous foams systems can easily become responsive to temperature changes or by the application of light.
Collapse
|
50
|
Fernandez-Rodriguez MA, Binks BP, Rodriguez-Valverde MA, Cabrerizo-Vilchez MA, Hidalgo-Alvarez R. Particles adsorbed at various non-aqueous liquid-liquid interfaces. Adv Colloid Interface Sci 2017; 247:208-222. [PMID: 28219622 DOI: 10.1016/j.cis.2017.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/05/2017] [Indexed: 02/02/2023]
Abstract
Particles adsorbed at liquid interfaces are commonly used to stabilise water-oil Pickering emulsions and water-air foams. The fundamental understanding of the physics of particles adsorbed at water-air and water-oil interfaces is improving significantly due to novel techniques that enable the measurement of the contact angle of individual particles at a given interface. The case of non-aqueous interfaces and emulsions is less studied in the literature. Non-aqueous liquid-liquid interfaces in which water is replaced by other polar solvents have properties similar to those of water-oil interfaces. Nanocomposites of non-aqueous immiscible polymer blends containing inorganic particles at the interface are of great interest industrially and consequently more work has been devoted to them. By contrast, the behaviour of particles adsorbed at oil-oil interfaces in which both oils are immiscible and of low dielectric constant (ε<3) is scarcely studied. Hydrophobic particles are required to stabilise these oil-oil emulsions due to their irreversible adsorption, high interfacial activity and elastic shell behaviour.
Collapse
Affiliation(s)
- Miguel Angel Fernandez-Rodriguez
- Biocolloid and Fluid Physics Group, Applied Physics Department, Faculty of Sciences, University of Granada, 18071-E Granada, Spain.
| | - Bernard P Binks
- School of Mathematics and Physical Sciences, University of Hull, Hull HU6 7RX, UK
| | - Miguel Angel Rodriguez-Valverde
- Biocolloid and Fluid Physics Group, Applied Physics Department, Faculty of Sciences, University of Granada, 18071-E Granada, Spain
| | - Miguel Angel Cabrerizo-Vilchez
- Biocolloid and Fluid Physics Group, Applied Physics Department, Faculty of Sciences, University of Granada, 18071-E Granada, Spain
| | - Roque Hidalgo-Alvarez
- Biocolloid and Fluid Physics Group, Applied Physics Department, Faculty of Sciences, University of Granada, 18071-E Granada, Spain
| |
Collapse
|