1
|
Santoro O, Izzo L. Antimicrobial Polymer Surfaces Containing Quaternary Ammonium Centers (QACs): Synthesis and Mechanism of Action. Int J Mol Sci 2024; 25:7587. [PMID: 39062830 PMCID: PMC11277267 DOI: 10.3390/ijms25147587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Synthetic polymer surfaces provide an excellent opportunity for developing materials with inherent antimicrobial and/or biocidal activity, therefore representing an answer to the increasing demand for antimicrobial active medical devices. So far, biologists and material scientists have identified a few features of bacterial cells that can be strategically exploited to make polymers inherently antimicrobial. One of these is represented by the introduction of cationic charges that act by killing or deactivating bacteria by interaction with the negatively charged parts of their cell envelope (lipopolysaccharides, peptidoglycan, and membrane lipids). Among the possible cationic functionalities, the antimicrobial activity of polymers with quaternary ammonium centers (QACs) has been widely used for both soluble macromolecules and non-soluble materials. Unfortunately, most information is still unknown on the biological mechanism of action of QACs, a fundamental requirement for designing polymers with higher antimicrobial efficiency and possibly very low toxicity. This mini-review focuses on surfaces based on synthetic polymers with inherently antimicrobial activity due to QACs. It will discuss their synthesis, their antimicrobial activity, and studies carried out so far on their mechanism of action.
Collapse
Affiliation(s)
| | - Lorella Izzo
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
2
|
Mishra A, Aggarwal A, Khan F. Medical Device-Associated Infections Caused by Biofilm-Forming Microbial Pathogens and Controlling Strategies. Antibiotics (Basel) 2024; 13:623. [PMID: 39061305 PMCID: PMC11274200 DOI: 10.3390/antibiotics13070623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Hospital-acquired infections, also known as nosocomial infections, include bloodstream infections, surgical site infections, skin and soft tissue infections, respiratory tract infections, and urinary tract infections. According to reports, Gram-positive and Gram-negative pathogenic bacteria account for up to 70% of nosocomial infections in intensive care unit (ICU) patients. Biofilm production is a main virulence mechanism and a distinguishing feature of bacterial pathogens. Most bacterial pathogens develop biofilms at the solid-liquid and air-liquid interfaces. An essential requirement for biofilm production is the presence of a conditioning film. A conditioning film provides the first surface on which bacteria can adhere and fosters the growth of biofilms by creating a favorable environment. The conditioning film improves microbial adherence by delivering chemical signals or generating microenvironments. Microorganisms use this coating as a nutrient source. The film gathers both inorganic and organic substances from its surroundings, or these substances are generated by microbes in the film. These nutrients boost the initial growth of the adhering bacteria and facilitate biofilm formation by acting as a food source. Coatings with combined antibacterial efficacy and antifouling properties provide further benefits by preventing dead cells and debris from adhering to the surfaces. In the present review, we address numerous pathogenic microbes that form biofilms on the surfaces of biomedical devices. In addition, we explore several efficient smart antiadhesive coatings on the surfaces of biomedical device-relevant materials that manage nosocomial infections caused by biofilm-forming microbial pathogens.
Collapse
Affiliation(s)
- Akanksha Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, Punjab, India;
| | - Ashish Aggarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, Punjab, India;
| | - Fazlurrahman Khan
- Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
3
|
Iqbal MH, Kerdjoudj H, Boulmedais F. Protein-based layer-by-layer films for biomedical applications. Chem Sci 2024; 15:9408-9437. [PMID: 38939139 PMCID: PMC11206333 DOI: 10.1039/d3sc06549a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/03/2024] [Indexed: 06/29/2024] Open
Abstract
The surface engineering of biomaterials is crucial for their successful (bio)integration by the body, i.e. the colonization by the tissue-specific cell, and the prevention of fibrosis and/or bacterial colonization. Performed at room temperature in an aqueous medium, the layer-by-layer (LbL) coating method is based on the alternating deposition of macromolecules. Versatile and simple, this method allows the functionalization of surfaces with proteins, which play a crucial role in several biological mechanisms. Possessing intrinsic properties (cell adhesion, antibacterial, degradable, etc.), protein-based LbL films represent a powerful tool to control bacterial and mammalian cell fate. In this article, after a general introduction to the LbL technique, we will focus on protein-based LbL films addressing different biomedical issues/domains, such as bacterial infection, blood contacting surfaces, mammalian cell adhesion, drug and gene delivery, and bone and neural tissue engineering. We do not consider biosensing applications or electrochemical aspects using specific proteins such as enzymes.
Collapse
Affiliation(s)
- Muhammad Haseeb Iqbal
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, Strasbourg Cedex 2 67034 France
| | | | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, Strasbourg Cedex 2 67034 France
| |
Collapse
|
4
|
Tidim G, Guzel M, Soyer Y, Erel-Goktepe I. Layer-by-layer assembly of chitosan/alginate thin films containing Salmonella enterica bacteriophages for antibacterial applications. Carbohydr Polym 2024; 328:121710. [PMID: 38220322 DOI: 10.1016/j.carbpol.2023.121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/16/2024]
Abstract
The emergence of antibiotic resistant bacteria and the ineffectiveness of routine treatments inspired development of alternatives to biocides for antibacterial applications. Bacteriophages are natural predators of bacteria and are promising alternatives to antibiotics. This study presents fabrication of a Salmonella enterica bacteriophage containing ultra-thin multilayer film composed of chitosan and alginate and demonstrates its potential as an antibacterial coating for food packaging applications. Chitosan/alginate film was prepared through layer-by-layer (LbL) self-assembly technique. A bacteriophage, which belongs to Siphoviridae morphotype (MET P1-001_43) and infects Salmonella enterica subsp. enterica serovar Enteritidis (Salmonella Enteritidis), was post-loaded into chitosan/alginate film. The LbL growth, stability, and surface morphology of chitosan/alginate film as well as phage deposition into multilayers were analysed through ellipsometry, QCM-D and AFM techniques. The bacteriophage containing multilayers showed antibacterial activity at pH 7.0. In contrast, anti-bacterial activity was not observed at acidic conditions. We showed that wrapping a Salmonella Enteritidis contaminated chicken piece with aluminium foil whose surface was modified with phage loaded chitosan/alginate multilayers decreased the number of colonies on the chicken meat, and it was as effective as treating the meat directly with phage solution.
Collapse
Affiliation(s)
- Gökçe Tidim
- Department of Chemistry, Middle East Technical University, 06800 Cankaya, Ankara, Turkey
| | - Mustafa Guzel
- Department of Biotechnology, Middle East Technical University, 06800 Cankaya, Ankara, Turkey; Department of Food Engineering, Hitit University, 19030, Corum, Turkey
| | - Yesim Soyer
- Department of Biotechnology, Middle East Technical University, 06800 Cankaya, Ankara, Turkey; Department of Food Engineering, Middle East Technical University, 06800 Cankaya, Ankara, Turkey
| | - Irem Erel-Goktepe
- Department of Chemistry, Middle East Technical University, 06800 Cankaya, Ankara, Turkey; Department of Biotechnology, Middle East Technical University, 06800 Cankaya, Ankara, Turkey; Center of Excellence in Biomaterials and Tissue Eng. Middle East Technical University, 06800 Cankaya, Ankara, Turkey.
| |
Collapse
|
5
|
Lee I, Kim J, Yun S, Jang J, Cho SY, Cho JS, Ryu JH, Choi D, Cho C. Synergistic Combination of Dual Clays in Multilayered Nanocomposites for Enhanced Flame Retardant Properties. ACS OMEGA 2024; 9:6606-6615. [PMID: 38371790 PMCID: PMC10870267 DOI: 10.1021/acsomega.3c07534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/20/2024]
Abstract
In an effort to reduce the flammability of synthetic polymeric materials such as cotton fabrics and polyurethane foam (PUF), hybrid nanocoatings are prepared by layer-by-layer assembly. Multilayered nanocomposites of a cationic polyelectrolyte, poly(diallyldimethylammonium chloride) (PDDA), are paired with two kinds of clay nanoplatelets, montmorillonite (MMT) and vermiculite (VMT). The physical properties such as thickness and mass and thermal behaviors in clay-based nanocoatings with and without incorporation of tris buffer are compared to assess the effectiveness of amine salts on flame retardant (FR) performances. A PDDA-tris/VMT-MMT system, in which tris buffer is introduced into the cationic PDDA aqueous solution, produces a thicker and heavier coating. Three different systems, including PDDA/MMT, PDDA/VMT-MMT, and PDDA-tris/VMT-MMT, result in conformal coating, retaining the weave structure of the fabrics after being exposed to a vertical and horizontal flame test, while the uncoated sample is completely burned out. The synergistic effects of dual clay-based hybrid nanocoatings are greatly improved by adding amine salts. Cone calorimetry reveals that the PDDA-tris/VMT-MMT-coated PUF eliminates a second peak heat release rate and significantly reduces other FR performances, compared to those obtained from the clay-based multilayer films with no amine salts added. Ten bilayers of PDDA-tris/VMT-MMT (≈250 nm thick) maintain the shape of foam after exposure to a butane torch flame for 12 s. As for practical use of these nanocomposites in real fire disasters, spray-assisted PDDA-tris/VMT-MMT multilayers on woods exhibit high resistance over flammability. Improved fire resistance in PDDA-tris/VMT-MMT is believed to be due to the enhanced char yield through the addition of tris buffer that promotes the deposition of more clay particles while retaining a highly ordered deposition of a densely packed nanobrick wall structure. This work demonstrates the ability to impart significant fire resistance to synthetic polymer materials in a fully renewable nanocoating that uses environmentally benign chemistry.
Collapse
Affiliation(s)
- Inyoung Lee
- Department
of Carbon Convergence Engineering, College of Engineering, Wonkwang University, Iksan 54538, Republic of Korea
| | - Jinhong Kim
- Department
of Carbon Convergence Engineering, College of Engineering, Wonkwang University, Iksan 54538, Republic of Korea
| | - Sehui Yun
- Department
of Carbon Convergence Engineering, College of Engineering, Wonkwang University, Iksan 54538, Republic of Korea
| | - Junho Jang
- Wearable
Platform Materials Technology Center (WMC), Department of Materials
Science and Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Se Youn Cho
- Carbon
Composite Materials Research Center, Korea
Institute of Science and Technology, 92 Chudong-ro Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea
| | - Jung Sang Cho
- Department
of Engineering Chemistry, Chungbuk National
University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Ji Hyun Ryu
- Department
of Carbon Convergence Engineering, College of Engineering, Wonkwang University, Iksan 54538, Republic of Korea
| | - Dongwhi Choi
- Department
of Mechanical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic
of Korea
| | - Chungyeon Cho
- Department
of Carbon Convergence Engineering, College of Engineering, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
6
|
Gokaltun AA, Mazzaferro L, Yarmush ML, Usta OB, Asatekin A. Surface-segregating zwitterionic copolymers to control poly(dimethylsiloxane) surface chemistry. J Mater Chem B 2023; 12:145-157. [PMID: 38051000 PMCID: PMC10777474 DOI: 10.1039/d3tb02164e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The use of microfluidic devices in biomedicine is growing rapidly in applications such as organs-on-chip and separations. Polydimethylsiloxane (PDMS) is the most popular material for microfluidics due to its ability to replicate features down to the nanoscale, flexibility, gas permeability, and low cost. However, the inherent hydrophobicity of PDMS leads to the adsorption of macromolecules and small molecules on device surfaces. This curtails its use in "organs-on-chip" and other applications. Current technologies to improve PDMS surface hydrophilicity and fouling resistance involve added processing steps or do not create surfaces that remain hydrophilic for long periods. This work describes a novel, simple, fast, and scalable method for improving surface hydrophilicity and preventing the nonspecific adsorption of proteins and small molecules on PDMS through the use of a surface-segregating zwitterionic copolymer as an additive that is blended in during manufacture. These highly branched copolymers spontaneously segregate to surfaces and rearrange in contact with aqueous solutions to resist nonspecific adsorption. We report that mixing a minute amount (0.025 wt%) of the zwitterionic copolymer in PDMS considerably reduces hydrophobicity and nonspecific adsorption of proteins (albumin and lysozyme) and small molecules (vitamin B12 and reactive red). PDMS blended with these zwitterionic copolymers retains its mechanical and physical properties for at least six months. Moreover, this approach is fully compatible with existing PDMS device manufacture protocols without additional processing steps and thus provides a low-cost and user-friendly approach to fabricating reliable biomicrofluidics.
Collapse
Affiliation(s)
- A Aslihan Gokaltun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA.
- Shriners Hospitals for Children, 51 Blossom St., Boston, MA, 02114, USA
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA.
- Department of Chemical Engineering, Hacettepe University, 06532, Beytepe, Ankara, Turkey
| | - Luca Mazzaferro
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA.
| | - Martin L Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA.
- Shriners Hospitals for Children, 51 Blossom St., Boston, MA, 02114, USA
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
| | - O Berk Usta
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA.
- Shriners Hospitals for Children, 51 Blossom St., Boston, MA, 02114, USA
| | - Ayse Asatekin
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA.
| |
Collapse
|
7
|
Balla E, Zamboulis A, Klonos P, Kyritsis A, Barmpalexis P, Bikiaris DΝ. Synthesis of novel interpenetrated network for ocular co-administration of timolol maleate and dorzolamide hydrochloride drugs. Int J Pharm 2023; 646:123439. [PMID: 37742821 DOI: 10.1016/j.ijpharm.2023.123439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
In the present work, novel interpenetrated networks (IPNs) of [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide) (SBMA) and poly(vinyl alcohol) (PVA) were prepared for the ocular co-administration of timolol maleate (TIM) and dorzolamide hydrochloride (DORZ), two drugs widely used for the treatment of glaucoma. The successful polymerization of SBMA, in the presence of PVA, led to the formation of semi-interpenetrated pSBMA-PVA networks (IPNs), in the form of sponges, exhibiting intrinsic antimicrobial properties attributed to SBMA. Fourier-transform infrared spectroscopy (FTIR) was utilized to confirm the successful synthesis of the IPNs. Further assessments, including contact angle and water sorption measurements, highlighted their significant hydrophilicity, a feature that makes them suitable for ocular applications. Differential scanning calorimetry (DSC) measurements indicated that PVA serves as a plasticizer, while an assessment of the water sorption capacity of these materials suggested that although the incorporation of PVA results in slightly less hydrophilic materials, the prepared sponges still remain sufficiently hydrophilic for ocular use. Following their characterization, the optimal pSBMA-PVA IPN was used to encapsulate TIM and DORZ. Irritation tests, performed using the HET-CAM method, confirmed that the drug-loaded sponges were safe and potentially well-tolerated for ophthalmic use. Finally, the co-release study for the two drugs revealed a sustained release pattern in both cases, while drug release from the sponges was primarily controlled by diffusion.
Collapse
Affiliation(s)
- Evangelia Balla
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Alexandra Zamboulis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Panagiotis Klonos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| | - Panagiotis Barmpalexis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios Ν Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
8
|
Rajaramon S, Shanmugam K, Dandela R, Solomon AP. Emerging evidence-based innovative approaches to control catheter-associated urinary tract infection: a review. Front Cell Infect Microbiol 2023; 13:1134433. [PMID: 37560318 PMCID: PMC10407108 DOI: 10.3389/fcimb.2023.1134433] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
Healthcare settings have dramatically advanced the latest medical devices, such as urinary catheters (UC) for infection, prevention, and control (IPC). The continuous or intermittent flow of a warm and conducive (urine) medium in the medical device, the urinary catheter, promotes the formation of biofilms and encrustations, thereby leading to the incidence of CAUTI. Additionally, the absence of an innate immune host response in and around the lumen of the catheter reduces microbial phagocytosis and drug action. Hence, the review comprehensively overviews the challenges posed by CAUTI and associated risks in patients' morbidity and mortality. Also, detailed, up-to-date information on the various strategies that blended/tailored the surface properties of UC to have anti-fouling, biocidal, and anti-adhesive properties to provide an outlook on how they can be better managed with futuristic solutions.
Collapse
Affiliation(s)
- Shobana Rajaramon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthi Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
9
|
Khan SA, Shakoor A. Recent Strategies and Future Recommendations for the Fabrication of Antimicrobial, Antibiofilm, and Antibiofouling Biomaterials. Int J Nanomedicine 2023; 18:3377-3405. [PMID: 37366489 PMCID: PMC10290865 DOI: 10.2147/ijn.s406078] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/06/2023] [Indexed: 06/28/2023] Open
Abstract
Biomaterials and biomedical devices induced life-threatening bacterial infections and other biological adverse effects such as thrombosis and fibrosis have posed a significant threat to global healthcare. Bacterial infections and adverse biological effects are often caused by the formation of microbial biofilms and the adherence of various biomacromolecules, such as platelets, proteins, fibroblasts, and immune cells, to the surfaces of biomaterials and biomedical devices. Due to the programmed interconnected networking of bacteria in microbial biofilms, they are challenging to treat and can withstand several doses of antibiotics. Additionally, antibiotics can kill bacteria but do not prevent the adsorption of biomacromolecules from physiological fluids or implanting sites, which generates a conditioning layer that promotes bacteria's reattachment, development, and eventual biofilm formation. In these viewpoints, we highlighted the magnitude of biomaterials and biomedical device-induced infections, the role of biofilm formation, and biomacromolecule adhesion in human pathogenesis. We then discussed the solutions practiced in healthcare systems for curing biomaterials and biomedical device-induced infections and their limitations. Moreover, this review comprehensively elaborated on the recent advances in designing and fabricating biomaterials and biomedical devices with these three properties: antibacterial (bacterial killing), antibiofilm (biofilm inhibition/prevention), and antibiofouling (biofouling inhibition/prevention) against microbial species and against the adhesion of other biomacromolecules. Besides we also recommended potential directions for further investigations.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| | - Adnan Shakoor
- Department of Control and Instrumentation Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
10
|
Felix L, Whitely C, Tharmalingam N, Mishra B, Vera-Gonzalez N, Mylonakis E, Shukla A, Fuchs BB. Auranofin coated catheters inhibit bacterial and fungal biofilms in a murine subcutaneous model. Front Cell Infect Microbiol 2023; 13:1135942. [PMID: 37313344 PMCID: PMC10258325 DOI: 10.3389/fcimb.2023.1135942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/24/2023] [Indexed: 06/15/2023] Open
Abstract
Microbe entry through catheter ports can lead to biofilm accumulation and complications from catheter-related bloodstream infection and ultimately require antimicrobial treatment and catheter replacement. Although strides have been made with microbial prevention by applying standardized antiseptic techniques during catheter implantation, both bacterial and fungal microbes can present health risks to already sick individuals. To reduce microbial adhesion, murine and human catheters were coated with polyurethane and auranofin using a dip coating method and compared to non-coated materials. Upon passage of fluid through the coated material in vitro, flow dynamics were not impacted. The unique antimicrobial properties of the coating material auranofin has shown inhibitory activity against bacteria such as Staphylococcus aureus and fungi such as Candida albicans. Auranofin coating on catheters at 10mg/mL reduced C. albicans accumulation in vitro from 2.0 x 108 to 7.8 x 105 CFU for mouse catheters and from 1.6 x 107 to 2.8 x 106 for human catheters, showing an impact to mature biofilms. Assessment of a dual microbe biofilm on auranofin-coated catheters resulted in a 2-log reduction in S. aureus and a 3-log reduction in C. albicans compared to uncoated catheters. In vivo assessment in a murine subcutaneous model demonstrated that catheters coated with 10 mg/mL auranofin reduced independent S. aureus and C. albicans accumulation by 4-log and 1-log, respectively, compared to non-coated catheters. In conclusion, the auranofin-coated catheters demonstrate proficiency at inhibiting multiple pathogens by decreasing S. aureus and C. albicans biofilm accumulation.
Collapse
Affiliation(s)
- LewisOscar Felix
- Division of Infectious Diseases, Rhode Island Hospital, The Miriam Hospital, Alpert Medical School and Brown University, Providence, RI, United States
| | - Cutler Whitely
- Center for Biomedical Engineering, School of Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, RI, United States
| | - Nagendran Tharmalingam
- Division of Infectious Diseases, Rhode Island Hospital, The Miriam Hospital, Alpert Medical School and Brown University, Providence, RI, United States
| | - Biswajit Mishra
- Division of Infectious Diseases, Rhode Island Hospital, The Miriam Hospital, Alpert Medical School and Brown University, Providence, RI, United States
| | - Noel Vera-Gonzalez
- Center for Biomedical Engineering, School of Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, RI, United States
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, The Miriam Hospital, Alpert Medical School and Brown University, Providence, RI, United States
| | - Anita Shukla
- Center for Biomedical Engineering, School of Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, RI, United States
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, The Miriam Hospital, Alpert Medical School and Brown University, Providence, RI, United States
| |
Collapse
|
11
|
Chen X, Zhou J, Qian Y, Zhao L. Antibacterial coatings on orthopedic implants. Mater Today Bio 2023; 19:100586. [PMID: 36896412 PMCID: PMC9988588 DOI: 10.1016/j.mtbio.2023.100586] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
With the aging of population and the rapid improvement of public health and medical level in recent years, people have had an increasing demand for orthopedic implants. However, premature implant failure and postoperative complications frequently occur due to implant-related infections, which not only increase the social and economic burden, but also greatly affect the patient's quality of life, finally restraining the clinical use of orthopedic implants. Antibacterial coatings, as an effective strategy to solve the above problems, have been extensively studied and motivated the development of novel strategies to optimize the implant. In this paper, a variety of antibacterial coatings recently developed for orthopedic implants were briefly reviewed, with the focus on the synergistic multi-mechanism antibacterial coatings, multi-functional antibacterial coatings, and smart antibacterial coatings that are more potential for clinical use, thereby providing theoretical references for further fabrication of novel and high-performance coatings satisfying the complex clinical needs.
Collapse
Affiliation(s)
- Xionggang Chen
- Institute of Physics & Optoelectronics Technology, Baoji Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, PR China
| | - Jianhong Zhou
- Institute of Physics & Optoelectronics Technology, Baoji Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, PR China
| | - Yu Qian
- Institute of Physics & Optoelectronics Technology, Baoji Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, PR China
| | - LingZhou Zhao
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, 100142, PR China
| |
Collapse
|
12
|
Marmo AC, Grunlan MA. Biomedical Silicones: Leveraging Additive Strategies to Propel Modern Utility. ACS Macro Lett 2023; 12:172-182. [PMID: 36669481 PMCID: PMC10848296 DOI: 10.1021/acsmacrolett.2c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Silicones have a long history of use in biomedical devices, with unique properties stemming from the siloxane (Si-O-Si) backbone that feature a high degree of flexibility and chemical stability. However, surface, rheological, mechanical, and electrical properties of silicones can limit their utility. Successful modification of silicones to address these limitations could lead to superior and new biomedical devices. Toward improving such properties, recent additive strategies have been leveraged to modify biomedical silicones and are highlighted herein.
Collapse
Affiliation(s)
- Alec C. Marmo
- Department
of Materials Science and Engineering Texas
A&M University, College
Station, Texas 77843-3003, United States
| | - Melissa A. Grunlan
- Department
of Biomedical Engineering, Department of Materials Science and Engineering,
Department of Chemistry Texas A&M University, College Station, Texas 77843-3003, United
States
| |
Collapse
|
13
|
Dai S, Gao Y, Duan L. Recent advances in hydrogel coatings for urinary catheters. J Appl Polym Sci 2023. [DOI: 10.1002/app.53701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Simin Dai
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science Changchun University of Technology Changchun People's Republic of China
| | - Yang Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun People's Republic of China
| | - Lijie Duan
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science Changchun University of Technology Changchun People's Republic of China
| |
Collapse
|
14
|
Kanti SPY, Csóka I, Jójárt-Laczkovich O, Adalbert L. Recent Advances in Antimicrobial Coatings and Material Modification Strategies for Preventing Urinary Catheter-Associated Complications. Biomedicines 2022; 10:2580. [PMID: 36289841 PMCID: PMC9599887 DOI: 10.3390/biomedicines10102580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/28/2022] Open
Abstract
In recent years, we have witnessed prominent improvements in urinary catheter coatings to tackle the commonly occurring catheter-associated urinary tract infection (CAUTI) in catheterized patients. CAUTIs are claimed to be one of the most frequent nosocomial infections that can lead to various complications, from catheter encrustation to severe septicaemia and pyelonephritis. Besides general prevention hygienic strategies, antimicrobial-coated urinary catheters show great potential in the prevention of urinary catheter-associated complications. The aim of this review is to present and evaluate recent updates on the development of antimicrobial urinary catheters in the context of the aetiology of urinary malfunction. Subsequently, we shed some light on future perspectives of utilizing 3D printing and the surrounding regulatory directions.
Collapse
Affiliation(s)
- S. P. Yamini Kanti
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | | | | | - Lívia Adalbert
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| |
Collapse
|
15
|
Kaur KD, Habimana O. Death at the interface: Nanotechnology’s challenging frontier against microbial surface colonization. Front Chem 2022; 10:1003234. [PMID: 36311433 PMCID: PMC9613359 DOI: 10.3389/fchem.2022.1003234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
The emergence of antimicrobial-resistant bacterial strains has led to novel approaches for combating bacterial infections and surface contamination. More specifically, efforts in combining nanotechnology and biomimetics have led to the development of next-generation antimicrobial/antifouling nanomaterials. While nature-inspired nanoscale topographies are known for minimizing bacterial attachment through surface energy and physicochemical features, few studies have investigated the combined inhibitory effects of such features in combination with chemical alterations of these surfaces. Studies describing surface alterations, such as quaternary ammonium compounds (QACs), have also gained attention due to their broad spectrum of inhibitory activity against bacterial cells. Similarly, antimicrobial peptides (AMPs) have exhibited their capacity to reduce bacterial viability. To maximize the functionality of modified surfaces, the integration of patterned surfaces and functionalized exteriors, achieved through physical and chemical surface alterations, have recently been explored as viable alternatives. Nonetheless, these modifications are prone to challenges that can reduce their efficacy considerably in the long term. Their effectiveness against a wider array of microbial cells is still a subject of investigation. This review article will explore and discuss the emerging trends in biomimetics and other antimicrobials while raising possible concerns about their limitations and discussing future implications regarding their potential combined applications.
Collapse
Affiliation(s)
- Kiran Deep Kaur
- The School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Olivier Habimana
- Guangdong Technion Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
- *Correspondence: Olivier Habimana,
| |
Collapse
|
16
|
Zhao YQ, Xiu Z, Wu R, Zhang L, Ding X, Zhao N, Duan S, Xu FJ. A Near‐Infrared‐Responsive Quaternary Ammonium/Gold Nanorod Hybrid Coating with Enhanced Antibacterial Properties. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Yu-Qing Zhao
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Zongpeng Xiu
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Ruonan Wu
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Lujiao Zhang
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
17
|
Chug M, Brisbois EJ. Recent Developments in Multifunctional Antimicrobial Surfaces and Applications toward Advanced Nitric Oxide-Based Biomaterials. ACS MATERIALS AU 2022; 2:525-551. [PMID: 36124001 PMCID: PMC9479141 DOI: 10.1021/acsmaterialsau.2c00040] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023]
Abstract
Implant-associated infections arising from biofilm development are known to have detrimental effects with compromised quality of life for the patients, implying a progressing issue in healthcare. It has been a struggle for more than 50 years for the biomaterials field to achieve long-term success of medical implants by discouraging bacterial and protein adhesion without adversely affecting the surrounding tissue and cell functions. However, the rate of infections associated with medical devices is continuously escalating because of the intricate nature of bacterial biofilms, antibiotic resistance, and the lack of ability of monofunctional antibacterial materials to prevent the colonization of bacteria on the device surface. For this reason, many current strategies are focused on the development of novel antibacterial surfaces with dual antimicrobial functionality. These surfaces are based on the combination of two components into one system that can eradicate attached bacteria (antibiotics, peptides, nitric oxide, ammonium salts, light, etc.) and also resist or release adhesion of bacteria (hydrophilic polymers, zwitterionic, antiadhesive, topography, bioinspired surfaces, etc.). This review aims to outline the progress made in the field of biomedical engineering and biomaterials for the development of multifunctional antibacterial biomedical devices. Additionally, principles for material design and fabrication are highlighted using characteristic examples, with a special focus on combinational nitric oxide-releasing biomedical interfaces. A brief perspective on future research directions for engineering of dual-function antibacterial surfaces is also presented.
Collapse
Affiliation(s)
- Manjyot
Kaur Chug
- School of Chemical, Materials
and Biomedical Engineering, University of
Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J. Brisbois
- School of Chemical, Materials
and Biomedical Engineering, University of
Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
18
|
Catechol-functionalized sulfobetaine polymer for uniform zwitterionization via pH transition approach. Colloids Surf B Biointerfaces 2022; 220:112879. [DOI: 10.1016/j.colsurfb.2022.112879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022]
|
19
|
Dardouri M, Aljnadi IM, Deuermeier J, Santos C, Costa F, Martin V, Fernandes MH, Gonçalves L, Bettencourt A, Gomes PS, Ribeiro IA. Bonding antimicrobial rhamnolipids onto medical grade PDMS: A strategy to overcome multispecies vascular catheter-related infections. Colloids Surf B Biointerfaces 2022; 217:112679. [DOI: 10.1016/j.colsurfb.2022.112679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 01/06/2023]
|
20
|
Sarvari R, Naghili B, Agbolaghi S, Abbaspoor S, Bannazadeh Baghi H, Poortahmasebi V, Sadrmohammadi M, Hosseini M. Organic/polymeric antibiofilm coatings for surface modification of medical devices. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2066668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Raana Sarvari
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sadrmohammadi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hosseini
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
21
|
Abstract
Membrane chromatography (MC) is an emerging bioseparation technology combining the principles of membrane filtration and chromatography. In this process, one type of molecule is adsorbed in the stationary phase, whereas the other type of molecule is passed through the membrane pores without affecting the adsorbed molecule. In subsequent the step, the adsorbed molecule is recovered by an elution buffer with a unique ionic strength and pH. Functionalized microfiltration membranes are usually used in radial flow, axial flow, and lateral flow membrane modules in MC systems. In the MC process, the transport of a solute to a stationary phase is mainly achieved through convection and minimum pore diffusion. Therefore, mass transfer resistance and pressure drop become insignificant. Other characteristics of MC systems are a minimum clogging tendency in the stationary phase, the capability of operating with a high mobile phase flow rate, and the disposable (short term) application of stationary phase. The development and application of MC systems for the fractionation of individual proteins from whey for investigation and industrial-scale production are promising. A significant income from individual whey proteins together with the marketing of dairy foods may provide a new commercial outlook in dairy industry. In this review, information about the development of a MC system and its applications for the fractionation of individual protein from whey are presented in comprehensive manner.
Collapse
|
22
|
Biocompatible Materials in Otorhinolaryngology and Their Antibacterial Properties. Int J Mol Sci 2022; 23:ijms23052575. [PMID: 35269718 PMCID: PMC8910137 DOI: 10.3390/ijms23052575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 12/29/2022] Open
Abstract
For decades, biomaterials have been commonly used in medicine for the replacement of human body tissue, precise drug-delivery systems, or as parts of medical devices that are essential for some treatment methods. Due to rapid progress in the field of new materials, updates on the state of knowledge about biomaterials are frequently needed. This article describes the clinical application of different types of biomaterials in the field of otorhinolaryngology, i.e., head and neck surgery, focusing on their antimicrobial properties. The variety of their applications includes cochlear implants, middle ear prostheses, voice prostheses, materials for osteosynthesis, and nasal packing after nasal/paranasal sinuses surgery. Ceramics, such as as hydroxyapatite, zirconia, or metals and metal alloys, still have applications in the head and neck region. Tissue engineering scaffolds and drug-eluting materials, such as polymers and polymer-based composites, are becoming more common. The restoration of life tissue and the ability to prevent microbial colonization should be taken into consideration when designing the materials to be used for implant production. The authors of this paper have reviewed publications available in PubMed from the last five years about the recent progress in this topic but also establish the state of knowledge of the most common application of biomaterials over the last few decades.
Collapse
|
23
|
Li W, Lei X, Feng H, Li B, Kong J, Xing M. Layer-by-Layer Cell Encapsulation for Drug Delivery: The History, Technique Basis, and Applications. Pharmaceutics 2022; 14:pharmaceutics14020297. [PMID: 35214030 PMCID: PMC8874529 DOI: 10.3390/pharmaceutics14020297] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/28/2021] [Accepted: 01/24/2022] [Indexed: 12/17/2022] Open
Abstract
The encapsulation of cells with various polyelectrolytes through layer-by-layer (LbL) has become a popular strategy in cellular function engineering. The technique sprang up in 1990s and obtained tremendous advances in multi-functionalized encapsulation of cells in recent years. This review comprehensively summarized the basis and applications in drug delivery by means of LbL cell encapsulation. To begin with, the concept and brief history of LbL and LbL cell encapsulation were introduced. Next, diverse types of materials, including naturally extracted and chemically synthesized, were exhibited, followed by a complicated basis of LbL assembly, such as interactions within multilayers, charge distribution, and films morphology. Furthermore, the review focused on the protective effects against adverse factors, and bioactive payloads incorporation could be realized via LbL cell encapsulation. Additionally, the payload delivery from cell encapsulation system could be adjusted by environment, redox, biological processes, and functional linkers to release payloads in controlled manners. In short, drug delivery via LbL cell encapsulation, which takes advantage of both cell grafts and drug activities, will be of great importance in basic research of cell science and biotherapy for various diseases.
Collapse
Affiliation(s)
- Wenyan Li
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Xuejiao Lei
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Hua Feng
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
- Correspondence: (J.K.); (M.X.)
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, 75 Chancellors Circle, Winnipeg, MB R3T 5V6, Canada
- Correspondence: (J.K.); (M.X.)
| |
Collapse
|
24
|
Sharma S, Basu B. Biomaterials assisted reconstructive urology: The pursuit of an implantable bioengineered neo-urinary bladder. Biomaterials 2021; 281:121331. [PMID: 35016066 DOI: 10.1016/j.biomaterials.2021.121331] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022]
Abstract
Urinary bladder is a dynamic organ performing complex physiological activities. Together with ureters and urethra, it forms the lower urinary tract that facilitates urine collection, low-pressure storage, and volitional voiding. However, pathological disorders are often liable to cause irreversible damage and compromise the normal functionality of the bladder, necessitating surgical intervention for a reconstructive procedure. Non-urinary autologous grafts, primarily derived from gastrointestinal tract, have long been the gold standard in clinics to augment or to replace the diseased bladder tissue. Unfortunately, such treatment strategy is commonly associated with several clinical complications. In absence of an optimal autologous therapy, a biomaterial based bioengineered platform is an attractive prospect revolutionizing the modern urology. Predictably, extensive investigative research has been carried out in pursuit of better urological biomaterials, that overcome the limitations of conventional gastrointestinal graft. Against the above backdrop, this review aims to provide a comprehensive and one-stop update on different biomaterial-based strategies that have been proposed and explored over the past 60 years to restore the dynamic function of the otherwise dysfunctional bladder tissue. Broadly, two unique perspectives of bladder tissue engineering and total alloplastic bladder replacement are critically discussed in terms of their status and progress. While the former is pivoted on scaffold mediated regenerative medicine; in contrast, the latter is directed towards the development of a biostable bladder prosthesis. Together, these routes share a common aspiration of designing and creating a functional equivalent of the bladder wall, albeit, using fundamentally different aspects of biocompatibility and clinical needs. Therefore, an attempt has been made to systematically analyze and summarize the evolution of various classes as well as generations of polymeric biomaterials in urology. Considerable emphasis has been laid on explaining the bioengineering methodologies, pre-clinical and clinical outcomes. Some of the unaddressed challenges, including vascularization, innervation, hollow 3D prototype fabrication and urinary encrustation, have been highlighted that currently delay the successful commercial translation. More importantly, the rapidly evolving and expanding concepts of bioelectronic medicine are discussed to inspire future research efforts towards the further advancement of the field. At the closure, crucial insights are provided to forge the biomaterial assisted reconstruction as a long-term therapeutic strategy in urological practice for patients' care.
Collapse
Affiliation(s)
- Swati Sharma
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
25
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Domingues B, Pacheco M, Cruz JE, Carmagnola I, Teixeira‐Santos R, Laurenti M, Can F, Bohinc K, Moutinho F, Silva JM, Aroso IM, Lima E, Reis RL, Ciardelli G, Cauda V, Mergulhão FJ, Gálvez FS, Barros AA. Future Directions for Ureteral Stent Technology: From Bench to the Market. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Beatriz Domingues
- 3B's Research Group‐Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark‐Parque Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães 4805‐017 Portugal
| | - Margarida Pacheco
- 3B's Research Group‐Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark‐Parque Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães 4805‐017 Portugal
| | - Julia E. Cruz
- Endourology‐Endoscopy Department Minimally Invasive Surgery Centre Jesús Usón Cáceres 10071 Spain
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering Politecnico di Torino Turin 10129 Italy
- Polito BIOMedLAB Politecnico di Torino Turin 10129 Italy
| | - Rita Teixeira‐Santos
- LEPABE–Laboratory for Process Engineering Environment Biotechnology and Energy Faculty of Engineering University of Porto Porto 4200‐465 Portugal
| | - Marco Laurenti
- Department of Applied Science and Technology Politecnico di Torino Turin 10129 Italy
| | - Fusun Can
- Department of Medical Microbiology School of Medicine Koc University Istanbul 34450 Turkey
| | - Klemen Bohinc
- Faculty of Health Sciences University of Ljubljana Ljubljana 1000 Slovenia
| | - Fabíola Moutinho
- i3S‐Instituto de Investigação e Inovação em Saúde Universidade do Porto Porto 4200‐135 Portugal
- INEB‐Instituto de Engenharia Biomédica Universidade do Porto Porto 4200‐135 Portugal
| | - Joana M. Silva
- 3B's Research Group‐Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark‐Parque Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães 4805‐017 Portugal
| | - Ivo M. Aroso
- 3B's Research Group‐Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark‐Parque Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães 4805‐017 Portugal
| | - Estêvão Lima
- School of Health Sciences Life and Health Sciences Research Institute (ICVS) University of Minho Braga 4710‐057 Portugal
| | - Rui L. Reis
- 3B's Research Group‐Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark‐Parque Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães 4805‐017 Portugal
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering Politecnico di Torino Turin 10129 Italy
- Polito BIOMedLAB Politecnico di Torino Turin 10129 Italy
| | - Valentina Cauda
- Department of Applied Science and Technology Politecnico di Torino Turin 10129 Italy
| | - Filipe J. Mergulhão
- LEPABE–Laboratory for Process Engineering Environment Biotechnology and Energy Faculty of Engineering University of Porto Porto 4200‐465 Portugal
| | - Federico S. Gálvez
- Endourology‐Endoscopy Department Minimally Invasive Surgery Centre Jesús Usón Cáceres 10071 Spain
| | - Alexandre A. Barros
- 3B's Research Group‐Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark‐Parque Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães 4805‐017 Portugal
| |
Collapse
|
27
|
Hu P, Zeng H, Zhou H, Zhang C, Xie Q, Ma C, Zhang G. Silicone Elastomer with Self-Generating Zwitterions for Antifouling Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8253-8260. [PMID: 34190560 DOI: 10.1021/acs.langmuir.1c00984] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Silicone elastomer-based fouling release coatings have been gaining increased attention in marine antibiofouling. However, the lack of fouling resistance limits their application. Introducing a zwitterionic polymer into silicone enhances its fouling resistance, but their incompatibility makes this challenging. In this work, a silicone elastomer with zwitterionic pendant chains has been prepared by grafting a telomer of tertiary carboxybetaine dodecafluoroheptyl ester ethyl acrylate (TCBF) and 3-mercaptopropyltriethoxysilane to the bis-silanol-terminated poly(dimethylsiloxane) (PDMS). The fluorocarbon groups drive the telomer onto the surface in the film formation process, while the TCBF groups hydrolyze and generate zwitterions on the surface, which is confirmed by attenuated total reflection infrared spectra analysis and water contact angle measurements. Bioassays using marine bacteria (Pseudomonas sp.) and diatoms (Navicula incerta) demonstrate that the antifouling efficacy is improved as the telomer content increases. The bacteria and diatom adhesion decreases by 95 and 81%, respectively, for the PDMS with 30 wt % telomer compared with the unmodified PDMS control. Meanwhile, the fouling release performance of PDMS is maintained with a pseudobarnacle removal strength of ∼0.1 MPa. This work provides a facile way to fabricate efficient silicone-based antifouling coatings.
Collapse
Affiliation(s)
- Peng Hu
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Haohang Zeng
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huan Zhou
- China Ship Development and Design Center, Wuhan 430064, P. R. China
| | - Cong Zhang
- China Ship Development and Design Center, Wuhan 430064, P. R. China
| | - Qingyi Xie
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
28
|
Wang Y, Liu S, Ding K, Zhang Y, Ding X, Mi J. Quaternary tannic acid with improved leachability and biocompatibility for antibacterial medical thermoplastic polyurethane catheters. J Mater Chem B 2021; 9:4746-4762. [PMID: 34095937 DOI: 10.1039/d1tb00227a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The surfaces of indwelling catheters offer sites for the adherence of bacteria to form biofilms, leading to various infections. Therefore, the development of antibacterial materials for catheters is imperative. In this study, combining the strong antibacterial effect of a quaternary ammonium salt (QAS) and the high biocompatibility of tannic acid (TA), we prepared a quaternary tannic acid (QTA) by grafting a synthesized quaternary ammonium salt, dimethyl dodecyl 6-bromohexyl ammonium bromide, onto TA. To prepare antibacterial catheters, QTA was blended with thermoplastic polyurethane (TPU) via melt extrusion, which is a convenient and easy-to-control process. Characterization of the TPU blends showed that compared with those of the QAS, dissolution rate and biocompatibility of QTA were significantly improved. On the premise that the introduction of QTA had only a slight effect on the original mechanical properties of pristine TPU, the prepared TPU/QTA maintained satisfactory antibacterial activities in vitro, under a flow state, as well as in vivo. The results verified that the TPU/QTA blend with a QTA content of 4% is effective, durable, stable, and non-toxic, and exhibits significant potential as a raw material for catheters.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, No. 15 Beisanhuandong Road, Beijing, 100029, China.
| | - Shuaizhen Liu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, No. 15 Beisanhuandong Road, Beijing, 100029, China.
| | - Kaidi Ding
- Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609-2280, USA
| | - Yaocheng Zhang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, No. 15 Beisanhuandong Road, Beijing, 100029, China.
| | - Xuejia Ding
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, No. 15 Beisanhuandong Road, Beijing, 100029, China.
| | - Jianguo Mi
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, No. 15 Beisanhuandong Road, Beijing, 100029, China.
| |
Collapse
|
29
|
Zhang X, Liu L, Peng W, Dong X, Gu Y, Ma Z, Gan D, Liu P. Phosphonate/zwitterionic/cationic terpolymers as high-efficiency bactericidal and antifouling coatings for metallic substrates. J Mater Chem B 2021; 9:4169-4177. [PMID: 33989375 DOI: 10.1039/d1tb00770j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacteria associated infection is a critical challenge for metallic implants and devices in biomedical applications. Here, we report phosphonate/zwitterionic/quaternary amine terpolymers as a new type of antifouling and bactericidal coating for metallic substrates. Through reversible-addition fragmentation chain transfer polymerization (RAFT) and quaternization, well-controlled phosphonate/zwitterionic/cationic terpolymers with identical phosphonate segments (repeat units of 15) and varied zwitterionic and cationic components (nSBMA : nTMAEMA = 64 : 0, 54 : 18, 18 : 32, 9 : 52, and 0 : 70) were precisely prepared. The polymers can be coated on TC4 substrates based on the strong coordination between phosphonate groups and metallic substrates, as evidenced by water contact angle and XPS tests. Bactericidal evaluation revealed that the antibacterial efficiency was enhanced with the increase of cationic content in the coating polymers. TC4 substrates coated with the polymer coating with a cationic segment of 70 repeat units were able to kill 97.5 and 94.0% of S. aureus and E. coli, respectively. By virtue of the antifouling ability of the zwitterionic component and the bactericidal ability of the cationic component, the antibacterial efficiency was increased to 99.5% without significant compromising of the cytocompatibility. Meanwhile, the dual functional terpolymers could be easily applied on other metallic substrates, such as titanium, stainless steel, and Ni/Cr alloy, which were able to kill up to 97.9% of S. aureus and 99.9% of E. coli, respectively, endowing the excellent antibacterial properties to general bio-metals. The high-efficiency antibacterial modification strategy demonstrated here may find many applications on metallic implants and devices to combat bacterial associated infections.
Collapse
Affiliation(s)
- Xiao Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Li Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Wan Peng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Xiaohan Dong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Yahui Gu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Zhuangzhuang Ma
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Donglin Gan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Pingsheng Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| |
Collapse
|
30
|
Gibson RR, Fernyhough A, Musa OM, Armes SP. RAFT dispersion polymerization of N, N-dimethylacrylamide in a series of n-alkanes using a thermoresponsive poly( tert-octyl acrylamide) steric stabilizer. Polym Chem 2021. [DOI: 10.1039/d1py00045d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(tert-octyl acrylamide)-poly(N,N-dimethylacrylamide) nanoparticles are prepared by RAFT dispersion polymerization at 70 °C in various n-alkanes. Thermoreversible flocculation occurs in higher n-alkanes on cooling to 20 °C.
Collapse
Affiliation(s)
- R. R. Gibson
- Dainton Building
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| | | | | | - S. P. Armes
- Dainton Building
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| |
Collapse
|
31
|
Escobar A, Muzzio N, Moya SE. Antibacterial Layer-by-Layer Coatings for Medical Implants. Pharmaceutics 2020; 13:E16. [PMID: 33374184 PMCID: PMC7824561 DOI: 10.3390/pharmaceutics13010016] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/18/2022] Open
Abstract
The widespread occurrence of nosocomial infections and the emergence of new bacterial strands calls for the development of antibacterial coatings with localized antibacterial action that are capable of facing the challenges posed by increasing bacterial resistance to antibiotics. The Layer-by-Layer (LbL) technique, based on the alternating assembly of oppositely charged polyelectrolytes, can be applied for the non-covalent modification of multiple substrates, including medical implants. Polyelectrolyte multilayers fabricated by the LbL technique have been extensively researched for the development of antibacterial coatings as they can be loaded with antibiotics, antibacterial peptides, nanoparticles with bactericide action, in addition to being capable of restricting adhesion of bacteria to surfaces. In this review, the different approaches that apply LbL for antibacterial coatings, emphasizing those that can be applied for implant modification are presented.
Collapse
Affiliation(s)
- Ane Escobar
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182 C, 20014 Donostia-San Sebastian, Spain;
| | - Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Sergio Enrique Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182 C, 20014 Donostia-San Sebastian, Spain;
| |
Collapse
|
32
|
Ricardo SIC, Anjos IIL, Monge N, Faustino CMC, Ribeiro IAC. A Glance at Antimicrobial Strategies to Prevent Catheter-Associated Medical Infections. ACS Infect Dis 2020; 6:3109-3130. [PMID: 33245664 DOI: 10.1021/acsinfecdis.0c00526] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Urinary and intravascular catheters are two of the most used invasive medical devices; however, microbial colonization of catheter surfaces is responsible for most healthcare-associated infections (HAIs). Several antimicrobial-coated catheters are available, but recurrent antibiotic therapy can decrease their potential activity against resistant bacterial strains. The aim of this Review is to question the actual effectiveness of currently used (coated) catheters and describe the progress and promise of alternative antimicrobial coatings. Different strategies have been reviewed with the common goal of preventing biofilm formation on catheters, including release-based approaches using antibiotics, antiseptics, nitric oxide, 5-fluorouracil, and silver as well as contact-killing approaches employing quaternary ammonium compounds, chitosan, antimicrobial peptides, and enzymes. All of these strategies have given proof of antimicrobial efficacy by modifying the physiology of pathogens or disrupting their structural integrity. The aim for synergistic approaches using multitarget processes and the combination of both antifouling and bactericidal properties holds potential for the near future. Despite intensive research in biofilm preventive strategies, laboratorial studies still present some limitations since experimental conditions usually are not the same and also differ from biological conditions encountered when the catheter is inserted in the human body. Consequently, in most cases, the efficacy data obtained from in vitro studies is not properly reflected in the clinical setting. Thus, further well-designed clinical trials and additional cytotoxicity studies are needed to prove the efficacy and safety of the developed antimicrobial strategies in the prevention of biofilm formation at catheter surfaces.
Collapse
Affiliation(s)
- Susana I. C. Ricardo
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Inês I. L. Anjos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Nuno Monge
- Centro Interdisciplinar de Estudos Educacionais (CIED), Escola Superior de Educação de Lisboa, Instituto Politécnico de Lisboa, Campus de Benfica do IPL, 1549-003 Lisboa, Portugal
| | - Célia M. C. Faustino
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Isabel A. C. Ribeiro
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
33
|
Qiu H, Si Z, Luo Y, Feng P, Wu X, Hou W, Zhu Y, Chan-Park MB, Xu L, Huang D. The Mechanisms and the Applications of Antibacterial Polymers in Surface Modification on Medical Devices. Front Bioeng Biotechnol 2020; 8:910. [PMID: 33262975 PMCID: PMC7686044 DOI: 10.3389/fbioe.2020.00910] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/15/2020] [Indexed: 01/04/2023] Open
Abstract
Medical device contamination caused by microbial pathogens such as bacteria and fungi has posed a severe threat to the patients' health in hospitals. Due to the increasing resistance of pathogens to antibiotics, the efficacy of traditional antibiotics treatment is gradually decreasing for the infection treatment. Therefore, it is urgent to develop new antibacterial drugs to meet clinical or civilian needs. Antibacterial polymers have attracted the interests of researchers due to their unique bactericidal mechanism and excellent antibacterial effect. This article reviews the mechanism and advantages of antimicrobial polymers and the consideration for their translation. Their applications and advances in medical device surface coating were also reviewed. The information will provide a valuable reference to design and develop antibacterial devices that are resistant to pathogenic infections.
Collapse
Affiliation(s)
- Haofeng Qiu
- School of Medicine, Ningbo University, Ningbo, China
| | - Zhangyong Si
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yang Luo
- School of Medicine, Ningbo University, Ningbo, China
| | - Peipei Feng
- School of Medicine, Ningbo University, Ningbo, China
| | - Xujin Wu
- School of Medicine, Ningbo University, Ningbo, China
| | - Wenjia Hou
- School of Medicine, Ningbo University, Ningbo, China
| | - Yabin Zhu
- School of Medicine, Ningbo University, Ningbo, China
| | - Mary B. Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Long Xu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Dongmei Huang
- Ningbo Baoting Biotechnology Co., Ltd., Ningbo, China
| |
Collapse
|
34
|
Zhang T, Qu Y, Gunatillake PA, Cass P, Locock KES, Blackman LD. Honey-inspired antimicrobial hydrogels resist bacterial colonization through twin synergistic mechanisms. Sci Rep 2020; 10:15796. [PMID: 32978445 PMCID: PMC7519120 DOI: 10.1038/s41598-020-72478-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/25/2020] [Indexed: 12/21/2022] Open
Abstract
Inspired by the interesting natural antimicrobial properties of honey, biohybrid composite materials containing a low-fouling polymer hydrogel network and an encapsulated antimicrobial peroxide-producing enzyme have been developed. These synergistically combine both passive and active mechanisms for reducing microbial bacterial colonization. The mechanical properties of these materials were assessed using compressive mechanical analysis, which revealed these hydrogels possessed tunable mechanical properties with Young's moduli ranging from 5 to 500 kPa. The long-term enzymatic activities of these materials were also assessed over a 1-month period using colorimetric assays. Finally, the passive low-fouling properties and active antimicrobial activity against a leading opportunistic pathogen, Staphylococcus epidermidis, were confirmed using bacterial cell counting and bacterial adhesion assays. This study resulted in non-adhesive substrate-permeable antimicrobial materials, which could reduce the viability of planktonic bacteria by greater than 7 logs. It is envisaged these new biohybrid materials will be important for reducing bacterial adherence in a range of industrial applications.
Collapse
Affiliation(s)
- Tiffany Zhang
- CSIRO Manufacturing, Research Way, Clayton, VIC, 3168, Australia
- Chimie ParisTech, Rue Pierre et Marie Curie, 75005, Paris, France
| | - Yue Qu
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | | | - Peter Cass
- CSIRO Manufacturing, Research Way, Clayton, VIC, 3168, Australia
| | | | - Lewis D Blackman
- CSIRO Manufacturing, Research Way, Clayton, VIC, 3168, Australia.
| |
Collapse
|
35
|
Hu W, Li Z, Ren L, Zhao Y, Yuan X. Endowing antibacterial ability to poly(ε-caprolactone) by blending with cationic − zwitterionic copolymers for biomedical purposes. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2019.1626392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Wenhong Hu
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| | - Zhenguang Li
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| | - Lixia Ren
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| | - Yunhui Zhao
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| |
Collapse
|
36
|
Campbell J, Vikulina AS. Layer-By-Layer Assemblies of Biopolymers: Build-Up, Mechanical Stability and Molecular Dynamics. Polymers (Basel) 2020; 12:E1949. [PMID: 32872246 PMCID: PMC7564420 DOI: 10.3390/polym12091949] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Rapid development of versatile layer-by-layer technology has resulted in important breakthroughs in the understanding of the nature of molecular interactions in multilayer assemblies made of polyelectrolytes. Nowadays, polyelectrolyte multilayers (PEM) are considered to be non-equilibrium and highly dynamic structures. High interest in biomedical applications of PEMs has attracted attention to PEMs made of biopolymers. Recent studies suggest that biopolymer dynamics determines the fate and the properties of such PEMs; however, deciphering, predicting and controlling the dynamics of polymers remains a challenge. This review brings together the up-to-date knowledge of the role of molecular dynamics in multilayers assembled from biopolymers. We discuss how molecular dynamics determines the properties of these PEMs from the nano to the macro scale, focusing on its role in PEM formation and non-enzymatic degradation. We summarize the factors allowing the control of molecular dynamics within PEMs, and therefore to tailor polymer multilayers on demand.
Collapse
Affiliation(s)
- Jack Campbell
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Anna S. Vikulina
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Mühlenberg 13, 14476 Potsdam-Golm, Germany
| |
Collapse
|
37
|
Liao TY, Easton CD, Thissen H, Tsai WB. Aminomalononitrile-Assisted Multifunctional Antibacterial Coatings. ACS Biomater Sci Eng 2020; 6:3349-3360. [PMID: 33463165 DOI: 10.1021/acsbiomaterials.0c00148] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Medical device associated infections remain a significant problem for all classes of devices at this point in time. Here, we have developed a surface modification technique to fabricate multifunctional coatings that combine antifouling and antimicrobial properties. Zwitterionic polymers providing antifouling properties and quaternary ammonium containing polymers providing antimicrobial properties were combined in these coatings. Throughout this study, aminomalononitrile (AMN) was used to achieve one-step coatings incorporating different polymers. The characterization of coatings was carried out using static water contact angle (WCA) measurements, X-ray photoelectron spectroscopy (XPS), profilometry, and scanning electron microscopy (SEM), whereas the biological response in vitro was analyzed using Staphylococcus epidermidis and Escherichia coli as well as L929 fibroblast cells. Zwitterionic polymers synthesized from sulfobetaine methacrylate and 2-aminoethyl methacrylate were demonstrated to reduce bacterial attachment when incorporated in AMN assisted coatings. However, bacteria in suspension were not affected by this approach. On the other hand, alkylated polyethylenimine polymers, synthesized to provide quaternary ammonium groups, were demonstrated to have contact killing properties when incorporated in AMN assisted coatings. However, the high bacterial attachment observed on these surfaces may be detrimental in applications requiring longer-term bactericidal activity. Therefore, AMN-assisted coatings containing both quaternary and zwitterionic polymers were fabricated. These multifunctional coatings were demonstrated to significantly reduce the number of live bacteria not only on the modified surfaces, but also in suspension. This approach is expected to be of interest in a range of biomedical device applications.
Collapse
Affiliation(s)
- Tzu-Ying Liao
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan.,CSIRO Manufacturing, Research Way, Clayton 3168, Victoria, Australia
| | | | - Helmut Thissen
- CSIRO Manufacturing, Research Way, Clayton 3168, Victoria, Australia
| | - Wei-Bor Tsai
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan.,Advanced Research Center for Green Materials Science and Technology, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 10617, Taiwan
| |
Collapse
|
38
|
Lim J, Matsuoka H, Saruwatari Y. Effects of Halide Anions on the Solution Behavior of Double Hydrophilic Carboxy-Sulfobetaine Block Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5165-5175. [PMID: 32308007 DOI: 10.1021/acs.langmuir.0c00325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The solution behavior of the double polybetaine block copolymer poly(2-((2-(methacryloyloxy)ethyl)dimethylammonio)acetate)-block-poly(3-((2-(methacryloyloxy)ethyl)dimethylammonio)propane-1-sulfonate (PGLBT-b-PSPE) in sodium halide aqueous solutions was investigated. In the presence of salt ions, the unimer-to-micelle transition of PGLBT-b-PSPE that originated by Coulombic attraction between PSPE motifs was suppressed and shifted to much lower temperatures. The transition was hindered more by increases in the salt concentration because of additional counterion binding on the ionized site of PGLBT-b-PSPE chains, which screens the dipole-dipole attractions. The specific ion effect was investigated on four different halides, Cl-, Br-, I-, and F-. Cl- and two chaotropes (Br- and I-) apparently prevented micelle formation, and the hindering effectiveness on the PSPE pairing followed the general Hofmeister series of anions: I- > Br- > Cl-. More chaotropic anions strongly maintained the polymer chains in a fully hydrated state when the same amount of salts was incorporated. However, F-, which is classified as a kosmotrope, only made a small contribution to lowering the transition point and led to abrupt transition without showing a gradual phase change prior to the transition. The variations of hydrodynamic radius and zeta potentials of unimers and micelles gave hints of the solvation state of salt-incorporated PGLBT-b-PSPEs in each state. These results suggest that chaotropic halides tend to exist in the vicinity of the diblock polybetaine chain surface and thus prominently influenced the thermoresponsive solution behavior, whereas kosmotropic F- prefers water molecules and causes minor changes in the PGLBT-b-PSPE aqueous solution.
Collapse
Affiliation(s)
- Jongmin Lim
- Department of Polymer Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hideki Matsuoka
- Department of Polymer Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiyuki Saruwatari
- Osaka Organic Chemical Industry Ltd., 7-20 Azuchi-machi, 1chome, Chuo-ku, Osaka 541-0052, Japan
| |
Collapse
|
39
|
Polycationic condensed tannin/polysaccharide-based polyelectrolyte multilayers prevent microbial adhesion and proliferation. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109677] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Organosilicate compound filler to increase the mechanical strength of superhydrophilic layer-by-layer assembled film. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Urinary Catheter Coating Modifications: The Race against Catheter-Associated Infections. COATINGS 2019. [DOI: 10.3390/coatings10010023] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Urinary catheters are common medical devices, whose main function is to drain the bladder. Although they improve patients’ quality of life, catheter placement predisposes the patient to develop a catheter-associated urinary tract infection (CAUTI). The catheter is used by pathogens as a platform for colonization and biofilm formation, leading to bacteriuria and increasing the risk of developing secondary bloodstream infections. In an effort to prevent microbial colonization, several catheter modifications have been made ranging from introduction of antimicrobial compounds to antifouling coatings. In this review, we discuss the effectiveness of different coatings in preventing catheter colonization in vitro and in vivo, the challenges in fighting CAUTIs, and novel approaches targeting host–catheter–microbe interactions.
Collapse
|
42
|
Ghiorghita CA, Bucatariu F, Dragan ES. Influence of cross-linking in loading/release applications of polyelectrolyte multilayer assemblies. A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110050. [DOI: 10.1016/j.msec.2019.110050] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 10/26/2022]
|
43
|
Yassin MA, Elkhooly TA, Elsherbiny SM, Reicha FM, Shokeir AA. Facile coating of urinary catheter with bio-inspired antibacterial coating. Heliyon 2019; 5:e02986. [PMID: 31886428 PMCID: PMC6921108 DOI: 10.1016/j.heliyon.2019.e02986] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/19/2019] [Accepted: 12/02/2019] [Indexed: 01/08/2023] Open
Abstract
Formation of bacterial biofilm on indwelling urinary catheters usually causes catheter-associated urinary tract infections (CAUTIs) that represent high percent of nosocomial infections worldwide. Therefore, coating urinary catheter with antibacterial and antifouling coating using facile technique is in great demand. In this study, commercial urinary catheter was coated with a layer of the self-polymerized polydopamine which acts as active platform for the in situ formation of silver nanoparticle (AgNPs) on catheter surface. The formed coating was intensively characterized using spectroscopic and microscopic techniques. The coated catheter has the potential to release silver ion in a sustained manner with a concentration of about 2-4 μg ml-1. Disk diffusion test and colony forming unites assay verified the significant bactericidal potential of the AgNPs coated catheter against both gram-positive and gram-negative bacteria as a consequence of silver ion release. In contrast to commercial catheter, the AgNPs coated catheter prevented the adherence of bacterial cells and biofilm formation on their surfaces. Interestingly, scanning electron microscope investigations showed that AgNPs coated catheter possess greater antifouling potential against gram-positive bacteria than against gram-negative bacteria. Overall, the remarkable antibacterial and antifouling potential of the coated catheter supported the use of such facile approach for coating of different medical devices for the prevention of nosocomial infections.
Collapse
Affiliation(s)
- Mohamed A. Yassin
- Packaging Materials Department, National Research Centre, Giza, Egypt
- Advanced Materials and Nanotechnology Lab., Center of Excellence, National Research Centre, Giza, Egypt
| | - Tarek A. Elkhooly
- Refractories, Ceramics and Building Materials Department, National Research Centre, Giza, Egypt
| | - Shereen M. Elsherbiny
- Biological Advanced Materials, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Fikry M. Reicha
- Biological Advanced Materials, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ahmed A. Shokeir
- Center of Excellence of Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| |
Collapse
|
44
|
Kheiri S, Liu X, Thompson M. Nanoparticles at biointerfaces: Antibacterial activity and nanotoxicology. Colloids Surf B Biointerfaces 2019; 184:110550. [PMID: 31606698 DOI: 10.1016/j.colsurfb.2019.110550] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/28/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022]
Abstract
Development of a biomaterial that is resistant to the adhesion and consequential proliferation of bacteria, represents a significant challenge in terms of application of such materials in various aspects of health care. Over recent years a large number of synthetic methods have appeared with the overall goal of the prevention of bacterial adhesion to surfaces. In contrast to these artificial techniques, living organisms over millions of years have developed different systems to prevent the colonization of microorganisms. Recently, these natural approaches, which are based on surface nanotopography, have been mimicked to fabricate a modern antibacterial surface. In this vein, use of nanoparticle (NP) technology has been explored in order to create a suitable antibacterial surface. However, few studies have focused on the toxicity of these techniques and the ecotoxicity of NP materials on mammalian and bacterial cells simultaneously. Researchers have observed that the majority of previous studies have demonstrated some of the extents of the harmful impacts on mammalian cells. Here, we provide a critical review of the NP approach to antibacterial surface treatment, and also summarize the studies of toxic effects caused by metal NPs on bacteria and mammalian cells.
Collapse
Affiliation(s)
- Sina Kheiri
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada.
| | - Michael Thompson
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
45
|
Park S, Jung S, Heo J, Hong J. Facile synthesis of polysilsesquioxane toward durable superhydrophilic/superhydrophobic coatings for medical devices. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.04.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
46
|
Tran DL, Le Thi P, Hoang Thi TT, Park KD. Graphene oxide immobilized surfaces facilitate the sustained release of doxycycline for the prevention of implant related infection. Colloids Surf B Biointerfaces 2019; 181:576-584. [PMID: 31195313 DOI: 10.1016/j.colsurfb.2019.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/04/2019] [Accepted: 06/04/2019] [Indexed: 11/15/2022]
Abstract
Preventing implant-associated infection, which can lead to implant failure and increased medical costs, is one of the biggest challenges in the orthopaedic surgeons. Therefore, the development of stable and highly effective surface modifications to increase the antimicrobial properties of implants is required. In this study, graphene oxide (GO-)-immobilized titanium dioxide (TiO₂) was developed to efficiently carry and release antimicrobial drugs. Firstly, tyramine-conjugated GO (GOTA) was synthesized and immobilized onto the surfaces of TiO₂ through tyrosinase (Tyr)-catalyzed oxidative reaction (GOTA/TiO₂). Doxycycline hyclate (Dox) was then loaded onto GOTA/TiO₂ via non-covalent interactions between GO and Dox (Dox/GOTA/TiO₂), including electrostatic interaction, π-π stacking, hydrophobic interaction, and hydrogen bonds. The amount of loaded drug was able to be controlled, reaching a maximum of 36 μg/cm2. in vitro experiments revealed that the sustained release of Dox from the TiO₂ surfaces continued for over 30 days. Compared with bare TiO₂ and GOTA/TiO2, Dox/GOTA/TiO₂ exhibited superior antibacterial activity against both gram-negative Escherichia coli and gram-positive Staphylococcus aureus bacteria, without affecting the viability of human dermal fibroblasts. The obtained results indicated that GO-immobilized TiO₂ is an effective carrier for antimicrobial drug delivery to reduce implant-associated infection through the synergistic antimicrobial effect of GO and the prescribed drugs.
Collapse
Affiliation(s)
- Dieu Linh Tran
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Phuong Le Thi
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
47
|
Wang J, Huang Y, You K, Yang X, Song Y, Zhu H, Xia F, Jiang L. Temperature-Driven Precise Control of Biological Droplet's Adhesion on a Slippery Surface. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7591-7599. [PMID: 30673218 DOI: 10.1021/acsami.8b21088] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Precise control of a biological droplet's adhesive force on a liquid-repellent surface for smart antifouling systems is critical and fundamental to scientific research and industrial applications. Although slippery surfaces with stimuli-responsive wetting behaviors have been reported, challenge still remains in designing responsive biological droplets to achieve controllable adhesion and antifouling property. Here, we developed a thermoresponsive biological droplet adhesion system to precisely control its adhesion on the lubricant-infused slippery surface. Single-stranded DNA (ssDNA) in the biological droplet displays molecular configuration reversible deformation under external thermal stimuli. This property ascribes to the changing amount of exposed hydrophobic moieties of ssDNA, which strongly affects the interfacial hydrophobic interaction with the lubricant. This work may improve the understanding of the principles underlying liquid-lubricant interfacial adhesion, open up opportunities for a new class of antifouling systems, and provide a promising system for controllable manipulation of liquids' motion in biochips and microreactor devices.
Collapse
Affiliation(s)
- Jinhua Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry , China University of Geosciences , Wuhan 430074 , P. R. China
| | - Yu Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry , China University of Geosciences , Wuhan 430074 , P. R. China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry , Chinese Academy of Science , Beijing 100190 , P. R. China
| | | | - Xian Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry , China University of Geosciences , Wuhan 430074 , P. R. China
| | - Yongjun Song
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry , China University of Geosciences , Wuhan 430074 , P. R. China
| | - Hai Zhu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry , China University of Geosciences , Wuhan 430074 , P. R. China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry , China University of Geosciences , Wuhan 430074 , P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry , Chinese Academy of Science , Beijing 100190 , P. R. China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry and Environment , Beihang University , Beijing 100191 , P. R. China
| |
Collapse
|
48
|
Belanger A, Decarmine A, Jiang S, Cook K, Amoako KA. Evaluating the Effect of Shear Stress on Graft-To Zwitterionic Polycarboxybetaine Coating Stability Using a Flow Cell. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1984-1988. [PMID: 30299969 DOI: 10.1021/acs.langmuir.8b03078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effect of surface coatings on the performance of antifouling activity under flow can be influenced by the flow/coating interactions. This study evaluates the effect of surface coatings on antifouling activity under different flows for the analyses of coating stability. This was done by exposing DOPA-PCB-300/dopamine coated polydimethylsiloxane (PDMS) to physiological shear stresses using a recirculation system which consisted of dual chamber acrylic flow cells, tygon tubing, flow probe and meter, and perfusion pumps. The effect of shear stress induced by phosphate buffered saline flow on coating stability was characterized with differences in fibrinogen adsorption between control (coated PDMS not loaded with shear stress) and coated samples loaded with various shear stresses. Fibrinogen adsorption data showed that relative adsorption on coated PDMS that were not exposed to shear (5.73% ± 1.97%) was significantly lower than uncoated PDMS (100%, p < 0.001). Furthermore, this fouling level, although lower, was not significantly different from coated PDMS membranes that were exposed to 1 dyn/cm2 (9.55% ± 0.09%, p = 0.23), 6 dyn/cm2 (15.92% ± 10.88%, p = 0.14), and 10 dyn/cm2 (21.62% ± 13.68%, p = 0.08). Our results show that DOPA-PCB-300/dopamine coatings are stable, with minimal erosion, under shear stresses tested. The techniques from this fundamental study may be used to determine the limits of stability of coatings in long-term experiments.
Collapse
Affiliation(s)
| | | | - Shaoyi Jiang
- Department of Chemical Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Keith Cook
- Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | | |
Collapse
|
49
|
Laschewsky A, Rosenhahn A. Molecular Design of Zwitterionic Polymer Interfaces: Searching for the Difference. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1056-1071. [PMID: 30048142 DOI: 10.1021/acs.langmuir.8b01789] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The widespread occurrence of zwitterionic compounds in nature has incited their frequent use in designing biomimetic materials. Therefore, zwitterionic polymers are a thriving field. A particular interest for this particular polymer class has currently focused on their use in establishing neutral, low-fouling surfaces. After highlighting strategies to prepare model zwitterionic surfaces as well as those that are more suitable for practical purposes relying strongly on radical polymerization methods, we present recent efforts to diversify the structure of the hitherto quite limited variety of zwitterionic monomers and of the derived polymers. We identify key structural variables, consider their influence on essential properties such as overall hydrophilicity and long-term stability, and discuss promising targets for the synthesis of new variants.
Collapse
Affiliation(s)
- André Laschewsky
- Institut für Chemie, Universität Potsdam , Karl-Liebknechtstr. 24-25 , 14476 Potsdam-Golm , Germany
- Fraunhofer Institute for Applied Polymer Research IAP , Geiselbergstr. 69 , 14476 Potsdam-Golm , Germany
| | - Axel Rosenhahn
- Analytische Chemie-Biogrenzflächen , Ruhr-Universität Bochum , Universitätsstr. 150 NC , 44801 Bochum , Germany
| |
Collapse
|
50
|
Duong PHH, Daumann K, Hong PY, Ulbricht M, Nunes SP. Interfacial Polymerization of Zwitterionic Building Blocks for High-Flux Nanofiltration Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1284-1293. [PMID: 29983069 DOI: 10.1021/acs.langmuir.8b00960] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A simple scalable strategy is proposed to fabricate highly permeable antifouling nanofiltration membranes. Membranes with a selective thin polyamide layer were prepared via interfacial polymerization incorporating building blocks of zwitterionic copolymers. The zwitterionic copolymer, poly(aminopropyldimethylaminoethyl methacrylate)- co-poly(sulfobetaine methacrylate) with an average molecular weight of 6.1 kg mol-1, was synthesized in three steps: (i) polymerization of dimethylaminoethyl methacrylate to yield the base polymer by atom transfer radical polymerization (ATRP), (ii) fractional sulfobetainization via quaternization, and (iii) amination via quaternization. The effect of the zwitterionic polymer content on the polyamide surface characteristics, fouling resistance, and permeance is demonstrated. The zwitterion-modified membrane becomes more hydrophilic with lower surface roughness, as the zwitterionic polymer fraction increases. The excellent fouling resistance of the zwitterion-modified membrane was confirmed by the negligible protein adsorption and low bacteria fouling compared to a pristine membrane without zwitterionic segments. In addition, the zwitterion-modified membranes achieve a water permeation around 135 L m-2 h-1bar-1, which is 27-fold higher than that of the pristine membrane, along with good selectivity in the nanofiltration range, confirmed by the rejection of organic dyes. This permeance is about 10 times higher than that of other reported loose nanofiltration membranes with comparable dye rejection. The newly designed membrane is promising as a highly permeable fouling resistant cross-linked polyamide network for various water treatment applications.
Collapse
Affiliation(s)
| | - Kevin Daumann
- Lehrstuhl für Technische Chemie II , Universität Duisburg-Essen , 45117 Essen , Germany
| | | | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II , Universität Duisburg-Essen , 45117 Essen , Germany
| | | |
Collapse
|