1
|
Li Z, Shi Y, Ding Y, Xiong D, Li Z, Wang H, Qiu J, Xuan X, Wang J. Zr-Based MOF-Stabilized CO 2-Responsive Pickering Emulsions for Efficient Reduction of Nitroarenes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38307089 DOI: 10.1021/acs.langmuir.3c03564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
A Pickering emulsion is a natural microreactor for interfacial catalysis in which an emulsifier is critical. Recently, a metal-organic framework (MOF) has attracted attention to emulsify water-organic mixtures for constructing a Pickering emulsion. However, a few stimuli-responsive Pickering emulsions based on MOFs have been reported, and the MOF emulsifiers cannot be regenerated at room temperature. Herein, the Zr-MOF with a rodlike morphology is synthesized using ionic liquid as a modulator and then modified with n-(trimethoxysilylpropyl)imidazole (C3im) to prepare a series of functionalized Zr-MOFs (MOF-C3im). It is found that MOF-C3im is an excellent emulsifier to construct stable and CO2-responsive Pickering emulsions even at low content (>0.20 wt %). Notably, the emulsification and demulsification of the emulsions can be easily and reversibly switched by bubbling of CO2 and N2 alternatively at room temperature because CO2 and imidazole molecules anchored on the Zr-MOF underwent a reversible acid-base reaction, resulting in an obvious change in the wettability of the emulsifier. As a proof of concept, the reduction reactions of nitrobenzene have been successfully carried out in these Pickering emulsions, demonstrating the efficient integration as a microreactor for chemical reaction, product separation, and emulsifier recycling under ambient conditions. This strategy provides an innovative option to develop stimulus-responsive Pickering emulsions for sustainable chemical processes.
Collapse
Affiliation(s)
- Zhuoxue Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yunlei Shi
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yimian Ding
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Dazhen Xiong
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Zhiyong Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Huiyong Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jikuan Qiu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xiaopeng Xuan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
2
|
Zhang Y, Xie X, Liu J, Tang B, Fang C, Liu X, Dai Z, Xiong Y. Ionic liquids with reversible photo-induced conductivity regulation in aqueous solution. Sci Rep 2023; 13:13766. [PMID: 37612348 PMCID: PMC10447455 DOI: 10.1038/s41598-023-40905-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023] Open
Abstract
Stimulus-responsive ionic liquids have gained significant attention for their applications in various areas. Herein, three kinds of azobenzimidazole ionic liquids with reversible photo-induced conductivity regulation were designed and synthesized. The change of electrical conductivity under UV/visible light irradiation in aqueous solution was studied, and the effect of chemical structure and concentration of ionic liquids containing azobenzene to the regulation of photoresponse conductivity were discussed. The results showed that exposing the ionic liquid aqueous solution to ultraviolet light significantly increased its conductivity. Ionic liquids with longer alkyl chains exhibited an even greater increase in conductivity, up to 75.5%. Then under the irradiation of visible light, the electrical conductivity of the solution returned to its initial value. Further exploration of the mechanism of the reversible photo-induced conductivity regulation of azobenzene ionic liquids aqueous solution indicated that this may attributed to the formation/dissociation of ionic liquids aggregates in aqueous solution induced by the isomerization of azobenzene under UV/visible light irradiation and resulted the reversible conductivity regulation. This work provides a way for the molecular designing and performance regulation of photo-responsive ionic liquid and were expected to be applied in devices with photoconductive switching and micro photocontrol properties.
Collapse
Affiliation(s)
- Yige Zhang
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Xiaowen Xie
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Jianliang Liu
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Boyuan Tang
- Boya International Academy, Shaoxing, 312000, People's Republic of China
| | - Can Fang
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Xiaoming Liu
- Zhejiang Institute of Standardization, Hangzhou, 310018, People's Republic of China
| | - Zhifeng Dai
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
- Longgang Institute of Zhejiang Sci-Tech University, Wenzhou, 325802, People's Republic of China.
| | - Yubing Xiong
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
- Longgang Institute of Zhejiang Sci-Tech University, Wenzhou, 325802, People's Republic of China.
| |
Collapse
|
3
|
Zhang X, Ding Y, Zhang Z, Ma Y, Sun X, Wang L, Yang Z, Hu ZW. In Situ Construction of Ferrocene-Containing Membrane-Bound Nanofibers for the Redox Control of Cancer Cell Death and Cancer Therapy. NANO LETTERS 2023; 23:7665-7674. [PMID: 37535903 DOI: 10.1021/acs.nanolett.3c02362] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Precise manipulation of cancer cell death by harnessing reactive oxygen species (ROS) is a promising strategy to defeat malignant tumors. However, it is quite difficult to produce active ROS with spatial precision and regulate their biological outcomes. We succeed here in selectively generating short-lived and lipid-reactive hydroxyl radicals (•OH) adjacent to cancer cell membranes, successively eliciting lipid peroxidation and ferroptosis. DiFc-K-pY, a phosphorylated self-assembling precursor that consists of two branched Fc moieties and interacts specifically with epidermal growth factor receptor, can in situ produce membrane-bound nanofibers and enrich ferrocene moieties on cancer cell membranes in response to alkaline phosphatase. Within the acidic tumor microenvironment, DiFc-K-pY nanofibers efficiently convert tumoral H2O2 to active •OH around the target cell membranes via Fenton-like reactions, leading to lipid peroxidation and ferroptosis with good cellular selectivity. Our strategy successfully prevents tumor progression with acceptable biocompatibility through intratumoral administration.
Collapse
Affiliation(s)
- Xiangyang Zhang
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Affiliated Eye Hospital, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Yinghao Ding
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Affiliated Eye Hospital, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Zhenghao Zhang
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Affiliated Eye Hospital, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Yiping Ma
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Affiliated Eye Hospital, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xuan Sun
- Key Laboratory of Cancer Prevention and Therapy, The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P. R. China
| | - Ling Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Zhimou Yang
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Affiliated Eye Hospital, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Wen Hu
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Affiliated Eye Hospital, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
4
|
Zhang C, Chen X, Chen M, Ding N, Liu H. Response Surface Optimization on Ferrate-Assisted Coagulation Pretreatment of SDBS-Containing Strengthened Organic Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5008. [PMID: 36981918 PMCID: PMC10049197 DOI: 10.3390/ijerph20065008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Sodium dodecylbenzene sulfonate (SDBS), an anionic surfactant, has both hydrophilic and lipophilic properties and is widely used in daily production and life. The SDBS-containing organic wastewater is considered difficult to be degraded, which is harmful to the water environment and human health. In this study, ferrate-assisted coagulation was applied to treat SDBS wastewater. Firstly, a single-factor experiment was conducted to investigate the effect of the Na2FeO4 dosage, polyaluminum chloride (PAC) dosage, pH and temperature on the treatment efficiency of SDBS wastewater; then, a response surface optimization experiment was further applied to obtain the optimized conditions for the SDBS treatment. According to the experimental results, the optimal treatment conditions were shown as follows: the Na2FeO4 dosage was 57 mg/L, the PAC dosage was 5 g/L and pH was 8, under which the chemical oxygen demand (COD) removal rate was 90%. Adsorption bridging and entrapment in the floc structure were the main mechanisms of pollution removal. The ferrate-assisted coagulation treatment of strengthened SDBS wastewater was verified by a response surface experiment to provide fundamental understandings for the treatment of the surfactant.
Collapse
Affiliation(s)
- Chunxin Zhang
- Jiangsu Key Laboratory of Environmental Science and Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xin Chen
- Jiangsu Key Laboratory of Environmental Science and Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Meng Chen
- Jiangsu Key Laboratory of Environmental Science and Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ning Ding
- School of Ecological and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Hong Liu
- Jiangsu Key Laboratory of Environmental Science and Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
5
|
Liu Y, Zhang H, Zhang W, Binks BP, Cui Z, Jiang J. Charge Density Overcomes Steric Hindrance of Ferrocene Surfactant in Switchable Oil-in-Dispersion Emulsions. Angew Chem Int Ed Engl 2023; 62:e202210050. [PMID: 36328980 DOI: 10.1002/anie.202210050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/20/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
A ferrocene surfactant can be switched between single and double head form (FcN+ C12 /Fc+ N+ C12 ) triggered by redox reaction. FcN+ C12 can neither stabilize an O/W emulsion alone nor an oil-in-dispersion emulsion in combination with alumina nanoparticles due to the steric hindrance of the ferrocene group. However, such steric hindrance can be overcome by increasing the charge density in Fc+ N+ C12 , so that oil-in-dispersion emulsions can be co-stabilized by Fc+ N+ C12 and alumina nanoparticles at very low concentrations (1×10-7 M (≈50 ppb) and 0.001 wt %, respectively). Not only can reversible formation/destabilization of oil-in-dispersion emulsions be achieved by redox reaction, but also reversible transformation between oil-in-dispersion emulsions and Pickering emulsions can be obtained through reversing the charge of alumina particles by adjusting the pH. The results provide a new protocol for the design of surfactants for stabilization of smart oil-in-dispersion emulsions.
Collapse
Affiliation(s)
- Yunshan Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Haojie Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Wanqing Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull, HU6 7RX, UK
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| |
Collapse
|
6
|
Xia X, Ma J, Geng S, Liu F, Yao M. A Review of Oil-Solid Separation and Oil-Water Separation in Unconventional Heavy Oil Production Process. Int J Mol Sci 2022; 24:74. [PMID: 36613516 PMCID: PMC9820792 DOI: 10.3390/ijms24010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Unconventional heavy oil ores (UHO) have been considered an important part of petroleum resources and an alternative source of chemicals and energy supply. Due to the participation of water and extractants, oil-solid separation (OSS) and oil-water separation (OWS) processes are inevitable in the industrial separation processes of UHO. Therefore, this critical review systematically reviews the basic theories of OSS and OWS, including solid wettability, contact angle, oil-solid interactions, structural characteristics of natural surfactants and interface characteristics of interfacially active asphaltene film. With the basic theories in mind, the corresponding OSS and OWS mechanisms are discussed. Finally, the present challenges and future research considerations are touched on to provide insights and theoretical fundamentals for OSS and OWS. Additionally, this critical review might even be useful for the provision of a framework of research prospects to guide future research directions in laboratories and industries that focus on the OSS and OWS processes in this important heavy oil production field.
Collapse
Affiliation(s)
- Xiao Xia
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Jun Ma
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Shuo Geng
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Fei Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Mengqin Yao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| |
Collapse
|
7
|
Galy PE, Guitton-Spassky T, Sella C, Thouin L, Vitale MR, Baigl D. Redox Control of Particle Deposition from Drying Drops. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3374-3384. [PMID: 34994535 DOI: 10.1021/acsami.1c18933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The coffee-ring effect (CRE), which denotes the accumulation of nonvolatile compounds at the periphery of a pinned sessile drying drop, is a universal and ubiquitous yet complex phenomenon. It is crucial to better understand and control it, either to avoid its various deleterious consequences in many processes requiring homogeneous deposition or to exploit it for applications ranging from controlled particle patterning to low cost diagnostics. Here, we report for the first time the use of a reduction-oxidation (redox) stimulus to cancel the CRE or harness it, leading to a robust and tunable control of particle deposition in drying sessile drops. This is achieved by implementing redox-sensitive ferrocenyl cationic surfactants of different chain lengths in drying drops containing anionic colloids. Varying surfactant hydrophobicity, concentration, and redox state allows us not only to control the overall distribution of deposited particles, including the possibility to fully cancel the CRE, but also to modify the microscopic organization of particles inside the deposit. Notably, with all other parameters being fixed, this method allows the adjustment of the deposited particle patterns, from polycrystalline rings to uniform disks, as a function of the oxidation rate. We show that the redox control can be achieved either chemically by the addition of oxidants or electrochemically by applying a potential for additive-free and reversible actuation in a closed system. This correlation between the redox state and the particle pattern opens a perspective for both redox-programmable particle patterning and original diagnostic applications based on the visual determination of a redox state. It also contributes to clarify the role of surfactant charge and its amphiphilic character in directing particle deposition from drying suspensions.
Collapse
Affiliation(s)
- Pauline E Galy
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Tiffany Guitton-Spassky
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Catherine Sella
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Laurent Thouin
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Maxime R Vitale
- UMR 7203, Department of Chemistry, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Damien Baigl
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
8
|
Li X, Wang Y, Hou Q, Cai W, Xu Y, Zhao Y. Fabrication of thermo-responsive Janus silica nanoparticles and the structure–performance relationship in Pickering emulsions. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04486-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Yuan X, Zhang Y, Li Z, Huo F, Dong Y, He H. Stimuli‐Responsive
Ionic Liquids and the Regulation of Aggregation Structure and Phase Behavior†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000414] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiao‐Qing Yuan
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Ya‐Qin Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Zhi‐Yong Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Feng Huo
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Yi‐Hui Dong
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Hong‐Yan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Dalian National Laboratory for Clean Energy Dalian Liaoning 116023 China
| |
Collapse
|
10
|
Zhang H, Wu J, Jiang J, Cui Z, Xia W. Redox-Responsive Oil-In-Dispersion Emulsions Stabilized by Similarly Charged Ferrocene Surfactants and Alumina Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14589-14596. [PMID: 33226816 DOI: 10.1021/acs.langmuir.0c02350] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A redox-responsive oil-in-dispersion emulsion was developed by using a cationic ferrocene surfactant (FcCOC10N) and Al2O3 nanoparticles, in which the required concentrations of FcCOC10N and Al2O3 nanoparticles are as low as 0.001 mM (≈0.005 cmc) and 0.006 wt %, respectively. Rapid demulsification can be successfully achieved through a redox trigger, resulting from the transition of FcCOC10N from a normal cationic surfactant form into a strongly hydrophilic Bola type form (Fc+COC10N). Moreover, Fc+COC10N together with the particles almost resides in the aqueous phase and can be recovered after the reduction reaction. Not only the amount of surfactant and nanoparticles are significantly reduced but also the emulsifier (surfactant and alumina) can be recycled and reused from the aqueous phase, which is a sustainable and economical strategy for various applications.
Collapse
Affiliation(s)
- Haojie Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
| | - Jia Wu
- China Tobacco Jiangsu Industrial Co. LTD, No. 29 Xinglong Street, Nanjing, Jiangsu 210000, China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
11
|
Zhu P, Liu D, Dai S, Wang B, Lu H, Huang Z. Redox and pH Dual-Responsive Emulsion Using Ferrocenecarboxylic Acid and N, N-Dimethyldodecylamine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2368-2374. [PMID: 31957456 DOI: 10.1021/acs.langmuir.9b03679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The derivatives of ferrocene with redox properties are widely used. Some studies have used complex synthesis processes to obtain surfactants with redox properties. In order to simplify the synthesis process, FA-DMDA-Ox, a surfactant with redox and pH dual responses, was prepared by simple electrostatic interaction between ferrocenecarboxylic acid (FA) and N,N-dimethyldodecylamine (DMDA). A stable oil-in-water emulsion was prepared by using FA-DMDA-Ox at 25 °C. When sodium sulfite was added to the emulsion, the emulsion was demulsified. This was due to the oxidized ferrocene group that was reduced from the charged hydrophilic state to the uncharged hydrophobic state, which destroyed the original surface activity. In addition, when added HCl or NaOH to the emulsion changed pH, demulsification was caused by the dissociation of FA-DMDA-Ox.
Collapse
Affiliation(s)
- Peiyao Zhu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Dongfang Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Shanshan Dai
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Engineering Research Center of Oilfield Chemistry, Ministry of Education, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Baogang Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Oil & Gas Field Applied Key Chemistry Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Hongsheng Lu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Engineering Research Center of Oilfield Chemistry, Ministry of Education, Southwest Petroleum University, Chengdu 610500, P. R. China
- Oil & Gas Field Applied Key Chemistry Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Zhiyu Huang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Engineering Research Center of Oilfield Chemistry, Ministry of Education, Southwest Petroleum University, Chengdu 610500, P. R. China
- Oil & Gas Field Applied Key Chemistry Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu 610500, P. R. China
| |
Collapse
|
12
|
Synthesis and viscoelastic properties of gemini surfactants containing redox-active ferrocenyl groups. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Shi Y, Xiong D, Chen Y, Wang H, Wang J. CO2-responsive Pickering emulsions stabilized by in-situ generated ionic liquids and silica nanoparticles. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
|
15
|
Jia K, Zhang X, Zhang L, Yu L, Wu Y, Li L, Mai Y, Liao B. Photoinduced Reconfiguration of Complex Emulsions Using a Photoresponsive Surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11544-11552. [PMID: 30184432 DOI: 10.1021/acs.langmuir.8b02456] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photoresponsive complex emulsions are prepared in a three-phase system consisting of two oils: hexane (H) and perfluorooctane (F). An aqueous solution of a mixed surfactant of fluorosurfactant, F(CF2) x(CH2CH2O) yH (Zonyl FS-300), and a synthesized light-responsive surfactant, 2-(4-(4-butylphenyl)diazenylphenoxy)ethyltrimethylammonium bromide (C4AZOC2TAB) was employed as the continuous phase. Complex emulsions with various geometries were prepared by one-step vortex mixing and a temperature-induced phase-separation method. It was noticed that the topology of the complex emulsion was highly dependent on the mass ratio of Zonyl FS-300/C4AZOC2TAB. Light microscopy images showed that phase inversion from an H/F/W- to an F/H/W-type double emulsion via a Janus emulsion was achieved by gradually increasing the mass ratio of C4AZOC2TAB/Zonyl FS-300. Upon UV/blue light irradiation, the topology of complex emulsions was turned to switch from an F/H/W double emulsion to a Janus emulsion to an entirely inverted H/F/W double emulsion. Dynamic interfacial tension measurements showed that UV irradiation of the interface between an aqueous trans-C4AZOC2TAB solution and hexane brings about an increase in the interfacial tension, suggesting the nature of photoinduced morphological changes in complex emulsions. The reconfiguration process of complex emulsions was illustrated by the Marangoni effect based on heterogeneity in the interfacial tension at the complex emulsion surface induced by controlling the molecular conversion of C4AZOC2TAB using light irradiation. Finally, we used the complex emulsions structure to form an on-off switch to start and shut off the evaporation of one volatile phase to achieve process monitoring. This could be used to initiate and quench a reaction, which offers a novel idea for achieving switchable and reversible reaction control in multiple-phase reactions.
Collapse
Affiliation(s)
- Kangle Jia
- Guangdong Provincial Key Laboratory of Industrial Surfactant , Guangdong Research Institute of Petrochemical and Fine Chemical Engineering , Guangzhou 510000 , Guangdong P. R. China
| | - Xiong Zhang
- Guangdong Provincial Key Laboratory of Industrial Surfactant , Guangdong Research Institute of Petrochemical and Fine Chemical Engineering , Guangzhou 510000 , Guangdong P. R. China
| | - Lei Zhang
- Guangdong Provincial Key Laboratory of Industrial Surfactant , Guangdong Research Institute of Petrochemical and Fine Chemical Engineering , Guangzhou 510000 , Guangdong P. R. China
| | - Longfei Yu
- Guangdong Provincial Key Laboratory of Industrial Surfactant , Guangdong Research Institute of Petrochemical and Fine Chemical Engineering , Guangzhou 510000 , Guangdong P. R. China
| | - Yuchao Wu
- Guangdong Provincial Key Laboratory of Industrial Surfactant , Guangdong Research Institute of Petrochemical and Fine Chemical Engineering , Guangzhou 510000 , Guangdong P. R. China
| | - Li Li
- Guangdong Provincial Key Laboratory of Industrial Surfactant , Guangdong Research Institute of Petrochemical and Fine Chemical Engineering , Guangzhou 510000 , Guangdong P. R. China
| | - Yuliang Mai
- Guangdong Provincial Key Laboratory of Industrial Surfactant , Guangdong Research Institute of Petrochemical and Fine Chemical Engineering , Guangzhou 510000 , Guangdong P. R. China
| | - Bing Liao
- Guangdong Provincial Key Laboratory of Industrial Surfactant , Guangdong Research Institute of Petrochemical and Fine Chemical Engineering , Guangzhou 510000 , Guangdong P. R. China
| |
Collapse
|
16
|
Redox-controlled reversible micelles transition and lyotropic liquid-crystalline behavior of novel polymerizable ferrocenyl surfactants. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Hao L, Yegin C, Chen IC, Oh JK, Liu S, Scholar E, Zhang L, Akbulut M, Jiang B. pH-Responsive Emulsions with Supramolecularly Assembled Shells. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00984] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Li Hao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Cengiz Yegin
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| | - I-Cheng Chen
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Jun Kyun Oh
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Shuhao Liu
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| | - Ethan Scholar
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Luhong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Mustafa Akbulut
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
- Texas A&M Energy Institute, Texas A&M University, College Station, Texas 77843-3372, United States
| | - Bin Jiang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|