1
|
Han S, Park J, Moon S, Eom S, Jin CM, Kim S, Ryu YS, Choi Y, Lee JB, Choi I. Label-free and liquid state SERS detection of multi-scaled bioanalytes via light-induced pinpoint colloidal assembly. Biosens Bioelectron 2024; 264:116663. [PMID: 39167886 DOI: 10.1016/j.bios.2024.116663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/17/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
Surface-enhanced Raman scattering (SERS) has been extensively applied to detect complex analytes due to its ability to enhance the fingerprint signals of molecules around nanostructured metallic surfaces. Thus, it is essential to design SERS-active nanostructures with abundant electromagnetic hotspots in a probed volume according to the dimensions of the analytes, as the analytes must be located in their hotspots for maximum signal enhancement. Herein, we demonstrate a simple method for detecting robust SERS signals from multi-scaled bioanalytes, regardless of their dimensions in the liquid state, through a photothermally driven co-assembly with colloidal plasmonic nanoparticles as signal enhancers. Under resonant light illumination, plasmonic nanoparticles and analytes in the solution quickly assemble at the focused surface area by convective movements induced by the photothermal heating of the plasmonic nanoparticles without any surface modification. Such collective assemblies of plasmonic nanoparticles and analytes were optimized by varying the optical density and surface charge of the nanoparticles, the viscosity of the solvent, and the light illumination time to maximize the SERS signals. Using these light-induced co-assemblies, the intrinsic SERS signals of small biomolecules can be detected down to nanomolar concentrations based on their fingerprint spectra. Furthermore, large-sized biomarkers, such as viruses and exosomes, were successfully detected without labels, and the complexity of the collected spectra was statistically analyzed using t-distributed stochastic neighbor embedding combined with support vector machine (t-SNE + SVM). The proposed method is expected to provide a robust and convenient method to sensitively detect biologically and environmentally relevant analytes at multiple scales in liquid samples.
Collapse
Affiliation(s)
- Seungyeon Han
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Junhee Park
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Sunghyun Moon
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Seonghyeon Eom
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Chang Min Jin
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Seungmin Kim
- School of Biomedical Engineering, Korea University, Seoul, 02481, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02481, Republic of Korea
| | - Yong-Sang Ryu
- School of Biomedical Engineering, Korea University, Seoul, 02481, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02481, Republic of Korea
| | - Yeonho Choi
- School of Biomedical Engineering, Korea University, Seoul, 02481, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02481, Republic of Korea; Exopert Corporation, Seoul, 02580, Republic of Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea; Department of Applied Chemistry, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
2
|
Gazil O, Alonso Cerrón-Infantes D, Virgilio N, Unterlass MM. Hydrothermal synthesis of metal nanoparticles@hydrogels and statistical evaluation of reaction conditions' effects on nanoparticle morphologies. NANOSCALE 2024; 16:17778-17792. [PMID: 39238371 PMCID: PMC11377975 DOI: 10.1039/d4nr00581c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024]
Abstract
We report a facile green hydrothermal synthesis (HTS) of monoliths of hydrogels decorated with noble metal nanoparticles (NPs). The one-pot approach requires solely water, a polysaccharide able to form a hydrogel, and a salt precursor (Mx+-containing) for the metal NPs. The polysaccharide fulfills three roles: (i) it acts as the reducing agent of Mx+ to M0 under hydrothermal conditions, (ii) it stabilizes NPs surfaces, and (iii) it forms a hydrogel scaffold in which the metal NPs are embedded. The NPs' localization in the hydrogel can be controlled through the gelation mechanism. Specifically, the NPs can either be located on and slightly under the surface of the hydrogel monoliths or in the volume. The former is found when a hydrogel monolith is crosslinked prior to HTS. The latter is observed when the HTS reaction mixture contains a polysaccharide dissolved in H2O, which forms a hydrogel upon cooling. Furthermore, we studied the influence of HTS conditions on NP shapes. To find significant levers towards morphological control, a set of HTS experiments featuring broad ranges of reaction conditions was performed. Subsequently, we employed statistical analyses with multivariate regression fits to evaluate synthesis parameter effects. Thereby, we can link the synthesis parameters of temperature, time, precursor concentration, heating rate, choice of metallic precursor, and type of biopolymer, to morphology descriptors such as diameter, circularity, and polydispersity index. The presented approach is in fine compatible with broad arrays of NPs and can in principle be modified for different chemistries, thereby providing a tool for quantitatively assessing morphological impacts of reaction parameters.
Collapse
Affiliation(s)
- Olivier Gazil
- Universität Konstanz, Department of Chemistry, Solid State Chemistry, Universitaetsstrasse 10, 78464 Konstanz, Germany.
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079 Succursale Centre-Ville, Montréal, Québec H3C 3A7, Canada
| | - D Alonso Cerrón-Infantes
- Universität Konstanz, Department of Chemistry, Solid State Chemistry, Universitaetsstrasse 10, 78464 Konstanz, Germany.
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT25.3, 1090 Vienna, Austria
| | - Nick Virgilio
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079 Succursale Centre-Ville, Montréal, Québec H3C 3A7, Canada
| | - Miriam M Unterlass
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079 Succursale Centre-Ville, Montréal, Québec H3C 3A7, Canada
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT25.3, 1090 Vienna, Austria
| |
Collapse
|
3
|
Gomes SM, Gaspar MM, Coelho JMP, Reis CP. Targeting superficial cancers with gold nanoparticles: a review of current research. Ther Deliv 2024; 15:781-799. [PMID: 39314189 PMCID: PMC11457633 DOI: 10.1080/20415990.2024.2395249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Superficial cancers typically refer to cancers confined to the surface layers of tissue. Low-targeting therapies or side effects prompt exploration of novel therapeutic approaches. Gold nanoparticles (AuNPs), due to their unique optical properties, serve as effective photosensitizers, enabling tumor ablation through photothermal therapy (PTT). PTT induced by AuNPs can be achieved through light sources externally applied to the skin. Near-infrared radiation is the main light candidate due to its deep tissue penetration capability. This review explores recent advancements in AuNP-based PTT for superficial cancers, specifically breast, head and neck, thyroid, bladder and prostate cancers. Additionally, challenges and future directions in utilizing AuNPs for cancer treatment are discussed, emphasizing the importance of balancing efficacy with safety in clinical applications.
Collapse
Affiliation(s)
- Susana M Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - João MP Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
4
|
Li Y, Zhang R, Barmin R, Rama E, Schoenen M, Schrank F, Schulz V, Slabu I, Kiessling F, Lammers T, Pallares RM. Improving MPI and hyperthermia performance of superparamagnetic iron oxide nanoparticles through fractional factorial design of experiments. NANOSCALE ADVANCES 2024; 6:4352-4359. [PMID: 39170971 PMCID: PMC11334983 DOI: 10.1039/d4na00378k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used for biomedical applications, including magnetic particle imaging (MPI) and magnetic hyperthermia. The co-precipitation method is one of the most common synthetic routes to obtain SPIONs, since it is simple and does not require extreme conditions, such as high temperatures. Despite its prevalence, however, the co-precipitation synthesis presents some challenges, most notably the high batch-to-batch variability, as multiple factors can influence nanoparticle growth. In this study, we utilized a fractional factorial design of experiments to identify key factors influencing SPION growth, properties, and performance in MPI and magnetic hyperthermia, namely Fe3+ content, pH, temperature, stirring, and atmosphere. Notably, our study unveiled secondary interactions, particularly between temperature and Fe3+ content, as well as pH and Fe3+ content, for which simultaneous changes of both parameters promoted greater effects than the sum of each factor effect alone, emphasizing the impact of synergistic effects on SPION growth and performance. These findings provide a deeper understanding of the growth mechanism of SPIONs, reconcile discrepancies in the existing literature, and underscore the importance of characterizing secondary interactions to improve the performance of SPIONs for biomedical applications.
Collapse
Affiliation(s)
- Yanchen Li
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Rui Zhang
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Roman Barmin
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Elena Rama
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Max Schoenen
- Institute for Applied Medical Engineering, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Franziska Schrank
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Volkmar Schulz
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Ioana Slabu
- Institute for Applied Medical Engineering, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| |
Collapse
|
5
|
Zengin Y, Kelle D, Iyisan B. Design of Biopolymer-Coated Gold Nanorods as Biorelevant Photothermal Agents. Macromol Rapid Commun 2024:e2400497. [PMID: 39101703 DOI: 10.1002/marc.202400497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Gold nanorods (AuNRs) are emerging metallic nanoparticles utilized to generate heat for photothermal therapy (PTT) in cancer. The tunable plasmonic properties of AuNRs make them a remarkable candidate for hyperthermia. However, the cytotoxicity of AuNRs limits its biological applicability due to the existence of cetyltrimethylammonium bromide (CTAB) on the surface as a common surfactant. In this study, AuNRs are synthesized by seed-mediated growth and then the optical properties are optimized by altering AgNO3 concentration. Afterward, CTAB is replaced with biopolymers which are BSA:Dextran and BSA:Guar Gum conjugates resulting in enhanced cellular viability, enabling to use of them as biologically relevant photothermal agents. The biocompatibility of AuNRs is improved to utilize them at high concentrations for laser studies, in which similar heat generation success of CTAB- and biopolymer-coated AuNRs are shown for potential PTT applications. CTAB and biopolymer-coated AuNRs in concentrations of 0.5 and 1 mg mL-1 are irradiated under NIR light at 808 nm laser at 0.5, 0.75, and 1 W cm-2 for 300 s. The biopolymer-coated gold nanorods with different coatings preserve photothermal properties while reducing the cytotoxicity effects of CTAB and thus they are promising photothermal agents for potential PTT.
Collapse
Affiliation(s)
- Yağmur Zengin
- Biofunctional Nanomaterials Design (BIND) Laboratory, Institute of Biomedical Engineering, Bogazici University, Istanbul, 34684, Turkey
| | - Damla Kelle
- Biofunctional Nanomaterials Design (BIND) Laboratory, Institute of Biomedical Engineering, Bogazici University, Istanbul, 34684, Turkey
| | - Banu Iyisan
- Biofunctional Nanomaterials Design (BIND) Laboratory, Institute of Biomedical Engineering, Bogazici University, Istanbul, 34684, Turkey
| |
Collapse
|
6
|
Roy D, Johnson HM, Hurlock MJ, Roy K, Zhang Q, Moreau LM. Exploring the Complex Chemistry and Degradation of Ascorbic Acid in Aqueous Nanoparticle Synthesis. Angew Chem Int Ed Engl 2024:e202412542. [PMID: 39039626 DOI: 10.1002/anie.202412542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
Ascorbic acid (AA) is the most widely used reductant for noble metal nanoparticle (NP) synthesis. Despite the synthetic relevance, its aqueous chemistry remains misunderstood, due in part to various assumptions about its reduction pathway which are insufficiently supported by experimental evidence. This study aims to provide an understanding of the complex chemistry associated with AA under aqueous conditions. We demonstrate that (i) AA undergoes appreciable degradation in alkaline solution on a timescale relevant to NP synthesis, (ii) contrary to popular belief, AA does not degrade into dehydroascorbic acid (DHA), nor is DHA the oxidized product of AA under noble metal NP synthetic conditions, (iii) DHA, which readily degrades under alkaline conditions, can also effectively reduce metal salt precursors to metal NPs, (iv) neither ascorbate nor dehydroascorbate act as surface capping agents post-synthetically on the NPs (v) AA degradation time greatly affects the morphology and polydispersity of the resultant NP. Results from our mechanistic investigation enabled us to utilize purposefully-aged reductants to achieve control over shape yield and monodispersity in the seed-mediated synthesis of Au nanorods. Our findings have important implications for achieving monodispersed products in the many metal NP synthesis reactions that make use of AA as a reducing agent.
Collapse
Affiliation(s)
- Debashree Roy
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Hannah M Johnson
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Matthew J Hurlock
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Kingshuk Roy
- Research Institute for Sustainable Energy, Centers for Research and Education in Science and Technology (TCG-CREST), Kolkata, 700091, India
| | - Qiang Zhang
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Liane M Moreau
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
7
|
Ain MU, Asma, Ullah R, Fatima Z, Illahi A, Ahmed W. Engineering gold nanoworms with tunable longitudinal plasmon peak in the near infrared and their refractive index sensing properties. RSC Adv 2024; 14:12772-12780. [PMID: 38645529 PMCID: PMC11027724 DOI: 10.1039/d4ra00994k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024] Open
Abstract
The plasmonic properties of rod-shaped Au nanoparticles make them promising for numerous applications. The synthesis recipes for Au nanorods are well established and their longitudinal plasmon peak can be tuned over a wide wavelength range. Herein, we demonstrate that the longitudinal plasmon peak of gold NWs (NWs), which are bent nanorods, can be finely tuned in the near-infra-red region. The NWs were synthesized using a one-step reaction method. We have seen that the length and aspect ratio of NWs can be tuned by simply changing the pH of the reaction medium. Under higher pH reaction conditions, NWs with relatively smaller sizes were obtained. Similar to nanorods, NWs have a well-defined longitudinal plasmon peak, which scales linearly with their aspect ratio. Finite element analysis was used to model the optical properties of Au NWs. The simulated results matched well with the experimental spectra. The synthesized NWs have shown good refractive index sensitivities (RIS). The RIS of NWs increased with an increase in their aspect ratio. A maximum sensitivity value of 542 nm per RIU, was obtained for NWs with the plasmon peak at 1033 nm. The RIS values are comparable to that of Au nanorods and bipyramids.
Collapse
Affiliation(s)
- Misbah Ul Ain
- Materials Laboratory, Department of Physics, COMSATS University Islamabad Park Road 45500 Pakistan +92 51 9049 5305
| | - Asma
- Research in Modeling and Simulation (RIMS) Group, Department of Physics, COMSATS University Islamabad Park Road 45500 Pakistan
| | - Rizwan Ullah
- Materials Laboratory, Department of Physics, COMSATS University Islamabad Park Road 45500 Pakistan +92 51 9049 5305
| | - Zanjbeel Fatima
- Materials Laboratory, Department of Physics, COMSATS University Islamabad Park Road 45500 Pakistan +92 51 9049 5305
| | - Ahsan Illahi
- Research in Modeling and Simulation (RIMS) Group, Department of Physics, COMSATS University Islamabad Park Road 45500 Pakistan
| | - Waqqar Ahmed
- Materials Laboratory, Department of Physics, COMSATS University Islamabad Park Road 45500 Pakistan +92 51 9049 5305
| |
Collapse
|
8
|
Rao A, Grzelczak M. Revisiting El-Sayed Synthesis: Bayesian Optimization for Revealing New Insights during the Growth of Gold Nanorods. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:2577-2587. [PMID: 38680830 PMCID: PMC11049742 DOI: 10.1021/acs.chemmater.4c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 05/01/2024]
Abstract
In diverse fields, machine learning (ML) has sparked transformative changes, primarily driven by the wealth of big data. However, an alternative approach seeks to mine insights from "precious data", offering the possibility to reveal missed knowledge and escape potential knowledge traps. In this context, Bayesian optimization (BO) protocols have emerged as crucial tools for optimizing the synthesis and discovery of a broad spectrum of compounds including nanoparticles. In our work, we aimed to go beyond the commonly explored experimental conditions and showcase a workflow capable of unearthing fresh insights, even in well-studied research domains. The growth of AuNRs is a nonequilibrium process that remains poorly understood despite the presence of well-established seeded growth protocols. Traditional research aimed at understanding the mechanism of AuNR growth has primarily relied on altering one reaction condition at a time. While these studies are undeniably valuable, they often fail to capture the synergies between different reaction conditions, thus constraining the depth of insights they can offer. In the present study, we exploit BO, to identify diverse experimental conditions yielding AuNRs with similar spectroscopic characteristics. Notably, we identify viable and accelerated synthesis conditions involving elevated temperatures (36-40 °C) as well as high ascorbic acid concentrations. More importantly, we note that ascorbic acid and temperature can modulate each other's undesirable influences on the growth of AuNRs. Finally, by harnessing the power of interpretable ML algorithms, complemented by our deep chemical understanding, we revisited the established hierarchical relationships among reaction conditions that impact the El-Sayed-based growth of AuNRs.
Collapse
Affiliation(s)
- Anish Rao
- Centro
de Física de Materiales CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Marek Grzelczak
- Centro
de Física de Materiales CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
9
|
Park K, Ouweleen M, Vaia RA. Product Metrics for the Manufacturability of Single-Crystal Gold Nanorods via Reaction Engineering. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37917804 DOI: 10.1021/acsami.3c10094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Colloidal gold nanorods (AuNRs) are integral to a diverse array of technologies, ranging from plasmonic imaging, therapeutics, and sensors to large-area coatings, catalysts, filters, and optical attenuators. Different lab-scale strategies are available to fabricate AuNRs with a broad range of physiochemical properties; however, this is achieved at the cost of synthetic robustness and scalability, which limit broad adoption in these technologies. To address this, Product Metrics (Structural Precision, Shape Yield, and Reagent Utilization), measurable with UV-vis-NIR spectroscopy, are defined to evaluate the efficiency of AuNR production. The dependency of these metrics on reaction formulation (reagent concentrations, pH, and T) is established and used to develop a two-step method based on optimizing symmetry breaking of seed particles, followed by the controlled extension of AuNR length and volume. Reagent concentrations and their relative molar ratios with respect to HAuCl4 are adjusted for each step to optimize these adversarial processes. Based on these correlations, we successfully demonstrate the production of highly concentrated AuNRs with targeted volume and aspect ratio while reducing particle impurities and shape dispersity to less than 4 and 10%, respectively, by employing a rationalized formulation that maximizes both product quality and Reagent Utilization. This results in a product density of 1.6 mg/mL, which is 20 times higher than that of conventional literature methods, with commensurate reduction in environmental waste products.
Collapse
Affiliation(s)
- Kyoungweon Park
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7702, United States
- UES, Inc., Dayton, Ohio 45432, United States
| | - Michael Ouweleen
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7702, United States
- UES, Inc., Dayton, Ohio 45432, United States
| | - Richard A Vaia
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7702, United States
| |
Collapse
|
10
|
Abu Hassan MS, Elias NA, Hassan M, Rahmah S, Wan Ismail WI, Harun NA. Polychaeta-mediated synthesis of gold nanoparticles: A potential antibacterial agent against Acute Hepatopancreatic Necrosis Disease (AHPND)-causing bacteria, Vibrio parahaemolyticus. Heliyon 2023; 9:e21663. [PMID: 37954386 PMCID: PMC10632522 DOI: 10.1016/j.heliyon.2023.e21663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/08/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Gold nanoparticles (AuNPs) have emerged as a promising application in aquaculture. Their nano-sized dimensions, comparable to pathogens offer potential solutions for combating antibiotic resistance. In this study, AuNPs were synthesized by using polychaetes, Marphysa moribidii as the bio-reducing agent. Modifications were made to reduce agglomeration in green-synthesized AuNPs through ultrasonication. The antibacterial activities of AuNPs against V. parahaemolyticus were evaluated. The physicochemical characteristics of the green synthesized AuNPs were comprehensively investigated. The successful formation of AuNPs was confirmed by the appearance of a red ruby colour and the presence of surface Plasmon resonance (SPR) absorption peaks at 530 nm as observed from UV-vis spectroscopy. Scanning electron microscopy (SEM) revealed spherical-shaped AuNPs with some agglomerations. Transmission electron microscopy (TEM) showed particle size of AuNPs ranging from 10 nm to 60 nm, meanwhile dynamic light scattering (DLS) analysis indicated an average particle size of 24.36 nm. X-ray diffraction (XRD) analysis confirmed the high crystallinity of AuNPs, and no AuNPs were detected in the polychaetes extracts prior to synthesis. A brief ultrasonication significantly reduced the tendencies for AuNPs to coalesce. The green-synthesized AuNPs demonstrated a remarkable antibacterial efficacy against V. parahaemolyticus. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests revealed that a concentration of 0.3 g/ml of AuNPs effectively inhibited V. parahaemolyticus. These findings highlighted the potential of green-synthesized AuNPs as antibacterial agents for the prevention and management of AHPND in aquaculture.
Collapse
Affiliation(s)
- Mohamad Sofi Abu Hassan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Nurul Ashikin Elias
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Marina Hassan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Sharifah Rahmah
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
- Faculty of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Wan Iryani Wan Ismail
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
- Cell Signalling and Biotechnology Research Group (CeSBTech), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Noor Aniza Harun
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
- Advanced Nano Materials (ANOMA) Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
11
|
Williamson E, Brutchey RL. Using Data-Driven Learning to Predict and Control the Outcomes of Inorganic Materials Synthesis. Inorg Chem 2023; 62:16251-16262. [PMID: 37767941 PMCID: PMC10565808 DOI: 10.1021/acs.inorgchem.3c02697] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Indexed: 09/29/2023]
Abstract
The design of inorganic materials for various applications critically depends on our ability to manipulate their synthesis in a rational, robust, and controllable fashion. Different from the conventional trial-and-error approach, data-driven techniques such as the design of experiments (DoE) and machine learning are an effective and more efficient way to predictably control materials synthesis. Here, we present a Viewpoint on recent progress in leveraging such techniques for predicting and controlling the outcomes of inorganic materials synthesis. We first compare how the design choice (statistical DoE vs machine learning) affects the type of control it can offer over the resulting product attributes, information elucidated, and experimental cost. These attributes are supported by discussing select case studies from the recent literature that highlight the power of these techniques for materials synthesis. The influence of experimental bias is next discussed, followed finally by our perspectives on the major challenges in the widespread implementation of predictable and controllable materials synthesis using data-driven techniques.
Collapse
Affiliation(s)
- Emily
M. Williamson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Richard L. Brutchey
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
12
|
Parikka JM, Järvinen H, Sokołowska K, Ruokolainen V, Markešević N, Natarajan AK, Vihinen-Ranta M, Kuzyk A, Tapio K, Toppari JJ. Creation of ordered 3D tubes out of DNA origami lattices. NANOSCALE 2023; 15:7772-7780. [PMID: 37057647 DOI: 10.1039/d2nr06001a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Hierarchical self-assembly of nanostructures with addressable complexity has been a promising route for realizing novel functional materials. Traditionally, the fabrication of such structures on a large scale has been achievable using top-down methods but with the cost of complexity of the fabrication equipment versus resolution and limitation mainly to 2D structures. More recently bottom-up methods using molecules like DNA have gained attention due to the advantages of low fabrication costs, high resolution and simplicity in an extension of the methods to the third dimension. One of the more promising bottom-up techniques is DNA origami due to the robust self-assembly of arbitrarily shaped nanostructures with feature sizes down to a few nanometers. Here, we show that under specific ionic conditions of the buffer, the employed plus-shaped, blunt-ended Seeman tile (ST) origami forms elongated, ordered 2D lattices, which are further rolled into 3D tubes in solution. Imaging structures on a surface by atomic force microscopy reveals ribbon-like structures, with single or double layers of the origami lattice. Further studies of the double-layered structures in a liquid state by confocal microscopy and cryo-TEM revealed elongated tube structures with a relatively uniform width but with a varying length. Through meticulous study, we concluded that the assembly process of these 3D DNA origami tubes is heavily dependent on the concentration of both mono- and divalent cations. In particular, nickel seems to act as a trigger for the formation of the tubular assemblies in liquid.
Collapse
Affiliation(s)
- Johannes M Parikka
- University of Jyväskylä, Department of Physics and Nanoscience Center, 40014 University of Jyväskylä, Finland.
| | - Heini Järvinen
- University of Jyväskylä, Department of Physics and Nanoscience Center, 40014 University of Jyväskylä, Finland.
| | - Karolina Sokołowska
- University of Jyväskylä, Department of Physics and Nanoscience Center, 40014 University of Jyväskylä, Finland.
| | - Visa Ruokolainen
- University of Jyväskylä, Department of Biological and Environmental Science and Nanoscience Center, 40014 University of Jyväskylä, Finland
| | - Nemanja Markešević
- University of Jyväskylä, Department of Physics and Nanoscience Center, 40014 University of Jyväskylä, Finland.
| | - Ashwin K Natarajan
- Department of Neuroscience and Biomedical Engineering, Aalto University, 00076 Aalto, Finland
| | - Maija Vihinen-Ranta
- University of Jyväskylä, Department of Biological and Environmental Science and Nanoscience Center, 40014 University of Jyväskylä, Finland
| | - Anton Kuzyk
- Department of Neuroscience and Biomedical Engineering, Aalto University, 00076 Aalto, Finland
| | - Kosti Tapio
- University of Jyväskylä, Department of Physics and Nanoscience Center, 40014 University of Jyväskylä, Finland.
| | - J Jussi Toppari
- University of Jyväskylä, Department of Physics and Nanoscience Center, 40014 University of Jyväskylä, Finland.
| |
Collapse
|
13
|
Yu ES, Jeong ET, Lee S, Kim IS, Chung S, Han S, Choi I, Ryu YS. Real-Time Underwater Nanoplastic Detection beyond the Diffusion Limit and Low Raman Scattering Cross-Section via Electro-Photonic Tweezers. ACS NANO 2023; 17:2114-2123. [PMID: 36574486 DOI: 10.1021/acsnano.2c07933] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Emerging as substantial concerns in the ecosystem, submicron plastics have attracted much attention for their considerable hazards. However, their effect and even amount in the environment remain unclear. Establishing a substantive analytic platform is essential to expand the understanding of nanoplastics. However, the issues of diffusion and detection limit that arise from ultradiluted concentration and extremely small scales of nanoplastics leave significant technical hurdles to analyze the nanoplastic pollutants. In this study, we obtain effective Raman signals in real time from underwater nanoplastics with ultralow concentrations via AC electro-osmotic flows and dielectrophoretic tweezing. This enables the field-induced active collection of nanoplastics toward the optical sensing area from remote areas in a rapid manner, integrating conventional technical skills of preconcentration, separation, and identification in a single process. A step further, synergetic combination with plasmonic nanorods, accomplishes the highest on-site detection performance so far.
Collapse
Affiliation(s)
- Eui-Sang Yu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul02792, Republic of Korea
| | - Eui Tae Jeong
- Brain Science Institute, Korea Institute of Science and Technology, Seoul02792, Republic of Korea
- Department of Micro/Nano Systems, Korea University, Seoul02841, Republic of Korea
| | - Seungha Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul02481, Republic of Korea
| | - In Soo Kim
- Nanophotonics Research Center, Korea Institute of Science and Technology, Seoul02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Seok Chung
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul02481, Republic of Korea
- School of Mechanical Engineering, Korea University, Seoul02841, Republic of Korea
| | - Seungyeon Han
- Department of Life Science, University of Seoul, Seoul02504, Republic of Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul02504, Republic of Korea
| | - Yong-Sang Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul02481, Republic of Korea
| |
Collapse
|
14
|
Lin M, Montana G, Blanco J, Yedra L, van Gog H, van Huis MA, López-Haro M, Calvino JJ, Estradé S, Peiró F, Figuerola A. Spontaneous Hetero-attachment of Single-Component Colloidal Precursors for the Synthesis of Asymmetric Au-Ag 2X (X = S, Se) Heterodimers. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:10849-10860. [PMID: 36590704 PMCID: PMC9799023 DOI: 10.1021/acs.chemmater.2c01838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Finding simple, easily controlled, and flexible synthetic routes for the preparation of ternary and hybrid nanostructured semiconductors is always highly desirable, especially to fulfill the requirements for mass production to enable application to many fields such as optoelectronics, thermoelectricity, and catalysis. Moreover, understanding the underlying reaction mechanisms is equally important, offering a starting point for its extrapolation from one system to another. In this work, we developed a new and more straightforward colloidal synthetic way to form hybrid Au-Ag2X (X = S, Se) nanoparticles under mild conditions through the reaction of Au and Ag2X nanostructured precursors in solution. At the solid-solid interface between metallic domains and the binary chalcogenide domains, a small fraction of a ternary AuAg3X2 phase was observed to have grown as a consequence of a solid-state electrochemical reaction, as confirmed by computational studies. Thus, the formation of stable ternary phases drives the selective hetero-attachment of Au and Ag2X nanoparticles in solution, consolidates the interface between their domains, and stabilizes the whole hybrid Au-Ag2X systems.
Collapse
Affiliation(s)
- Mengxi Lin
- Department
of Inorganic and Organic Chemistry, Inorganic Chemistry Section, University of Barcelona, Carrer de Martí i Franquès, 1-11, 08028Barcelona, Spain
- Institute
of Nanoscience and Nanotechnology, University
of Barcelona, Carrer de Martí i Franquès, 1-11, 08028Barcelona, Spain
| | - Guillem Montana
- Department
of Inorganic and Organic Chemistry, Inorganic Chemistry Section, University of Barcelona, Carrer de Martí i Franquès, 1-11, 08028Barcelona, Spain
- Institute
of Nanoscience and Nanotechnology, University
of Barcelona, Carrer de Martí i Franquès, 1-11, 08028Barcelona, Spain
| | - Javier Blanco
- Institute
of Nanoscience and Nanotechnology, University
of Barcelona, Carrer de Martí i Franquès, 1-11, 08028Barcelona, Spain
- Laboratory
of Electron Nanoscopies (LENS-MIND), Department of Electronics and
Biomedical Engineering, Universitat de Barcelona, C/Martí I Franquès
1, 08028, Barcelona, Spain
| | - Lluís Yedra
- Institute
of Nanoscience and Nanotechnology, University
of Barcelona, Carrer de Martí i Franquès, 1-11, 08028Barcelona, Spain
- Laboratory
of Electron Nanoscopies (LENS-MIND), Department of Electronics and
Biomedical Engineering, Universitat de Barcelona, C/Martí I Franquès
1, 08028, Barcelona, Spain
| | - Heleen van Gog
- Nanostructured
Materials and Interfaces, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747
AGGroningen, Netherlands
| | - Marijn A. van Huis
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CCUtrecht, Netherlands
| | - Miguel López-Haro
- Departamento
de Ciencia de los Materiales e Ingeniería Metalúrgica
y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Cádiz11510, Spain
| | - José Juan Calvino
- Departamento
de Ciencia de los Materiales e Ingeniería Metalúrgica
y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Cádiz11510, Spain
| | - Sònia Estradé
- Institute
of Nanoscience and Nanotechnology, University
of Barcelona, Carrer de Martí i Franquès, 1-11, 08028Barcelona, Spain
- Laboratory
of Electron Nanoscopies (LENS-MIND), Department of Electronics and
Biomedical Engineering, Universitat de Barcelona, C/Martí I Franquès
1, 08028, Barcelona, Spain
| | - Francesca Peiró
- Institute
of Nanoscience and Nanotechnology, University
of Barcelona, Carrer de Martí i Franquès, 1-11, 08028Barcelona, Spain
- Laboratory
of Electron Nanoscopies (LENS-MIND), Department of Electronics and
Biomedical Engineering, Universitat de Barcelona, C/Martí I Franquès
1, 08028, Barcelona, Spain
| | - Albert Figuerola
- Department
of Inorganic and Organic Chemistry, Inorganic Chemistry Section, University of Barcelona, Carrer de Martí i Franquès, 1-11, 08028Barcelona, Spain
- Institute
of Nanoscience and Nanotechnology, University
of Barcelona, Carrer de Martí i Franquès, 1-11, 08028Barcelona, Spain
| |
Collapse
|
15
|
Song B, Liu T, Yang S, Liu J, Chen J. Data-Driven Operation Modeling and Optimal Design for Batch Cooling Crystallization with a Case Study on β-LGA. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Bo Song
- Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education, Dalian University of Technology, Dalian 116024, China
- Institute of Advanced Control Technology, Dalian University of Technology, Dalian 116024, China
| | - Tao Liu
- Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education, Dalian University of Technology, Dalian 116024, China
- Institute of Advanced Control Technology, Dalian University of Technology, Dalian 116024, China
| | - Siwei Yang
- Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education, Dalian University of Technology, Dalian 116024, China
- Institute of Advanced Control Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingxiang Liu
- Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education, Dalian University of Technology, Dalian 116024, China
- School of Marine Electrical Engineering, Dalian Maritime University, Dalian 116026, China
| | - Junghui Chen
- Department of Chemical Engineering, Chung-Yuan Christian University, Chung-Li District, Taoyuan 32023, Taiwan
| |
Collapse
|
16
|
Chang WR, Hsiao C, Chen YF, Kuo CFJ, Chiu CW. Au Nanorods on Carbon-Based Nanomaterials as Nanohybrid Substrates for High-Efficiency Dynamic Surface-Enhanced Raman Scattering. ACS OMEGA 2022; 7:41815-41826. [PMID: 36406539 PMCID: PMC9670688 DOI: 10.1021/acsomega.2c06485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/26/2022] [Indexed: 05/26/2023]
Abstract
Gold nanorods (AuNRs) with different aspect ratios were prepared by the seed-mediated growth method and combined with three carbon-based nanomaterials of multiple dimensions (i.e., zero-dimensional (0D) carbon black (CB), one-dimensional (1D) carbon nanotubes (CNTs), and two-dimensional (2D) graphene oxide (GO)). The AuNR/carbon-based nanomaterial hybrids were utilized in dynamic surface-enhanced Raman scattering (D-SERS). First, cetyltrimethylammonium bromide (CTAB) was used to stabilize and coat the AuNRs, enabling them to be dispersed in water and conferring a positive charge to the surface. AuNR/carbon-based nanomaterial hybrids were then formed via electrostatic attraction with the negatively charged carbon-based nanomaterials. Subsequently, the AuNR/carbon-based nanomaterial hybrids were utilized as large-area and highly sensitive Raman spectroscopy substrates. The AuNR/GO hybrids afforded the best signal enhancement because the thickness of GO was less than 5 nm, which enabled the AuNRs adsorbed on GO to produce a good three-dimensional hotspot effect. The enhancement factor (EF) of the AuNR/GO hybrids for the dye molecule Rhodamine 6G (R6G) reached 1 × 107, where the limit of detection (LOD) was 10-8 M. The hybrids were further applied in D-SERS (detecting samples transitioning from the wet state to the dry state). During solvent evaporation, the system spontaneously formed many hotspots, which greatly enhanced the SERS signal. The final experimental results demonstrated that the AuNR/GO hybrids afforded the best D-SERS signal enhancement. The EF value for R6G reached 1.1 × 108 after 27 min, with a limit of detection of 10-9 M at 27 min. Therefore, the AuNR/GO nanohybrids have extremely high sensitivity as molecular sensing elements for SERS and are also very suitable for the rapid detection of single molecules in water quality and environmental management.
Collapse
|
17
|
Arellano-Galindo L, Villar-Alvarez E, Varela A, Figueroa V, Fernandez-Vega J, Cambón A, Prieto G, Barbosa S, Taboada P. Hybrid Gold Nanorod-Based Nanoplatform with Chemo and Photothermal Activities for Bimodal Cancer Therapy. Int J Mol Sci 2022; 23:13109. [PMID: 36361892 PMCID: PMC9659131 DOI: 10.3390/ijms232113109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/26/2023] Open
Abstract
Metal nanoparticles (NPs), particularly gold nanorods (AuNRs), appear as excellent platforms not only to transport and deliver bioactive cargoes but also to provide additional therapeutic responses for diseased cells and tissues and/or to complement the action of the carried molecules. In this manner, here, we optimized a previous developed metal-based nanoplatform composed of an AuNR core surrounded by a polymeric shell constructed by means of the layer-by-layer approach, and in which very large amounts of the antineoplasic drug doxorubicin (DOXO) in a single loading step and targeting capability thanks to an outer hyaluronic acid layer were incorporated by means of an optimized fabrication process (PSS/DOXO/PLL/HA-coated AuNRs). The platform retained its nanometer size with a negative surface charge and was colloidally stable in a range of physiological conditions, in which only in some of them some particle clustering was noted with no precipitation. In addition, the dual stimuli-responsiveness of the designed nanoplatform to both endogenous proteases and external applied light stimuli allows to perfectly manipulate the chemodrug release rates and profiles to achieve suitable pharmacodynamics. It was observed that the inherent active targeting abilities of the nanoplatfom allow the achievement of specific cell toxicity in tumoral cervical HeLa cells, whilst healthy ones such as 3T3-Balb fibroblast remain safe and alive in agreement with the detected levels of internalization in each cell line. In addition, the bimodal action of simultaneous chemo- and photothermal bioactivity provided by the platform largely enhances the therapeutic outcomes. Finally, it was observed that our PSS/DOXO/PLL/HA-coated AuNRs induced cell mortality mainly through apoptosis in HeLa cells even in the presence of NIR light irradiation, which agrees with the idea of the chemo-activity of DOXO predominating over the photothermal effect to induce cell death, favoring an apoptotic pathway over necrosis for cell death.
Collapse
Affiliation(s)
- Lilia Arellano-Galindo
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eva Villar-Alvarez
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Nanostructured Funtional Group, Catalonian Institute of Nanotechnology (ICN2), Universidad Autónoma de Barcelona Campus, Av. Serragalliners s/n, 08193 Barcelona, Spain
| | - Alejandro Varela
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Valeria Figueroa
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Departamento de Ingeniería Química, CUCEI, Universidad de Guadalajara, Guadalajara 44100, Mexico
| | - Javier Fernandez-Vega
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Adriana Cambón
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gerardo Prieto
- Grupo de Biofísica e Interfases, Departamento de Física Aplicada, Facultad de Física, Instituto de Materiales (IMATUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Silvia Barbosa
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Taboada
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
18
|
Park J, Lee S, Lee H, Han S, Kang TH, Kim D, Kang T, Choi I. Colloidal Multiscale Assembly via Photothermally Driven Convective Flow for Sensitive In-Solution Plasmonic Detections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201075. [PMID: 35570749 DOI: 10.1002/smll.202201075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/29/2022] [Indexed: 06/15/2023]
Abstract
The assembly of metal nanoparticles and targets to be detected in a small light probe volume is essential for achieving sensitive in-solution surface-enhanced Raman spectroscopy (SERS). Such assemblies generally require either chemical linkers or templates to overcome the random diffusion of the colloids unless the aqueous sample is dried. Here, a facile method is reported to produce 3D multiscale assemblies of various colloids ranging from molecules and nanoparticles to microparticles for sensitive in-solution SERS detection without chemical linkers and templates by exploiting photothermally driven convective flow. The simulations suggest that colloids sub 100 nm in diameter can be assembled by photothermally driven convective flow regardless of density; the assembly of larger colloids up to several micrometers by convective flow is significant only if their density is close to that of water. Consistent with the simulation results, the authors confirm that the photothermally driven convective flow is mainly responsible for the observed coassembly of plasmonic gold nanorods with either smaller molecules or larger microparticles. It is further found that the coassembly with the plasmonic nanoantennae leads to dramatic Raman enhancements of molecules, microplastics, and microbes by up to fivefold of magnitude compared to those measured in solution without the coassembly.
Collapse
Affiliation(s)
- Junhee Park
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Seungki Lee
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hyunjoo Lee
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Seungyeon Han
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Tae Ho Kang
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Dongchoul Kim
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| |
Collapse
|
19
|
MacQueen B, Jayarathna R, Lauterbach J. Knowledge extraction in catalysis utilizing design of experiments and machine learning. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Biotechnological preparation of chicken skin gelatine using factorial design of experiments. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Photothermal Conversion Profiling of Large-Scaled Synthesized Gold Nanorods Using Binary Surfactant with Hydroquinone as a Reducing Agent. NANOMATERIALS 2022; 12:nano12101723. [PMID: 35630943 PMCID: PMC9145525 DOI: 10.3390/nano12101723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 12/10/2022]
Abstract
Photothermal application of gold nanorods (AuNRs) is widely increasing because of their good photothermal conversion efficiency (PCE) due to local surface plasmon resonance. However, the high concentration of hexadecyltrimethylammonium bromide used in the synthesis is a concern. Moreover, the mild and commonly used reducing agent-ascorbic acid does not reduce the Au(I) to A(0) entirely, resulting in a low yield of gold nanorods. Herein we report for the first time the PCE of large-scaled synthesized AuNRs using the binary surfactant seed-mediated method with hydroquinone (HQ) as the reducing agent. The temporal evolution of the optical properties and morphology was investigated by varying the Ag concentration, HQ concentration, HCl volumes, and seed solution volume. The results showed that the seed volume, HQ concentration, and HCl volume played a significant role in forming mini-AuNRs absorbing in the 800 nm region with a shape yield of 87.7%. The as-synthesized AuNRs were successfully up-scaled to a larger volume based on the optimum synthetic conditions followed by photothermal profiling. The photothermal profiling analysis showed a temperature increase of more than 54.2 °C at 2.55 W cm−2 at a low optical density (OD) of 0.160 after 630 s irradiation, with a PCE of approximately 21%, presenting it as an ideal photothermal agent.
Collapse
|
22
|
Choo P, Arenas-Esteban D, Jung I, Chang WJ, Weiss EA, Bals S, Odom TW. Investigating Reaction Intermediates during the Seedless Growth of Gold Nanostars Using Electron Tomography. ACS NANO 2022; 16:4408-4414. [PMID: 35239309 DOI: 10.1021/acsnano.1c10669] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Good's buffers can act both as nucleating and shape-directing agents during the synthesis of anisotropic gold nanostars (AuNS). Although different Good's buffers can produce AuNS shapes with branches that are oriented along specific crystallographic directions, the mechanism is not fully understood. This paper reports how an analysis of the intermediate structures during AuNS synthesis from HEPES, EPPS, and MOPS Good's buffers can provide insight into the formation of seedless AuNS. Electron tomography of AuNS structures quenched at early times (minutes) was used to characterize the morphology of the incipient seeds, and later times were used to construct the growth maps. Through this approach, we identified how the crystallinity and shape of the first structures synthesized with different Good's buffers determine the final AuNS morphologies.
Collapse
Affiliation(s)
- Priscilla Choo
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Daniel Arenas-Esteban
- EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Insub Jung
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Woo Je Chang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sara Bals
- EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
23
|
Lu C, Zhou S, Gao F, Lin J, Liu J, Zheng J. DNA-Mediated Growth of Noble Metal Nanomaterials for Biosensing Applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Scarabelli L, Liz-Marzán LM. An Extended Protocol for the Synthesis of Monodisperse Gold Nanotriangles. ACS NANO 2021; 15:18600-18607. [PMID: 34866398 DOI: 10.1021/acsnano.1c10538] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Anisotropic plasmonic nanoparticles have found applications in a wide range of scientific and technological fields, including medicine, energy storage and production, ultrasensitive sensing, catalysis, and photonics. These colloids owe their all-around success in such different scenarios to the development of rapid, scalable, and rational synthetic schemes. Gold nanotriangles (AuNTs), geometrically termed truncated triangular bipyramids, have attracted the attention of the scientific community because of their combination of well-defined crystallography, anisotropic plasmon spatial distribution, sharp tips that favor the generation of high electric fields, atomically flat surfaces, and a wide spectral tunability within the visible and infrared ranges combined with narrow bandwidths of their plasmon resonances. In this context, we previously reported a procedure for the production of AuNTs, based on a seed-mediated approach that guarantees batch-to-batch reproducibility in both size (within 5 nm in edge-length) and extinction spectra (down to 1 nm precision). The protocol involves numerous synthetic steps, and reproducibility requires awareness and familiarity with several details, which are usually learned through practice and repetition and may not always be intuitive on the basis of standard experimental protocols. We provide herein an enhanced protocol with full details and demonstration videos, which we expect will further foster the utilization of this fascinating type of anisotropic nanomaterials by researchers who are less experienced in the preparation and handling of gold colloids.
Collapse
Affiliation(s)
- Leonardo Scarabelli
- Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Barcelona, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 43009 Bilbao, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| |
Collapse
|
25
|
Wang T, Li Z, Zong R, Li J. Studies on Thiol Etching of Gold by Using QCM-D Sensor as the Sacrificial Probe. Chemphyschem 2021; 23:e202100790. [PMID: 34850511 DOI: 10.1002/cphc.202100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/28/2021] [Indexed: 11/08/2022]
Abstract
There is still a lack of deep understanding on the reaction kinetics and mechanism of thiol etching of gold. Herein, by using the sensor of quartz crystal microbalance (QCM) as the sacrificial probe, the etching reaction of gold has been studied by employing cysteamine (CS) as a typical thiol etchant. The etching reaction is verified as diffusion-controlled and shows a half-order reaction kinetics. It is demonstrated that intact thiol and amino on CS are both crucial for its etching ability to gold. Applied potentials can affect the electron transfer and hence can be used to regulate the gold etching. Our results also reveal that only two carbon atoms of the spacer between thiol and amino on CS are very critical to the excellent etching ability. This work exhibits a new route to explore the thiol etching reaction of gold and elucidates the reaction kinetics and mechanism.
Collapse
Affiliation(s)
- Tao Wang
- School of Materials Science and Engineering, Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, 330031, Nanchang, P. R. China
| | - Zheng Li
- School of Materials Science and Engineering, Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, 330031, Nanchang, P. R. China
| | - Runfa Zong
- School of Materials Science and Engineering, Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, 330031, Nanchang, P. R. China
| | - Jingzhe Li
- School of Materials Science and Engineering, Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, 330031, Nanchang, P. R. China
| |
Collapse
|
26
|
Zhao Z, Wang Y, Delmas C, Mingotaud C, Marty JD, Kahn ML. Mechanistic insights into the anisotropic growth of ZnO nanoparticles deciphered through 2D size plots and multivariate analysis. NANOSCALE ADVANCES 2021; 3:6696-6703. [PMID: 36132654 PMCID: PMC9419515 DOI: 10.1039/d1na00591j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/14/2021] [Indexed: 06/16/2023]
Abstract
The control and understanding of the nucleation and growth of nano-objects are key points for improving and/or considering the new applications of a given material at the nanoscale. Mastering the morphology is essential as the final properties are drastically affected by the size, shape, and surface structure. Yet, a number of challenges remain, including evidencing and understanding the relationship between the experimental parameters of the synthesis and the shape of the nanoparticles. Here we analyzed jointly and in detail the formation of anisotropic ZnO nanoparticles under different experimental conditions by using two different analytical tools enabling the analysis of TEM images: 2D size plots and multivariate statistical analysis. Well-defined crystalline ZnO nanorods were obtained through the hydrolysis of a dicyclohexyl zinc precursor in the presence of a primary fatty amine. Such statistical tools allow one to fully understand the effect of experimental parameters such as the hydrolysis rate, the mixing time before hydrolysis, the length of the ligand aliphatic chain, and the amount of water. All these analyses suggest a growth process by oriented attachment. Taking advantage of this mechanism, the size and aspect ratio of the ZnO nanorods can be easily tuned. These findings shed light on the relative importance of experimental parameters that govern the growth of nano-objects. This general methodological approach can be easily extended to any type of nanoparticle.
Collapse
Affiliation(s)
- Zhihua Zhao
- Laboratory of Coordination Chemistry, CNRS UPR 8241, University of Toulouse 205 Route de Narbonne 31077 Toulouse France
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier 118, Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Yinping Wang
- Laboratory of Coordination Chemistry, CNRS UPR 8241, University of Toulouse 205 Route de Narbonne 31077 Toulouse France
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier 118, Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Céline Delmas
- MIAT, Université de Toulouse, INRA 31326 Castanet-Tolosan France
| | - Christophe Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier 118, Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Jean-Daniel Marty
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier 118, Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Myrtil L Kahn
- Laboratory of Coordination Chemistry, CNRS UPR 8241, University of Toulouse 205 Route de Narbonne 31077 Toulouse France
| |
Collapse
|
27
|
Morsin M, Nafisah S, Sanudin R, Razali NL, Mahmud F, Soon CF. The role of positively charge poly-L-lysine in the formation of high yield gold nanoplates on the surface for plasmonic sensing application. PLoS One 2021; 16:e0259730. [PMID: 34748606 PMCID: PMC8575294 DOI: 10.1371/journal.pone.0259730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
An anisotropic structure, gold (Au) nanoplates was synthesized using a two-step wet chemical seed mediated growth method (SMGM) directly on the substrate surface. Prior to the synthesis process, poly-l-lysine (PLL) as a cation polymer was used to enhance the yield of grown Au nanoplates. The electrostatic interaction of positive charged by PLL with negative charges from citrate-capped gold nanoseeds contributes to the yield increment. The percentage of PLL was varied from 0% to 10% to study the morphology of Au nanoplates in term of shape, size and surface density. 5% PLL with single layer treatment produce a variety of plate shapes such as hexagonal, flat rod and triangular obtained over the whole substrate surface with the estimated maximum yield up to ca. 48%. The high yield of Au nanoplates exhibit dual plasmonic peaks response that are associated with transverse and longitudinal localized surface plasmon resonance (TSPR and LSPR). Then, the PLL treatment process was repeated twice resulting the increment of Au nanoplates products to ca. 60%. The thin film Au nanoplates was further used as sensing materials in plasmonic sensor for detection of boric acid. The anisotropic Au nanoplates have four sensing parameters being monitored when the medium changes, which are peak position (wavelength shift), intensity of TSPR and LSPR, and the changes on sensing responses. The sensor responses are based on the interaction of light with dielectric properties from surrounding medium. The resonance effect produces by a collection of electron vibration on the Au nanoparticles surface after hit by light are captured as the responses. As a conclusion, it was found that the PLL treatment is capable to promote high yield of Au nanoplates. Moreover, the high yield of the Au nanoplates is an indication as excellent candidate for sensing material in plasmonic sensor.
Collapse
Affiliation(s)
- Marlia Morsin
- Microelectronics & Nanotechnology—Shamsuddin Research Centre (MiNT-SRC), Institute of Integrated Engineering (IIE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
- Faculty of Electronic and Electrical Engineering (FKEE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
| | - Suratun Nafisah
- Department of Electrical Engineering, Institut Teknologi Sumatera (ITERA), Lampung Selatan, Indonesia
| | - Rahmat Sanudin
- Microelectronics & Nanotechnology—Shamsuddin Research Centre (MiNT-SRC), Institute of Integrated Engineering (IIE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
- Faculty of Electronic and Electrical Engineering (FKEE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
| | - Nur Liyana Razali
- Microelectronics & Nanotechnology—Shamsuddin Research Centre (MiNT-SRC), Institute of Integrated Engineering (IIE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
- Faculty of Electronic and Electrical Engineering (FKEE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
| | - Farhanahani Mahmud
- Microelectronics & Nanotechnology—Shamsuddin Research Centre (MiNT-SRC), Institute of Integrated Engineering (IIE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
- Faculty of Electronic and Electrical Engineering (FKEE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
| | - Chin Fhong Soon
- Microelectronics & Nanotechnology—Shamsuddin Research Centre (MiNT-SRC), Institute of Integrated Engineering (IIE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
- Faculty of Electronic and Electrical Engineering (FKEE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
| |
Collapse
|
28
|
Williamson EM, Tappan BA, Mora-Tamez L, Barim G, Brutchey RL. Statistical Multiobjective Optimization of Thiospinel CoNi 2S 4 Nanocrystal Synthesis via Design of Experiments. ACS NANO 2021; 15:9422-9433. [PMID: 33877801 DOI: 10.1021/acsnano.1c00502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thiospinels, such as CoNi2S4, are showing promise for numerous applications, including as catalysts for the hydrogen evolution reaction, hydrodesulfurization, and oxygen evolution and reduction reactions; however, CoNi2S4 has not been synthesized as small, colloidal nanocrystals with high surface-area-to-volume ratios. Traditional optimization methods to control nanocrystal attributes such as size typically rely upon one variable at a time (OVAT) methods that are not only time and labor intensive but also lack the ability to identify higher-order interactions between experimental variables that affect target outcomes. Herein, we demonstrate that a statistical design of experiments (DoE) approach can optimize the synthesis of CoNi2S4 nanocrystals, allowing for control over the responses of nanocrystal size, size distribution, and isolated yield. After implementing a 25-2 fractional factorial design, the statistical screening of five different experimental variables identified temperature, Co:Ni precursor ratio, Co:thiol ratio, and their higher-order interactions as the most critical factors in influencing the aforementioned responses. Second-order design with a Doehlert matrix yielded polynomial functions used to predict the reaction parameters needed to individually optimize all three responses. A multiobjective optimization, allowing for the simultaneous optimization of size, size distribution, and isolated yield, predicted the synthetic conditions needed to achieve a minimum nanocrystal size of 6.1 nm, a minimum polydispersity (σ/d̅) of 10%, and a maximum isolated yield of 99%, with a desirability of 96%. The resulting model was experimentally verified by performing reactions under the specified conditions. Our work illustrates the advantage of multivariate experimental design as a powerful tool for accelerating control and optimization in nanocrystal syntheses.
Collapse
Affiliation(s)
- Emily M Williamson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Bryce A Tappan
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Lucía Mora-Tamez
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Gözde Barim
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Richard L Brutchey
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
29
|
A novel SERS sensor for the ultrasensitive detection of kanamycin based on a Zn-doped carbon quantum dot catalytic switch controlled by nucleic acid aptamer and size-controlled gold nanorods. Food Chem 2021; 362:130261. [PMID: 34111691 DOI: 10.1016/j.foodchem.2021.130261] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/09/2021] [Accepted: 05/29/2021] [Indexed: 12/15/2022]
Abstract
In this study, a novel surface enhanced Raman spectroscopy (SERS) sensor was developed for the ultrasensitive determination of kanamycin in foods. The sensor used two distinct signal amplification strategies, namely the surface plasmon resonance of gold nanorods and a Zn-doped carbon quantum dots catalytic cascade oxidation-reduction reaction switch controlled by a nucleic acid aptamer. Under optimized experimental conditions, the SERS sensor demonstrated a linear range of 10-12 to 10-5 g mL-1 for the detection of kanamycin, with a limit of detection of 3.03 × 10-13 g mL-1. Experiments with antibiotics structurally similar to kanamycin and interferrants revealed that the sensor had excellent selectivity. Milkpowder and honey samples spiked with kanamycin were assayed, with recoveries ranging from 84.1% to 107.2% and a relative standard deviation of 0.74% to 2.81% being obtained. Quantification of kanamycin in milk samples revealed no significant difference between the results obtained with the sensor and by HPLC.
Collapse
|
30
|
He H, Wu C, Bi C, Song Y, Wang D, Xia H. Synthesis of Uniform Gold Nanorods with Large Width to Realize Ultralow SERS Detection. Chemistry 2021; 27:7549-7560. [PMID: 33769618 DOI: 10.1002/chem.202005422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 11/11/2022]
Abstract
In this work, we successfully demonstrate high-yield synthesis of high-quality gold nanorods (Au NRs) with width ranging from 6.5 nm to 175 nm by introducing heptanol molecules as secondary templating agents during cetyltrimethylammonium bromide-templated, seeded growth method. The results show that an appropriate concentration of heptanol molecules not only alter the micellization behavior of CTAB in water, but also help silver ions impact the symmetry-breaking efficiency of additional Au-NP seeds in addition to enhancing the utilization of gold precursors. Moreover, the generality and versatility of the present strategy for synthesis of Au NRs with flexible controlled dimensions are further demonstrated by successful synthesis of Au NRs with the assistance of other fatty alcohols with properly long alkyl chains. Furthermore, when arrays of vertically aligned Au NRs with large width (AVA-Au120×90 NRs) are used as SERS substrates, they can achieve the ultralow limit of detection for crystal violet (10-16 M) with good reliability and reproducibility, and the rapid detection and identification of residual harmful substances.
Collapse
Affiliation(s)
- Hongpeng He
- State Key Laboratory of Crystal Materials, Shandong University, No. 27 Shanda South Road, Jinan, 250100, P. R. China
| | - Chenshuo Wu
- State Key Laboratory of Crystal Materials, Shandong University, No. 27 Shanda South Road, Jinan, 250100, P. R. China
| | - Cuixia Bi
- State Key Laboratory of Crystal Materials, Shandong University, No. 27 Shanda South Road, Jinan, 250100, P. R. China
| | - Yahui Song
- State Key Laboratory of Crystal Materials, Shandong University, No. 27 Shanda South Road, Jinan, 250100, P. R. China
| | - Dayang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Haibing Xia
- State Key Laboratory of Crystal Materials, Shandong University, No. 27 Shanda South Road, Jinan, 250100, P. R. China
| |
Collapse
|
31
|
Liao S, Yue W, Cai S, Tang Q, Lu W, Huang L, Qi T, Liao J. Improvement of Gold Nanorods in Photothermal Therapy: Recent Progress and Perspective. Front Pharmacol 2021; 12:664123. [PMID: 33967809 PMCID: PMC8100678 DOI: 10.3389/fphar.2021.664123] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer is a life-threatening disease, and there is a significant need for novel technologies to treat cancer with an effective outcome and low toxicity. Photothermal therapy (PTT) is a noninvasive therapeutic tool that transports nanomaterials into tumors, absorbing light energy and converting it into heat, thus killing tumor cells. Gold nanorods (GNRs) have attracted widespread attention in recent years due to their unique optical and electronic properties and potential applications in biological imaging, molecular detection, and drug delivery, especially in the PTT of cancer and other diseases. This review summarizes the recent progress in the synthesis methods and surface functionalization of GNRs for PTT. The current major synthetic methods of GNRs and recently improved measures to reduce toxicity, increase yield, and control particle size and shape are first introduced, followed by various surface functionalization approaches to construct a controlled drug release system, increase cell uptake, and improve pharmacokinetics and tumor-targeting effect, thus enhancing the photothermal effect of killing the tumor. Finally, a brief outlook for the future development of GNRs modification and functionalization in PTT is proposed.
Collapse
Affiliation(s)
- Shengnan Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wang Yue
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuning Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weitong Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingxiao Huang
- Department of Radiation Biology, Radiation Oncology Key Laboratory of Sichuan Province, Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingting Qi
- Department of Radiation Biology, Radiation Oncology Key Laboratory of Sichuan Province, Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Maturi M, Locatelli E, Sambri L, Tortorella S, Šturm S, Kostevšek N, Comes Franchini M. Synthesis of Ultrasmall Single-Crystal Gold-Silver Alloy Nanotriangles and Their Application in Photothermal Therapy. NANOMATERIALS 2021; 11:nano11040912. [PMID: 33916739 PMCID: PMC8066084 DOI: 10.3390/nano11040912] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
Photothermal therapy has always been a very attractive anti-cancer strategy, drawing a lot of attention thanks to its excellent performance as a non-invasive and pretty safe technique. Lately, nanostructures have become the main characters of the play of cancer therapy due to their ability to absorb near-infrared radiation and efficient light-to-heat conversion. Here we present the synthesis of polyethylene glycol (PEG)-stabilized hybrid ultrasmall (<20 nm) gold-silver nanotriangles (AuAgNTrs) and their application in photothermal therapy. The obtained AuAgNTrs were deeply investigated using high-resolution transmission electron microscopy (HR-TEM). The cell viability assay was performed on U-87 glioblastoma multiforme cell model. Excellent photothermal performance of AuAgNTrs upon irradiation with NIR laser was demonstrated in suspension and in vitro, with >80% cell viability decrease already after 10 min laser irradiation with a laser power P = 3W/cm2 that was proved to be harmless to the control cells. Moreover, a previous cell viability test had shown that the nanoparticles themselves were reasonably biocompatible: without irradiation cell viability remained high. Herein, we show that our hybrid AuAgNTrs exhibit very exciting potential as nanostructures for hyperthermia cancer therapy, mostly due to their easy synthesis protocol, excellent cell compatibility and promising photothermal features.
Collapse
Affiliation(s)
- Mirko Maturi
- Department of Industrial Chemistry Toso Montanari, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy; (M.M.); (E.L.); (L.S.); (S.T.)
| | - Erica Locatelli
- Department of Industrial Chemistry Toso Montanari, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy; (M.M.); (E.L.); (L.S.); (S.T.)
| | - Letizia Sambri
- Department of Industrial Chemistry Toso Montanari, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy; (M.M.); (E.L.); (L.S.); (S.T.)
| | - Silvia Tortorella
- Department of Industrial Chemistry Toso Montanari, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy; (M.M.); (E.L.); (L.S.); (S.T.)
| | - Sašo Šturm
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia;
| | - Nina Kostevšek
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia;
- Correspondence: (N.K.); (M.C.F.)
| | - Mauro Comes Franchini
- Department of Industrial Chemistry Toso Montanari, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy; (M.M.); (E.L.); (L.S.); (S.T.)
- Correspondence: (N.K.); (M.C.F.)
| |
Collapse
|
33
|
Sarfraz N, Khan I. Plasmonic Gold Nanoparticles (AuNPs): Properties, Synthesis and their Advanced Energy, Environmental and Biomedical Applications. Chem Asian J 2021; 16:720-742. [PMID: 33440045 DOI: 10.1002/asia.202001202] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/12/2020] [Indexed: 12/12/2022]
Abstract
Inducing plasmonic characteristics, primarily localized surface plasmon resonance (LSPR), in conventional AuNPs through particle size and shape control could lead to a significant enhancement in electrical, electrochemical, and optical properties. Synthetic protocols and versatile fabrication methods play pivotal roles to produced plasmonic gold nanoparticles (AuNPs), which can be employed in multipurpose energy, environmental and biomedical applications. The main focus of this review is to provide a comprehensive and tutorial overview of various synthetic methods to design highly plasmonic AuNPs, along with a brief essay to understand the experimental procedure for each technique. The latter part of the review is dedicated to the most advanced and recent solar-induced energy, environmental and biomedical applications. The synthesis methods are compared to identify the best possible synthetic route, which can be adopted while employing plasmonic AuNPs for a specific application. The tutorial nature of the review would be helpful not only for expert researchers but also for novices in the field of nanomaterial synthesis and utilization of plasmonic nanomaterials in various industries and technologies.
Collapse
Affiliation(s)
- Nafeesa Sarfraz
- Department of Chemistry, Govt. Post Graduate College (For Women), University of Harīpur, Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Ibrahim Khan
- Centre for Integrative Petroleum Research, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
34
|
Smith JD, Reza MA, Smith NL, Gu J, Ibrar M, Crandall DJ, Skrabalak SE. Plasmonic Anticounterfeit Tags with High Encoding Capacity Rapidly Authenticated with Deep Machine Learning. ACS NANO 2021; 15:2901-2910. [PMID: 33559464 DOI: 10.1021/acsnano.0c08974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Counterfeit goods create significant economic losses and product failures in many industries. Here, we report a covert anticounterfeit platform where plasmonic nanoparticles (NPs) create physically unclonable functions (PUFs) with high encoding capacity. By allowing anisotropic Au NPs of different sizes to deposit randomly, a diversity of surfaces can be facilely tagged with NP deposits that serve as PUFs and are analyzed using optical microscopy. High encoding capacity is engineered into the tags by the sizes of the Au NPs, which provide a range of color responses, while their anisotropy provides sensitivity to light polarization. An estimated encoding capacity of 270n is achieved, which is one of the highest reported to date. Authentication of the tags with deep machine learning allows for high accuracy and rapid matching of a tag to a specific product. Moreover, the tags contain descriptive metadata that is leveraged to match a tag to a specific lot number (i.e., a collection of tags created in the same manner from the same formulation of anisotropic Au NPs). Overall, integration of designer plasmonic NPs with deep machine learning methods can create a rapidly authenticated anticounterfeit platform with high encoding capacity.
Collapse
Affiliation(s)
- Joshua D Smith
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Md Alimoor Reza
- Department of Computer Science, Indiana University, 700 N. Woodlawn Avenue, Bloomington, Indiana 47408, United States
| | - Nathanael L Smith
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jianxin Gu
- Department of Computer Science, Indiana University, 700 N. Woodlawn Avenue, Bloomington, Indiana 47408, United States
| | - Maha Ibrar
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - David J Crandall
- Department of Computer Science, Indiana University, 700 N. Woodlawn Avenue, Bloomington, Indiana 47408, United States
| | - Sara E Skrabalak
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
35
|
Sahu AK, Das A, Ghosh A, Raj S. Understanding blue shift of the longitudinal surface plasmon resonance during growth of gold nanorods. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abd966] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
We have investigated in detail the growth dynamics of gold nanorods with various aspect ratios in different surrounding environments. Surprisingly, a blue shift in the temporal evolution of colloidal gold nanorods in aqueous medium has been observed during the growth of nanorods by UV–visible absorption spectroscopy. The longitudinal surface plasmon resonance peak evolves as soon as the nanorods start to grow from spheres, and the system undergoes a blue shift in the absorption spectra. Although a red-shift is expected as a natural phenomenon during the growth process of all nano-systems, our blue shift observation is regarded as a consequence of competition between the parameters of growth solution and actual growth of nanorods. The growth of nanorods contributes to the red-shift which is hidden under the dominating contribution of the growth solution responsible for the observed massive blue shift.
Collapse
|
36
|
Khosravi A, Baharifar H, Darvishi MH, Karimi Zarchi AA. Investigation of chitosan-g-PEG grafted nanoparticles as a half-life enhancer carrier for tissue plasminogen activator delivery. IET Nanobiotechnol 2021; 14:899-907. [PMID: 33399124 DOI: 10.1049/iet-nbt.2019.0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tissue plasminogen activator (tPA) a thrombolytic agent is commonly used for digesting the blood clot. tPA half-life is low (4-6 min) and its administration needs a prolonged continuous infusion. Improving tPA half-life could reduce enzyme dosage and enhance patient compliance. Nano-carries could be used as delivery systems for the protection of enzymes physically, enhancing half-life and increasing the stability of them. In this study, chitosan (CS) and polyethylene glycol (PEG) were used for the preparation of CS-g-PEG/tPA nanoparticles (NPs) via the ion gelation method. Particles' size and loading capacity were optimised by central composite design. Then, NPs cytotoxicity, release profile, enzyme activity and in vivo half-life and coagulation time were investigated. The results showed that NPs does not have significant cytotoxicity. Release study revealed that a burst effect happened in the first 5 min and resulted in releasing 30% of tPA. Loading tPA in NPs could decrease 25% of its activity but the half-life of it increases in comparison to free tPA in vivo. Also, blood coagulation time has significantly affected (p-value = 0.041) by encapsulated tPA in comparison to free tPA. So, CS-g-PEG/tPA could increase enzyme half-life during the time and could be used as a non-toxic candidate delivery system for tPA.
Collapse
Affiliation(s)
- Arezoo Khosravi
- Atherosclerosis Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| | - Hadi Baharifar
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohamad Hasan Darvishi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Karimi Zarchi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Abareshi A, Arshadi Pirlar M, Houshiar M. Experimental and theoretical investigation of the photothermal effect in gold nanorods. NEW J CHEM 2021. [DOI: 10.1039/d0nj04580b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, gold nanorods (GNRs) were synthesized using a seed-mediated route and their photothermal properties were investigated experimentally as well as theoretically.
Collapse
Affiliation(s)
- Afsaneh Abareshi
- Department of Physics
- Shahid Beheshti University
- Tehran 1983969411
- Iran
| | | | | |
Collapse
|
38
|
Pretto T, Baum F, Fernandes Souza Andrade G, Leite Santos MJ. Design of experiments a powerful tool to improve the selectivity of copper antimony sulfide nanoparticles synthesis. CrystEngComm 2021. [DOI: 10.1039/d0ce01563f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Design of experiments to find the main factors governing phase compositions and nanoparticle size.
Collapse
Affiliation(s)
- Tatiane Pretto
- Programa de Pós-Graduação em Ciências de Materiais
- Universidade Federal do Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Fábio Baum
- Programa de Pós-Graduação em Ciências de Materiais
- Universidade Federal do Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Gustavo Fernandes Souza Andrade
- Laboratório de Nanoestruturas Plasmônicas
- Núcleo de Espectroscopia e Estrutura Molecular
- Centro de Estudos em Materiais
- Departamento de Química
- Universidade Federal de Juiz de Fora
| | - Marcos José Leite Santos
- Programa de Pós-Graduação em Ciências de Materiais
- Universidade Federal do Rio Grande do Sul
- Porto Alegre
- Brazil
- Instituto de Química
| |
Collapse
|
39
|
Du Z, Yan K, Cao Y, Li Y, Yao Y, Yang G. Regenerated keratin-encapsulated gold nanorods for chemo-photothermal synergistic therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111340. [DOI: 10.1016/j.msec.2020.111340] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 11/15/2022]
|
40
|
Lebepe TC, Parani S, Oluwafemi OS. Graphene Oxide-Coated Gold Nanorods: Synthesis and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2149. [PMID: 33126610 PMCID: PMC7693020 DOI: 10.3390/nano10112149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 01/29/2023]
Abstract
The application of gold nanorods (AuNRs) and graphene oxide (GO) has been widely studied due to their unique properties. Although each material has its own challenges, their combination produces an exceptional material for many applications such as sensor, therapeutics, and many others. This review covers the progress made so far in the synthesis and application of GO-coated AuNRs (GO-AuNRs). Initially, it highlights different methods of synthesizing AuNRs and GO followed by two approaches (ex situ and in situ approaches) of coating AuNRs with GO. In addition, the properties of GO-AuNRs composite such as biocompatibility, photothermal profiling, and their various applications, which include photothermal therapy, theranostic, sensor, and other applications of GO-AuNRs are also discussed. The review concludes with challenges associated with GO-AuNRs and future perspectives.
Collapse
Affiliation(s)
- Thabang C. Lebepe
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (T.C.L.); (S.P.)
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2028, South Africa
| | - Sundararajan Parani
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (T.C.L.); (S.P.)
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2028, South Africa
| | - Oluwatobi S. Oluwafemi
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (T.C.L.); (S.P.)
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
41
|
Pellas V, Hu D, Mazouzi Y, Mimoun Y, Blanchard J, Guibert C, Salmain M, Boujday S. Gold Nanorods for LSPR Biosensing: Synthesis, Coating by Silica, and Bioanalytical Applications. BIOSENSORS 2020; 10:E146. [PMID: 33080925 PMCID: PMC7603250 DOI: 10.3390/bios10100146] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022]
Abstract
Nanoparticles made of coinage metals are well known to display unique optical properties stemming from the localized surface plasmon resonance (LSPR) phenomenon, allowing their use as transducers in various biosensing configurations. While most of the reports initially dealt with spherical gold nanoparticles owing to their ease of synthesis, the interest in gold nanorods (AuNR) as plasmonic biosensors is rising steadily. These anisotropic nanoparticles exhibit, on top of the LSPR band in the blue range common with spherical nanoparticles, a longitudinal LSPR band, in all respects superior, and in particular in terms of sensitivity to the surrounding media and LSPR-biosensing. However, AuNRs synthesis and their further functionalization are less straightforward and require thorough processing. In this paper, we intend to give an up-to-date overview of gold nanorods in LSPR biosensing, starting from a critical review of the recent findings on AuNR synthesis and the main challenges related to it. We further highlight the various strategies set up to coat AuNR with a silica shell of controlled thickness and porosity compatible with LSPR-biosensing. Then, we provide a survey of the methods employed to attach various bioreceptors to AuNR. Finally, the most representative examples of AuNR-based LSPR biosensors are reviewed with a focus put on their analytical performances.
Collapse
Affiliation(s)
- Vincent Pellas
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, 4 Place Jussieu, F-75005 Paris, France
| | - David Hu
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Yacine Mazouzi
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Yoan Mimoun
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Juliette Blanchard
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Clément Guibert
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Michèle Salmain
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, 4 Place Jussieu, F-75005 Paris, France
| | - Souhir Boujday
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| |
Collapse
|
42
|
Lone IH, Aslam J, Radwan NR, Akhter A, Bashal AH, Shiekh RA. Review on Polymeric Citrate Precursor and Sono-chemical Methods for the Synthesis of Nanomaterials. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411015666191203102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
he properties of materials depend on the way of construction and the arrangement
of atoms and molecules. Therefore, it is very important to know synthesis methods for the
preparation of novel materials as per their desired structure. The low-temperature synthesis methods,
such as polymeric citrate precursor and sonochemical methods are efficient enough to control the
preparation of novel nanoparticles with morphological differences that leads to the novel devices
with desired technological performances. These methods are simple, very less expensive and are easy
to handle to operate for the synthesis of nanoparticles as per the expected morphology and dimensions.
Methods:
Polymeric citrate precursor method, a chelate-based method involves the reaction between
mixed cations with citric acid, and then these cations are cross-linked with the help of ethylene glycol
for the esterification process. Gel composites were heated which burns the organic moieties leaving
behind the nanoparticles, and burning gels becomes essential for the reduction of nanoparticles. The
sonochemical method, on the other hand, uses ultrasonic the irradiation results. The acoustic cavitation
and high intensity ultrasound has been exploited for the preparation of different series of nanoparticles.
Results:
Commonly known for polymeric citrate method as Pechini gel pyrolysis method gives the
evidence of versatile and elegant method for the synthesis of nanoparticles. The sonochemical method
provides an unusual route of nanoparticle fabrication without bulk and that too with low temperature
and pressure or less reaction time. These two methods have better control for the desired shape
morphology and size and provide many opportunities for the use of these prepared nanoparticles in
various aspects of science and technology.
Conclusion:
Polymeric citrate precursor and sonochemical methods are efficient to reduce to promote
desirable reaction conditions and reduce the metal ions for the fabrication of nanoparticles. The
prepared nanoparticles by using such low-cost elegant methods are uniform with a small size distribution,
reproducible with good yield as per the demanded applications.
Collapse
Affiliation(s)
- Irfan H. Lone
- Department of Chemistry, College of Science, Yanbu-30799, Taibah University, Al-Madina, Saudi Arabia
| | - Jeenat Aslam
- Department of Chemistry, College of Science, Yanbu-30799, Taibah University, Al-Madina, Saudi Arabia
| | - Nagi R.E. Radwan
- Department of Chemistry, College of Science, Yanbu-30799, Taibah University, Al-Madina, Saudi Arabia
| | - Arifa Akhter
- Department of Botany, Faculty of Science, Punjabi University, Patiala-147002, Punjab, India
| | - Ali H. Bashal
- Department of Chemistry, Taibah University, Al-Madina- 30002, Saudi Arabia
| | - Rayees A. Shiekh
- Department of Chemistry, Government Degree College Boys Pulwama, University of Kashmir, Srinagar, 190006, India
| |
Collapse
|
43
|
Gorbunova M, Apyari V, Dmitrienko S, Zolotov Y. Gold nanorods and their nanocomposites: Synthesis and recent applications in analytical chemistry. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Braham EJ, Davidson RD, Al-Hashimi M, Arróyave R, Banerjee S. Navigating the design space of inorganic materials synthesis using statistical methods and machine learning. Dalton Trans 2020; 49:11480-11488. [PMID: 32743629 DOI: 10.1039/d0dt02028a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Data-driven approaches have brought about a revolution in manufacturing; however, challenges persist in their applications to synthetic strategies. Their application to the deterministic navigation of reaction trajectories to stabilize crystalline solids with precise composition, atomic connectivity, microstructural dimensionality, and surface structure remains a frontier in inorganic materials research. The design of synthetic methodologies for the preparation of inorganic materials is often inefficient in terms of exploration of potentially vast design spaces spanning multiple process variables, reaction sequences, as well as structural parameters and reactivities of precursors and structure-directing agents. Reported synthetic methods are further limited in terms of the insight they provide into underlying chemical and physical principles. The recent surge in interest in accelerating the discovery of new materials can be considered as an opportunity to re-evaluate our approach to materials synthesis, and for considering new frameworks for exploration that are systematic and strategic in approach. Herein, we outline with the help of several illustrative examples, the challenges, opportunities, and limitations of data-driven synthesis design. The account collates discussion of design-of-experiments sampling methods, machine learning modeling, and active learning to develop experimental workflows that accelerate the experimental navigation of synthetic landscapes.
Collapse
Affiliation(s)
- Erick J Braham
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA. and Department of Material Science and Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Rachel D Davidson
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA. and Department of Material Science and Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Mohammed Al-Hashimi
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Raymundo Arróyave
- Department of Material Science and Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Sarbajit Banerjee
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA. and Department of Material Science and Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
45
|
Raghunathan K, Antony J, Munir S, Andreassen JP, Bandyopadhyay S. Tuning and tracking the growth of gold nanoparticles synthesized using binary surfactant mixtures. NANOSCALE ADVANCES 2020; 2:1980-1992. [PMID: 36132508 PMCID: PMC9417705 DOI: 10.1039/d0na00214c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/24/2020] [Indexed: 06/15/2023]
Abstract
Synthesis of gold nanorods (Au NRs) using surfactant-mediated seeded growth involves the interplay of parameters such as pH, reducing agent, and surfactant among others. The use of binary surfactant mixtures of cetyltrimethylammonium bromide (CTAB) and oleic acid (OA) has been reported by our group previously to obtain other anisotropic shapes. However, there are no reports investigating the growth kinetics and mechanisms of such shapes. Here, we report for the first time a ternary representation for compact visualization of shape transitions of gold nanoparticles (Au NPs) as a function of reaction parameters. Further, using UV-Vis spectrophotometry, the growth kinetics of these shapes was tracked using an in-house developed technique. The interplay between the experimental parameters and the properties of Au NPs was investigated using statistical analysis which showed that the reducing agent and pH were significant in influencing shape and growth kinetics. We further propose a growth mechanism in which the supersaturation of growth units controls the final shapes obtained.
Collapse
Affiliation(s)
- Karthik Raghunathan
- Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology N-7491 Trondheim Norway
| | - Jibin Antony
- Department of Chemical Engineering, Norwegian University of Science and Technology N-7491 Trondheim Norway
| | - Sarmad Munir
- Yara International ASA, Herøya Research Park Hydrovegen 67 3936 Porsgrunn Norway
| | - Jens-Petter Andreassen
- Department of Chemical Engineering, Norwegian University of Science and Technology N-7491 Trondheim Norway
| | - Sulalit Bandyopadhyay
- Department of Chemical Engineering, Norwegian University of Science and Technology N-7491 Trondheim Norway
| |
Collapse
|
46
|
Ali S, Sharma AS, Ahmad W, Zareef M, Hassan MM, Viswadevarayalu A, Jiao T, Li H, Chen Q. Noble Metals Based Bimetallic and Trimetallic Nanoparticles: Controlled Synthesis, Antimicrobial and Anticancer Applications. Crit Rev Anal Chem 2020; 51:454-481. [PMID: 32233874 DOI: 10.1080/10408347.2020.1743964] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Noble bimetallic and trimetallic nanoparticles (NBT-NPs) have superior biomedical applications as compared to their monometallic counterparts. The performance of these nanomaterials depends on their composition, shape and size. Hence, the controlled-synthesis of these nanomaterials is a hot area of research. Till date, no review article in the literature accounts regarding the controlled-synthesis and biomedical applications related to morphology, optimum composition, biocompatibility and versatile chemistry of NBT-NPs. Taking this into contemplation, an effort was made to provide a clear insight into the morphology-controlled synthesis and size/shape-dependent anticancer and bactericidal applications of NBT-NPs. Chemical reduction method for the controlled-synthesis of NBT-NPs is reviewed critically. Furthermore, the potential role of various reaction parameters such as time, reducing agents, stabilizing/capping agents, nature/concentration of precursors, temperature and pH in the shape/size-controlled synthesis of these nanomaterials are discussed. In the second part of this article, anticancer and bactericidal applications of the NBT-NPs are reviewed and the influences of optimum composition, size, surface structure, versatile chemistry and synergism are studied. Finally, the current challenges in the controlled-synthesis and biomedical applications of these nanomaterials, and prospects to resolve related issues are discussed. HighlightsChemical reduction method for the synthesis of NBT-NPs is reviewed.The influences of parameters on the control synthesis of NBT-NPs are discussed.Antibacterial and anticancer applications and cytotoxicity of NBT-NPs are reviewed.Possible solutions for the key challenges are discussed.Outlooks about the synthesis and biomedical applications of NBT-NPs are discussed.
Collapse
Affiliation(s)
- Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Arumugam Selva Sharma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Md Mehdi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | | | - Tianhui Jiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
47
|
Kang TH, Jin CM, Lee S, Choi I. Dual Mode Rapid Plasmonic Detections of Chemical Disinfectants (CMIT/MIT) Using Target-Mediated Selective Aggregation of Gold Nanoparticles. Anal Chem 2020; 92:4201-4208. [DOI: 10.1021/acs.analchem.9b04081] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tae Ho Kang
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Chang Min Jin
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Seungki Lee
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| |
Collapse
|
48
|
da Silva JA, Netz PA, Meneghetti MR. Growth Mechanism of Gold Nanorods: the Effect of Tip-Surface Curvature As Revealed by Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:257-263. [PMID: 31841340 DOI: 10.1021/acs.langmuir.9b03235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An understanding of the anisotropic growth mechanism of gold nanorods (AuNRs) during colloidal synthesis is critical for controlling the nanocrystal size and shape and thus has implications in tuning the properties for applications in a wide range of research and technology fields. In order to investigate the role of the cetyltrimethylammonium bromide (CTAB) coating in the anisotropic growth mechanism of AuNRs, we used molecular dynamics (MD) simulations and built a computational model that considered explicitly the effect of the curvature of the gold surface on CTAB adsorption and therefore differentiated between the CTAB arrangements on flat and curved surfaces, representing the lateral and tip facets of growing AuNRs, respectively. We verified that on a curved surface, a lower CTAB coverage density and larger intermicellar channels are generated compared to those on a flat surface. Using umbrella sampling simulations, we measured the free energy profile and verified that the environment around a curved surface corresponds to an easier migration from the solution to the gold surface for the [AuBr2]- species than does a flat surface. Long unbiased molecular dynamics simulations also corroborated the umbrella sampling results. Therefore, the [AuBr2]- diffusion through the environment of the tips is much more favorable than that in the case of lateral facets. This shows that the surface curvature is an essential component of the anisotropic growth mechanism.
Collapse
Affiliation(s)
- José A da Silva
- Grupo de Catálise e Reatividade Química - GCaR, Instituto de Química e Biotecnologia , Universidade Federal de Alagoas , Av. Lourival de Melo Mota, s/n, CEP 57072-970 , Maceió , Alagoas Brazil
| | - Paulo A Netz
- Institute of Chemistry - Federal University of the Rio Grande do Sul , Av. Bento Gonçalves, 9500 CEP , 91501-970 , Porto Alegre , Rio Grande do Sul Brazil
| | - Mario R Meneghetti
- Grupo de Catálise e Reatividade Química - GCaR, Instituto de Química e Biotecnologia , Universidade Federal de Alagoas , Av. Lourival de Melo Mota, s/n, CEP 57072-970 , Maceió , Alagoas Brazil
| |
Collapse
|
49
|
Shin SW, Yuk JS, Chun SH, Lim YT, Um SH. Hybrid material of structural DNA with inorganic compound: synthesis, applications, and perspective. NANO CONVERGENCE 2020; 7:2. [PMID: 31903521 PMCID: PMC6943097 DOI: 10.1186/s40580-019-0211-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/01/2019] [Indexed: 05/06/2023]
Abstract
Owing to its precise manipulation in nanoscale, DNA as a genetic code becomes a promising and generic material in lots of nanotechnological outstanding exploitations. The nanoscale assembly of nucleic acids in aqueous solution has showed very remarkable capability that is not achievable from any other material resources. In the meantime, their striking role played by effective intracellular interactions have been identified, making these more attractive for a variety of biological applications. Lately, a number of interesting attempts have been made to augment their marvelous diagnostic and therapeutic capabilities, as being integrated with inorganic compounds involving gold, iron oxide, quantum dot, upconversion, etc. It was profoundly studied how structural DNA-inorganic hybrid materials have complemented with each other in a synergistic way for better-graded biological performances. Such hybrid materials consisting of both structural DNAs and inorganics are gradually receiving much attention as a practical and future-oriented material substitute. However, any special review articles highlighting the significant and innovative materials have yet to be published. At the first time, we here demonstrate novel hybrid complexes made of structural DNAs and inorganics for some practical applications.
Collapse
Affiliation(s)
- Seung Won Shin
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419 South Korea
| | - Ji Soo Yuk
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419 South Korea
| | - Sang Hun Chun
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419 South Korea
| | - Yong Taik Lim
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419 South Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419 South Korea
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419 South Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419 South Korea
| |
Collapse
|
50
|
Park J, Kang TH, Choi I, Choe J. Induction of crystal nucleation by orientation-controlled binding of His 6-tagged proteins to functionalized gold nanoparticles. CrystEngComm 2020. [DOI: 10.1039/c9ce01786k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functionalized gold nanoparticles can induce crystal nucleation by orientation-controlled NTA–Ni2+– His6-tagged protein binding.
Collapse
Affiliation(s)
- Jiyeon Park
- Department of Life Science
- University of Seoul
- Seoul 02504
- Republic of Korea
| | - Tae Ho Kang
- Department of Life Science
- University of Seoul
- Seoul 02504
- Republic of Korea
| | - Inhee Choi
- Department of Life Science
- University of Seoul
- Seoul 02504
- Republic of Korea
| | - Jungwoo Choe
- Department of Life Science
- University of Seoul
- Seoul 02504
- Republic of Korea
| |
Collapse
|