1
|
Hardt M, Honnigfort C, Carrascosa-Tejedor J, Braun MG, Winnall S, Glikman D, Gutfreund P, Campbell RA, Braunschweig B. Photoresponsive arylazopyrazole surfactant/PDADMAC mixtures: reversible control of bulk and interfacial properties. NANOSCALE 2024; 16:9975-9984. [PMID: 38695540 DOI: 10.1039/d3nr05414d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
In many applications of polyelectrolyte/surfactant (P/S) mixtures, it is difficult to fine-tune them after mixing the components without changing the sample composition, e.g. pH or the ionic strength. Here we report on a new approach where we use photoswitchable surfactants to enable drastic changes in both the bulk and interfacial properties. Poly(diallyldimethylammonium chloride) (PDADMAC) mixtures with three alkyl-arylazopyrazole butyl sulfonates (CnAAP) with -H, -butyl and -octyl tails are applied and E/Z photoisomerization of the surfactants is used to cause substantially different hydrophobic interactions between the surfactants and PDADMAC. These remotely controlled changes affect significantly the P/S binding and allows for tuning both the bulk and interfacial properties of PDADMAC/CnAAP mixtures through light irradiation. For that, we have fixed the surfactant concentrations at values where they exhibit pronounced surface tension changes upon E/Z photoisomerization with 365 nm UV light (Z) and 520 nm green (E) light and have varied the PDADMAC concentration. The electrophoretic mobility can be largely tuned by photoisomerisation of CnAAP surfactants and P/S aggregates, which can even exhibit a charge reversal from negative to positive values or vice versa. In addition, low colloidal stability at equimolar concentrations of PDADMAC with CnAAP surfactants in the E configuration lead to the formation of large aggregates in the bulk which can be broken up by irradiation with UV light when the surfactant's alkyl chain is short enough (C0AAP). Vibrational sum-frequency generation (SFG) spectroscopy reveals changes at the interface similar to the bulk, where the charging state at air-water interfaces can be modified with light irradiation. Using SFG spectroscopy, we interrogated the O-H stretching modes of interfacial H2O and provide qualitative information on surface charging that is complemented by neutron reflectometry, from which we resolved the surface excesses of PDADMAC and CnAAP at the air-water interface, independently.
Collapse
Affiliation(s)
- Michael Hardt
- Institute of Physical Chemistry and Center for Soft Nanoscience, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany.
| | - Christian Honnigfort
- Institute of Physical Chemistry and Center for Soft Nanoscience, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany.
| | - Javier Carrascosa-Tejedor
- Institut Laue-Langevin (ILL), 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
- Division of Pharmacy & Optometry, University of Manchester, Manchester M13 9PT, UK
| | - Marius G Braun
- Institute of Physical Chemistry and Center for Soft Nanoscience, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany.
| | - Samuel Winnall
- Institut Laue-Langevin (ILL), 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
- Division of Pharmacy & Optometry, University of Manchester, Manchester M13 9PT, UK
| | - Dana Glikman
- Institute of Physical Chemistry and Center for Soft Nanoscience, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany.
| | - Philipp Gutfreund
- Institut Laue-Langevin (ILL), 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Richard A Campbell
- Division of Pharmacy & Optometry, University of Manchester, Manchester M13 9PT, UK
| | - Björn Braunschweig
- Institute of Physical Chemistry and Center for Soft Nanoscience, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany.
| |
Collapse
|
2
|
Su X, Wan Z, Lu Y, Rojas O. Control of the Colloidal and Adsorption Behaviors of Chitin Nanocrystals and an Oppositely Charged Surfactant at Solid, Liquid, and Gas Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4881-4892. [PMID: 38386001 DOI: 10.1021/acs.langmuir.3c03787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Chitin has a unique hierarchical structure, spanning the macro- and nanoscales, and presents chemical characteristics that make it a suitable component of multiphase systems. Herein, we elucidate the colloidal interactions between partially deacetylated chitin nanocrystals (cationic ChNC) and an anionic surfactant, sodium dodecyl sulfate (SDS). We investigate charge neutralization and association (electrophoretic mobility, surface tensiometry, and quartz crystal microgravimetry) and their role in the stabilization of Pickering emulsions. We find SDS adsorption and association with ChNC under distinctive regimes: At low SDS concentration, submonolayer assemblies form on ChNC, driven by the hydrophobic effect and electrostatic interactions. With the increased SDS concentration, bilayers or patchy bilayers form, followed by adsorbed hemimicelles and micelles. We further suggested the role of hydrophobic effects in the observed colloidal transitions and complex conformations. At the highest SDS concentration tested, charge neutralization and SDS/ChNC flocculation take place. Remarkably, at given concentrations, adsorbed SDS endows the chitin nanoparticles with an effective hydrophobicity that opens the opportunity to achieve tailorable Pickering stabilization. Hence, a facile route is proposed by in situ modification by SDS physisorption, which extends the potential of renewable nanoparticles in the formulation of complex fluids, for instance, those relevant to household and healthcare products.
Collapse
Affiliation(s)
- Xiaoya Su
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zhangmin Wan
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Orlando Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Wood Science, University of British Columbia, Vancouver, 2424 Main Mall 2900, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
3
|
Ritacco HA. Polyelectrolyte/Surfactant Mixtures: A Pathway to Smart Foams. ACS OMEGA 2022; 7:36117-36136. [PMID: 36278099 PMCID: PMC9583308 DOI: 10.1021/acsomega.2c05739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/26/2022] [Indexed: 05/10/2023]
Abstract
This review deals with liquid foams stabilized by polyelectrolyte/surfactant (PS) complexes in aqueous solution. It briefly reviews all the important aspects of foam physics at several scales, from interfaces to macroscopic foams, needed to understand the basics of these complex systems, focusing on those particular aspects of foams stabilized by PS mixtures. The final section includes a few examples of smart foams based on PS complexes that have been reported recently in the literature. These PS complexes open an opportunity to develop new intelligent dispersed materials with potential in many fields, such as oil industry, environmental remediation, and pharmaceutical industry, among others. However, there is much work to be done to understand the mechanism involved in the stabilization of foams with PS complexes. Understanding those underlying mechanisms is vital to successfully formulate smart systems. This review is written in the hope of stimulating further work in the physics of PS foams and, particularly, in the search for responsive foams based on polymer-surfactant mixtures.
Collapse
|
4
|
Bezrodnyhk EA, Berezin BB, Antonov YA, Zhuravleva IL, Atamas AA, Tsarenko AA, Rogachev AV, Tikhonov VE. A feasible approach to tune the interaction of chitosan with sodium dodecyl sulfate. Carbohydr Polym 2022; 292:119642. [DOI: 10.1016/j.carbpol.2022.119642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
|
5
|
Braun L, Uhlig M, Löhmann O, Campbell RA, Schneck E, von Klitzing R. Insights into Extended Structures and Their Driving Force: Influence of Salt on Polyelectrolyte/Surfactant Mixtures at the Air/Water Interface. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27347-27359. [PMID: 35639454 DOI: 10.1021/acsami.2c04421] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This paper addresses the effect of polyelectrolyte stiffness on the surface structure of polyelectrolyte (P)/surfactant (S) mixtures. Therefore, two different anionic Ps with different intrinsic persistence length lP are studied while varying the salt concentration (0-10-2 M). Either monosulfonated polyphenylene sulfone (sPSO2-220, lP ∼20 nm) or sodium poly(styrenesulfonate) (PSS, lP ∼1 nm) is mixed with the cationic surfactant tetradecyltrimethylammonium bromide (C14TAB) well below its critical micelle concentration and studied with tensiometry and neutron reflectivity experiments. We kept the S concentration (10-4 M) constant, while we varied the P concentration (10-5-10-3 M of the monomer, denoted as monoM). P and S adsorb at the air/water interface for all studied mixtures. Around the bulk stoichiometric mixing point (BSMP), PSS/C14TAB mixtures lose their surface activity, whereas sPSO2-220/C14TAB mixtures form extended structures perpendicular to the surface (meaning a layer of S with attached P and additional layers of P and S underneath instead of only a monolayer of S with P). Considering the different P monomer structures as well as the impact of salt, we identified the driving force for the formation of these extended structures: compensation of all interfacial charges (P/S ratio ∼1) to maximize the gain of entropy. By increasing the flexibility of P, we can tune the interfacial structures from extended structures to monolayers. These findings may help improve applications based on the adsorption of P/S mixtures in the fields of cosmetic or oil recovery.
Collapse
Affiliation(s)
- Larissa Braun
- Soft Matter at Interfaces, Department of Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Martin Uhlig
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Oliver Löhmann
- Soft Matter at Interfaces, Department of Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | | | - Emanuel Schneck
- Soft Matter Biophysics, Department of Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Regine von Klitzing
- Soft Matter at Interfaces, Department of Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
6
|
Kikuchi K, Iwasawa A, Omori M, Mayama H, Nonomura Y. Friction Dynamics of Foams under Nonlinear Motion. ACS OMEGA 2022; 7:16515-16523. [PMID: 35601302 PMCID: PMC9118422 DOI: 10.1021/acsomega.2c00677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Foams are viscoelastic soft materials with complex mechanical properties. Here, we evaluated the friction dynamics of foams between acrylic plates using a sinusoidal motion friction evaluation system and we found some interesting characteristics under accelerated conditions. On a typical solid surface, a symmetrical friction profile, in which static and kinetic frictions are observed, is obtained under reciprocating nonlinear motion. Meanwhile, significant lubricant effects and velocity-dependent friction profiles without static friction were observed in foams. The friction force in foams increased in proportion to the power of velocity, with a power index of <1. These characteristic and dynamic phenomena in foams were observed in this study. They had been caused by the formation of a thick lubricant film and various dissipative modes including surfactant diffusion, viscous dissipation, and wall slip of bubbles. Moreover, the addition of a thickener increased the friction force and the delay time of friction response and improved the foam durability against normal force and shear. These findings are useful for understanding dynamic phenomena in soft materials.
Collapse
Affiliation(s)
- Kei Kikuchi
- Department
of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan
| | - Akari Iwasawa
- Department
of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan
| | - Mitsuki Omori
- Department
of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan
| | - Hiroyuki Mayama
- Department
of Chemistry, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Yoshimune Nonomura
- Department
of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan
| |
Collapse
|
7
|
Guzmán E, Martínez-Pedrero F, Calero C, Maestro A, Ortega F, Rubio RG. A broad perspective to particle-laden fluid interfaces systems: from chemically homogeneous particles to active colloids. Adv Colloid Interface Sci 2022; 302:102620. [PMID: 35259565 DOI: 10.1016/j.cis.2022.102620] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/12/2023]
Abstract
Particles adsorbed to fluid interfaces are ubiquitous in industry, nature or life. The wide range of properties arising from the assembly of particles at fluid interface has stimulated an intense research activity on shed light to the most fundamental physico-chemical aspects of these systems. These include the mechanisms driving the equilibration of the interfacial layers, trapping energy, specific inter-particle interactions and the response of the particle-laden interface to mechanical perturbations and flows. The understanding of the physico-chemistry of particle-laden interfaces becomes essential for taking advantage of the particle capacity to stabilize interfaces for the preparation of different dispersed systems (emulsions, foams or colloidosomes) and the fabrication of new reconfigurable interface-dominated devices. This review presents a detailed overview of the physico-chemical aspects that determine the behavior of particles trapped at fluid interfaces. This has been combined with some examples of real and potential applications of these systems in technological and industrial fields. It is expected that this information can provide a general perspective of the topic that can be exploited for researchers and technologist non-specialized in the study of particle-laden interfaces, or for experienced researcher seeking new questions to solve.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain.
| | - Fernando Martínez-Pedrero
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Carles Calero
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Avenida Diagonal 647, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia, IN2UB, Universitat de Barcelona, Avenida, Diagonal 647, 08028 Barcelona, Spain
| | - Armando Maestro
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU)-Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Ramón G Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain.
| |
Collapse
|
8
|
Fernández-Peña L, Guzmán E, Fernández-Pérez C, Barba-Nieto I, Ortega F, Leonforte F, Rubio RG, Luengo GS. Study of the Dilution-Induced Deposition of Concentrated Mixtures of Polyelectrolytes and Surfactants. Polymers (Basel) 2022; 14:polym14071335. [PMID: 35406209 PMCID: PMC9003019 DOI: 10.3390/polym14071335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023] Open
Abstract
Mixtures of polyelectrolytes and surfactants are commonly used in many technological applications where the challenge is to provide well-defined modifications of the surface properties, as is the case of washing formulations in cosmetics. However, if contemporary experimental and theoretical methods can provide insights on their behavior in concentrated formulations, less is known on their behavior under practical use conditions, e.g., under dilution and vectorization of deposits. This makes it difficult to make predictions for specific performance, as, for example, good hair manageability after a shampoo or a comfortable sensorial appreciation after a skin cleanser. This is especially important when considering the formulation of new, more eco-friendly formulations. In this work, a detailed study of the phase separation process induced by dilution is described, as well as the impact on the deposition of conditioning material on negatively charged surfaces. In order to gain a more detailed physical insight, several polyelectrolyte–surfactant pairs, formed by two different polymers and five surfactants that, although non-natural or eco-friendly, can be considered as models of classical formulations, have been studied. The results evidenced that upon dilution the behavior, and hence its deposition onto the surface, cannot be predicted in terms of the behavior of simpler pseudo-binary (mixtures of a polymer and a surfactant) or pseudo-ternary mixtures (two polymers and a surfactant). In many cases, phase separation was observed for concentrations similar to those corresponding to the components in some technological formulations, whereas the latter appeared as monophasic systems. Therefore, it may be assumed that the behavior in multicomponent formulations is the result of a complex interplay of synergistic interactions between the different components that will require revisiting when new, more eco-sustainable ingredients are considered.
Collapse
Affiliation(s)
- Laura Fernández-Peña
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (L.F.-P.); (C.F.-P.); (I.B.-N.); (F.O.)
- Centro de Espectroscopía y Correlación, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (L.F.-P.); (C.F.-P.); (I.B.-N.); (F.O.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
- Correspondence: (E.G.); (R.G.R.); (G.S.L.)
| | - Coral Fernández-Pérez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (L.F.-P.); (C.F.-P.); (I.B.-N.); (F.O.)
| | - Irene Barba-Nieto
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (L.F.-P.); (C.F.-P.); (I.B.-N.); (F.O.)
| | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (L.F.-P.); (C.F.-P.); (I.B.-N.); (F.O.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Fabien Leonforte
- L’Oréal Research and Innovation, 1 Avenue Eugène Schueller, 93600 Aulnay-Sous-Bois, France;
| | - Ramón G. Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (L.F.-P.); (C.F.-P.); (I.B.-N.); (F.O.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
- Correspondence: (E.G.); (R.G.R.); (G.S.L.)
| | - Gustavo S. Luengo
- L’Oréal Research and Innovation, 1 Avenue Eugène Schueller, 93600 Aulnay-Sous-Bois, France;
- Correspondence: (E.G.); (R.G.R.); (G.S.L.)
| |
Collapse
|
9
|
Fluid Films as Models for Understanding the Impact of Inhaled Particles in Lung Surfactant Layers. COATINGS 2022. [DOI: 10.3390/coatings12020277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pollution is currently a public health problem associated with different cardiovascular and respiratory diseases. These are commonly originated as a result of the pollutant transport to the alveolar cavity after their inhalation. Once pollutants enter the alveolar cavity, they are deposited on the lung surfactant (LS) film, altering their mechanical performance which increases the respiratory work and can induce a premature alveolar collapse. Furthermore, the interactions of pollutants with LS can induce the formation of an LS corona decorating the pollutant surface, favoring their penetration into the bloodstream and distribution along different organs. Therefore, it is necessary to understand the most fundamental aspects of the interaction of particulate pollutants with LS to mitigate their effects, and design therapeutic strategies. However, the use of animal models is often invasive, and requires a careful examination of different bioethics aspects. This makes it necessary to design in vitro models mimicking some physico-chemical aspects with relevance for LS performance, which can be done by exploiting the tools provided by the science and technology of interfaces to shed light on the most fundamental physico-chemical bases governing the interaction between LS and particulate matter. This review provides an updated perspective of the use of fluid films of LS models for shedding light on the potential impact of particulate matter in the performance of LS film. It should be noted that even though the used model systems cannot account for some physiological aspects, it is expected that the information contained in this review can contribute on the understanding of the potential toxicological effects of air pollution.
Collapse
|
10
|
In situ determination of the structure and composition of Langmuir monolayers at the air/water interface by neutron and X-ray reflectivity and ellipsometry. Adv Colloid Interface Sci 2021; 293:102434. [PMID: 34022749 DOI: 10.1016/j.cis.2021.102434] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
This review focuses on the description of the structure and composition of a variety of Langmuir monolayers (LMs) deposited at the air/water interface by using ellipsometry, Brewster Angle microscopy and scattering techniques, mainly neutron and X-ray reflectometry. Since the first experiment done by Angels Pockels with a homemade trough in her home kitchen until today, LMs of different materials have been extensively studied providing not only relevant model systems in biology, physics and chemistry but also precursors of novel materials via their deposition on solid substrates. There is a vast amount of surface-active materials that can form LMs and, therefore, far from a revision of the state-of-the-art, we will emphasize here: (i) some fundamental aspects to understand the physics behind the molecular deposition at the air/water interface; (ii) the advantages in using in situ techniques, such as reflectometry or ellipsometry, to resolve the interfacial architecture and conformation of molecular films; and, finally, (iii) a summary of several systems that have certain interest from the experimental or conceptual point of view. Concretely, we will report here advances in polymers confined to interfaces and surfactants, from fatty acids and phospholipids monolayers to more unconventional ones such as graphene oxide.
Collapse
|
11
|
Guzmán E, Abelenda-Núñez I, Maestro A, Ortega F, Santamaria A, Rubio RG. Particle-laden fluid/fluid interfaces: physico-chemical foundations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:333001. [PMID: 34102618 DOI: 10.1088/1361-648x/ac0938] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Particle-laden fluid/fluid interfaces are ubiquitous in academia and industry, which has fostered extensive research efforts trying to disentangle the physico-chemical bases underlying the trapping of particles to fluid/fluid interfaces as well as the properties of the obtained layers. The understanding of such aspects is essential for exploiting the ability of particles on the stabilization of fluid/fluid interface for the fabrication of novel interface-dominated devices, ranging from traditional Pickering emulsions to more advanced reconfigurable devices. This review tries to provide a general perspective of the physico-chemical aspects associated with the stabilization of interfaces by colloidal particles, mainly chemical isotropic spherical colloids. Furthermore, some aspects related to the exploitation of particle-laden fluid/fluid interfaces on the stabilization of emulsions and foams will be also highlighted. It is expected that this review can be used for researchers and technologist as an initial approach to the study of particle-laden fluid layers.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Irene Abelenda-Núñez
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Francisco Ortega
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Andreas Santamaria
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Institut Laue-Langevin, Grenoble, France
| | - Ramón G Rubio
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
12
|
Polyelectrolyte Multilayers on Soft Colloidal Nanosurfaces: A New Life for the Layer-By-Layer Method. Polymers (Basel) 2021; 13:polym13081221. [PMID: 33918844 PMCID: PMC8069484 DOI: 10.3390/polym13081221] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
The Layer-by-Layer (LbL) method is a well-established method for the assembly of nanomaterials with controlled structure and functionality through the alternate deposition onto a template of two mutual interacting molecules, e.g., polyelectrolytes bearing opposite charge. The current development of this methodology has allowed the fabrication of a broad range of systems by assembling different types of molecules onto substrates with different chemical nature, size, or shape, resulting in numerous applications for LbL systems. In particular, the use of soft colloidal nanosurfaces, including nanogels, vesicles, liposomes, micelles, and emulsion droplets as a template for the assembly of LbL materials has undergone a significant growth in recent years due to their potential impact on the design of platforms for the encapsulation and controlled release of active molecules. This review proposes an analysis of some of the current trends on the fabrication of LbL materials using soft colloidal nanosurfaces, including liposomes, emulsion droplets, or even cells, as templates. Furthermore, some fundamental aspects related to deposition methodologies commonly used for fabricating LbL materials on colloidal templates together with the most fundamental physicochemical aspects involved in the assembly of LbL materials will also be discussed.
Collapse
|
13
|
Evaporation of Sessile Droplets of Polyelectrolyte/Surfactant Mixtures on Silicon Wafers. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The wetting and evaporation behavior of droplets of aqueous solutions of mixtures of poly(diallyldimethylammonium chloride) solution, PDADMAC, with two different anionic surfactants, sodium laureth sulfate, SLES, and sodium N-lauroyl N-methyl taurate, SLMT, were studied in terms of the changes of the contact angle θ and contact length L of sessile droplets of the mixtures on silicon wafers at a temperature of 25 °C and different relative humidities in the range of 30–90%. The advancing contact angle θa was found to depend on the surfactant concentration, independent of the relative humidity, with the mixtures containing SLES presenting improved wetting behaviors. Furthermore, a constant droplet contact angle was not observed during evaporation due to pinning of the droplet at the coffee-ring that was formed. The kinetics for the first evaporation stage of the mixture were independent of the relative humidity, with the evaporation behavior being well described in terms of the universal law for evaporation.
Collapse
|
14
|
Bertsch P, Böcker L, Mathys A, Fischer P. Proteins from microalgae for the stabilization of fluid interfaces, emulsions, and foams. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Ofridam F, Lebaz N, Gagnière É, Mangin D, Elaissari A. Polymethylmethacrylate derivatives Eudragit
E100
and
L100
: Interactions and complexation with surfactants. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fabrice Ofridam
- Univ Lyon, University Claude Bernard Lyon‐1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Noureddine Lebaz
- Univ Lyon, University Claude Bernard Lyon‐1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Émilie Gagnière
- Univ Lyon, University Claude Bernard Lyon‐1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Denis Mangin
- Univ Lyon, University Claude Bernard Lyon‐1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon‐1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| |
Collapse
|
16
|
Braun L, Kühnhammer M, von Klitzing R. Stability of aqueous foam films and foams containing polymers: Discrepancies between different length scales. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Adsorption of Mixtures of a Pegylated Lipid with Anionic and Zwitterionic Surfactants at Solid/Liquid. COLLOIDS AND INTERFACES 2020. [DOI: 10.3390/colloids4040047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This work explores the association of a pegylated lipid (DSPE-PEG) with different anionic and zwitterionic surfactants (pseudo-binary and pseudo-ternary polymer+ surfactant mixtures), and the adsorption of the polymer + surfactant aggregates onto negatively charged surfaces, with a surface charge density similar to that existing on the damaged hair epicuticle. Dynamic light scattering and zeta potential measurements shows that, in solution, the polymer + surfactant association results from an intricate balance between electrostatic and hydrophobic interactions, which leads to the formation of at least two different types of micellar-like polymer + surfactant aggregates. The structure and physicochemical properties of such aggregates were found strongly dependent on the specific nature and concentration of the surfactant. The adsorption of the polymer + surfactant aggregates onto negatively charged surface was studied using a set of surface-sensitive techniques (quartz crystal microbalance with dissipation monitoring, ellipsometry and Atomic Force Microscopy), which allows obtaining information about the adsorbed amount, the water content of the layers and the topography of the obtained films. Ion-dipole interactions between the negative charges of the surface and the oxyethylene groups of the polymer + surfactant aggregates appear as the main driving force of the deposition process. This is strongly dependent on the surfactant nature and its concentration, with the impact of the latter on the adsorption being especially critical when anionic surfactant are incorporated within the aggregates. This study opens important perspectives for modulating the deposition of a poorly interacting polymer onto negatively charged surfaces, which can impact in the fabrication on different aspects with technological and industrial interest.
Collapse
|
18
|
Akanno A, Guzmán E, Ortega F, Rubio RG. Behavior of the water/vapor interface of chitosan solutions with an anionic surfactant: effect of polymer-surfactant interactions. Phys Chem Chem Phys 2020; 22:23360-23373. [PMID: 33047113 DOI: 10.1039/d0cp02470h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The adsorption of mixtures formed by chitosan and sodium lauryl ether sulfate (SLES) at the water/vapor interface has been studied on the basis of their impact on the equilibrium surface tension of the interface, and the response of such an interface to mechanical deformations. The analysis of the surfactant binding to the chitosan chains evidenced that the chitosan-SLES solutions were mixtures of polyelectrolyte-surfactant complexes and a non-negligible amount of free surfactant molecules. The interfacial properties showed two well-differentiated regions for interfacial adsorption as a function of the SLES concentration: (i) at a low surfactant concentration, co-adsorption of chitosan and SLES occurs, and (ii) at high concentrations, the surface is mostly occupied by SLES molecules. This behavior may be interpreted in terms of a complex equilibration mechanism of the interfacial layers, where different coupled dynamic processes may be involved. Furthermore, the use of the time-concentration superposition principle has confirmed the different dynamic behaviors of the chitosan-SLES adsorption as a function of the SLES concentration. This work sheds light on some of the most fundamental bases governing the physico-chemical behavior of mixtures formed by a biopolymer and a surfactant, where their complex behavior is governed by an intricate balance of bulk and interfacial interactions.
Collapse
Affiliation(s)
- Andrew Akanno
- Departamento de Química Física-Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
19
|
In honor to Ramón G. Rubio on the occasion of his 65th birthday. Adv Colloid Interface Sci 2020; 282:102202. [PMID: 32663706 DOI: 10.1016/j.cis.2020.102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This Honorary Note is dedicated to the 65th birthday of Ramón G. Rubio and summarizes some of his contributions to the current knowledge in the science and technology of colloids and interfaces. Since 1995, Ramón González Rubio is Full Professor at the Complutense University of Madrid (Spain) where he has developed an extensive research activity in different scientific and technological aspects related to colloidal systems and interfacial phenomena: from particle-laden interfaces to polyelectrolyte multilayers, including the kinetics of simultaneous spreading and evaporation of solutions (and dispersions) and interfacial rheology. This broad research activity has contributed to some of the most recent advances in colloid and interface science, which is reflected in more than 200 papers in peer-reviewed journals and more than 4000 citations according to the Web of Science.
Collapse
|
20
|
Guzmán E, Fernández-Peña L, Ortega F, Rubio RG. Equilibrium and kinetically trapped aggregates in polyelectrolyte–oppositely charged surfactant mixtures. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Fernández-Peña L, Abelenda-Nuñez I, Hernández-Rivas M, Ortega F, Rubio RG, Guzmán E. Impact of the bulk aggregation on the adsorption of oppositely charged polyelectrolyte-surfactant mixtures onto solid surfaces. Adv Colloid Interface Sci 2020; 282:102203. [PMID: 32629241 DOI: 10.1016/j.cis.2020.102203] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/28/2022]
Abstract
The understanding of the deposition of oppositely charged polyelectrolytes-surfactant mixtures onto solid surfaces presents a high interest in current days due to the recognized impact of the obtained layers on different industrial sectors and the performance of several consumer products (e.g. formulations of shampoos and hair conditioners). This results from the broad range of structures and properties that can present the mixed layers, which in most of the cases mirror the association process occurring between the polyelectrolyte chains and the oppositely charged surfactants in the bulk. Therefore, the understanding of the adsorption processes and characteristics of the adsorbed layers can be only attained from a careful examination of the self-assembly processes occurring in the solution. This review aims to contribute to the understanding of the interaction of polyelectrolyte-surfactant mixtures with solid surfaces, which is probably one of the most underexplored aspects of these type of systems. For this purpose, a comprehensive discussion on the correlations between the aggregates formed in the solutions and the deposition of the obtained complexes upon such association onto solid surfaces will be presented. This makes it necessary to take a closer look to the most important forces driving such processes.
Collapse
Affiliation(s)
- Laura Fernández-Peña
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain; Centro de Espectroscopia Infrarroja-Raman-Correlación, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, Madrid 28040, Spain.
| | - Irene Abelenda-Nuñez
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - María Hernández-Rivas
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - Francisco Ortega
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, Madrid 28040, Spain
| | - Ramón G Rubio
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, Madrid 28040, Spain
| | - Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, Madrid 28040, Spain.
| |
Collapse
|
22
|
Guzmán E, Fernández-Peña L, S. Luengo G, Rubio AM, Rey A, Léonforte F. Self-Consistent Mean Field Calculations of Polyelectrolyte-Surfactant Mixtures in Solution and upon Adsorption onto Negatively Charged Surfaces. Polymers (Basel) 2020; 12:E624. [PMID: 32182867 PMCID: PMC7182847 DOI: 10.3390/polym12030624] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 01/18/2023] Open
Abstract
Self-Consistent Mean-Field Calculations (SCF) have provided a semi-quantitative description of the physico-chemical behavior of six different polyelectrolyte-surfactant mixtures. The SCF calculations performed showed that both the formation of polymer-surfactant in bulk and the adsorption of the formed complexes onto negatively-charged surfaces are strongly affected by the specific nature of the considered systems, with the polymer-surfactant interactions playing a central role in the self-assembly of the complexes that, in turn, affects their adsorption onto interfaces and surfaces. This work evidences that SCF calculations are a valuable tool for deepening on the understanding of the complex physico-chemical behavior of polyelectrolyte-surfactant mixtures. However, it is worth noting that the framework obtained on the basis of an SCF approach considered an equilibrium situation which may, in some cases, be far from the real situation appearing in polyelectrolyte-surfactant systems.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.F.-P.); (A.M.R.); (A.R.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Laura Fernández-Peña
- Departamento de Química Física, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.F.-P.); (A.M.R.); (A.R.)
| | | | - Ana María Rubio
- Departamento de Química Física, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.F.-P.); (A.M.R.); (A.R.)
| | - Antonio Rey
- Departamento de Química Física, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.F.-P.); (A.M.R.); (A.R.)
| | - Fabien Léonforte
- L’Oréal Research and Innovation, 93600 Aulnay-Sous Bois, France;
| |
Collapse
|
23
|
Guzmán E, Llamas S, Fernández-Peña L, Léonforte F, Baghdadli N, Cazeneuve C, Ortega F, Rubio RG, Luengo GS. Effect of a natural amphoteric surfactant in the bulk and adsorption behavior of polyelectrolyte-surfactant mixtures. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124178] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Abstract
Over the last two decades, understanding of the attachment of colloids to fluid interfaces has attracted the interest of researchers from different fields. This is explained by considering the ubiquity of colloidal and interfacial systems in nature and technology. However, to date, the control and tuning of the assembly of colloids at fluid interfaces remain a challenge. This review discusses some of the most fundamental aspects governing the organization of colloidal objects at fluid interfaces, paying special attention to spherical particles. This requires a description of different physicochemical aspects, from the driving force involved in the assembly to its thermodynamic description, and from the interactions involved in the assembly to the dynamics and rheological behavior of particle-laden interfaces.
Collapse
|
25
|
Akanno A, Guzmán E, Fernández-Peña L, Ortega F, G Rubio R. Surfactant-Like Behavior for the Adsorption of Mixtures of a Polycation and Two Different Zwitterionic Surfactants at the Water/Vapor Interface. Molecules 2019; 24:molecules24193442. [PMID: 31547491 PMCID: PMC6804224 DOI: 10.3390/molecules24193442] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/19/2023] Open
Abstract
The bulk and interfacial properties of solutions formed by a polycation (i.e., poly(diallyl-dimethylammonium chloride), PDADMAC) and two different zwitterionic surfactants (i.e., coco-betaine (CB) and cocoamidopropyl-betaine (CAPB)) have been studied. The bulk aggregation of the polyelectrolyte and the two surfactants was analyzed by turbidity and electrophoretic mobility measurements, and the adsorption of the solutions at the fluid interface was studied by surface tension and interfacial dilational rheology measurements. Evidence of polymer-surfactant complex formation in bulk was only found when the number of surfactant molecules was closer to the number of charged monomers in solutions, which suggests that the electrostatic repulsion associated with the presence of a positively charged group in the surfactant hinders the association between PDADMAC and the zwitterionic surfactant for concentrations in which there are no micelles in solution. This lack of interaction in bulk is reflected in the absence of an influence of the polyelectrolyte in the interfacial properties of the mixtures, with the behavior being controlled by the presence of surfactant. This work has evidenced the significant importance of the different interactions involved in the system for controlling the interaction and complexation mechanisms of in polyelectrolyte-surfactant mixtures.
Collapse
Affiliation(s)
- Andrew Akanno
- Departamento de Química Física, Universidad Complutense de Madrid, Facultad de Ciencias Químicas, Ciudad Universitaria s/n, 28040-Madrid, Spain.
- Instituto Pluridisciplina, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040-Madrid, Spain.
| | - Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, Facultad de Ciencias Químicas, Ciudad Universitaria s/n, 28040-Madrid, Spain.
- Instituto Pluridisciplina, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040-Madrid, Spain.
| | - Laura Fernández-Peña
- Departamento de Química Física, Universidad Complutense de Madrid, Facultad de Ciencias Químicas, Ciudad Universitaria s/n, 28040-Madrid, Spain.
| | - Francisco Ortega
- Departamento de Química Física, Universidad Complutense de Madrid, Facultad de Ciencias Químicas, Ciudad Universitaria s/n, 28040-Madrid, Spain.
- Instituto Pluridisciplina, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040-Madrid, Spain.
| | - Ramón G Rubio
- Departamento de Química Física, Universidad Complutense de Madrid, Facultad de Ciencias Químicas, Ciudad Universitaria s/n, 28040-Madrid, Spain.
- Instituto Pluridisciplina, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040-Madrid, Spain.
| |
Collapse
|
26
|
Bali K, Varga Z, Kardos A, Mészáros R. Impact of local inhomogeneities on the complexation between poly(diallyldimethylammoniumchloride) and sodium dodecyl sulfate. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Schulze-Zachau F, Braunschweig B. C nTAB/polystyrene sulfonate mixtures at air-water interfaces: effects of alkyl chain length on surface activity and charging state. Phys Chem Chem Phys 2019; 21:7847-7856. [PMID: 30916092 DOI: 10.1039/c9cp01107b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Binding and phase behavior of oppositely charged polyelectrolytes and surfactants with different chain lengths were studied in aqueous bulk solutions and at air-water interfaces. In particular, we have investigated the polyanion poly(sodium 4-styrenesulfonate) (NaPSS) and the cationic surfactants dodecyltrimethylammonium bromide (C12TAB), tetradecyltrimethylammonium bromide (C14TAB) and cetyltrimethylammonium bromide (C16TAB). In order to reveal the surfactant/polyelectrolyte binding, aggregation and phase separation of the mixtures, we have varied the NaPSS concentration systematically and have kept the surfactant concentration fixed at 1/6 of the respective critical micelle concentration. Information on the behavior in the bulk solution was gained by electrophoretic mobility and turbidity measurements, while the surface properties were studied using surface tension measurements and vibrational sum-frequency generation (SFG). This has enabled us to relate bulk to interfacial properties with respect to the charging state and the surfactants' binding efficiency. We found that the latter two are strongly dependent on the alkyl chain length of the surfactant and that binding is much more efficient as the alkyl chain length of the surfactant increases. This also results in a different phase behavior as shown by turbidity measurements of the bulk solutions. Charge neutral aggregates that are forming in the bulk adsorb onto the air-water interface - an effect that is likely caused by the increased hydrophobicity of CnTAB/PSS complexes. This conclusion is corroborated by SFG spectroscopy, where we observe a decrease in the intensity of O-H stretching bands, which is indicative of a decrease in surface charging and the formation of interfaces with negligible net charge. Particularly at mixing ratios that are in the equilibrium two-phase region, we observe weak O-H intensities and thus surface charging.
Collapse
Affiliation(s)
- Felix Schulze-Zachau
- Institute of Physical Chemistry and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany.
| | | |
Collapse
|
28
|
Guzmán E, Santini E. Lung surfactant-particles at fluid interfaces for toxicity assessments. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Maestro A, Santini E, Guzmán E. Physico-chemical foundations of particle-laden fluid interfaces. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:97. [PMID: 30141087 DOI: 10.1140/epje/i2018-11708-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Particle-laden interfaces are ubiquitous nowadays. The understanding of their properties and structure is essential for solving different problems of technological and industrial relevance; e.g. stabilization of foams, emulsions and thin films. These rely on the response of the interface to mechanical perturbations. The complex mechanical response appearing in particle-laden interfaces requires deepening on the understanding of physico-chemical mechanisms underlying the assembly of particles at interface which plays a central role in the distribution of particles at the interface, and in the complex interfacial dynamics appearing in these systems. Therefore, the study of particle-laden interfaces deserves attention to provide a comprehensive explanation on the complex relaxation mechanisms involved in the stabilization of fluid interfaces.
Collapse
Affiliation(s)
- Armando Maestro
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042, Grenoble, Cedex 9, France
| | - Eva Santini
- Istituto di Chimica della Materia Condensata e di Tecnologia per l'Energia (ICMATE), U.O.S. Genova-Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, 16149, Genova, Italy
| | - Eduardo Guzmán
- Departamento de Química Física I, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, 1, 28040, Madrid, Spain.
| |
Collapse
|