1
|
Huang CT, Zheng L, Zhong Y, Werner JG, Lu MC, Duan C. Enhancing Hydrogen Evolution Reaction through Coalescence-Induced Bubble Departure on Patterned Gold-Silicon Microstrip Surfaces. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7109-7118. [PMID: 39818716 DOI: 10.1021/acsami.4c18255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Hydrogen bubble adhesion to the electrode presents a major obstacle for green hydrogen generation via the hydrogen evolution reaction (HER) as it would induce undesired overpotential and undermine the reaction efficiency by reducing reaction area, increasing transport resistance, and creating an undesired ion concentration gradient. While electrodes with aerophobic/hydrophilic surfaces have been developed to facilitate bubble detachment, they primarily rely on micro- and nanostructured catalyst surfaces to enhance buoyance-induced bubble departure. Here, we demonstrate that introducing nonreactive yet more hydrophilic surfaces can promote coalescence-induced bubble departure, thereby significantly reducing the transport overpotential and improving HER performance. Through a systematic study using patterned gold-silicon microstrip (GSM) surfaces with varied gold strip widths (50-1600 μm), we found that reducing the gold strip width results in a smaller bubble departure diameter and increased bubble departure frequencies, leading to a 400 mV reduction in transport overpotential at 400 mA/cm2 on 50 μm wide GSM surfaces. These patterned surfaces demonstrated superior HER performance compared to a plain gold surface, even with a 50% reduction in the reaction area. The optimal HER performance, characterized by the lowest total overpotential, was achieved on GSM surfaces with 200 μm wide gold strips, highlighting the intricate interplay between improved bubble dynamics and reduced reaction area.
Collapse
Affiliation(s)
- Chung-Te Huang
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, Massachusetts 02215, United States
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Liangwei Zheng
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Yiding Zhong
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Jörg G Werner
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, Massachusetts 02215, United States
- Division of Materials Science & Engineering, Boston University, 15 St Mary's Street, Boston, Massachusetts 02215, United States
| | - Ming-Chang Lu
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Graduate School of Advanced Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chuanhua Duan
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, Massachusetts 02215, United States
- Division of Materials Science & Engineering, Boston University, 15 St Mary's Street, Boston, Massachusetts 02215, United States
| |
Collapse
|
2
|
Oontawee S, Siriarchavatana P, Rodprasert W, Padeta I, Pamulang YV, Somparn P, Pisitkun T, Nambooppha B, Sthitmatee N, Na Nan D, Osathanon T, Egusa H, Sawangmake C. Small extracellular vesicles derived from sequential stimulation of canine adipose-derived mesenchymal stem cells enhance anti-inflammatory activity. BMC Vet Res 2025; 21:31. [PMID: 39838398 PMCID: PMC11748882 DOI: 10.1186/s12917-024-04465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 12/30/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) are recognized for their therapeutic potential in immune modulation and tissue repair, especially in veterinary medicine. This study introduces an innovative sequential stimulation (IVES) technique, involving low-oxygen gas mixture preconditioning using in vitro fertilization gas (IVFG) and direct current electrical stimulation (ES20), to enhance the anti-inflammatory properties of sEVs from canine adipose-derived MSCs (cAD-MSCs). Initial steps involved isolation and comprehensive characterization of cAD-MSCs, including morphology, gene expression, and differentiation potentials, alongside validation of the electrical stimulation protocol. IVFG, ES20, and IVES were applied simultaneously with a control condition. Stimulated cAD-MSCs were evaluated for morphological changes, cell viability, and gene expressions. Conditioned media were collected and purified for sEV isolation on Day1, Day2, and Day3. To validate the efficacy of IVES for sEV production, various analyses were conducted, including microscopic examination, surface marker assessment, zeta-potential measurement, protein quantification, nanoparticle tracking analysis, and determination of anti-inflammatory activity. RESULTS We found that IVES demonstrated non-cytotoxicity and induced crucial genotypic changes associated with sEV production in cAD-MSCs. Interestingly, IVFG influenced cellular adaptation, while ES20 induced hypoxia activation. By merging these stimulations, IVES enhanced sEV stability and quality profiles. The cAD-MSC-derived sEVs exhibited anti-inflammatory activity in lipopolysaccharide-induced RAW264.7 macrophages, emphasizing their improved effectiveness without cytotoxicity or immunogenicity. These effects were consistent across day 3 collection, indicating the establishment of an effective protocol for sEV production. CONCLUSIONS This research established an innovative sequential stimulation method with positive impact on sEV characteristics including stability, quality, and anti-inflammatory activity. This study not only contributes to the enhancement of sEV production but also sheds light on their functional aspects for therapeutic interventions.
Collapse
Affiliation(s)
- Saranyou Oontawee
- Second Century Fund (C2F), Chulalongkorn University for Post-doctoral Fellowship, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Parkpoom Siriarchavatana
- Second Century Fund (C2F), Chulalongkorn University for Post-doctoral Fellowship, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Watchareewan Rodprasert
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Irma Padeta
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yudith Violetta Pamulang
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Boondarika Nambooppha
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Nattawooti Sthitmatee
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Daneeya Na Nan
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Regenerative Dentistry (CERD), Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Hiroshi Egusa
- Center for Advanced Stem Cell and Regenerative Research, Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Chenphop Sawangmake
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand.
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology, Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Regenerative Dentistry (CERD), Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Lake JR, Rufer S, James J, Pruyne N, Scourtas A, Schwarting M, Ambadkar A, Foster I, Blaiszik B, Varanasi KK. Machine learning-guided discovery of gas evolving electrode bubble inactivation. NANOSCALE 2025; 17:1270-1281. [PMID: 39377686 DOI: 10.1039/d4nr02628d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The adverse effects of electrochemical bubbles on the performance of gas-evolving electrodes are well known, but studies on the degree of adhered bubble-caused inactivation, and how inactivation changes during bubble evolution are limited. We study electrode inactivation caused by oxygen evolution while using surface engineering to control bubble formation. We find that the inactivation of the entire projected area, as is currently believed, is a poor approximation which leads to non-physical results. Using a machine learning-based image-based bubble detection method to analyze large quantities of experimental data, we show that bubble impacts are small for surface engineered electrodes which promote high bubble projected areas while maintaining low direct bubble contact. We thus propose a simple methodology for more accurately estimating the true extent of bubble inactivation, which is closer to the area which is directly in contact with the bubbles.
Collapse
Affiliation(s)
- Jack R Lake
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | - Simon Rufer
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | - Jim James
- Globus, University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637, USA.
| | - Nathan Pruyne
- Globus, University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637, USA.
| | - Aristana Scourtas
- Globus, University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637, USA.
- Data Science and Learning Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA
| | - Marcus Schwarting
- Department of Computer Science, University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637, USA
| | - Aadit Ambadkar
- Globus, University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637, USA.
| | - Ian Foster
- Data Science and Learning Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA
- Department of Computer Science, University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637, USA
| | - Ben Blaiszik
- Globus, University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637, USA.
- Data Science and Learning Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA
| | - Kripa K Varanasi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
4
|
Suszko T, Dobruchowska E, Gulbiński W, Greczynski G, Morgiel J, Kawczyński B, Załȩski K, Dorywalski K, Pogorzelski S. NiMo-C Coatings Synthesized by Reactive Magnetron Sputtering for Application as a Catalyst for the Hydrogen Evolution Reaction in an Acidic Environment. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3344-3355. [PMID: 39758017 DOI: 10.1021/acsami.4c17743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
This study examines the structure and properties of NiMo-C coatings synthesized via reactive magnetron sputtering of a NiMo alloy target in an argon/acetylene atmosphere. The coating structure evolves with carbon content from nanocrystalline, through amorphous to quasi-amorphous with a nanocolumnar structure. The nanostructure consists of metallic columns perpendicular to the substrate surrounded by an amorphous carbon shell. The coatings are evaluated for their potential use as catalytic materials in the hydrogen evolution reaction (HER) in an acidic environment. The medium carbon content coatings show optimal properties in this direction, i.e., high corrosion resistance in an acidic environment and good HER performance described by the Tafel slope and characteristic overpotentials. Even at the highest carbon content, 74 at. %, the Tafel slope does not increase substantially, which is more likely attributable to the distinctive nanocolumnar structure, ensuring the presence of catalytic centers in the form of metallic islands on the surface. At the highest current densities applied, a weak but visible correlation is observed between the characteristic overpotentials and the contact angle hysteresis derived from the wettability measurements.
Collapse
Affiliation(s)
- Tomasz Suszko
- Koszalin University of Technology, Ul. Śniadeckich 2, Koszalin 75-453, Poland
| | - Ewa Dobruchowska
- Koszalin University of Technology, Ul. Śniadeckich 2, Koszalin 75-453, Poland
| | - Witold Gulbiński
- Koszalin University of Technology, Ul. Śniadeckich 2, Koszalin 75-453, Poland
| | - Grzegorz Greczynski
- Thin Film Physics Division, Department of Physics (IFM), Linköping University, Linköping 581 83, Sweden
| | - Jerzy Morgiel
- Institute of Metallurgy and Materials Sciences, Polish Academy of Science, Ul. Reymonta 25, Kraków 30-059, Poland
| | - Bartosz Kawczyński
- NanoBioMedical Centre, Adam Mickiewicz University, ul. Wszechnicy Piastowskiej 3, Poznań 61-614, Poland
| | - Karol Załȩski
- NanoBioMedical Centre, Adam Mickiewicz University, ul. Wszechnicy Piastowskiej 3, Poznań 61-614, Poland
| | - Krzysztof Dorywalski
- Institute of Experimental Physics, Faculty of Mathematics Physics and Informatics, University of Gdańsk, Wita Stwosza 57, Gdańsk 80-308, Poland
| | - Stanisław Pogorzelski
- Institute of Experimental Physics, Faculty of Mathematics Physics and Informatics, University of Gdańsk, Wita Stwosza 57, Gdańsk 80-308, Poland
| |
Collapse
|
5
|
Park W, Chung DY. Activity-Stability Relationships in Oxygen Evolution Reaction. ACS MATERIALS AU 2025; 5:1-10. [PMID: 39802143 PMCID: PMC11718537 DOI: 10.1021/acsmaterialsau.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 01/16/2025]
Abstract
The oxygen evolution reaction (OER) is a critical process in various sustainable energy technologies. Despite substantial progress in catalyst development, the practical application of OER catalysts remains hindered by the ongoing challenge of balancing high catalytic activity with long-term stability. We explore the inverse trends often observed between activity and stability, drawing on key insights from both experimental and theoretical studies. Special focus is placed on the performance of different electrodes and their interaction with acidic and alkaline media across a range of electrochemical conditions. This Perspective integrates recent advancements to present a thorough framework for understanding the mechanisms underlying the activity-stability relationship, offering strategies for the rational design of next-generation OER catalysts that successfully meet the dual demands of activity and durability.
Collapse
Affiliation(s)
- Wonchul Park
- Department of Chemical and Biomolecular
Engineering, Korea Advanced Institute of
Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dong Young Chung
- Department of Chemical and Biomolecular
Engineering, Korea Advanced Institute of
Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Ryu CH, Mandal D, Ren H. Gas-Liquid-Solid Three-Phase Boundary in Scanning Electrochemical Cell Microscopy. ACS MEASUREMENT SCIENCE AU 2024; 4:729-736. [PMID: 39713032 PMCID: PMC11659987 DOI: 10.1021/acsmeasuresciau.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 12/24/2024]
Abstract
The gas-liquid-solid interface plays a crucial role in various electrochemical energy conversion devices, including fuel cells and electrolyzers. Understanding the effect of gas transfer on the electrochemistry at this three-phase interface is a grand challenge. Scanning electrochemical cell microscopy (SECCM) is an emerging technique for mapping the heterogeneity in electrochemical activity; it also inherently features a three-phase boundary at the nanodroplet cell. Herein, we quantitatively analyze the role of the three-phase boundary in SECCM involving gas via finite element simulation. Oxygen reduction reaction is used as an example for reaction with a gas reactant, which shows that interfacial gas transfer can enhance the overall mass transport of reactant, allowing measuring current density of several A/cm2. The hydrogen evolution reaction is used as an example for reaction with a gas product, and fast interfacial gas transfer kinetics can significantly reduce the concentration of dissolved gas near the electrode. This helps to measure electrode kinetics at a high current density without the complication of gas bubble formation. The contribution of interfacial gas transfer can be understood by directly comparing its kinetics to the mass transfer coefficient from the solution. Our findings aid the quantitative application of SECCM in studying electrochemical reactions involving gases, establishing a basis for investigating electrochemistry at the three-phase boundary.
Collapse
Affiliation(s)
- C. Hyun Ryu
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, United States
| | - Debasree Mandal
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, United States
| | - Hang Ren
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, United States
- Center
for Electrochemistry, The University of
Texas at Austin, Austin, Texas 78712, United States
- Texas
Materials Institute, The University of Texas
at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Wang K, Wang Y, Pera-Titus M. Liquid-liquid and gas-liquid dispersions in electrochemistry: concepts, applications and perspectives. Chem Soc Rev 2024; 53:11701-11724. [PMID: 39495483 PMCID: PMC11562458 DOI: 10.1039/d3cs00535f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Indexed: 11/05/2024]
Abstract
Electrochemistry plays a pivotal role in a vast number of domains spanning from sensing and manufacturing to energy storage, environmental conservation, and healthcare. Electrochemical applications encompassing gaseous or organic substrates encounter shortcomings ascribed to high mass transfer/internal resistances and low solubility in aqueous electrolytes, resulting in high overpotentials. In practice, strong acids and expensive organic electrolytes are required to promote charge transfer in electrochemical cells, resulting in a high carbon footprint. Liquid-liquid (L-L) and gas-liquid (G-L) dispersions involve the dispersion of a nano/micro gas or liquid into a continuous liquid phase such as micelles, (macro)emulsions, microemulsions, and microfoams stabilised by surface-active agents such as surfactants and colloidal particles. These dispersions hold promise in addressing the drawbacks of electrochemical reactions by fostering the interfacial surface area between immiscible reagents and mass transfer of electroactive organic and gas reactants and products from/to the bulk to/from the electrode surface. This tutorial review provides a taxonomy of liquid-liquid and gas-liquid dispersions for applications in electrochemistry, with emphasis on their assets and challenges in industrially relevant reactions for fine chemistry and depollution.
Collapse
Affiliation(s)
- Kang Wang
- Cardiff Catalysis Institute, Cardiff University, Cardiff CF10 3AT, UK.
| | - Yucheng Wang
- Cardiff Catalysis Institute, Cardiff University, Cardiff CF10 3AT, UK.
| | - Marc Pera-Titus
- Cardiff Catalysis Institute, Cardiff University, Cardiff CF10 3AT, UK.
| |
Collapse
|
8
|
Bornet A, Moreno-García P, Dutta A, Kong Y, Liechti M, Vesztergom S, Arenz M, Broekmann P. Disentangling the Pitfalls of Rotating Disk Electrode-Based OER Stability Assessment: Bubble Blockage or Substrate Passivation? ACS Catal 2024; 14:17331-17346. [PMID: 39664776 PMCID: PMC11629296 DOI: 10.1021/acscatal.4c05447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024]
Abstract
Oxygen evolution reaction (OER) catalyst stability metrics derived from aqueous model systems (AMSs) prove valuable only if they are transferable to technical membrane electrode assembly (MEA) settings. Currently, there is consensus that stability data derived from ubiquitous rotating disk electrode (RDE)-based investigations substantially overestimate material degradation mainly due to the nonideal inertness of catalyst-backing electrode materials as well as bubble shielding of the catalyst by evolved oxygen. Despite the independently developed understanding of these two processes, their interplay and relative impact on intrinsic and operational material stability have not yet been established. Herein, we employ an inverted RDE-based approach coupled with online gas chromatographic quantification that exploits buoyancy and anode hydrophilicity existing under operating acidic OER conditions and excludes the influence of bubble retention on the surface of the catalyst. This approach thus allows us to dissect the degradation process occurring during the RDE-based OER stability studies. We demonstrate that the stability discrepancy between galvanostatic nanoparticle (NP)-based RDE and MEA data does not originate from the accumulation of bubbles in the catalyst layer during water oxidation but from the utilization of corrosion-prone substrate materials in the AMS. Moreover, we provide mechanistic insights into the degradation process and devise experimental measures to mitigate or circumvent RDE-related limitations when the technique is to be applied to an OER catalyst stability assessment. These findings should facilitate the transferability between AMS and MEA approaches and promote further development of the latter.
Collapse
Affiliation(s)
- Aline Bornet
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Pavel Moreno-García
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Abhijit Dutta
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Ying Kong
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Mike Liechti
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Soma Vesztergom
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
- MTA-ELTE
Momentum Interfacial Electrochemistry Research Group, Eötvös Loránd University, Pázmány Péter
sétány 1/A, Budapest 1117, Hungary
| | - Matthias Arenz
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Peter Broekmann
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| |
Collapse
|
9
|
Zheng S, Wang K. Influence of Complex Multiphasic Flow on the Thiuram Electrosynthesis in a Microchannel Reactor. CHEMSUSCHEM 2024; 17:e202401368. [PMID: 39115974 DOI: 10.1002/cssc.202401368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
As an important sustainable method for chemical synthesis, organic electrosynthesis experienced a renaissance in recent years for its excellent atom economy. Although microchannel reactors have been proposed to advanced electrosynthesis devices to obtain low energy cost and high reaction performance, the complex multiphasic flow in the electrochemical microchannels are very less reported and the effects of flow condition on the electrosynthesis reaction are less reported. Taking the electrosynthesis of tetraethyl thiuram disulfide (TETD) as a typical case, we developed a visualized electrochemical microchannel reactor equipped with fluorine-doped tin oxide (FTO) loaded glass electrode to investigate the gas-liquid-liquid triple phase flow pattern and the main factors influenced the response current at certain applied cell voltage. The gas-liquid-liquid hybrid flow with low gas hold-up and high liquid flow rate was found crucial for preventing coverage of TETD on the electrode, which provided 23.1 % low current attenuation ratio at 3.0 V cell voltage. The research not only exhibited the complex evolution mechanism of the response current, but also showed the importance of flow condition control for balancing the work efficiency and energy consumption of electrosynthesis process.
Collapse
Affiliation(s)
- Siyuan Zheng
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 801 Gongwu Building, Tsinghua, Haidian, Beijing, 100084, China
- National Institute of Clean-and-Low-Carbon Energy, Future Science City, Changping, Beijing, 102211, China
| | - Kai Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 801 Gongwu Building, Tsinghua, Haidian, Beijing, 100084, China
| |
Collapse
|
10
|
Song W, Xia C, Zaman S, Chen S, Xiao C. Advances in Stability of NiFe-Based Anodes toward Oxygen Evolution Reaction for Alkaline Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406075. [PMID: 39314014 DOI: 10.1002/smll.202406075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/19/2024] [Indexed: 09/25/2024]
Abstract
Alkaline electrolysis plays a crucial role in sustainable energy solutions by utilizing electrolytic cells to produce hydrogen gas, providing a clean and efficient method for energy storage and conversion. Efficient, stable, and low-cost electrocatalysts for the oxygen evolution reaction (OER) are essential to facilitate alkaline water electrolysis on a commercial scale. Nickel-iron-based (NiFe-based) transition metal electrocatalysts are considered the most promising non-precious metal catalysts for alkaline OER due to their low cost, abundance, and tunable catalytic properties. Nevertheless, the majority of existing NiFe-based catalysts suffer from limited activity and poor stability, posing a significant challenge in meeting industrial applications. This also highlights a common situation where the emphasis on material activity receives significant attention, while the equally critical stability aspect is often underemphasized. Initiating with a comprehensive exploration of the stability of NiFe-based OER materials, this article first summarizes the debate surrounding the determination of active sites in NiFe-based OER electrocatalysts. Subsequently, the degradation mechanisms of recently reported NiFe-based electrocatalysts are outlined, encompassing assessments of both chemical and mechanical endurance, along with essential approaches for enhancing their stability. Finally, suggestions are put forth regarding the essential considerations for the design of NiFe-based OER electrocatalysts, with a focus on heightened stability.
Collapse
Affiliation(s)
- Wenyu Song
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chenfeng Xia
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Shahid Zaman
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Shenghua Chen
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chunhui Xiao
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
11
|
Regnier M, Vega C, Ioannou DI, Noël T. Enhancing electrochemical reactions in organic synthesis: the impact of flow chemistry. Chem Soc Rev 2024; 53:10741-10760. [PMID: 39297689 DOI: 10.1039/d4cs00539b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Utilizing electrons directly offers significant potential for advancing organic synthesis by facilitating novel reactivity and enhancing selectivity under mild conditions. As a result, an increasing number of organic chemists are exploring electrosynthesis. However, the efficacy of electrochemical transformations depends critically on the design of the electrochemical cell. Batch cells often suffer from limitations such as large inter-electrode distances and poor mass transfer, making flow cells a promising alternative. Implementing flow cells, however, requires a foundational understanding of microreactor technology. In this review, we briefly outline the applications of flow electrosynthesis before providing a comprehensive examination of existing flow reactor technologies. Our goal is to equip organic chemists with the insights needed to tailor their electrochemical flow cells to meet specific reactivity requirements effectively. We also highlight the application of reactor designs in scaling up electrochemical processes and integrating high-throughput experimentation and automation. These advancements not only enhance the potential of flow electrosynthesis for the synthetic community but also hold promise for both academia and industry.
Collapse
Affiliation(s)
- Morgan Regnier
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| | - Clara Vega
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| | - Dimitris I Ioannou
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Pollet BG, Kalanur SS. Applications of Ferric Oxide in Water Splitting by Electrolysis: A Comprehensive Review. Molecules 2024; 29:4990. [PMID: 39519631 PMCID: PMC11547600 DOI: 10.3390/molecules29214990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
In water electrolysis, the use of an efficient catalyst derived from earth-abundant materials which is cost-effective and stable is essential for the economic sustainability of hydrogen production. A wide range of catalytic materials have been reported upon so far, among which Fe2O3 stands out as one of the most credible candidates in terms of cost and abundance. However, Fe2O3 faces several limitations due to its poor charge transfer properties and catalytic ability; thus, significant modifications are essential for its effective utilization. Considering the future of water electrolysis, this review provides a detailed summary of Fe2O3 materials employed in electrolytic applications with a focus on critically assessing the key electrode modifications that are essential for the materials' utilization as efficient electrocatalysts. With this in mind, Fe2O3 was implemented in a heterojunction/composite, doped, carbon supported, crystal facet tuned system, as well as in metal organic framework (MOF) systems. Furthermore, Fe2O3 was utilized in alkaline, seawater, anion exchange membrane, and solid oxide electrolysis systems. Recently, magnetic field-assisted water electrolysis has also been explored. This comprehensive review highlights the fact that the applicability of Fe2O3 in electrolysis is limited, and hence, intense and strategically focused research is vital for converting Fe2O3 into a commercially viable, cost-effective, and efficient catalyst material.
Collapse
Affiliation(s)
| | - Shankara S. Kalanur
- Green Hydrogen Lab (GH2Lab), Hydrogen Research Institute (HRI), Université du Québec à Trois Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G9A 5H7, Canada;
| |
Collapse
|
13
|
Kempler PA, Coridan RH, Luo L. Gas Evolution in Water Electrolysis. Chem Rev 2024; 124:10964-11007. [PMID: 39259040 DOI: 10.1021/acs.chemrev.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Gas bubbles generated by the hydrogen evolution reaction and oxygen evolution reaction during water electrolysis influence the energy conversion efficiency of hydrogen production. Here, we survey what is known about the interaction of gas bubbles and electrode surfaces and the influence of gas evolution on practicable devices used for water electrolysis. We outline the physical processes occurring during the life cycle of a bubble, summarize techniques used to characterize gas evolution phenomena in situ and in practical device environments, and discuss ways that electrodes can be tailored to facilitate gas removal at high current densities. Lastly, we review efforts to model the behavior of individual gas bubbles and multiphase flows produced at gas-evolving electrodes. We conclude our review with a short summary of outstanding questions that could be answered by future efforts to characterize gas evolution in electrochemical device environments or by improved simulations of multiphase flows.
Collapse
Affiliation(s)
- Paul A Kempler
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Robert H Coridan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
14
|
Demirkır Ç, Wood JA, Lohse D, Krug D. Life beyond Fritz: On the Detachment of Electrolytic Bubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20474-20484. [PMID: 39305203 PMCID: PMC11447920 DOI: 10.1021/acs.langmuir.4c01963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/02/2024]
Abstract
We present an experimental study on detachment characteristics of hydrogen bubbles during electrolysis. Using a transparent (Pt or Ni) electrode enables us to directly observe the bubble contact line and bubble size. Based on these quantities we determine other parameters such as the contact angle and volume through solutions of the Young-Laplace equation. We observe bubbles without ("pinned bubbles") and with ("spreading bubbles") contact line spreading and find that the latter mode becomes more prevalent if the concentration of HClO4 is ≥0.1 M. The departure radius for spreading bubbles is found to drastically exceed the value predicted by the well-known formula of W. Fritz [Phys. Z. 1935, 36, 379-384] for this case. We show that this is related to the contact line hysteresis, which leads to pinning of the contact line after an initial spreading phase at the receding contact angle. The departure mode is then similar to a pinned bubble and occurs once the contact angle reaches the advancing contact angle of the surface. A prediction for the departure radius based on these findings is found to be consistent with the experimental data.
Collapse
Affiliation(s)
- Çayan Demirkır
- Physics
of Fluids, University of Twente, Enschede 7500 AE, The Netherlands
| | - Jeffery A. Wood
- Soft
Matter, Fluidics, and Interfaces, University
of Twente, Enschede 7500 AE, The Netherlands
| | - Detlef Lohse
- Physics
of Fluids, University of Twente, Enschede 7500 AE, The Netherlands
- Max
Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| | - Dominik Krug
- Physics
of Fluids, University of Twente, Enschede 7500 AE, The Netherlands
| |
Collapse
|
15
|
Zhang L, Iwata R, Lu Z, Wang X, Díaz-Marín CD, Zhong Y. Bridging Innovations of Phase Change Heat Transfer to Electrochemical Gas Evolution Reactions. Chem Rev 2024; 124:10052-10111. [PMID: 39194152 DOI: 10.1021/acs.chemrev.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Bubbles play a ubiquitous role in electrochemical gas evolution reactions. However, a mechanistic understanding of how bubbles affect the energy efficiency of electrochemical processes remains limited to date, impeding effective approaches to further boost the performance of gas evolution systems. From a perspective of the analogy between heat and mass transfer, bubbles in electrochemical gas evolution reactions exhibit highly similar dynamic behaviors to them in the liquid-vapor phase change. Recent developments of liquid-vapor phase change systems have substantially advanced the fundamental knowledge of bubbles, leading to unprecedented enhancement of heat transfer performance. In this Review, we aim to elucidate a promising opportunity of understanding bubble dynamics in electrochemical gas evolution reactions through a lens of phase change heat transfer. We first provide a background about key parallels between electrochemical gas evolution reactions and phase change heat transfer. Then, we discuss bubble dynamics in gas evolution systems across multiple length scales, with an emphasis on exciting research problems inspired by new insights gained from liquid-vapor phase change systems. Lastly, we review advances in engineered surfaces for manipulating bubbles to enhance heat and mass transfer, providing an outlook on the design of high-performance gas evolving electrodes.
Collapse
Affiliation(s)
- Lenan Zhang
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ryuichi Iwata
- Toyota Central R&D Laboratories, Inc, Nagakute City 480-1192, Japan
| | - Zhengmao Lu
- Institute of Mechanical Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Xuanjie Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Carlos D Díaz-Marín
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yang Zhong
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Zeng S, Ruan W, Chen Z, Ren S, Jiang J, Lin J, Zhang H, Zhang Z, Fu J, Chen Q, Liang X, Ma J. Dissolution Manufacturing Strategy for the Facile Synthesis of Nanoporous Metallic Glass Multifunctional Catalyst. SMALL METHODS 2024:e2401109. [PMID: 39248699 DOI: 10.1002/smtd.202401109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Indexed: 09/10/2024]
Abstract
The quest for heightened energy efficiency is inextricably linked to advancements in energy storage and conversion technologies, wherein multifunctional catalysts play a pivotal role by mitigating the slow kinetics endemic to many catalytic reactions. The intricate synthesis and bespoke design of such catalysts, however, present notable challenges. Addressing this, the present study capitalizes on a novel dissolution manufacturing strategy to engineer self-supporting, nanoporous multifunctional electrocatalysts, circumventing the prevalent issue of customizing catalytic functionalities upon demand. This innovative approach grants the flexibility to finely tune the incorporation of active species and metalloid binders, culminating in the creation of a self-supporting nanoporous metal glass electrocatalyst doped with RuO2 (NPMG@RuO2) with outstanding performance in alkaline media. The catalyst showcases superior electrocatalytic activity, achieving low overpotentials of 41.50 mV for the Hydrogen Evolution Reaction and 226.0 mV for Oxygen Evolution Reaction alongside sustained stability over 620 hours.These achievements are attributed to the distinct nanoporous architecture that ensures a high density of catalytic sites and mechanical strength, bolstered by the synergistic interplay between RuO2 and Pt-based metallic glass. The findings provide a versatile template for the development of nanoporous multifunctional catalysts, signifying a leap forward in the realm of energy conversion technologies.
Collapse
Affiliation(s)
- Shenghao Zeng
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wenqing Ruan
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhe Chen
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shuai Ren
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jihan Jiang
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiaqing Lin
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Heting Zhang
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhenxuan Zhang
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianan Fu
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Qing Chen
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Xiong Liang
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiang Ma
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
17
|
Gupta V, Pham A, Dick JE. Planar Disk μ-Aptasensors by Monolayer Assembly in a Dissolving Microdroplet. Anal Chem 2024. [PMID: 39152900 DOI: 10.1021/acs.analchem.4c01043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Electrochemical aptamer-based sensors provide a highly modular platform for real-time monitoring of small molecules. Their ability to selectively recognize target molecules in complex environments like biological fluids makes them an attractive technology for the analysis of micro- and nanoscale systems. The signal-to-noise of the measurement depends on the electroactive surface (i.e., how many aptamers one can place), which has previously precluded miniaturization of aptamer-based sensors to planar disk ultramicroelectrodes (r ∼ 5-10 μm). Here, we employ a concentration enrichment strategy based on the active dissolution of an aqueous, aptamer-containing microdroplet on an ultramicroelectrode submerged in an organic continuous phase (1,2-dichloroethane). We show consistent voltammetric signal increase as a function of droplet lifetime, indicating the successful immobalization of the thiol-terminated aminoglycoside aptamers to the electrode surface. We observe a diagnostic methylene blue peak and 10-fold increase in current magnitude as compared to bare microelectrodes. We report robust sensor behavior with a linear dynamic range extending from milli- to micromolar concentrations of kanamycin in buffer. This research offers a successful method for optimized electrochemical aptamer-based sensor fabrication and miniaturization on ultramicroelectrodes without the need for electrode surface area enhancement.
Collapse
Affiliation(s)
- Vanshika Gupta
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - AnhThu Pham
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
18
|
Zhang P, Chen C, Feng M, Sun C, Xu X. Hydroxide and Hydronium Ions Modulate the Dynamic Evolution of Nitrogen Nanobubbles in Water. J Am Chem Soc 2024; 146:19537-19546. [PMID: 38949461 DOI: 10.1021/jacs.4c06641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
It has been widely recognized that the pH environment influences the nanobubble dynamics and hydroxide ions adsorbed on the surface may be responsible for the long-term survival of the nanobubbles. However, understanding the distribution of hydronium and hydroxide ions in the vicinity of a bulk nanobubble surface at a microscopic scale and the consequent impact of these ions on the nanobubble behavior remains a challenging endeavor. In this study, we carried out deep potential molecular dynamics simulations to explore the behavior of a nitrogen nanobubble under neutral, acidic, and alkaline conditions and the inherent mechanism, and we also conducted a theoretical thermodynamic and dynamic analysis to address constraints related to simulation duration. Our simulations and theoretical analyses demonstrate a trend of nanobubble dissolution similar to that observed experimentally, emphasizing the limited dissolution of bulk nanobubbles in alkaline conditions, where hydroxide ions tend to reside slightly farther from the nanobubble surface than hydronium ions, forming more stable hydrogen bond networks that shield the nanobubble from dissolution. In acidic conditions, the hydronium ions preferentially accumulating at the nanobubble surface in an orderly manner drive nanobubble dissolution to increase the entropy of the system, and the dissolved nitrogen molecules further strengthen the hydrogen bond networks of systems by providing a hydrophobic environment for hydronium ions, suggesting both entropy and enthalpy effects contribute to the instability of nanobubbles under acidic conditions. These results offer fresh insights into the double-layer distribution of hydroxide and hydronium near the nitrogen-water interface that influences the dynamic behavior of bulk nanobubbles.
Collapse
Affiliation(s)
- Pengchao Zhang
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Changsheng Chen
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Muye Feng
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chao Sun
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
- New Cornerstone Science Laboratory, Tsinghua University, Beijing 100084, China
- Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Xuefei Xu
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Chen Z, Li L, Chu Y, Zhao F, Zhu Y, Tong S, Zheng H. Bio-Inspired Superhydrophilic Self-Assembled Coronavirus-Like Pt-WC/CNT for Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309675. [PMID: 38263847 DOI: 10.1002/smll.202309675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/10/2024] [Indexed: 01/25/2024]
Abstract
This study presents a novel approach to enhance the catalytic activity of composite materials by promoting active surface exposure and improving hydrogen transfer performance. Through a self-assembly route involving tailored gas-solid and galvanic replacement reactions, Pt-WC/CNT catalysts with superhydrophilicity and coronavirus-like structure are synthesized. These unique structural features contribute to a remarkable enhancement in the electrocatalytic performance of the hydrogen evolution reaction (HER). Notably, the Pt-WC/CNT catalyst exhibits an outstanding intrinsic activity and efficient bubble transfer properties, leading to a high turnover frequency of 34.97 H2·s-1 at an overpotential of 100 mV. This value is 4.8 times higher than that achieved by commercial Pt/C catalysts (7.30 H2·s-1), establishing Pt-WC/CNT as one of the most active catalysts reported to date. Moreover, the combination of gas-solid and galvanic replacement reactions in the synthesis process offers a scalable route for the production of Pt-loading controllable composite catalysts, thus challenging the dominance of commercial Pt/C catalysts.
Collapse
Affiliation(s)
- Zhaoyang Chen
- Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Lingtong Li
- Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Youqun Chu
- Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Fengming Zhao
- Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yinghong Zhu
- Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Shaoping Tong
- Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Huajun Zheng
- Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
20
|
Zhao P, Gong S, Zhang C, Chen S, Cheng P. Roles of Wettability and Wickability on Enhanced Hydrogen Evolution Reactions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27898-27907. [PMID: 38749009 DOI: 10.1021/acsami.4c02428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Bubble dynamics significantly impact mass transfer and energy conversion in electrochemical gas evolution reactions. Micro-/nanostructured surfaces with extreme wettability have been employed as gas-evolving electrodes to promote bubble departure and decrease the bubble-induced overpotential. However, effects of the electrodes' wickability on the electrochemical reaction performances remain elusive. In this work, hydrogen evolution reaction (HER) performances are experimentally investigated using micropillar array electrodes with varying interpillar spacings, and effects of the electrodes' wettability, wickability as well as bubble adhesion are discussed. A deep learning-based object detection model was used to obtain bubble counts and bubble departure size distributions. We show that microstructures on the electrode have little effect on the total bubble counts and bubble size distribution characteristics at low current densities. At high current densities, however, micropillar array electrodes have much higher total bubble counts and smaller bubble departure sizes compared with the flat electrode. We also demonstrate that surface wettability is a critical factor influencing HER performances under low current densities, where bubbles exist in an isolated regime. Under high current densities, where bubbles are in an interacting regime, the wickability of the micropillar array electrodes emerges as a determining factor. This work elucidates the roles of surface wettability and wickability on enhancing electrochemical performances, providing guidelines for the optimal design of micro-/nanostructured electrodes in various gas evolution reactions.
Collapse
Affiliation(s)
- Panpan Zhao
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuai Gong
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chaoyang Zhang
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Siliang Chen
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Cheng
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
21
|
Zhang Y, Zhu X, Wood JA, Lohse D. Threshold current density for diffusion-controlled stability of electrolytic surface nanobubbles. Proc Natl Acad Sci U S A 2024; 121:e2321958121. [PMID: 38748584 PMCID: PMC11126992 DOI: 10.1073/pnas.2321958121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/29/2024] [Indexed: 05/27/2024] Open
Abstract
Understanding the stability mechanism of surface micro/nanobubbles adhered to gas-evolving electrodes is essential for improving the efficiency of water electrolysis, which is known to be hindered by the bubble coverage on electrodes. Using molecular simulations, the diffusion-controlled evolution of single electrolytic nanobubbles on wettability-patterned nanoelectrodes is investigated. These nanoelectrodes feature hydrophobic islands as preferential nucleation sites and allow the growth of nanobubbles in the pinning mode. In these simulations, a threshold current density distinguishing stable nanobubbles from unstable nanobubbles is found. When the current density remains below the threshold value, nucleated nanobubbles grow to their equilibrium states, maintaining their nanoscopic size. However, for the current density above the threshold value, nanobubbles undergo unlimited growth and can eventually detach due to buoyancy. Increasing the pinning length of nanobubbles increases the degree of nanobubble instability. By connecting the current density with the local gas oversaturation, an extension of the stability theory for surface nanobubbles [Lohse and Zhang, Phys. Rev. E 91, 031003(R) (2015)] accurately predicts the nanobubble behavior found in molecular simulations, including equilibrium contact angles and the threshold current density. For larger systems that are not accessible to molecular simulations, continuum numerical simulations with the finite difference method combined with the immersed boundary method are performed, again demonstrating good agreement between numerics and theories.
Collapse
Affiliation(s)
- Yixin Zhang
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics and Johannes Martinus Burgers Centre for Fluid Dynamics, University of Twente, 7500 AEEnschede, The Netherlands
| | - Xiaojue Zhu
- Max Planck Institute for Solar System Research, 37077Göttingen, Germany
| | - Jeffery A. Wood
- Membrane Science and Technology Cluster, MESA+ Institute for Nanotechnology, University of Twente, 7500 AEEnschede, The Netherlands
| | - Detlef Lohse
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics and Johannes Martinus Burgers Centre for Fluid Dynamics, University of Twente, 7500 AEEnschede, The Netherlands
- Max Planck Institute for Dynamics and Self-Organization, 37077Göttingen, Germany
| |
Collapse
|
22
|
Bashkatov A, Park S, Demirkır Ç, Wood JA, Koper MTM, Lohse D, Krug D. Performance Enhancement of Electrocatalytic Hydrogen Evolution through Coalescence-Induced Bubble Dynamics. J Am Chem Soc 2024; 146:10177-10186. [PMID: 38538570 PMCID: PMC11009962 DOI: 10.1021/jacs.4c02018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
The evolution of electrogenerated gas bubbles during water electrolysis can significantly hamper the overall process efficiency. Promoting the departure of electrochemically generated bubbles during (water) electrolysis is therefore beneficial. For a single bubble, a departure from the electrode surface occurs when buoyancy wins over the downward-acting forces (e.g., contact, Marangoni, and electric forces). In this work, the dynamics of a pair of H2 bubbles produced during the hydrogen evolution reaction in 0.5 M H2SO4 using a dual platinum microelectrode system is systematically studied by varying the electrode distance and the cathodic potential. By combining high-speed imaging and electrochemical analysis, we demonstrate the importance of bubble-bubble interactions in the departure process. We show that bubble coalescence may lead to substantially earlier bubble departure as compared to buoyancy effects alone, resulting in considerably higher reaction rates at a constant potential. However, due to continued mass input and conservation of momentum, repeated coalescence events with bubbles close to the electrode may drive departed bubbles back to the surface beyond a critical current, which increases with the electrode spacing. The latter leads to the resumption of bubble growth near the electrode surface, followed by buoyancy-driven departure. While less favorable at small electrode spacing, this configuration proves to be very beneficial at larger separations, increasing the mean current up to 2.4 times compared to a single electrode under the conditions explored in this study.
Collapse
Affiliation(s)
- Aleksandr Bashkatov
- Physics
of Fluids Group, Max Planck Center for Complex Fluid Dynamics and
J. M. Burgers Centre for Fluid Dynamics, University of Twente, Enschede 7500 AE, Netherlands
| | - Sunghak Park
- Leiden
Institute of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - Çayan Demirkır
- Physics
of Fluids Group, Max Planck Center for Complex Fluid Dynamics and
J. M. Burgers Centre for Fluid Dynamics, University of Twente, Enschede 7500 AE, Netherlands
| | - Jeffery A. Wood
- Soft
Matter, Fluidics and Interfaces, MESA+ Institute for Nanotechnology,
J. M. Burgers Centre for Fluid Dynamics, University of Twente, Enschede 7500 AE, Netherlands
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - Detlef Lohse
- Physics
of Fluids Group, Max Planck Center for Complex Fluid Dynamics and
J. M. Burgers Centre for Fluid Dynamics, University of Twente, Enschede 7500 AE, Netherlands
- Max
Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
| | - Dominik Krug
- Physics
of Fluids Group, Max Planck Center for Complex Fluid Dynamics and
J. M. Burgers Centre for Fluid Dynamics, University of Twente, Enschede 7500 AE, Netherlands
| |
Collapse
|
23
|
Jeong S, Kim U, Lee S, Zhang Y, Son E, Choi KJ, Han YK, Baik JM, Park H. Superaerophobic/Superhydrophilic Multidimensional Electrode System for High-Current-Density Water Electrolysis. ACS NANO 2024; 18:7558-7569. [PMID: 38420914 DOI: 10.1021/acsnano.3c12533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Water electrolysis is emerging as a promising renewable-energy technology for the green production of hydrogen, which is a representative and reliable clean energy source. From economical and industrial perspectives, the development of earth-abundant non-noble metal-based and bifunctional catalysts, which can simultaneously exhibit high catalytic activities and stabilities for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), is critical; however, to date, these types of catalysts have not been constructed, particularly, for high-current-density water electrolysis at the industrial level. This study developed a heterostructured zero-dimensional (0D)-one-dimensional (1D) PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF)-Ni3S2 as a self-supported catalytic electrode via interface and morphology engineering. This unique heterodimensional nanostructure of the PBSCF-Ni3S2 system demonstrates superaerophobic/superhydrophilic features and maximizes the exposure of the highly active heterointerface, endowing the PBSCF-Ni3S2 electrode with outstanding electrocatalytic performances in both HER and OER and exceptional operational stability during the overall water electrolysis at high current densities (500 h at 500 mA cm-2). This study provides important insights into the development of catalytic electrodes for efficient and stable large-scale hydrogen production systems.
Collapse
Affiliation(s)
- Seulgi Jeong
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ungsoo Kim
- Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Sangjin Lee
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Yihan Zhang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Eunbin Son
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Kyoung-Jin Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Jeong Min Baik
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyesung Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
24
|
He Y, Tan P. "Bubble-Diode" Breathable Electrodes for Fast Gas Transport. Chemistry 2024; 30:e202303477. [PMID: 38091241 DOI: 10.1002/chem.202303477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Indexed: 01/04/2024]
Abstract
Bubbles arising from wild gas evolution commonly exist in electrochemical systems, particularly in water electrolysis and rechargeable aqueous batteries (e. g., Zn-air batteries). Substantial energy dissipation occurs due to the obstruction of active sites and ion-conducting pathways by evolving bubbles. Efforts are made to elucidate effective strategies for fast gas transport, most of which focus on minimizing bubble size and facilitating their timely detachment through complex techniques such as constructing super-hydrophilic nano-structure electrodes, flowing electrolytes, and ultrasonic oscillation. Recently, an innovative, facile, and highly efficient method utilizing a breathable electrode design to promote gaseous molecules to the external environment emerges as a promising approach since it avoids remarkable bubble accumulation while remaining free of additional accessories. This paper highlights the origin and evolution of this promising design. Starting with introducing the basic concept of traditional breathable electrodes based on hydrophobic polymer networks and discussing the current progress made in underlying mechanisms, a detailed description of the advanced design inspired by a "bubble-diode" concept with superior breathability follows. This Concept aims to contribute to a deep understanding of this technology and paves the way for further advancements in this renewable energy era.
Collapse
Affiliation(s)
- Yi He
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei, 230026, Anhui, China
| | - Peng Tan
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei, 230026, Anhui, China
| |
Collapse
|
25
|
Kumar N, Krause L, Wondrak T, Eckert S, Eckert K, Gumhold S. Robust Reconstruction of the Void Fraction from Noisy Magnetic Flux Density Using Invertible Neural Networks. SENSORS (BASEL, SWITZERLAND) 2024; 24:1213. [PMID: 38400371 PMCID: PMC10893175 DOI: 10.3390/s24041213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
Electrolysis stands as a pivotal method for environmentally sustainable hydrogen production. However, the formation of gas bubbles during the electrolysis process poses significant challenges by impeding the electrochemical reactions, diminishing cell efficiency, and dramatically increasing energy consumption. Furthermore, the inherent difficulty in detecting these bubbles arises from the non-transparency of the wall of electrolysis cells. Additionally, these gas bubbles induce alterations in the conductivity of the electrolyte, leading to corresponding fluctuations in the magnetic flux density outside of the electrolysis cell, which can be measured by externally placed magnetic sensors. By solving the inverse problem of the Biot-Savart Law, we can estimate the conductivity distribution as well as the void fraction within the cell. In this work, we study different approaches to solve the inverse problem including Invertible Neural Networks (INNs) and Tikhonov regularization. Our experiments demonstrate that INNs are much more robust to solving the inverse problem than Tikhonov regularization when the level of noise in the magnetic flux density measurements is not known or changes over space and time.
Collapse
Affiliation(s)
- Nishant Kumar
- Institute of Software and Multimedia Technology, Technische Universität Dresden, 01187 Dresden, Germany;
| | - Lukas Krause
- Institute of Process Engineering and Environmental Technology, Technische Universität Dresden, 01069 Dresden, Germany; (L.K.); (K.E.)
- Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (T.W.); (S.E.)
| | - Thomas Wondrak
- Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (T.W.); (S.E.)
| | - Sven Eckert
- Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (T.W.); (S.E.)
| | - Kerstin Eckert
- Institute of Process Engineering and Environmental Technology, Technische Universität Dresden, 01069 Dresden, Germany; (L.K.); (K.E.)
- Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (T.W.); (S.E.)
| | - Stefan Gumhold
- Institute of Software and Multimedia Technology, Technische Universität Dresden, 01187 Dresden, Germany;
| |
Collapse
|
26
|
Heinrich J, Ränke F, Schwarzenberger K, Yang X, Baumann R, Marzec M, Lasagni AF, Eckert K. Functionalization of Ti64 via Direct Laser Interference Patterning and Its Influence on Wettability and Oxygen Bubble Nucleation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2918-2929. [PMID: 38295345 PMCID: PMC10867896 DOI: 10.1021/acs.langmuir.3c02863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/30/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
The nucleation of bubbles on solid surfaces is an important phenomenon in nature and technological processes like electrolysis. During proton-exchange membrane electrolysis, the nucleation and separation of the electrically nonconductive oxygen in the anodic cycle plays a crucial role to minimize the overpotential it causes in the system. This increases the efficiency of the process, making renewable energy sources and the "power-to-gas" strategy more viable. A promising approach is to optimize gas separation by surface functionalization in order to apply a more advantageous interface to industrial materials. In this work, the connection between the wettability and bubble nucleation of oxygen is investigated. For tailoring the wettability of Ti64 substrates, the direct laser interference patterning method is applied. A laser source with a wavelength of 1064 nm and a pulse duration of 12 ps is used to generate periodic pillar-like structures with different depths up to ∼5 μm. The resulting surface properties are characterized by water contact angle measurement, scanning electron microscopy, confocal microscopy, and X-ray photon spectroscopy. It was possible to generate structures with a water contact angle ranging from 20° up to nearly superhydrophobic conditions. The different wettabilities are validated based on X-ray photon spectroscopy and the different elemental composition of the samples. The results indicate that the surface character of the substrate adapts depending on the surrounding media and needs more time to reach a steady state for deeper structures. A custom setup is used to expose the functionalized surfaces to oxygen-oversaturated solutions. It is shown that a higher hydrophobicity of the structured surface yields a stronger interaction with the dissolved gas. This significantly enhances the oxygen nucleation up to nearly 350% by generating approximately 20 times more nucleation spots, but also smaller bubble sizes and a reduced detachment rate.
Collapse
Affiliation(s)
- Julian Heinrich
- Institute
of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, Dresden 01328, Germany
- Institute
of Process Engineering and Environmental Technology, Technische Universität Dresden, Helmholtzstr. 14, 01069 Dresden, Germany
| | - Fabian Ränke
- Institute
of Manufacturing Science and Engineering, Technische Universität Dresden, George-Baehr-Str. 3c, 01069 Dresden, Germany
| | - Karin Schwarzenberger
- Institute
of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, Dresden 01328, Germany
- Institute
of Process Engineering and Environmental Technology, Technische Universität Dresden, Helmholtzstr. 14, 01069 Dresden, Germany
| | - Xuegeng Yang
- Institute
of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, Dresden 01328, Germany
- Institute
of Process Engineering and Environmental Technology, Technische Universität Dresden, Helmholtzstr. 14, 01069 Dresden, Germany
| | - Robert Baumann
- Institute
of Manufacturing Science and Engineering, Technische Universität Dresden, George-Baehr-Str. 3c, 01069 Dresden, Germany
| | - Mateusz Marzec
- Academic
Centre for Materials and Nanotechnology, AGH University of Krakow, Av. Mickiewicza 30, 30-059 Krakow, Poland
| | - Andrés Fabián Lasagni
- Institute
of Manufacturing Science and Engineering, Technische Universität Dresden, George-Baehr-Str. 3c, 01069 Dresden, Germany
- Fraunhofer
Institute for Material and Beam Technology IWS, Winterbergstraße 28, 01277 Dresden, Germany
| | - Kerstin Eckert
- Institute
of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, Dresden 01328, Germany
- Institute
of Process Engineering and Environmental Technology, Technische Universität Dresden, Helmholtzstr. 14, 01069 Dresden, Germany
| |
Collapse
|
27
|
Xu B, Meng X, Huang J, Shan Y, Qiu D, Chen Q. Revealing the Heterogeneous Bubble Nucleation at Individual Silica Nanoparticles. Anal Chem 2024. [PMID: 38319065 DOI: 10.1021/acs.analchem.3c04411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Deep understanding of the bubble nucleation process is universally important in systems, from chemical engineering to materials. However, due to its nanoscale and transient nature, effective probing of nucleation behavior with a high spatiotemporal resolution is prohibitively challenging. We previously reported the measurement of a single nanobubble nucleation at a nanoparticle using scanning electrochemical cell microscopy, where the bubble nucleation and formation were inferred from the voltammetric responses. Here, we continue the study of heterogeneous bubble nucleation at interfaces by regulating the local nanostructures using silica nanoparticles with a distinct surface morphology. It is demonstrated that, compared to the smooth spherical silica nanoparticles, the raspberry-like nanoparticles can further significantly reduce the nucleation energy barrier, with a critical peak current about 23% of the bare carbon surfaces. This study advances our understanding of how surface nanostructures direct the heterogeneous nucleation process and may offer a new strategy for surface engineering in gas involved energy conversion systems.
Collapse
Affiliation(s)
- Binbin Xu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Xiaohui Meng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Juan Huang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yun Shan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qianjin Chen
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
28
|
Zhao Z, Ma Y, Xie Z, Wu F, Fan J, Kou J. Molecular Mechanisms of the Generation and Accumulation of Gas at the Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38293869 DOI: 10.1021/acs.langmuir.3c02701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Gas-evolving reactions are widespread in chemical and energy fields. However, the generated gas will accumulate at the interface, which reduces the rate of gas generation. Understanding the microscopic processes of the generation and accumulation of gas at the interface is crucial for improving the efficiency of gas generation. Here, we develop an algorithm to reproduce the process of catalytic gas generation at the molecular scale based on the all-atom molecular dynamics simulations and obtain the quantitative evolution of the gas generation, which agrees well with the experimental results. In addition, we demonstrate that under an external electric field, the generated gas molecules do not accumulate at the electrode surface, which implies that the electric field can significantly increase the rate of the gas generation. The results suggest that the external electric field changes the structure of the water molecules near the electrode surface, making it difficult for gas molecules to accumulate on the electrode surface. Furthermore, it is found that gas desorption from the electrode surface is an entropy-driven process, and its accumulation at the electrode surface depends mainly on the competition between the entropy and the enthalpy of the water molecules under the influence of the electric field. These results provide deep insight into gas generation and inhibition of gas accumulation.
Collapse
Affiliation(s)
- Zhigao Zhao
- Institute of Condensed Matter Physics, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Yunqiu Ma
- Institute of Condensed Matter Physics, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Zhang Xie
- Institute of Condensed Matter Physics, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Fengmin Wu
- Institute of Condensed Matter Physics, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Jintu Fan
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong 999077, China
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York 14853-4401, United States
| | - Jianlong Kou
- Institute of Condensed Matter Physics, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
29
|
Ma Y, Huang M, Mutschke G, Zhang X. Nucleation of surface nanobubbles in electrochemistry: Analysis with nucleation theorem. J Colloid Interface Sci 2024; 654:859-867. [PMID: 37898070 DOI: 10.1016/j.jcis.2023.10.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
The formation of single bubbles at nanoelectrodes during electrochemical reactions allows to accurately identify the critical nucleus for bubble formation. As demonstrated before, combining nanoelectrode experiments and an analysis approach based on classical nucleation theory (CNT) delivers useful insight into bubble nucleation. In this work we propose an alternative approach to analyze the critical nuclei by applying the nucleation theorem (NT), which is able to overcome the inherent shortcomings of CNT. The size of the critical nucleus can be calculated more accurately by fitting experimental data in a simple form of the NT. Simulating the local gas concentration using a finite element approach, and considering the effect of gas oversaturation on the interfacial tension and the real gas compressibility, we obtain a more realistic estimation of the critical nuclei morphology. With the NT-based analysis presented, we re-analyze the nucleation data reported before. The properties of the critical nuclei obtained here are roughly consistent with those obtained from the CNT-based approach. In addition, we confirm that the critical nucleus for bubble formation in high gas oversaturation is featured with a contact angle much larger than Young's contact angle.
Collapse
Affiliation(s)
- Yunqing Ma
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengyuan Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany.
| | - Gerd Mutschke
- Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
30
|
Wu R, Hu Z, Zhang H, Wang J, Qin C, Zhou Y. Bubbles in Porous Electrodes for Alkaline Water Electrolysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:721-733. [PMID: 38147650 DOI: 10.1021/acs.langmuir.3c02925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Porous electrodes with high specific surface areas have been commonly employed for alkaline water electrolysis. The gas bubbles generated in electrodes due to water electrolysis, however, can screen the reaction sites and hinder reactant transport, thereby deteriorating the performance of electrodes. Hence, an in-depth understanding of the behavior of bubbles in porous electrodes is of great importance. Nevertheless, since porous electrodes are opaque, direct observation of bubbles therein is still a challenge. In this work, we have successfully captured the behavior of bubbles in the pores at the side surfaces of nickel-based porous electrodes. Two types of porous electrodes are employed: the ones with straight pores along the gravitational direction and the ones with tortuous pores. In the porous electrodes with tortuous pores, the moving bubbles are prone to collide with the solid matrix, thereby leading to the accumulation of bubbles in the pores and hence bubble trapping. By contrast, in the porous electrodes with straight pores, bubbles are seldom trapped; and when two bubbles near the wall surfaces coalesce, the merged bubble can jump away from the wall surfaces, releasing more active surfaces for reaction. As a result, the porous electrodes with straight pores, although with lower specific surface areas, are superior to those with tortuous pores. The relationship among the pore structures of porous electrodes, bubble behavior, and electrode performance disclosed in this work provides deep insights into the design of porous electrodes.
Collapse
Affiliation(s)
- Rui Wu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhihao Hu
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haojing Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinqing Wang
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Chaozhong Qin
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Ye Zhou
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
31
|
Su H, Sun J, Wang C, Wang H. Temperature impacts on the growth of hydrogen bubbles during ultrasonic vibration-enhanced hydrogen generation. ULTRASONICS SONOCHEMISTRY 2024; 102:106734. [PMID: 38128391 PMCID: PMC10772823 DOI: 10.1016/j.ultsonch.2023.106734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
To improve the hydrogen precipitation performance on the surface of the catalytic layer of the proton exchange membrane (PEM) hydrogen cathode, ultrasonic vibration was employed to accelerate the detachment of hydrogen bubbles on the surface of the catalytic layer. Based on the energy and mechanical analyses of nano and microbubbles, the hydrogen bubble generation mechanism and the effect of temperature on bubble parameters during the evolution process when the ultrasonic field is coupled with the electric field are investigated. The nucleation frequency of the hydrogen bubbles, the relationship between the pressure and temperature and the operating temperature during the generation and detachment of bubbles as well as the detachment radius of bubbles under the action of the ultrasonic field are obtained. The effects of ultrasound and temperature on hydrogen production were verified by visual experiments. The results show that the operating temperature affects the nucleation, growth, and detachment processes of hydrogen bubbles. The effect of temperature on the nucleation frequency of bubbles mainly comes from the Gibbs free energy required for the electrolysis reaction. The bubble radius and growth rate are both related to the temperature to the power of one-third. Ultrasonic waves enhance the separation of hydrogen bubbles from the catalyst surface by acoustic cavitation and impact effects. An increase in the working temperature reduces the activation energy barriers to be overcome for the electrolysis reaction of water, which together with a decrease in the Gibbs free energy and the surface tension coefficient, leads to an increase in the nucleation frequency of the catalytic layer and a decrease in the radius of bubble detachment, and thus improves the hydrogen precipitation performance. Visualization experiments show that in actual PEM hydrogen production, ultrasonic intensification can promote the formation of nucleation sites. The ultrasonic induced fine bubble flow not only has a drag effect on the bubble, but also intensifies the polymerization growth of the bubble due to the impact of the fine bubble flow, thus speeding up the detachment of the bubble, shortening the covering time of the hydrogen bubble on the surface of the catalytic electrode, reducing the activation voltage loss and improve the hydrogen production efficiency of PEM. The experimental results show that when the electrolyte is 60°C, the maximum hydrogen production efficiency of ultrasound is increased by 7.34%, and the average hydrogen production efficiency is increased by 5.83%.
Collapse
Affiliation(s)
- Hongqian Su
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Building Environment and Energy Power Engineering Experimental Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jindong Sun
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Building Environment and Energy Power Engineering Experimental Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Caizhu Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Building Environment and Energy Power Engineering Experimental Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Haofeng Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Building Environment and Energy Power Engineering Experimental Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
32
|
Wang J, Liang C, Ma X, Liu P, Pan W, Zhu H, Guo Z, Sui Y, Liu H, Liu L, Yang C. Dynamically Adaptive Bubbling for Upgrading Oxygen Evolution Reaction Using Lamellar Fern-Like Alloy Aerogel Self-Standing Electrodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307925. [PMID: 37742133 DOI: 10.1002/adma.202307925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Adopting renewable electricity to produce "green" hydrogen has been a critical challenge because at a high current density the mass transfer capability of most catalytic electrodes deteriorates significantly. Herein, a unique lamellar fern-like alloy aerogel (LFA) electrode, showing a unique dynamically adaptive bubbling capability and can effectively avoid stress concentration caused by bubble aggregation is reported. The LFA electrode is intrinsically highly catalytic-active and shows a highly porous, resilient, hierarchically ordered, and well-percolated conductive network. It not only shows superior gas evacuation capability but also exhibits significantly improved stability at high current densities, showing the record lowest oxygen evolution reaction (OER) overpotential of 244 mV at 1000 mA cm-2 and stably over 6000 h. With the merits of mechanical robustness, excellent electron transport, and efficient bubble evacuation, LFA can be self-standing catalytic electrode and gas diffusion layers in anion-exchange-membrane water electrolysis (AEMWE), which can achieve 3000 mA cm-2 at a low voltage of 1.88 V and can sustain stable electrolysis at 2000 mA cm-2 for over 1300 h. This strategy can be extended to various gas evolution reactions as a general design rule for multiphase catalysis applications.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Caiwu Liang
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Department of Materials, Imperial College London, 80 Wood Lane, London, W120BZ, UK
| | - Xuyang Ma
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Peng Liu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Weisheng Pan
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Haojie Zhu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhenbin Guo
- Institute of Semiconductor Manufacturing Research, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Yiming Sui
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Hongjie Liu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Le Liu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Cheng Yang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
33
|
Wang J, Wu G, Feng G, Li G, Wei Y, Li S, Mao J, Liu X, Chen A, Song Y, Dong X, Wei W, Chen W. Electrochemical Epoxidation of Propylene to Propylene Oxide via Halogen-Mediated Systems. ACS OMEGA 2023; 8:46569-46576. [PMID: 38107883 PMCID: PMC10720275 DOI: 10.1021/acsomega.3c05508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/18/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
As one of the most important derivatives of propylene, the production of propylene oxide (PO) is severely restricted. The traditional chlorohydrin process is being eliminated due to environmental concerns, while processes such as Halcon and hydrogen peroxide epoxidation are limited by cost and efficiency, making it difficult to meet market demand. Therefore, achieving PO production through clean and efficient technologies has received extensive attention, and halogen-mediated electrochemical epoxidation of alkene is considered to be a desirable technology for the production of alkylene oxide. In this work, we used electrochemical methods to synthesize PO in halogen-mediated systems based on a RuO2-loaded Ti (RuO2/Ti) anode and screened out two potential mediated systems of chlorine (Cl) and bromine (Br) for the electrosynthesis of PO. At a current density of 100 mA·cm-2, both Cl- and Br-mediated systems delivered PO Faradaic efficiencies of more than 80%. In particular, the Br-mediated system obtained PO Faradaic efficiencies of more than 90% at lower potentials (≤1.5 V vs RHE) with better electrode structure durability. Furthermore, detailed product distribution investigations and DFT calculations suggested hypohalous acid molecules as key reaction intermediates in both Cl- and Br-mediated systems. This work presents a green and efficient PO production route with halogen-mediated electrochemical epoxidation of propylene driven by renewable electricity, exhibiting promising potential to replace the traditional chlorohydrin process.
Collapse
Affiliation(s)
- Jiangjiang Wang
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- University
of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Gangfeng Wu
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- University
of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Guanghui Feng
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- University
of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Guihua Li
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- University
of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yiheng Wei
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- University
of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shoujie Li
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
| | - Jianing Mao
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- University
of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiaohu Liu
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201203, P.R. China
| | - Aohui Chen
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201203, P.R. China
| | - Yanfang Song
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
| | - Xiao Dong
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
| | - Wei Wei
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- University
of the Chinese Academy of Sciences, Beijing 100049, P.R. China
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201203, P.R. China
| | - Wei Chen
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- University
of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
34
|
Sangtam BT, Park H. Review on Bubble Dynamics in Proton Exchange Membrane Water Electrolysis: Towards Optimal Green Hydrogen Yield. MICROMACHINES 2023; 14:2234. [PMID: 38138403 PMCID: PMC10745635 DOI: 10.3390/mi14122234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Water electrolysis using a proton exchange membrane (PEM) holds substantial promise to produce green hydrogen with zero carbon discharge. Although various techniques are available to produce hydrogen gas, the water electrolysis process tends to be more cost-effective with greater advantages for energy storage devices. However, one of the challenges associated with PEM water electrolysis is the accumulation of gas bubbles, which can impair cell performance and result in lower hydrogen output. Achieving an in-depth knowledge of bubble dynamics during electrolysis is essential for optimal cell performance. This review paper discusses bubble behaviors, measuring techniques, and other aspects of bubble dynamics in PEM water electrolysis. It also examines bubble behavior under different operating conditions, as well as the system geometry. The current review paper will further improve the understanding of bubble dynamics in PEM water electrolysis, facilitating more competent, inexpensive, and feasible green hydrogen production.
Collapse
Affiliation(s)
| | - Hanwook Park
- Department of Biomedical Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Chungnam, Republic of Korea;
| |
Collapse
|
35
|
Wan S, Zhang H, Ye K, Li J, He Y, Ge X, Xu T, Cai WB, Lin M, Jiang K. Improving the Efficiencies of Water Splitting and CO 2 Electrolysis by Anodic O 2 Bubble Management. J Phys Chem Lett 2023:11217-11223. [PMID: 38055915 DOI: 10.1021/acs.jpclett.3c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
This study systematically explores the impact of the anodic flow field design on the transport of O2 bubble and subsequent energy efficiency in electrolysis devices. Two distinct configurations, namely a conventional serpentine flow panel and an interdigitated flow panel, are integrated at the anode side of the electrolyzer. The interdigitated flow field exhibits superior performance in both alkaline water splitting and CO2 reduction despite the experience of an increased pressure drop. Numerical simulations reveal that the enhanced convective flow of the O2 bubbles induced by a forced anolyte flow through the porous electrode within the interdigitated panel design resulted in a 3 orders of magnitude increase in the level of the O2 bubble transport compared to the serpentine configuration. These findings not only underscore the significance of flow field design on bubble management but also provide a basis for advancing the electrolysis efficiency at industrial-level current densities.
Collapse
Affiliation(s)
- Shusheng Wan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Huanlei Zhang
- Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ke Ye
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jieyang Li
- Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yucheng He
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolin Ge
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Bin Cai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Meng Lin
- Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kun Jiang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
36
|
Cheng X, Du ZD, Ding Y, Li FY, Hua ZS, Liu H. Bubble Management for Electrolytic Water Splitting by Surface Engineering: A Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16994-17008. [PMID: 38050682 DOI: 10.1021/acs.langmuir.3c02477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
During electrocatalytic water splitting, the management of bubbles possesses great importance to reduce the overpotential and improve the stability of the electrode. Bubble evolution is accomplished by nucleation, growth, and detachment. The expanding nucleation sites, decreasing bubble size, and timely detachment of bubbles from the electrode surface are key factors in bubble management. Recently, the surface engineering of electrodes has emerged as a promising strategy for bubble management in practical water splitting due to its reliability and efficiency. In this review, we start with a discussion of the bubble behavior on the electrodes during water splitting. Then we summarize recent progress in the management of bubbles from the perspective of surface physical (electrocatalytic surface morphology) and surface chemical (surface composition) considerations, focusing on the surface texture design, three-dimensional construction, wettability coating technology, and functional group modification. Finally, we present the principles of bubble management, followed by an insightful perspective and critical challenges for further development.
Collapse
Affiliation(s)
- Xu Cheng
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education, Maanshan 243002, China
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Zhong-de Du
- School of Materials Science and Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Yu Ding
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Fu-Yu Li
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Zhong-Sheng Hua
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Huan Liu
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education, Maanshan 243002, China
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| |
Collapse
|
37
|
Kim J, Jung SM, Lee N, Kim KS, Kim YT, Kim JK. Efficient Alkaline Hydrogen Evolution Reaction Using Superaerophobic Ni Nanoarrays with Accelerated H 2 Bubble Release. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305844. [PMID: 37641945 DOI: 10.1002/adma.202305844] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Despite the adverse effects of H2 bubbles adhering to catalyst's surface on the performance of water electrolysis, the mechanisms by which H2 bubbles are effectively released during the alkaline hydrogen evolution reaction (HER) remain elusive. In this study, a systematic investigation on the effect of nanoscale surface morphologies on H2 bubble release behaviors and HER performance by employing earth-abundant Ni catalysts consisting of an array of Ni nanorods (NRs) with controlled surface porosities is performed. Both aerophobicity and hydrophilicity of the catalyst's surface vary according to the surface porosity of catalysts. The Ni catalyst with the highest porosity of ≈52% exhibits superaerophobic nature as well as the best HER performance among the Ni catalysts. It is found that the Ni catalyst's superaerophobicity combined with the effective open pore channels enables the accelerated release of H2 bubbles from the surface, leading to a significant improvement in geometric activities, particularly at high current densities, as well as intrinsic activities including both specific and mass activities. It is also demonstrated that the superaerophobicity enabled by highly porous Ni NRs can be combined with Pt and Cr having optimal binding abilities to further optimize electrocatalytic performance.
Collapse
Affiliation(s)
- Jaerim Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Sang-Mun Jung
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Noho Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Kyu-Su Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Yong-Tae Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Jong Kyu Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
38
|
Li M, Xie P, Yu L, Luo L, Sun X. Bubble Engineering on Micro-/Nanostructured Electrodes for Water Splitting. ACS NANO 2023. [PMID: 37992209 DOI: 10.1021/acsnano.3c08831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Bubble behaviors play crucial roles in mass transfer and energy efficiency in gas evolution reactions. Combining multiscale structures and surface chemical compositions, micro-/nanostructured electrodes have drawn increasing attention. With the aim to identify the exciting opportunities and rationalize the electrode designs, in this review, we present our current comprehension of bubble engineering on micro-/nanostructured electrodes, focusing on water splitting. We first provide a brief introduction of gas wettability on micro-/nanostructured electrodes. Then we discuss the advantages of micro-/nanostructured electrodes for mass transfer (detailing the lowered overpotential, promoted supply of electrolyte, and faster bubble growth kinetics), localized electric field intensity, and electrode stability. Following that, we outline strategies for promoting bubble detachment and directional transportation. Finally, we offer our perspectives on this emerging field for future research directions.
Collapse
Affiliation(s)
- Mengxuan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pengpeng Xie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Linfeng Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liang Luo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
39
|
Zhao P, Zhang C, Gong S. Size Ranges of Effective Nucleation Cavities on Gas-Evolving Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16101-16110. [PMID: 37920930 DOI: 10.1021/acs.langmuir.3c02235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Bubble nucleation has a significant influence on mass transfer and energy conversion in electrochemical gas-evolving reactions. In this work, we establish a theoretical model for bubble nucleation from gas cavities on gas-evolving surfaces. Based on analyses of transient gas diffusion within the concentration boundary layer and supersaturation equation for stable bubble nuclei, we determined the size ranges of effective nucleation cavities on gas-evolving surfaces under different levels of supersaturation conditions. In addition, a criterion for the incipience of bubble nucleation on gas-evolving surfaces is proposed. We investigate the effects of the contact angle, cone angle, concentration boundary layer thickness, ambient pressure, and temperature on the size ranges of effective nucleation cavities, respectively. We demonstrate that a larger contact angle or a smaller cone angle can broaden the size range of effective cavities, thereby promoting bubble nucleation from cavities. We also show that increasing the concentration boundary layer thickness causes larger cavities to become effective nucleation sites, which significantly expands the size range of effective cavities. In contrast, increasing the ambient pressure enables smaller cavities to become effective nucleation sites, resulting in an expansion in the size range of effective cavities. Results of this work will contribute to the manipulation of bubble nucleation densities and the optimal design of gas-evolving electrodes in various electrochemical gas-evolving reactions.
Collapse
Affiliation(s)
- Panpan Zhao
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chaoyang Zhang
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuai Gong
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
40
|
Park S, Liu L, Demirkır Ç, van der Heijden O, Lohse D, Krug D, Koper MTM. Solutal Marangoni effect determines bubble dynamics during electrocatalytic hydrogen evolution. Nat Chem 2023; 15:1532-1540. [PMID: 37563325 DOI: 10.1038/s41557-023-01294-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023]
Abstract
Understanding and manipulating gas bubble evolution during electrochemical water splitting is a crucial strategy for optimizing the electrode/electrolyte/gas bubble interface. Here gas bubble dynamics are investigated during the hydrogen evolution reaction on a well-defined platinum microelectrode by varying the electrolyte composition. We find that the microbubble coalescence efficiency follows the Hofmeister series of anions in the electrolyte. This dependency yields very different types of H2 gas bubble evolution in different electrolytes, ranging from periodic detachment of a single H2 gas bubble in sulfuric acid to aperiodic detachment of small H2 gas bubbles in perchloric acid. Our results indicate that the solutal Marangoni convection, induced by the anion concentration gradient developing during the reaction, plays a critical role at practical current density conditions. The resulting Marangoni force on the H2 gas bubble and the bubble departure diameter therefore depend on how surface tension varies with concentration for different electrolytes. This insight provides new avenues for controlling bubble dynamics during electrochemical gas bubble formation.
Collapse
Affiliation(s)
- Sunghak Park
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Luhao Liu
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Çayan Demirkır
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | | | - Detlef Lohse
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Dominik Krug
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands.
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
41
|
Suvira M, Ahuja A, Lovre P, Singh M, Draher GW, Zhang B. Imaging Single H 2 Nanobubbles Using Off-Axis Dark-Field Microscopy. Anal Chem 2023; 95:15893-15899. [PMID: 37851536 DOI: 10.1021/acs.analchem.3c02132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
A robust and detailed physicochemical description of electrochemically generated surface nanobubbles and their effects on electrochemical systems remains at large. Herein, we report the development and utilization of an off-axis, dark-field microscopy imaging tool for probing the dynamic process of generating single H2 nanobubbles at the surface of a carbon nanoelectrode. A change in the direction of the incident light is made to significantly reduce the intensity of the background light, which enables us to image both the nanoelectrode and nanobubble on the electrode surface or the metal nanoparticles in the vicinity of the electrode. The correlated electrochemical and optical response provides novel insights regarding bubble nucleation and dissolution on a nanoelectrode previously unattainable solely from its current-voltage response.
Collapse
Affiliation(s)
- Milomir Suvira
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Ananya Ahuja
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Pascal Lovre
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Mantak Singh
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Gracious Wyatt Draher
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
42
|
Karimi V, Sharma R, Morgen P, Andersen SM. Multiple Bubble Removal Strategies to Promote Oxygen Evolution Reaction: Mechanistic Understandings from Orientation, Rotation, and Sonication Perspectives. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49233-49245. [PMID: 37847299 DOI: 10.1021/acsami.3c11290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Bubble coverage of catalytically active sites is one of the well-known bottlenecks to the kinetics of the oxygen evolution reaction (OER). Herein, various bubble removal approaches (electrode orientation, rotating, and sonication) were considered for the OER performance evaluation of a state-of-the-art Ir-based electrocatalyst. Key parameters, such as catalyst mass loss, activity, overpotential, and charge- and mass-transfer mechanisms, were analyzed. First, it was suggested that a suitable orientation of the working electrode facilitates coalescence and sliding bubble effects on the catalyst surface, leading to better electrochemical performance than those of the traditional rotating disk electrode (RDE) configuration. Then, the convection and secondary Bjerknes force were explained as the responsible phenomena in improving the OER activity in the RDE and sonication methods. Finally, simultaneous implementation of the methods enhanced the catalyst mass activity up to 164% and provided fast charge-transfer kinetics and low double-layer capacitance, which eventually led to a 22% reduction in overpotential, while the catalyst loss slightly increased from 1.93 to 3.88%.
Collapse
Affiliation(s)
- Vahid Karimi
- Department of Green Technology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| | - Raghunandan Sharma
- Department of Green Technology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| | - Per Morgen
- Department of Green Technology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| | - Shuang Ma Andersen
- Department of Green Technology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| |
Collapse
|
43
|
Wei J, Liu Y, Wu X. A cyclone reactor of electrochemical advanced oxidation processes using PbO 2 anode and H 2O 2 electrosynthesis cathode. WATER RESEARCH 2023; 245:120629. [PMID: 37717333 DOI: 10.1016/j.watres.2023.120629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Electrochemical advanced oxidation processes are promising tools for pollution abatement but most still lack practical engineering attempts and devices. A type of process intensification reactor for the electrochemical advanced oxidation processes is developed here. The cyclone continuous flow electrochemical reactor adopts a PbO2 anode and H2O2 electrosynthesis cathode together. A lab-scale cyclone continuous flow electrochemical reactor is fabricated and simulated, which is evaluated using the H-acid wastewater. The contributions of the PbO2 anode and H2O2 electrosynthesis cathode to pollutant degradation are discussed particularly. A 3-D model is developed to provide a visualized perspective on the reactor performances, including flow distribution, mass transfer, and current distribution. Pronounced signals of powerful radicals can be detected for the PbO2H2O2 cyclone reactor, including •OH, SO4•-, and 1O2. It exhibits excellent performances on mass transfer, electrical properties, organic degradation, and space-time yield. Such a strategy presents a promising engineering solution for scale-up and further development toward industrial application.
Collapse
Affiliation(s)
- Jucai Wei
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yun Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei HuaDeLai (HDL) Co., Ltd, Wuhan 430023, PR China
| | - Xu Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei HuaDeLai (HDL) Co., Ltd, Wuhan 430023, PR China.
| |
Collapse
|
44
|
Fuladpanjeh-Hojaghan B, Shah RS, Roberts EPL, Trifkovic M. Effect of polarity reversal on floc formation and rheological properties of a sludge formed by the electrocoagulation process. WATER RESEARCH 2023; 242:120201. [PMID: 37336184 DOI: 10.1016/j.watres.2023.120201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/21/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Anode fouling is one of the key limiting factors to the widespread application of electrocoagulation (EC) for treatment of different types of contaminated water. Promising mitigation strategy to fouling is to operate the process under polarity reversal (PR) instead of direct current (DC). However, the PR operation comes at the cost of process complexity due to the alternation of electrochemical and chemical reactions. In this study, we systematically investigated the link between evolving fouling layer during DC and PR close to iron and aluminum electrodes and morphological and rheological properties of the formed sludge. By operando visualization of EC process, we demonstrate that during PR operation, precipitation of the iron and aluminum species occurs close to the anode interface, resulting in flocs with higher porosity and lower density than those formed under DC conditions. However, rheological investigation revealed that the PR conditions resulted in a sludge with more pronounced solid-like signature, but this enhancement in its viscoelastic properties is closely related to a period of the current's polarity reversal. We attribute this unexpected result to higher shear rate and collision of particles during PR conditions.
Collapse
|
45
|
Li P, Li W, Huang Y, Huang Q, Li F, Tian S. Surface Engineering over Metal-Organic Framework Nanoarray to Realize Boosted and Sustained Urea Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2305585. [PMID: 37574265 DOI: 10.1002/smll.202305585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Facilitating C─N bond cleavage and promoting *COO desorption are essential yet challenging in urea oxidation reactions (UORs). Herein a novel interfacial coordination assembly protocol is established to modify the Co-phytate coordination complex on the Ni-based metal-organic framework (MOF) nanosheet array (CC/Ni-BDC@Co-PA) toward boosted and sustained UOR electrocatalysis. Comprehensive experimental and theoretical investigations unveil that surface Co-PA modification over Ni-BDC can manipulate the electronic state of Ni sites, and in situ evolved charge-redistributed surface can promote urea adsorption and the subsequent C─N bond cleavage. Impressively, Co-PA functionalization can impart a negatively charged catalyst surface with improved aerophobicity, not only weakening *COO adsorption and promoting CO2 departure, but also repelling CO3 2- approaching to deactivate Ni species, eventually alleviating CO2 poisoning and enhancing operational durability. Beyond that, improved hydrophilic and aerophobic characteristics would also contribute to better mass transfer kinetics. Consequently, CC/Ni-BDC@Co-PA exhibits prominent UOR performance with an ultralow potential of 1.300 V versus RHE to attain 10 mA cm-2 , a small Tafel slope of 45 mV dec-1 , and strong durability, comparable to the best Ni-based electrocatalysts documented thus far. This work affords a novel paradigm to construct MOF-based materials for promoted and sustained UOR catalysis through elegant surface engineering based on a metal-PA complex.
Collapse
Affiliation(s)
- Ping Li
- School of Environment Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P. R. China
| | - Wenqin Li
- School of Environment Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P. R. China
| | - Yuqi Huang
- School of Environment Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P. R. China
| | - Quhua Huang
- School of Environment Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P. R. China
| | - Fengli Li
- School of Environment Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P. R. China
| | - Shuanghong Tian
- School of Environment Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P. R. China
| |
Collapse
|
46
|
Mondaca-Medina E, García-Carrillo R, Lee H, Wang Y, Zhang H, Ren H. Nanoelectrochemistry in electrochemical phase transition reactions. Chem Sci 2023; 14:7611-7619. [PMID: 37476712 PMCID: PMC10355110 DOI: 10.1039/d3sc01857a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Electrochemical phase transition is important in a range of processes, including gas generation in fuel cells and electrolyzers, as well as in electrodeposition in battery and metal production. Nucleation is the first step in these phase transition reactions. A deep understanding of the kinetics, and mechanism of the nucleation and the structure of the nuclei and nucleation sites is fundamentally important. In this perspective, theories and methods for studying electrochemical nucleation are briefly reviewed, with an emphasis on nanoelectrochemistry and single-entity electrochemistry approaches. Perspectives on open questions and potential future approaches are also discussed.
Collapse
Affiliation(s)
- Elías Mondaca-Medina
- Department of Chemistry, The University of Texas at Austin 105 E 24th St Austin TX 78712 USA
| | - Roberto García-Carrillo
- Department of Chemistry, The University of Texas at Austin 105 E 24th St Austin TX 78712 USA
| | - Hyein Lee
- Department of Chemistry, The University of Texas at Austin 105 E 24th St Austin TX 78712 USA
| | - Yufei Wang
- Department of Chemistry, The University of Texas at Austin 105 E 24th St Austin TX 78712 USA
| | - He Zhang
- Department of Chemistry, The University of Texas at Austin 105 E 24th St Austin TX 78712 USA
| | - Hang Ren
- Department of Chemistry, The University of Texas at Austin 105 E 24th St Austin TX 78712 USA
| |
Collapse
|
47
|
Belotti M, El-Tahawy MMT, Garavelli M, Coote ML, Iyer KS, Ciampi S. Separating Convective from Diffusive Mass Transport Mechanisms in Ionic Liquids by Redox Pro-fluorescence Microscopy. Anal Chem 2023. [PMID: 37339015 DOI: 10.1021/acs.analchem.3c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The study of electrochemical reactivity requires analytical techniques capable of probing the diffusion of reactants and products to and from electrified interfaces. Information on diffusion coefficients is often obtained indirectly by modeling current transients and cyclic voltammetry data, but such measurements lack spatial resolution and are accurate only if mass transport by convection is negligible. Detecting and accounting for adventitious convection in viscous and wet solvents, such as ionic liquids, is technically challenging. We have developed a direct, spatiotemporally resolved optical tracking of diffusion fronts which can detect and resolve convective disturbances to linear diffusion. By tracking the movement of an electrode-generated fluorophore, we demonstrate that parasitic gas evolving reactions lead to 10-fold overestimates of macroscopic diffusion coefficients. A hypothesis is put forward linking large barriers to inner-sphere redox reactions, such as hydrogen gas evolution, to the formation of cation-rich overscreening and crowding double layer structures in imidazolium-based ionic liquids.
Collapse
Affiliation(s)
- Mattia Belotti
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Mohsen M T El-Tahawy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Bologna, Emilia Romagna 40136, Italy
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Bologna, Emilia Romagna 40136, Italy
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - K Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
48
|
Ikeda H, Misumi R, Nishiki Y, Kuroda Y, Mitsushima S. tert-Butyl-alcohol-induced breakage of the rigid bubble layer that causes overpotential in the oxygen evolution reaction during alkaline water electrolysis. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
49
|
Krause L, Skibińska K, Rox H, Baumann R, Marzec MM, Yang X, Mutschke G, Żabiński P, Lasagni AF, Eckert K. Hydrogen Bubble Size Distribution on Nanostructured Ni Surfaces: Electrochemically Active Surface Area Versus Wettability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18290-18299. [PMID: 37010817 DOI: 10.1021/acsami.2c22231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Emerging manufacturing technologies make it possible to design the morphology of electrocatalysts on the nanoscale in order to improve their efficiency in electrolysis processes. The current work investigates the effects of electrode-attached hydrogen bubbles on the performance of electrodes depending on their surface morphology and wettability. Ni-based electrocatalysts with hydrophilic and hydrophobic nanostructures are manufactured by electrodeposition, and their surface properties are characterized. Despite a considerably larger electrochemically active surface area, electrochemical analysis reveals that the samples with more pronounced hydrophobic properties perform worse at industrially relevant current densities. High-speed imaging shows significantly larger bubble detachment radii with higher hydrophobicity, meaning that the electrode surface area that is blocked by gas is larger than the area gained by nanostructuring. Furthermore, a slight tendency toward bubble size reduction of 7.5% with an increase in the current density is observed in 1 M KOH.
Collapse
Affiliation(s)
- Lukas Krause
- Institute of Process Engineering and Environmental Technology, Technische Universität Dresden, Helmholtzstraße 14, 01069 Dresden, Germany
- Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Katarzyna Skibińska
- Faculty of Non-Ferrous Metals, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Kraków, Poland
- Centrum Badań i Rozwoju Technologii dla Przemysłu S.A., Ludwika Waryńskiego 3A, 00-645 Warszawa, Poland
| | - Hannes Rox
- Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Robert Baumann
- Institute of Manufacturing Science and Engineering, Technische Universität Dresden, George-Baehr-Straße 3c, 01069 Dresden, Germany
| | - Mateusz M Marzec
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Kraków, Poland
| | - Xuegeng Yang
- Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Gerd Mutschke
- Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Piotr Żabiński
- Faculty of Non-Ferrous Metals, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Kraków, Poland
| | - Andrés Fabián Lasagni
- Institute of Manufacturing Science and Engineering, Technische Universität Dresden, George-Baehr-Straße 3c, 01069 Dresden, Germany
- Fraunhofer Institut für Werkstoff- und Strahltechnik IWS, Winterbergstraße 28, 01277 Dresden, Germany
| | - Kerstin Eckert
- Institute of Process Engineering and Environmental Technology, Technische Universität Dresden, Helmholtzstraße 14, 01069 Dresden, Germany
- Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| |
Collapse
|
50
|
Tian L, Liang J, Gao Y, Gao X, Kang X. Current oscillations from bipolar nanopores for statistical monitoring of hydrogen evolution on a confined electrochemical catalyst. Phys Chem Chem Phys 2023; 25:7629-7633. [PMID: 36857696 DOI: 10.1039/d3cp00055a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Taking advantage of bipolar electrochemistry and a glass nanopipette, continuous single bubbles can be controlled which are generated and detached from a nanometer-sized area of confined electrochemical catalysts. The observed current oscillations offer opportunities to rapidly collect data for the statistical analysis of single-bubble generation on and departure from the catalysts.
Collapse
Affiliation(s)
- Lei Tian
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Jing Liang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Yingjie Gao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Xiang Gao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Xiaofeng Kang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| |
Collapse
|