1
|
Zhu H, Feng W, Wang Y, Li Z, Xu B, Lin S. Dissipative particle dynamics simulations on the self-assembly of rod-coil asymmetric diblock molecular brushes bearing responsive side chains. SOFT MATTER 2024. [PMID: 39659192 DOI: 10.1039/d4sm01232a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The self-assembly behaviors of rod-coil asymmetric diblock molecular brushes (ADMBs) bearing responsive side chains in a selective solvent are investigated via dissipative particle dynamics simulations. By systematically varying the polymerization degree, copolymer concentration, and side chain length, several morphological phase diagrams were constructed. ADMB assemblies exhibited a rich variety of morphologies, including cylindrical micelles, spherical micelles, nanowires, polyhedral micelles, ellipsoid micelles, and large compound micelles. The structures of the representative nanowires were analyzed in detail. A kinetics study revealed that the one-dimensional growth of nanowires follows the step-growth polymerization mechanism. Besides, by calculating the local order parameter of the rigid chains, we found that increasing the lengths of A and C side chains can promote the ordered arrangement of the rigid chains. Moreover, the rod-to-coil conformation transitions were simulated to explore the stimuli-responsive behaviors of ADMBs with responsive rigid side chains. The simulation results indicated that the volume of the assemblies expanded without the support of the rigid chains. The present work not only provides a comprehensive understanding of the self-assembly behaviors of ADMBs but also provides meaningful theoretical support for the development of novel molecular brush materials.
Collapse
Affiliation(s)
- Hao Zhu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Weisheng Feng
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yueyao Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhengyi Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Binbin Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
Day EC, Chittari SS, Cunha KC, Zhao RJ, Dodds JN, Davis DC, Baker ES, Berlow RB, Shea JE, Kulkarni RU, Knight AS. A High-Throughput Workflow to Analyze Sequence-Conformation Relationships and Explore Hydrophobic Patterning in Disordered Peptoids. Chem 2024; 10:3444-3458. [PMID: 39582487 PMCID: PMC11580747 DOI: 10.1016/j.chempr.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Understanding how a macromolecule's primary sequence governs its conformational landscape is crucial for elucidating its function, yet these design principles are still emerging for macromolecules with intrinsic disorder. Herein, we introduce a high-throughput workflow that implements a practical colorimetric conformational assay, introduces a semi-automated sequencing protocol using MALDI-MS/MS, and develops a generalizable sequence-structure algorithm. Using a model system of 20mer peptidomimetics containing polar glycine and hydrophobic N-butylglycine residues, we identified nine classifications of conformational disorder and isolated 122 unique sequences across varied compositions and conformations. Conformational distributions of three compositionally identical library sequences were corroborated through atomistic simulations and ion mobility spectrometry coupled with liquid chromatography. A data-driven strategy was developed using existing sequence variables and data-derived 'motifs' to inform a machine learning algorithm towards conformation prediction. This multifaceted approach enhances our understanding of sequence-conformation relationships and offers a powerful tool for accelerating the discovery of materials with conformational control.
Collapse
Affiliation(s)
- Erin C. Day
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Supraja S. Chittari
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Keila C. Cunha
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Roy J. Zhao
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - James N. Dodds
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Delaney C. Davis
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Erin S. Baker
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rebecca B. Berlow
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 USA
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | | | - Abigail S. Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lead contact
| |
Collapse
|
3
|
Kalmer H, Sbordone F, McMurtrie J, Nitsche C, Frisch H. Macromolecular Function Emerging from Intramolecular Peptide Stapling of Synthetic Polymers. Macromol Rapid Commun 2024:e2400591. [PMID: 39437172 DOI: 10.1002/marc.202400591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Protein function results from the precise folding of polypeptides into bespoke architectures. Taking inspiration from nature, the field of single-chain nanoparticles (SCNPs), intramolecularly crosslinked synthetic polymers, emerged. In contrast to nature, the function of SCNPs is generally defined by the parent polymer or the applied crosslinker, rather than by the crosslinking process itself. This work explores the cyanopyridine-aminothiol click reaction to crosslink peptide-decorated polymers intra-macromolecularly to endow the resulting SCNPs with emerging functionality, resulting from the conversion of N-terminal cysteine units into pyridine-thiazolines. Dimethylacrylamide based polymers with different cysteine-terminated amino acid sequences tethered to their sidechains are investigated (P1 (C), P2 (GDHC), P3 (GDSC)) and intramolecularly crosslinked into SCNPs. Since the deprotection of the parent polymers yields disulfide-based SCNPs, a direct comparison between disulfide and pyridine-thiazolines crosslinked SCNPs is possible. This comparison revealed two emerging properties of the pyridine-thiazoline crosslinked SCNPs: 1) The formation of pyridine-thiazolines gave rise to metal binding sites within the SCNP, which complexed iron. 2) Depending on the peptide sequence in the precursor polymer, the hydrolytic activity of the peptide sequences is either increased (GDHC) or decreased (GDSC) upon pyridine-thiazoline formation compared to identical SCNPs based on disulfide crosslinks.
Collapse
Affiliation(s)
- Henrik Kalmer
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Federica Sbordone
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - John McMurtrie
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Hendrik Frisch
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
4
|
Jin T, Coley CW, Alexander-Katz A. Sequence-Sensitivity in Functional Synthetic Polymer Properties. Angew Chem Int Ed Engl 2024:e202415047. [PMID: 39378183 DOI: 10.1002/anie.202415047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Recently, a new class of synthetic methyl methacrylate-based random heteropolymers (MMA-based RHPs) has displayed protein-like properties. Their function appears to be insensitive to the precise sequence. Here, through atomistic molecular dynamics simulation, we show that there are universal protein-like features of MMA-based RHPs that are insensitive to the sequence, and mostly depend on the overall composition. In particular, we find that MMA-based RHPs "fold" into globules with heterogeneous hydration patterns. However, the insensitivity to sequence identity observed in MMA-based RHPs dramatically changes when we substitute the backbone architecture with acrylate or replace the oxygen atom in the side chain with a nitrogen atom (methacrylamide or acrylamide). In such scenarios, the sequence contributes significantly to the compactness and the hydration of monomers. Using principal component analysis and an intersection-over-union based index, we demonstrate that different sequences may not overlap in the property space, meaning that their properties are controlled by the sequence rather than fixed composition. We further investigate the sequence-insensitive capability of the MMA-based RHPs as previously reported on bacterial phospholipase OmpLA stabilization through heterodimerization. As experimentally observed, such polymers enhance the stability of OmpLA as reliably as its native bilayer environment. The design of such MMA-based RHPs provides a sequence-insensitive alternative to protein-mimetic biomaterials that is orthogonal to the sequence-structure-function paradigm of proteins.
Collapse
Affiliation(s)
- Tianyi Jin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Connor W Coley
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Allen BP, Pinky SK, Beard EE, Gringeri AA, Calzadilla N, Sanders MA, Yingling YG, Knight AS. Monomer Composition as a Mechanism to Control the Self-Assembly of Diblock Oligomeric Peptide-Polymer Amphiphiles. ACS NANO 2024; 18:26839-26847. [PMID: 39287594 DOI: 10.1021/acsnano.4c08028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Diblock oligomeric peptide-polymer amphiphiles (PPAs) are biohybrid materials that offer versatile functionality by integrating the sequence-dependent properties of peptides with the synthetic versatility of polymers. Despite their potential as biocompatible materials, the rational design of PPAs for assembly into multichain nanoparticles remains challenging due to the complex intra- and intermolecular interactions emanating from the polymer and peptide segments. To systematically explore the impact of monomer composition on nanoparticle assembly, PPAs were synthesized with a random coil peptide (XTEN2) and oligomeric alkyl acrylates with different side chains: ethyl, tert-butyl, n-butyl, and cyclohexyl. Experimental characterization using electron and atomic force microscopies demonstrated that the tail hydrophobicity impacted accessible morphologies. Moreover, the characterization of different assembly protocols (i.e., bath sonication and thermal annealing) revealed that certain tail compositions provide access to kinetically trapped assemblies. All-atom molecular dynamics simulations of micelle formation unveiled key interactions and differences in core hydration, dictating the PPA assembly behavior. These findings highlight the complexity of PPA assembly dynamics and serve as valuable benchmarks to guide the design of PPAs for a variety of applications, including catalysis, mineralization, targeted sequestration, antimicrobial activity, and cargo transportation.
Collapse
Affiliation(s)
- Benjamin P Allen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sabila K Pinky
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Emily E Beard
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail A Gringeri
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nicholas Calzadilla
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew A Sanders
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Abigail S Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
6
|
Triantafyllopoulou E, Perinelli DR, Forys A, Pantelis P, Gorgoulis VG, Lagopati N, Trzebicka B, Bonacucina G, Valsami G, Pippa N, Pispas S. Unveiling the Performance of Co-Assembled Hybrid Nanocarriers: Moving towards the Formation of a Multifunctional Lipid/Random Copolymer Nanoplatform. Pharmaceutics 2024; 16:1204. [PMID: 39339240 PMCID: PMC11434724 DOI: 10.3390/pharmaceutics16091204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Despite the appealing properties of random copolymers, the use of these biomaterials in association with phospholipids is still limited, as several aspects of their performance have not been investigated. The aim of this work is the formulation of lipid/random copolymer platforms and the comprehensive study of their features by multiple advanced characterization techniques. Both biomaterials are amphiphilic, including two phospholipids (1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)) and a statistical copolymer of oligo (ethylene glycol) methyl ether methacrylate (OEGMA) and 2-(diisopropylamino) ethyl methacrylate (DIPAEMA). We examined the design parameters, including the lipid composition, the % comonomer ratio, and the lipid-to-polymer ratio that could be critical for their behavior. The structures were also probed in different conditions. To the best of the authors' knowledge, this is the first time that P(OEGMA-co-DIPAEMA)/lipid hybrid colloidal dispersions have been investigated from a membrane mechanics, biophysical, and morphological perspective. Among other parameters, the copolymer architecture and the hydrophilic to hydrophobic balance are deemed fundamental parameters for the biomaterial co-assembly, having an impact on the membrane's fluidity, morphology, and thermodynamics. Exploiting their unique characteristics, the most promising candidates were utilized for methotrexate (MTX) loading to explore their encapsulation capability and potential antitumor efficacy in vitro in various cell lines.
Collapse
Affiliation(s)
- Efstathia Triantafyllopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Diego Romano Perinelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Pavlos Pantelis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
| | - Nefeli Lagopati
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Giulia Bonacucina
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Georgia Valsami
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
7
|
Chen Y, Feng H, Chen L, Zhou W, Zhou S. Construction of homologous branched oligomer megamolecules based on linker-directed protein assembly. SOFT MATTER 2024; 20:6889-6893. [PMID: 39177042 DOI: 10.1039/d4sm00673a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Utilizing the building blocks of recombinant proteins and synthetic linkers, we have obtained two distinct octameric megamolecules with diverse branched structures. This approach combines principles from both click chemistry and protein engineering technology, enabling the integration of functional domains within highly ordered protein assemblies for biomedical applications.
Collapse
Affiliation(s)
- Yue Chen
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Honghong Feng
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Long Chen
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Wenbin Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Shengwang Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| |
Collapse
|
8
|
Latif EA, Hilgar JD, Romero NA. Synthesis and Photochemical Uncaging of Alkene-Protected, Polymer-Bound Vicinal Frustrated Lewis Pairs. J Am Chem Soc 2024; 146:24764-24769. [PMID: 39186110 PMCID: PMC11403618 DOI: 10.1021/jacs.4c09012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Polymeric materials bearing Frustrated Lewis Pair (FLP) functionality are promising candidates for use as heterogeneous catalysts and adaptive materials, but synthetic access to FLP-functional polymers remains limited due to the incompatibility of FLPs with standard polymerization chemistries. Herein, we describe a synthetic approach that "cages" highly reactive vicinal phosphine-borane FLPs as covalent alkene adducts, which are stable to Ni-mediated vinyl addition polymerization. We discovered that the caged FLP adducts can be photochemically activated to liberate vicinal FLPs, enabling spatiotemporally controlled release of FLPs from polymeric precursors.
Collapse
Affiliation(s)
- Emily A Latif
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Jeremy D Hilgar
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Nathan A Romero
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Jin W, Nagao M, Kumon Y, Matsumoto H, Hoshino Y, Miura Y. Effects of Cyclic Glycopolymers Molecular Mobility on their Interactions with Lectins. Chempluschem 2024; 89:e202400136. [PMID: 38535777 DOI: 10.1002/cplu.202400136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 08/22/2024]
Abstract
Cyclic polymers, which are found in the field of biopolymers, exhibit unique physical properties such as suppressed molecular mobility. Considering thermodynamics, the suppressed molecular mobility of cyclic polymers is expected to prevent unfavorable entropy loss in molecular interactions. In this study, we synthesized cyclic glycopolymers carrying galactose units and investigated the effects of their molecular mobility on the interactions with a lectin (peanut agglutinin). The synthesized cyclic glycopolymers exhibited delayed elution time on size exclusion chromatography and a short spin-spin relaxation time, indicating typical characteristics of cyclic polymers, including smaller hydrodynamic size and suppressed molecular mobility. The hemagglutination inhibition assay revealed that the cyclic glycopolymers exhibited weakened interactions with peanut agglutinin compared to the linear counterparts, attributable to the suppressed molecular mobility. Although the results are contrary to our expectations, the impact of polymer topology on molecular recognition remains intriguing, particularly in the context of protein repellent activity in the biomedical field.
Collapse
Affiliation(s)
- Wenkang Jin
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Masanori Nagao
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Yusuke Kumon
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Hikaru Matsumoto
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Yu Hoshino
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
10
|
Oktawiec J, Ebrahim OM, Chen Y, Su K, Sharpe C, Rosenmann ND, Barbut C, Weigand SJ, Thompson MP, Byrnes J, Qiao B, Gianneschi NC. Conformational modulation and polymerization-induced folding of proteomimetic peptide brush polymers. Chem Sci 2024:d4sc03420a. [PMID: 39129772 PMCID: PMC11308386 DOI: 10.1039/d4sc03420a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
Peptide-brush polymers generated by graft-through living polymerization of peptide-modified monomers exhibit high proteolytic stability, therapeutic efficacy, and potential as functional tandem repeat protein mimetics. Prior work has focused on polymers generated from structurally disordered peptides that lack defined conformations. To obtain insight into how the structure of these polymers is influenced by the folding of their peptide sidechains, a set of polymers with varying degrees of polymerization was prepared from peptide monomers that adopt α-helical secondary structure for comparison to those having random coil structures. Circular dichroism and nuclear magnetic resonance spectroscopy confirm the maintenance of the secondary structure of the constituent peptide when polymerized. Small-angle X-ray scattering (SAXS) studies reveal the solution-phase conformation of PLPs in different solvent environments. In particular, X-ray scattering shows that modulation of solvent hydrophobicity, as well as hydrogen bonding patterns of the peptide sidechain, plays an important role in the degree of globularity and conformation of the overall polymer, with polymers of helical peptide brushes showing less spherical compaction in conditions where greater helicity is observed. These structural insights into peptide brush folding and polymer conformation inform the design of these proteomimetic materials with promise for controlling and predicting their artificial fold and morphology.
Collapse
Affiliation(s)
- Julia Oktawiec
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
| | - Omar M Ebrahim
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
| | - Yu Chen
- Department of Materials Science and Engineering, Northwestern University Evanston IL 60208 USA
| | - Kaylen Su
- Department of Natural Sciences, Baruch College, City University of New York New York NY 10010 USA
| | - Christopher Sharpe
- Department of Materials Science and Engineering, Northwestern University Evanston IL 60208 USA
| | - Nathan D Rosenmann
- Department of Materials Science and Engineering, Northwestern University Evanston IL 60208 USA
| | - Clara Barbut
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
| | - Steven J Weigand
- DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) Synchrotron Research Center, Northwestern University Argonne IL 60208 USA
| | | | - James Byrnes
- Beamline 16ID, NSLS-II, Brookhaven National Laboratory Upton NY 11973 USA
| | - Baofu Qiao
- Department of Natural Sciences, Baruch College, City University of New York New York NY 10010 USA
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
- Department of Materials Science and Engineering, Northwestern University Evanston IL 60208 USA
- International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Lurie Cancer Center, Department of Biomedical Engineering, and Department of Pharmacology, Northwestern University Evanston IL 60208 USA
| |
Collapse
|
11
|
Dykeman-Bermingham PA, Stingaciu LR, Do C, Knight AS. Dynamic Implications of Noncovalent Interactions in Amphiphilic Single-Chain Polymer Nanoparticles. ACS Macro Lett 2024; 13:889-895. [PMID: 38959296 DOI: 10.1021/acsmacrolett.4c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Single-chain polymer nanoparticles (SCNPs) combine the chemical diversity of synthetic polymers with the intricate structure of biopolymers, generating versatile biomimetic materials. The mobility of polymer chain segments at length scales similar to secondary structural elements in proteins is critical to SCNP structure and thus function. However, the influence of noncovalent interactions used to form SCNPs (e.g., hydrogen-bonding and biomimetic secondary-like structure) on these conformational dynamics is challenging to quantitatively assess. To isolate the effects of noncovalent interactions on SCNP structure and conformational dynamics, we synthesized a series of amphiphilic copolymers containing dimethylacrylamide and monomers capable of forming these different interactions: (1) di(phenylalanine) acrylamide that forms intramolecular β-sheet-like cross-links, (2) phenylalanine acrylamide that forms hydrogen-bonds but lacks a defined local structure, and (3) benzyl acrylamide that has the lowest propensity for hydrogen-bonding. Each SCNP formed folded structures comparable to those of intrinsically disordered proteins, as observed by size exclusion chromatography and small angle neutron scattering. The dynamics of these polymers, as characterized by a combination of dynamic light scattering and neutron spin echo spectroscopy, was well described using the Zimm with internal friction (ZIF) model, highlighting the role of each noncovalent interaction to additively restrict the internal relaxations of SCNPs. These results demonstrate the utility of local scale interactions to control SCNP polymer dynamics, guiding the design of functional biomimetic materials with refined binding sites and tunable kinetics.
Collapse
Affiliation(s)
- Peter A Dykeman-Bermingham
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Laura R Stingaciu
- NScD, SNS, Oak Ridge National Laboratory, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Changwoo Do
- NScD, SNS, Oak Ridge National Laboratory, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Abigail S Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
12
|
Sanders MA, Chittari SS, Foley JR, Swofford WM, Elder BM, Knight AS. Leveraging Triphenylphosphine-Containing Polymers to Explore Design Principles for Protein-Mimetic Catalysts. J Am Chem Soc 2024; 146:17404-17413. [PMID: 38863219 DOI: 10.1021/jacs.4c05040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Complex interactions between noncoordinating residues are significant yet commonly overlooked components of macromolecular catalyst function. While these interactions have been demonstrated to impact binding affinities and catalytic rates in metalloenzymes, the roles of similar structural elements in synthetic polymeric catalysts remain underexplored. Using a model Suzuki-Miyuara cross-coupling reaction, we performed a series of systematic studies to probe the interconnected effects of metal-ligand cross-links, electrostatic interactions, and local rigidity in polymer catalysts. To achieve this, a novel bifunctional triphenylphosphine acrylamide (BisTPPAm) monomer was synthesized and evaluated alongside an analogous monofunctional triphenylphosphine acrylamide (TPPAm). In model copolymer catalysts, increased initial reaction rates were observed for copolymers untethered by Pd complexation (BisTPPAm-containing) compared to Pd-cross-linked catalysts (TPPAm-containing). Further, incorporating local rigidity through secondary structure-like and electrostatic interactions revealed nonmonotonic relationships between composition and the reaction rate, demonstrating the potential for tunable behavior through secondary-sphere interactions. Finally, through rigorous cheminformatics featurization strategies and statistical modeling, we quantitated relationships between chemical descriptors of the substrate and reaction conditions on catalytic performance. Collectively, these results provide insights into relationships among the composition, structure, and function of protein-mimetic catalytic copolymers.
Collapse
Affiliation(s)
- Matthew A Sanders
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Supraja S Chittari
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jack R Foley
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - William M Swofford
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bridgette M Elder
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
13
|
Triantafyllopoulou E, Forys A, Perinelli DR, Balafouti A, Karayianni M, Trzebicka B, Bonacucina G, Valsami G, Pippa N, Pispas S. Deciphering the Lipid-Random Copolymer Interactions and Encoding Their Properties to Design a Hybrid System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11936-11946. [PMID: 38797979 PMCID: PMC11190979 DOI: 10.1021/acs.langmuir.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/10/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Lipid/copolymer colloidal systems are deemed hybrid materials with unique properties and functionalities. Their hybrid nature leads to complex interfacial phenomena, which have not been fully encoded yet, navigating their properties. Moving toward in-depth knowledge of such systems, a comprehensive investigation of them is imperative. In the present study, hybrid lipid/copolymer structures were fabricated and examined by a gamut of techniques, including dynamic light scattering, fluorescence spectroscopy, cryogenic transmission electron microscopy, microcalorimetry, and high-resolution ultrasound spectroscopy. The biomaterials that were mixed for this purpose at different ratios were 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine and four different linear, statistical (random) amphiphilic copolymers, consisting of oligo(ethylene glycol) methyl ether methacrylate as the hydrophilic comonomer and lauryl methacrylate as the hydrophobic one. The colloidal dispersions were studied for lipid/copolymer interactions regarding their physicochemical, morphological, and biophysical behavior. Their membrane properties and interactions with serum proteins were also studied. The aforementioned techniques confirmed the hybrid nature of the systems and the location of the copolymer in the structure. More importantly, the random architecture of the copolymers, the hydrophobic-to-hydrophilic balance of the nanoplatforms, and the lipid-to-polymer ratio are highlighted as the main design-influencing factors. Elucidating the lipid/copolymer interactions would contribute to the translation of hybrid nanoparticle performance and, thus, their rational design for multiple applications, including drug delivery.
Collapse
Affiliation(s)
- Efstathia Triantafyllopoulou
- Section
of Pharmaceutical Technology, Department of Pharmacy, School of Health
Sciences, National and Kapodistrian University
of Athens, Panepistimioupolis
Zografou, Athens 15771, Greece
| | - Aleksander Forys
- Centre
of Polymer and Carbon Materials, Polish
Academy of Sciences, Zabrze 41-819, Poland
| | - Diego Romano Perinelli
- School
of Pharmacy, University of Camerino, Via Gentile III da Varano, Camerino 62032, Italy
| | - Anastasia Balafouti
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Maria Karayianni
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Barbara Trzebicka
- Centre
of Polymer and Carbon Materials, Polish
Academy of Sciences, Zabrze 41-819, Poland
| | - Giulia Bonacucina
- School
of Pharmacy, University of Camerino, Via Gentile III da Varano, Camerino 62032, Italy
| | - Georgia Valsami
- Section
of Pharmaceutical Technology, Department of Pharmacy, School of Health
Sciences, National and Kapodistrian University
of Athens, Panepistimioupolis
Zografou, Athens 15771, Greece
| | - Natassa Pippa
- Department
of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou 15771, Athens 157 72, Greece
| | - Stergios Pispas
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| |
Collapse
|
14
|
Blázquez-Martín A, Bonardd S, Verde-Sesto E, Arbe A, Pomposo JA. Trimethylsilanol Cleaves Stable Azaylides As Revealed by Unfolding of Robust "Staudinger" Single-Chain Nanoparticles. ACS POLYMERS AU 2024; 4:140-148. [PMID: 38618005 PMCID: PMC11010256 DOI: 10.1021/acspolymersau.3c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 04/16/2024]
Abstract
Herein, we disclose a unique and selective reagent for the cleavage of stable azaylides prepared by the nonhydrolysis Staudinger reaction, enabling the on-demand unfolding of robust single-chain nanoparticles (SCNPs). SCNPs with promising use in catalysis, nanomedicine, and sensing are obtained through intrachain folding of discrete synthetic polymer chains. The unfolding of SCNPs involving reversible interactions triggered by a variety of external stimuli (e.g., pH, temperature, light, and redox potential) or substances (e.g., competitive reagents, solvents, and anions) is well known. Conversely, methods for the unfolding (i.e., intrachain disassembly) of SCNPs with stronger covalent interactions are scarce. We show that trimethylsilanol (Me3SiOH) triggers the efficient unfolding of robust "Staudinger" SCNPs with stable azaylide (-N=P-) moieties as intrachain cross-linking units showing exceptional stability toward water, air, and CS2, a standard reagent for azaylides. As a consequence, Me3SiOH arises as a rare, exceptional, and valuable reagent for the cleavage of stable azaylides prepared by the nonhydrolysis Staudinger reaction.
Collapse
Affiliation(s)
- Agustín Blázquez-Martín
- Centro
de Física de Materiales (CSIC - UPV/EHU) − Materials
Physics Center MPC, P°
Manuel Lardizabal 5, E-20018 Donostia, Spain
| | - Sebastián Bonardd
- Centro
de Física de Materiales (CSIC - UPV/EHU) − Materials
Physics Center MPC, P°
Manuel Lardizabal 5, E-20018 Donostia, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología,University of the Basque
Country (UPV/EHU), P°
Manuel Lardizabal 3, E-20800 Donostia, Spain
| | - Ester Verde-Sesto
- Centro
de Física de Materiales (CSIC - UPV/EHU) − Materials
Physics Center MPC, P°
Manuel Lardizabal 5, E-20018 Donostia, Spain
- IKERBASQUE
− Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| | - Arantxa Arbe
- Centro
de Física de Materiales (CSIC - UPV/EHU) − Materials
Physics Center MPC, P°
Manuel Lardizabal 5, E-20018 Donostia, Spain
| | - José A. Pomposo
- Centro
de Física de Materiales (CSIC - UPV/EHU) − Materials
Physics Center MPC, P°
Manuel Lardizabal 5, E-20018 Donostia, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología,University of the Basque
Country (UPV/EHU), P°
Manuel Lardizabal 3, E-20800 Donostia, Spain
- IKERBASQUE
− Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| |
Collapse
|
15
|
Dykeman-Bermingham PA, Bogen MP, Chittari SS, Grizzard SF, Knight AS. Tailoring Hierarchical Structure and Rare Earth Affinity of Compositionally Identical Polymers via Sequence Control. J Am Chem Soc 2024; 146:8607-8617. [PMID: 38470430 DOI: 10.1021/jacs.4c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Macromolecule sequence, structure, and function are inherently intertwined. While well-established relationships exist in proteins, they are more challenging to define for synthetic polymer nanoparticles due to their molecular weight, sequence, and conformational dispersities. To explore the impact of sequence on nanoparticle structure, we synthesized a set of 16 compositionally identical, sequence-controlled polymers with distinct monomer patterning of dimethyl acrylamide and a bioinspired, structure-driving di(phenylalanine) acrylamide (FF). Sequence control was achieved through multiblock polymerizations, yielding unique ensembles of polymer sequences which were simulated by kinetic Monte Carlo simulations. Systematic analysis of the global (tertiary- and quaternary-like) structure in this amphiphilic copolymer series revealed the effect of multiple sequence descriptors: the number of domains, the hydropathy of terminal domains, and the patchiness (density) of FF within a domain, each of which impacted both chain collapse and the distribution of single- and multichain assemblies. Furthermore, both the conformational freedom of chain segments and local-scale, β-sheet-like interactions were sensitive to the patchiness of FF. To connect sequence, structure, and target function, we evaluated an additional series of nine sequence-controlled copolymers as sequestrants for rare earth elements (REEs) by incorporating a functional acrylic acid monomer into select polymer scaffolds. We identified key sequence variables that influence the binding affinity, capacity, and selectivity of the polymers for REEs. Collectively, these results highlight the potential of and boundaries of sequence control via multiblock polymerizations to drive primary sequence ensembles hierarchical structures, and ultimately the functionality of compositionally identical polymeric materials.
Collapse
Affiliation(s)
- Peter A Dykeman-Bermingham
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew P Bogen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Supraja S Chittari
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Savannah F Grizzard
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
16
|
Rizvi A, Patterson JP. Liquid-liquid phase separation induced auto-confinement. SOFT MATTER 2024; 20:1978-1982. [PMID: 38363091 DOI: 10.1039/d3sm01617j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Confinement allows macromolecules and biomacromolecules to attain arrangements typically unachievable through conventional self-assembly processes. In the field of block copolymers, confinement has been achieved by preparing thin films and controlled solvent evaporation through the use of emulsions. A significant advantage of the confinement-driven self-assembly process is its ability to enable block copolymers to form particles with complex internal morphologies, which would otherwise be inaccessible. Here, we show that liquid-liquid phase separation (LLPS) can induce confinement during the self-assembly of a model block copolymer system. Since this confinement is driven by the block copolymers' tendency to undergo LLPS, we define this confinement type as auto-confinement. This study adds to the growing understanding of how LLPS influences block copolymer self-assembly and provides a new method to achieve confinement driven self-assembly.
Collapse
Affiliation(s)
- Aoon Rizvi
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| |
Collapse
|
17
|
Patel RA, Webb MA. Data-Driven Design of Polymer-Based Biomaterials: High-throughput Simulation, Experimentation, and Machine Learning. ACS APPLIED BIO MATERIALS 2024; 7:510-527. [PMID: 36701125 DOI: 10.1021/acsabm.2c00962] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Polymers, with the capacity to tunably alter properties and response based on manipulation of their chemical characteristics, are attractive components in biomaterials. Nevertheless, their potential as functional materials is also inhibited by their complexity, which complicates rational or brute-force design and realization. In recent years, machine learning has emerged as a useful tool for facilitating materials design via efficient modeling of structure-property relationships in the chemical domain of interest. In this Spotlight, we discuss the emergence of data-driven design of polymers that can be deployed in biomaterials with particular emphasis on complex copolymer systems. We outline recent developments, as well as our own contributions and takeaways, related to high-throughput data generation for polymer systems, methods for surrogate modeling by machine learning, and paradigms for property optimization and design. Throughout this discussion, we highlight key aspects of successful strategies and other considerations that will be relevant to the future design of polymer-based biomaterials with target properties.
Collapse
Affiliation(s)
- Roshan A Patel
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540, United States
| | - Michael A Webb
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540, United States
| |
Collapse
|
18
|
Blazquez-Martín A, Verde-Sesto E, Arbe A, Pomposo JA. Metamorphosis of a Commodity Plastic like PVC to Efficient Catalytic Single-Chain Nanoparticles. Angew Chem Int Ed Engl 2023; 62:e202313502. [PMID: 37792399 DOI: 10.1002/anie.202313502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/05/2023]
Abstract
We perform the conversion of a commodity plastic of common use in pipes, window frames, medical devices, flexible hoses, etc. like polyvinyl chloride (PVC) to single-chain nanoparticles (SCNPs). SCNPs are versatile, protein-mimetic soft nano-objects of growing interest for catalysis, sensing, and nanomedicine, among other uses. We demonstrate that the metamorphosis process -as induced through metal-free click chemistry- leads to well-defined, uniform SCNPs that are stable during storage in the solid state for months. All the conversion process (from PVC isolation to PVC-SCNPs synthesis) can be run in a green, dipolar aprotic solvent and involving, when required, a simple mixture of ethanol and water (1/1 vol.) as non-solvent. The resulting PVC-SCNPs are investigated as recyclable, metalloenzyme-mimetic catalysts for several representative Cu(II)-catalyzed organic reactions. The method could be valid for the metamorphosis and valorization of other commodity plastics in which it is feasible to install azide functional groups in their linear polymer chains.
Collapse
Affiliation(s)
- Agustín Blazquez-Martín
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center MPC, P° Manuel de Lardizabal 5, E-20018, Donostia, Spain
| | - Ester Verde-Sesto
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center MPC, P° Manuel de Lardizabal 5, E-20018, Donostia, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, E-48009, Bilbao, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center MPC, P° Manuel de Lardizabal 5, E-20018, Donostia, Spain
| | - José A Pomposo
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center MPC, P° Manuel de Lardizabal 5, E-20018, Donostia, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, E-48009, Bilbao, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología. University of the Basque Country (UPV/EHU), PO Box 1072, E-20800, Donostia, Spain
| |
Collapse
|
19
|
Manrho M, Krishnaswamy SR, Kriete B, Patmanidis I, de Vries AH, Marrink SJ, Jansen TLC, Knoester J, Pshenichnikov MS. Watching Molecular Nanotubes Self-Assemble in Real Time. J Am Chem Soc 2023; 145:22494-22503. [PMID: 37800477 PMCID: PMC10591479 DOI: 10.1021/jacs.3c07103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 10/07/2023]
Abstract
Molecular self-assembly is a fundamental process in nature that can be used to develop novel functional materials for medical and engineering applications. However, their complex mechanisms make the short-lived stages of self-assembly processes extremely hard to reveal. In this article, we track the self-assembly process of a benchmark system, double-walled molecular nanotubes, whose structure is similar to that found in biological and synthetic systems. We selectively dissolved the outer wall of the double-walled system and used the inner wall as a template for the self-reassembly of the outer wall. The reassembly kinetics were followed in real time using a combination of microfluidics, spectroscopy, cryogenic transmission electron microscopy, molecular dynamics simulations, and exciton modeling. We found that the outer wall self-assembles through a transient disordered patchwork structure: first, several patches of different orientations are formed, and only on a longer time scale will the patches interact with each other and assume their final preferred global orientation. The understanding of patch formation and patch reorientation marks a crucial step toward steering self-assembly processes and subsequent material engineering.
Collapse
Affiliation(s)
- Marìck Manrho
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sundar Raj Krishnaswamy
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Björn Kriete
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ilias Patmanidis
- Groningen
Biomolecular Sciences and Biothechnology Institute, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The
Netherlands
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Alex H. de Vries
- Groningen
Biomolecular Sciences and Biothechnology Institute, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The
Netherlands
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biothechnology Institute, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The
Netherlands
| | - Thomas L. C. Jansen
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jasper Knoester
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Faculty
of Science, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Maxim S. Pshenichnikov
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
20
|
Fan L, Cai Z, Zhao J, Wang X, Li JL. Facile In Situ Assembly of Nanofibers within Three-Dimensional Porous Matrices with Arbitrary Characteristics for Creating Biomimetic Architectures. NANO LETTERS 2023; 23:8602-8609. [PMID: 37706635 DOI: 10.1021/acs.nanolett.3c02440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
It is challenging to recapitulate the natural extracellular matrix's hierarchical nano/microfibrous three-dimensional (3D) structure with multilevel pores, good mechanical and hydrophilic properties, and excellent bioactivity for designing and developing advanced biomimetic materials. This work reports a new facile strategy for the scalable manufacturing of such a 3D architecture. Natural polymers in an aqueous solution are interpenetrated into a 3D microfibrous matrix with arbitrary shapes and property characteristics to self-assemble in situ into a nanofibrous network. The collagen fiber-like hierarchical structure and interconnected multilevel pores are achieved by self-assembly of the formed nanofibers within the 3D matrix, triggered by a simple cross-linking treatment. The as-prepared alginate/polypropylene biomimetic matrices are bioactive and have a tunable mechanical property (compressive modulus from ∼17 to ∼24 kPa) and a tunable hydrophilicity (water contact angle from ∼94° to 63°). This facile and versatile strategy allows eco-friendly and scalable manufacturing of diverse biomimetic matrices or modification of any existing porous matrices using different polymers.
Collapse
Affiliation(s)
- Linpeng Fan
- Australian Future Fibers Research and Innovation Center, Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Zengxiao Cai
- Australian Future Fibers Research and Innovation Center, Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Jian Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xungai Wang
- JC STEM Lab of Sustainable Fibers and Textiles, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Jing-Liang Li
- Australian Future Fibers Research and Innovation Center, Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
21
|
Valmonte Z, Baker Z, Loor J, Sarkar A. Concurrent Reduction and Stabilization of Graphene Oxide Dispersion by Silk-Inspired Polymer. ACS APPLIED POLYMER MATERIALS 2023; 5:4621-4627. [PMID: 37469881 PMCID: PMC10353489 DOI: 10.1021/acsapm.3c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023]
Abstract
Silk, a popular biomaterial, is used as a greener alternative of toxic reducing agent in biocompatible graphene synthesis. However, silk often forms gel uncontrollably due to its heavy-chain molecular weight and faces significant challenges in the reduction, stabilization, and dispersion process of graphene. In this contribution, we report a rapid chemical synthesis approach for a low-molecular-weight silk-inspired polymer via ring-opening and microwave-assisted Diels-Alder-aided step-growth polymerizations. This synthetic polymer with periodic sequences of hydrophilic and hydrophobic moieties not only reduces graphene oxide efficiently but also enhances the dispersibility of hydrophobic reduced graphene oxide in aqueous media.
Collapse
Affiliation(s)
- Zoren Valmonte
- Department
of Chemistry and Biochemistry, Montclair
State University (MSU), Montclair, New Jersey 07043, United States
| | - Zeyad Baker
- Department
of Chemistry and Biochemistry, Montclair
State University (MSU), Montclair, New Jersey 07043, United States
| | - Jianna Loor
- Department
of Biology, Montclair State University (MSU), Montclair, New Jersey 07043, United States
| | - Amrita Sarkar
- Department
of Chemistry and Biochemistry, Montclair
State University (MSU), Montclair, New Jersey 07043, United States
| |
Collapse
|
22
|
Wijker S, Palmans ARA. Protein-Inspired Control over Synthetic Polymer Folding for Structured Functional Nanoparticles in Water. Chempluschem 2023; 88:e202300260. [PMID: 37417828 DOI: 10.1002/cplu.202300260] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
The folding of proteins into functional nanoparticles with defined 3D structures has inspired chemists to create simple synthetic systems mimicking protein properties. The folding of polymers into nanoparticles in water proceeds via different strategies, resulting in the global compaction of the polymer chain. Herein, we review the different methods available to control the conformation of synthetic polymers and collapse/fold them into structured, functional nanoparticles, such as hydrophobic collapse, supramolecular self-assembly, and covalent cross-linking. A comparison is made between the design principles of protein folding to synthetic polymer folding and the formation of structured nanocompartments in water, highlighting similarities and differences in design and function. We also focus on the importance of structure for functional stability and diverse applications in complex media and cellular environments.
Collapse
Affiliation(s)
- Stefan Wijker
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Anja R A Palmans
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
23
|
Kang L, Wang Q, Zhang L, Zou H, Gao J, Niu K, Jiang N. Recent Experimental Advances in Characterizing the Self-Assembly and Phase Behavior of Polypeptoids. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114175. [PMID: 37297308 DOI: 10.3390/ma16114175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Polypeptoids are a family of synthetic peptidomimetic polymers featuring N-substituted polyglycine backbones with large chemical and structural diversity. Their synthetic accessibility, tunable property/functionality, and biological relevance make polypeptoids a promising platform for molecular biomimicry and various biotechnological applications. To gain insight into the relationship between the chemical structure, self-assembly behavior, and physicochemical properties of polypeptoids, many efforts have been made using thermal analysis, microscopy, scattering, and spectroscopic techniques. In this review, we summarize recent experimental investigations that have focused on the hierarchical self-assembly and phase behavior of polypeptoids in bulk, thin film, and solution states, highlighting the use of advanced characterization tools such as in situ microscopy and scattering techniques. These methods enable researchers to unravel multiscale structural features and assembly processes of polypeptoids over a wide range of length and time scales, thereby providing new insights into the structure-property relationship of these protein-mimetic materials.
Collapse
Affiliation(s)
- Liying Kang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qi Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hang Zou
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Gao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kangmin Niu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Naisheng Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
24
|
Wang C, Deng R, Weck M. Orthogonal Supramolecular Assemblies Using Side-Chain Functionalized Helical Poly(isocyanide)s. Macromolecules 2023; 56:3507-3516. [PMID: 37251603 PMCID: PMC10210603 DOI: 10.1021/acs.macromol.2c02224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/20/2023] [Indexed: 05/31/2023]
Abstract
Mimicking the structure of proteins using synthetic polymers requires building blocks with structural similarity and the use of various noncovalent and dynamic covalent interactions. We report the synthesis of helical poly(isocyanide)s bearing diaminopyridine and pyridine side-chains and the multistep functionalization of the polymers' side-chains using hydrogen bonding and metal coordination. The orthogonality of the hydrogen bonding and metal coordination was proved by varying the sequence of the multistep assembly. The two side-chain functionalizations are reversible through the use of competitive solvents and/or competing ligands. Throughout the assembly and disassembly, the helical conformation of the polymer backbone is sustained as proved by circular dichroism spectroscopy. These results open the possibility to incorporate helical domains into complex polymer architectures and create a helical scaffold for smart materials.
Collapse
|
25
|
Sanders MA, Chittari SS, Sherman N, Foley JR, Knight AS. Versatile Triphenylphosphine-Containing Polymeric Catalysts and Elucidation of Structure-Function Relationships. J Am Chem Soc 2023; 145:9686-9692. [PMID: 37079910 DOI: 10.1021/jacs.3c01092] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Synthetic polymers are a modular solution to bridging the two most common classes of catalysts: proteins and small molecules. Polymers offer the synthetic versatility of small-molecule catalysts while simultaneously having the ability to construct microenvironments mimicking those of natural proteins. We synthesized a panel of polymeric catalysts containing a novel triphenylphosphine acrylamide monomer and investigated how their properties impact the rate of a model Suzuki-Miyaura cross-coupling reaction. Systematic variation of polymer properties, such as the molecular weight, functional density, and comonomer identity, led to tunable reaction rates and solvent compatibility, including full conversion in an aqueous medium. Studies with bulkier substrates revealed connections between polymer parameters and reaction conditions that were further elucidated with a regression analysis. Some connections were substrate-specific, highlighting the value of the rapidly tunable polymer catalyst. Collectively, these results aid in building structure-function relationships to guide the development of polymer catalysts with tunable substrates and environmental compatibility.
Collapse
Affiliation(s)
- Matthew A Sanders
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Supraja S Chittari
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nicole Sherman
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jack R Foley
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
26
|
Triantafyllopoulou E, Selianitis D, Pippa N, Gazouli M, Valsami G, Pispas S. Development of Hybrid DSPC:DOPC:P(OEGMA 950-DIPAEMA) Nanostructures: The Random Architecture of Polymeric Guest as a Key Design Parameter. Polymers (Basel) 2023; 15:polym15091989. [PMID: 37177137 PMCID: PMC10181429 DOI: 10.3390/polym15091989] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Hybrid nanoparticles have gained a lot of attention due to their advantageous properties and versatility in pharmaceutical applications. In this perspective, the formation of novel systems and the exploration of their characteristics not only from a physicochemical but also from a biophysical perspective could promote the development of new nanoplatforms with well-defined features. In the current work, lipid/copolymer bilayers were formed in different lipid to copolymer ratios and examined via differential scanning calorimetry as a preformulation study to decipher the interactions between the biomaterials, followed by nanostructure preparation by the thin-film hydration method. Physicochemical and toxicological evaluations were conducted utilizing light scattering techniques, fluorescence spectroscopy, and MTS assay. 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) in different weight ratios were the chosen lipids, while a linear random copolymer with pH- and thermoresponsive properties comprised of oligo (ethylene glycol) methyl ether methacrylate (OEGMA) and 2-(diisopropylamino) ethyl methacrylate (DIPAEMA) in different ratios was used. According to our results, non-toxic hybrid nanosystems with stimuli-responsive properties were successfully formulated, and the main parameters influencing their overall performance were the hydrophilic/hydrophobic balance, lipid to polymer ratio, and more importantly the random copolymer topology. Hopefully, this investigation can promote a better understanding of the factors affecting the behavior of hybrid systems.
Collapse
Affiliation(s)
- Efstathia Triantafyllopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Dimitriοs Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Science, School of Medicine National and Kapodistrian, University of Athens, 11527 Athens, Greece
| | - Georgia Valsami
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
27
|
Blázquez-Martín A, Ruiz-Bardillo A, Verde-Sesto E, Iturrospe A, Arbe A, Pomposo JA. Toward Long-Term-Dispersible, Metal-Free Single-Chain Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1394. [PMID: 37110979 PMCID: PMC10143805 DOI: 10.3390/nano13081394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
We report herein on a new platform for synthesizing stable, inert, and dispersible metal-free single-chain nanoparticles (SCNPs) via intramolecular metal-traceless azide-alkyne click chemistry. It is well known that SCNPs synthesized via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) often experience metal-induced aggregation issues during storage. Moreover, the presence of metal traces limits its use in a number of potential applications. To address these problems, we selected a bifunctional cross-linker molecule, sym-dibenzo-1,5-cyclooctadiene-3,7-diyne (DIBOD). DIBOD has two highly strained alkyne bonds that allow for the synthesis of metal-free SCNPs. We demonstrate the utility of this new approach by synthesizing metal-free polystyrene (PS)-SCNPs without significant aggregation issues during storage, as demonstrated by small-angle X-ray scattering (SAXS) experiments. Notably, this method paves the way for the synthesis of long-term-dispersible, metal-free SCNPs from potentially any polymer precursor decorated with azide functional groups.
Collapse
Affiliation(s)
- Agustín Blázquez-Martín
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), 20018 Donostia-San Sebastián, Spain (A.A.)
| | - Ainara Ruiz-Bardillo
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), 20018 Donostia-San Sebastián, Spain (A.A.)
| | - Ester Verde-Sesto
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), 20018 Donostia-San Sebastián, Spain (A.A.)
- IKERBASQUE-Basque Foundation for Science, 48009 Bilbao, Spain
| | - Amaia Iturrospe
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), 20018 Donostia-San Sebastián, Spain (A.A.)
| | - Arantxa Arbe
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), 20018 Donostia-San Sebastián, Spain (A.A.)
| | - José A. Pomposo
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), 20018 Donostia-San Sebastián, Spain (A.A.)
- IKERBASQUE-Basque Foundation for Science, 48009 Bilbao, Spain
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
28
|
Te Vrugt M, Wittkowski R. Perspective: New directions in dynamical density functional theory. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:041501. [PMID: 35917827 DOI: 10.1088/1361-648x/ac8633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Classical dynamical density functional theory (DDFT) has become one of the central modeling approaches in nonequilibrium soft matter physics. Recent years have seen the emergence of novel and interesting fields of application for DDFT. In particular, there has been a remarkable growth in the amount of work related to chemistry. Moreover, DDFT has stimulated research on other theories such as phase field crystal models and power functional theory. In this perspective, we summarize the latest developments in the field of DDFT and discuss a variety of possible directions for future research.
Collapse
Affiliation(s)
- Michael Te Vrugt
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
29
|
Spyridakou M, Tsimenidis K, Gkikas M, Steinhart M, Graf R, Floudas G. Effects of Nanometer Confinement on the Self-Assembly and Dynamics of Poly(γ-benzyl- l-glutamate) and Its Copolymer with Poly(isobutylene). Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Kostas Tsimenidis
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Manos Gkikas
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - Robert Graf
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
30
|
Liu AP, Appel EA, Ashby PD, Baker BM, Franco E, Gu L, Haynes K, Joshi NS, Kloxin AM, Kouwer PHJ, Mittal J, Morsut L, Noireaux V, Parekh S, Schulman R, Tang SKY, Valentine MT, Vega SL, Weber W, Stephanopoulos N, Chaudhuri O. The living interface between synthetic biology and biomaterial design. NATURE MATERIALS 2022; 21:390-397. [PMID: 35361951 PMCID: PMC10265650 DOI: 10.1038/s41563-022-01231-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Recent far-reaching advances in synthetic biology have yielded exciting tools for the creation of new materials. Conversely, advances in the fundamental understanding of soft-condensed matter, polymers and biomaterials offer new avenues to extend the reach of synthetic biology. The broad and exciting range of possible applications have substantial implications to address grand challenges in health, biotechnology and sustainability. Despite the potentially transformative impact that lies at the interface of synthetic biology and biomaterials, the two fields have, so far, progressed mostly separately. This Perspective provides a review of recent key advances in these two fields, and a roadmap for collaboration at the interface between the two communities. We highlight the near-term applications of this interface to the development of hierarchically structured biomaterials, from bioinspired building blocks to 'living' materials that sense and respond based on the reciprocal interactions between materials and embedded cells.
Collapse
Affiliation(s)
- Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Eric A Appel
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, USA
| | - Paul D Ashby
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Elisa Franco
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Luo Gu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Karmella Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA, USA
| | - Neel S Joshi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering and Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Paul H J Kouwer
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Leonardo Morsut
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Sapun Parekh
- Department of Biomedical Engineering, University of Texas, Austin, Austin, TX, USA
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Megan T Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Sebastián L Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA
| | - Wilfried Weber
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | | | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
31
|
Allen BP, Wright ZM, Taylor HF, Oweida TJ, Kader-Pinky S, Patteson EF, Bucci KM, Cox CA, Senthilvel AS, Yingling YG, Knight AS. Mapping the Morphological Landscape of Oligomeric Di-block Peptide-Polymer Amphiphiles. Angew Chem Int Ed Engl 2022; 61:e202115547. [PMID: 35037351 PMCID: PMC8957712 DOI: 10.1002/anie.202115547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 11/07/2022]
Abstract
Peptide-polymer amphiphiles (PPAs) are tunable hybrid materials that achieve complex assembly landscapes by combining the sequence-dependent properties of peptides with the structural diversity of polymers. Despite their promise as biomimetic materials, determining how polymer and peptide properties simultaneously affect PPA self-assembly remains challenging. We herein present a systematic study of PPA structure-assembly relationships. PPAs containing oligo(ethyl acrylate) and random-coil peptides were used to determine the role of oligomer molecular weight, dispersity, peptide length, and charge density on self-assembly. We observed that PPAs predominantly formed spheres rather than anisotropic particles. Oligomer molecular weight and peptide hydrophilicity dictated morphology, while dispersity and peptide charge affected particle size. These key benchmarks will facilitate the rational design of PPAs that expand the scope of biomimetic functionality within assembled soft materials.
Collapse
Affiliation(s)
- Benjamin P Allen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zoe M Wright
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hailey F Taylor
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas J Oweida
- Department of Material Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Sabila Kader-Pinky
- Department of Material Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Emily F Patteson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kara M Bucci
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Caleb A Cox
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Abishec Sundar Senthilvel
- Department of Material Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Yaroslava G Yingling
- Department of Material Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Abigail S Knight
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
32
|
Allen BP, Wright ZM, Taylor HF, Oweida TJ, Kader-Pinky S, Patteson EF, Bucci KM, Cox CA, Senthilvel AS, Yingling YG, Knight AS. Mapping the Morphological Landscape of Oligomeric Di‐block Peptide‐Polymer Amphiphiles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Benjamin P. Allen
- University of North Carolina at Chapel Hill College of Arts and Sciences Chemistry UNITED STATES
| | - Zoe M. Wright
- University of North Carolina at Chapel Hill College of Arts and Sciences Chemistry UNITED STATES
| | - Hailey F. Taylor
- University of North Carolina at Chapel Hill College of Arts and Sciences Chemistry UNITED STATES
| | - Thomas J. Oweida
- North Carolina State University at Raleigh: NC State University Materials Science and Engineering UNITED STATES
| | - Sabila Kader-Pinky
- North Carolina State University at Raleigh: NC State University Materials Science and Engineering UNITED STATES
| | - Emily F. Patteson
- University of North Carolina at Chapel Hill Kenan Science Library: The University of North Carolina at Chapel Hill Chemistry UNITED STATES
| | - Kara M. Bucci
- University of North Carolina at Chapel Hill College of Arts and Sciences Chemistry UNITED STATES
| | - Caleb A. Cox
- University of North Carolina at Chapel Hill College of Arts and Sciences Chemistry UNITED STATES
| | - Abishec Sundar Senthilvel
- North Carolina State University at Raleigh: NC State University Materials Science and Engineering UNITED STATES
| | | | - Abigail S. Knight
- University of North Carolina at Chapel Hill Chemistry 319 CaudillUNC-Chapel Hill 27599 Chapel Hill UNITED STATES
| |
Collapse
|
33
|
Forysiak W, Kozub S, John L, Szweda R. Discrete oligourethanes of sequence-regulated properties – impact of stereocontrol. Polym Chem 2022. [DOI: 10.1039/d2py00299j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Properties and functions of natural biopolymers such as proteins are strongly dependent on the sequence of amino acid monomers. The regulation of the properties of synthetic polymers by controlling monomer...
Collapse
|
34
|
Zhu Y, Liu P, Zhang J, Hu J, Zhao Y. Facile synthesis of monocyclic, dumbbell-shaped and jellyfish-like copolymers using a telechelic multisite hexablock copolymer. Polym Chem 2022. [DOI: 10.1039/d2py00824f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heterofunctional hexablock copolymer comprising alternating reactive and non-reactive blocks is designed to generate cyclic, dumbbell-shaped and jellyfish-like copolymers.
Collapse
Affiliation(s)
- Yingsheng Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Peng Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiaman Hu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
35
|
Xiao W, Qiu M, Peng Y, Chen T, Yi C, Xu Z. Cooperative catalysis of Cu/2,2,6,6-tetramethyl-1-piperidine- N-oxyl nanocatalysts supported by ultraviolet light-responsive polyimides. Dalton Trans 2022; 51:15246-15250. [DOI: 10.1039/d2dt02181a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Azobenzene-containing polyimides were used as supports to immobilize pyrene-containing Cu/2,2,6,6-tetramethyl-1-piperidine-N-oxyl catalytic systems with UV-regulated cooperative behaviors.
Collapse
Affiliation(s)
- Wei Xiao
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Meishuang Qiu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yan Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Changfeng Yi
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
36
|
Kalmer H, Sbordone F, Frisch H. Peptide based folding and function of single polymer chains. Polym Chem 2022. [DOI: 10.1039/d2py00717g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modular synthetic strategy to fold single polymer chains upon deprotection of pendent cysteine terminal peptides is reported. The one step deprotection initiates both folding and catalytic activity of the macromolecular architectures.
Collapse
Affiliation(s)
- Henrik Kalmer
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Federica Sbordone
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Hendrik Frisch
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
37
|
Xiong TM, Garcia ES, Chen J, Zhu L, Alzona AJ, Zimmerman SC. Enzyme-like catalysis by single chain nanoparticles that use transition metal cofactors. Chem Commun (Camb) 2021; 58:985-988. [PMID: 34935784 DOI: 10.1039/d1cc05578j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report a modular approach in which a noncovalently cross-linked single chain nanoparticle (SCNP) selectively binds catalyst "cofactors" and substrates to increase both the catalytic activity of a Cu-catalyzed alkyne-azide cycloaddition reaction and the Ru-catalyzed cleavage of allylcarbamate groups compared to the free catalysts.
Collapse
Affiliation(s)
- Thao M Xiong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Edzna S Garcia
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Junfeng Chen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Lingyang Zhu
- NMR Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana 61801, USA
| | - Ariale J Alzona
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Steven C Zimmerman
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
38
|
Singh H, Chenna A, Gangwar U, Borah J, Goel G, Haridas V. Bispidine as a β-strand nucleator: from a β-arch to self-assembled cages and vesicles. Chem Sci 2021; 12:15757-15764. [PMID: 35003608 PMCID: PMC8654037 DOI: 10.1039/d1sc04860k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 12/23/2022] Open
Abstract
The development of synthetic scaffolds that nucleate well-folded secondary structures is highly challenging. Herein, we designed and synthesized a series of core-modified peptides (F1, F2, F3, and F4) that fold into β-strand structures. These bispidine-scaffolded peptides were studied by CD, IR, NMR, single crystal XRD, and Molecular Dynamics (MD) simulations to investigate their conformational preferences. Solid-state and solution studies revealed that bispidine is a versatile scaffold that could be placed either at the terminal or at the middle of the peptide strand for nucleating the β-strand structure. Scaffolds that nucleate an isolated β-strand conformation are rare. Bispidine placed at the C-terminus of the peptide chain could nucleate a β-strand conformation, while bispidine placed at the middle resulted in a β-arch conformation. This nucleation activity stems from the ability to restrict the psi torsion angle (ψ) through intramolecular C5 hydrogen bonding between the equatorial hydrogen(s) of bispidine and the carbonyl oxygen(s) of the amino acid close to the scaffold. Furthermore, the bispidine peptidomimetic with a super secondary structure, namely β-arch, assembled into single-hole submicron cages and spherical vesicles as evident from microscopic studies. The design logic defined here will be a significant strategy for the development of β-strand mimetics and super secondary structures.
Collapse
Affiliation(s)
- Hanuman Singh
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi-110016 India
| | - Akshay Chenna
- Department of Chemical Engineering, Indian Institute of Technology Delhi Hauz Khas New Delhi-110016 India
| | - Upanshu Gangwar
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi-110016 India
| | - Julie Borah
- Department of Chemical Engineering, Indian Institute of Technology Delhi Hauz Khas New Delhi-110016 India
| | - Gaurav Goel
- Department of Chemical Engineering, Indian Institute of Technology Delhi Hauz Khas New Delhi-110016 India
| | - V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi-110016 India
| |
Collapse
|
39
|
DeStefano A, Segalman RA, Davidson EC. Where Biology and Traditional Polymers Meet: The Potential of Associating Sequence-Defined Polymers for Materials Science. JACS AU 2021; 1:1556-1571. [PMID: 34723259 PMCID: PMC8549048 DOI: 10.1021/jacsau.1c00297] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 05/08/2023]
Abstract
Polymers with precisely defined monomeric sequences present an exquisite tool for controlling material properties by harnessing both the robustness of synthetic polymers and the ability to tailor the inter- and intramolecular interactions so crucial to many biological materials. While polymer scientists traditionally synthesized and studied the physics of long molecules best described by their statistical nature, many biological polymers derive their highly tailored functions from precisely controlled sequences. Therefore, significant effort has been applied toward developing new methods of synthesizing, characterizing, and understanding the physics of non-natural sequence-defined polymers. This perspective considers the synergistic advantages that can be achieved via tailoring both precise sequence control and attributes of traditional polymers in a single system. Here, we focus on the potential of sequence-defined polymers in highly associating systems, with a focus on the unique properties, such as enhanced proton conductivity, that can be attained by incorporating sequence. In particular, we examine these materials as key model systems for studying previously unresolvable questions in polymer physics including the role of chain shape near interfaces and how to tailor compatibilization between dissimilar polymer blocks. Finally, we discuss the critical challenges-in particular, truly scalable synthetic approaches, characterization and modeling tools, and robust control and understanding of assembly pathways-that must be overcome for sequence-defined polymers to attain their potential and achieve ubiquity.
Collapse
Affiliation(s)
- Audra
J. DeStefano
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Rachel A. Segalman
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department
of Materials, University of California, Santa Barbara, California 93106, United States
| | - Emily C. Davidson
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
40
|
Nam J, Kwon S, Yu YG, Seo HB, Lee JS, Lee WB, Kim Y, Seo M. Folding of Sequence-Controlled Graft Copolymers to Subdomain-Defined Single-Chain Nanoparticles. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jiyun Nam
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sangwoo Kwon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong-Guen Yu
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Ho-Bin Seo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jae-Suk Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - YongJoo Kim
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Myungeun Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for the Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
41
|
Warren JL, Dykeman-Bermingham PA, Knight AS. Controlling Amphiphilic Polymer Folding beyond the Primary Structure with Protein-Mimetic Di(Phenylalanine). J Am Chem Soc 2021; 143:13228-13234. [PMID: 34375094 PMCID: PMC9362848 DOI: 10.1021/jacs.1c05659] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While methods for polymer synthesis have proliferated, their functionality pales in comparison to natural biopolymers-strategies are limited for building the intricate network of noncovalent interactions necessary to elicit complex, protein-like functions. Using a bioinspired di(phenylalanine) acrylamide (FF) monomer, we explored the impact of various noncovalent interactions in generating ordered assembled structures. Amphiphilic copolymers were synthesized that exhibit β-sheet-like local structure upon collapsing into single-chain assemblies in aqueous environments. Systematic analysis of a series of amphiphilic copolymers illustrated that the global collapse is primarily driven by hydrophobic forces. Hydrogen-bonding and aromatic interactions stabilize local structure, as β-sheet-like interactions were identified via circular dichroism and thioflavin T fluorescence. Similar analysis of phenylalanine (F) and alanine-phenylalanine acrylamide (AF) copolymers found that distancing the aromatic residue from the polymer backbone is sufficient to induce β-sheet-like local structure akin to the FF copolymers; however, the interactions between AF subunits are less stable than those formed by FF. Further, hydrogen-bond donating hydrophilic monomers disrupt internal structure formed by FF within collapsed assemblies. Collectively, these results illuminate design principles for the facile incorporation of multiple facets of protein-mimetic, higher-order structure within folded synthetic polymers.
Collapse
Affiliation(s)
- Jacqueline L Warren
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Peter A Dykeman-Bermingham
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
42
|
Rizvi A, Mulvey JT, Carpenter BP, Talosig R, Patterson JP. A Close Look at Molecular Self-Assembly with the Transmission Electron Microscope. Chem Rev 2021; 121:14232-14280. [PMID: 34329552 DOI: 10.1021/acs.chemrev.1c00189] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Molecular self-assembly is pervasive in the formation of living and synthetic materials. Knowledge gained from research into the principles of molecular self-assembly drives innovation in the biological, chemical, and materials sciences. Self-assembly processes span a wide range of temporal and spatial domains and are often unintuitive and complex. Studying such complex processes requires an arsenal of analytical and computational tools. Within this arsenal, the transmission electron microscope stands out for its unique ability to visualize and quantify self-assembly structures and processes. This review describes the contribution that the transmission electron microscope has made to the field of molecular self-assembly. An emphasis is placed on which TEM methods are applicable to different structures and processes and how TEM can be used in combination with other experimental or computational methods. Finally, we provide an outlook on the current challenges to, and opportunities for, increasing the impact that the transmission electron microscope can have on molecular self-assembly.
Collapse
Affiliation(s)
- Aoon Rizvi
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Justin T Mulvey
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Brooke P Carpenter
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Rain Talosig
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
43
|
Roos AH, Hoffmann JF, Binder WH, Hinderberger D. Nanoscale structure and dynamics of thermoresponsive single-chain nanoparticles investigated by EPR spectroscopy. SOFT MATTER 2021; 17:7032-7037. [PMID: 34251013 DOI: 10.1039/d1sm00582k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We characterize temperature-dependent macroscopic and nanoscopic phase transitions and nanoscopic pre-transitions of water-soluble single chain nanoparticles (SCNPs). The studied SCNPs are based on polymers displaying lower-critical solution temperature (LCST) behavior and show nanoscale compartmentation. SCNPs are amenable to continuous wave electron paramagnetic resonance (CW EPR) spectroscopy to study how amphiphilic, non-covalently added nitroxide spin probes or covalently attached spin labels sample their environment concerning nanoscale structures (polarity, hydrophilicity/-phobicity) and dynamics. These SCNPs are formed through single-chain collapse and have been shown to have nanosized compartments that are rigidified during the crosslinking process. We analyze the temperature-dependent phase transitions of spin-labeled SCNPs by rigorous spectral simulations of a series of multicomponent EPR-spectra that derive from the nanoinhomogeneities (1) that are due to the single-chain compartmentation in SCNPs and (2) the transformation upon temperature change due to the LCST behavior. These transitions of the SCNPs and their respective polymer precursors can be monitored and understood on the nanoscale by following EPR-spectroscopic parameters like hyperfine couplings that depend on the surrounding solvent molecules or Heisenberg spin exchange between small molecule spin probes or covalently attached spin labels in the nanocompartments. In particular, for one SCNP, we find an interesting behavior that we ascribe to the properties of the nanosized inner core with continuous effects before and jump-like changes after the macroscopic thermal collapse, indicating highly efficient desolvation and compaction upon an increase in temperature and aggregation of individual nanoparticles above the collapse temperature.
Collapse
Affiliation(s)
- Andreas H Roos
- Institute of Chemistry, Martin Luther University (MLU) Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| | - Justus F Hoffmann
- Institute of Chemistry, Martin Luther University (MLU) Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| | - Wolfgang H Binder
- Institute of Chemistry, Martin Luther University (MLU) Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| | - Dariush Hinderberger
- Institute of Chemistry, Martin Luther University (MLU) Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
44
|
Lee H, Kim H, Lee SY. Self-Assembling Peptidic Bolaamphiphiles for Biomimetic Applications. ACS Biomater Sci Eng 2021; 7:3545-3572. [PMID: 34309378 DOI: 10.1021/acsbiomaterials.1c00576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bolaamphiphile, which is a class of amphiphilic molecules, has a unique structure of two hydrophilic head groups at the ends of the hydrophobic center. Peptidic bolaamphiphiles that employ peptides or amino acids as their hydrophilic groups exhibit unique biochemical activities when they self-organize into supramolecular structures, which are not observed in a single molecule. The self-assembled peptidic bolaamphiphiles hold considerable promise for imitating proteins with biochemical activities, such as specific affinity toward heterogeneous substances, a catalytic activity similar to a metalloenzyme, physicochemical activity from harmonized amino acid segments, and the capability to encapsulate genes like a viral vector. These diverse activities give rise to large research interest in biomaterials engineering, along with the synthesis and characterization of the assembled structures. This review aims to address the recent progress in the applications of peptidic bolaamphiphile assemblies whose densely packed peptide motifs on their surface and their stacked hydrophobic centers exhibit unique protein-like activity and designer functionality, respectively.
Collapse
Affiliation(s)
- Hyesung Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hanbee Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sang-Yup Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
45
|
Nishimura T, Fujii S, Sakurai K, Sasaki Y, Akiyoshi K. Manipulating the Morphology of Amphiphilic Graft-Copolymer Assemblies by Adjusting the Flexibility of the Main Chain. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Tomoki Nishimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Shota Fujii
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1, Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1, Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
46
|
Garcia ES, Xiong TM, Lifschitz A, Zimmerman SC. Tandem catalysis using an enzyme and a polymeric ruthenium-based artificial metalloenzyme. Polym Chem 2021. [DOI: 10.1039/d1py01255j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ru-containing single-chain nanoparticle (SCNP) performs allylcarbamate cleavage reactions in biologically relevant environments more efficiently than free catalyst and works in synergy with a natural enzyme to perform tandem catalysis.
Collapse
Affiliation(s)
- Edzna S. Garcia
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Thao M. Xiong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Abygail Lifschitz
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Steven C. Zimmerman
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|