1
|
Zhu L, Liu Q, Zhang Y, Sun H, Chen S, Liang L, An S, Yang X, Zang L. Recent Advances in the Tunable Optoelectromagnetic Properties of PEDOTs. Molecules 2025; 30:179. [PMID: 39795235 PMCID: PMC11721937 DOI: 10.3390/molecules30010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Conducting polymers represent a crucial class of functional materials with widespread applications in diverse fields. Among these, poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives have garnered significant attention due to their distinctive optical, electronic, and magnetic properties, as well as their exceptional tunability. These properties often exhibit intricate interdependencies, manifesting as synergistic, concomitant, or antagonistic relationships. In optics, PEDOTs are renowned for their high transparency and unique photoelectric responses. From an electrical perspective, they display exceptional conductivity, thermoelectric, and piezoelectric performance, along with notable electrochemical activity and stability, enabling a wide array of electronic applications. In terms of magnetic properties, PEDOTs demonstrate outstanding electromagnetic shielding efficiency and microwave absorption capabilities. Moreover, these properties can be precisely tailored through molecular structure modifications, chemical doping, and composite formation to suit various application requirements. This review systematically examines the mechanisms underlying the optoelectromagnetic properties of PEDOTs, highlights their tunability, and outlines prospective research directions. By providing critical theoretical insights and technical references, this review aims to advance the application landscape of PEDOTs.
Collapse
Affiliation(s)
- Ling Zhu
- School of Pharmacy and Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.Z.); (Q.L.); (S.A.)
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Qi Liu
- School of Pharmacy and Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.Z.); (Q.L.); (S.A.)
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Yuqian Zhang
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Hui Sun
- Binzhou Testing Center, Binzhou 256600, China;
| | - Shuai Chen
- School of Pharmacy and Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.Z.); (Q.L.); (S.A.)
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Lishan Liang
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Siying An
- School of Pharmacy and Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.Z.); (Q.L.); (S.A.)
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Xiaomei Yang
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA;
| | - Ling Zang
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA;
| |
Collapse
|
2
|
Liu T, Beket G, Li Q, Zhang Q, Jeong SY, Yang C, Huang J, Li Y, Stoeckel M, Xiong M, van der Pol TPA, Bergqvist J, Woo HY, Gao F, Fahlman M, Österberg T, Fabiano S. A Polymeric Two-in-One Electron Transport Layer and Transparent Electrode for Efficient Indoor All-Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405676. [PMID: 39207046 PMCID: PMC11516159 DOI: 10.1002/advs.202405676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Transparent electrodes (TEs) are vital in optoelectronic devices, enabling the interaction of light and charges. While indium tin oxide (ITO) has traditionally served as a benchmark TE, its high cost prompts the exploration of alternatives to optimize electrode characteristics and improve device efficiencies. Conducting polymers, which combine polymer advantages with metal-like conductivity, emerge as a promising solution for TEs. This work introduces a two-in-one electron transport layer (ETL) and TE based on films of polyethylenimine ethoxylated (PEIE)-modified poly(benzodifurandione) (PBFDO). These PEIE-modified PBFDO layers exhibit a unique combination of properties, including low sheet resistance (130 Ω sq-1), low work function (4.2 eV), and high optical transparency (>85% in the UV-vis-NIR range). In contrast to commonly used poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), the doping level of PBFDO remains unaffected by the PEIE treatment, as verified through UV-vis-NIR absorption and X-ray photoelectron spectroscopy measurements. When employed as a two-in-one ETL/TE in organic solar cells, the PEIE-modified PBFDO electrode exhibits performance comparable to conventional ITO electrodes. Moreover, this work demonstrates all-organic solar cells with record-high power conversion efficiencies of >15.1% under indoor lighting conditions. These findings hold promise for the development of fully printed, all-organic optoelectronic devices.
Collapse
Affiliation(s)
- Tiefeng Liu
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköpingSE‐60174Sweden
- Wallenberg Initiative Materials Science for SustainabilityDepartment of Science and TechnologyLinköping UniversityNorrköpingSE‐60174Sweden
| | - Gulzada Beket
- Electronic and Photonic MaterialsDepartment of PhysicsChemistry, and BiologyLinköping UniversityLinköpingSE‐58183Sweden
- Epishine ABAttorpsgatan 2LinköpingSE‐58273Sweden
| | - Qifan Li
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköpingSE‐60174Sweden
| | - Qilun Zhang
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköpingSE‐60174Sweden
- Wallenberg Wood Science CenterDepartment of Science and Technology (ITN)Linköping UniversityNorrköpingSE‐60174Sweden
| | - Sang Young Jeong
- Department of ChemistryCollege of ScienceKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Chi‐Yuan Yang
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköpingSE‐60174Sweden
- n‐Ink ABBredgatan 33NorrköpingSE‐60174Sweden
| | - Jun‐Da Huang
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköpingSE‐60174Sweden
- Wallenberg Wood Science CenterDepartment of Science and Technology (ITN)Linköping UniversityNorrköpingSE‐60174Sweden
| | - Yuxuan Li
- Electronic and Photonic MaterialsDepartment of PhysicsChemistry, and BiologyLinköping UniversityLinköpingSE‐58183Sweden
| | - Marc‐Antoine Stoeckel
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköpingSE‐60174Sweden
- Wallenberg Initiative Materials Science for SustainabilityDepartment of Science and TechnologyLinköping UniversityNorrköpingSE‐60174Sweden
- n‐Ink ABBredgatan 33NorrköpingSE‐60174Sweden
| | - Miao Xiong
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköpingSE‐60174Sweden
| | - Tom P. A. van der Pol
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköpingSE‐60174Sweden
| | | | - Han Young Woo
- Department of ChemistryCollege of ScienceKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Feng Gao
- Electronic and Photonic MaterialsDepartment of PhysicsChemistry, and BiologyLinköping UniversityLinköpingSE‐58183Sweden
| | - Mats Fahlman
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköpingSE‐60174Sweden
- Wallenberg Wood Science CenterDepartment of Science and Technology (ITN)Linköping UniversityNorrköpingSE‐60174Sweden
| | | | - Simone Fabiano
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköpingSE‐60174Sweden
- Wallenberg Initiative Materials Science for SustainabilityDepartment of Science and TechnologyLinköping UniversityNorrköpingSE‐60174Sweden
- Wallenberg Wood Science CenterDepartment of Science and Technology (ITN)Linköping UniversityNorrköpingSE‐60174Sweden
- n‐Ink ABBredgatan 33NorrköpingSE‐60174Sweden
| |
Collapse
|
3
|
Aerathupalathu Janardhanan J, Yu HH. Recent advances in PEDOT/PProDOT-derived nano biosensors: engineering nano assemblies for fostering advanced detection platforms for biomolecule detection. NANOSCALE 2024; 16:17202-17229. [PMID: 39229680 DOI: 10.1039/d4nr01449a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
With the recent unprecedented emergence of a global pandemic, unknown diseases and new metabolic patterns expressing serious health issues, the requirement to develop new diagnostic tools, therapeutic solutions, and healthcare and environmental monitoring systems are significantly higher in the present situation. Considering that high sensitivity, selectivity, stability and a low limit of detection (LOD) are inevitable requirements for an ideal biosensor, the class of conducting polymers of poly(3,4-ethylenedioxythiophene) (PEDOT) and recently poly(3,4-propylenedioxythiophene) (PProDOT) materials have been demonstrated to be promising candidates for designing sensor devices. Nanostructure engineering of these polymeric materials with tunable surface properties and side chain functionalization to enable sensor probe conjugation combined with signal amplification devices such as OECTs and OFETs can fulfil the requirements of next-generation smart nano-biosensors. In this review, we analyze recent reports on PEDOT/PProDOT nanostructures and nanocomposites for developing nano-biosensors and their application in the detection of different biomarkers, environmental, toxicology, marine and aquatic monitoring, forensic and illicit drug detection, etc. In addition, we discuss the challenges associated with the design of PEDOT/PProDOT nano-biosensors and future perspectives on the exploration of novel sensor platforms, particularly PProDOT derivatives for bioelectronics and novel design strategies for next-generation smart nano-biosensors.
Collapse
Affiliation(s)
| | - Hsiao-Hua Yu
- Smart Organic Materials Laboratory (SOML), Institute of Chemistry, Academia Sinica No. 128, Sec. 2, Nankang District, Taipei City 115201, Taiwan.
| |
Collapse
|
4
|
Hou W, Han B, Wang C, Tang D, Chen Y, Ouyang M, Liu J, Zhang C. Fluoridation of D-A Ambipolar Polymers to Accelerate Ion Migration toward High-Performance Symmetric Dual-Ion Energy Storage Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51504-51511. [PMID: 39257245 DOI: 10.1021/acsami.4c10390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Dual-ion electrochemical energy storage devices have attracted much attention due to their cost effectiveness and high operating voltage. Electrochemical properties such as the specific capacity of dual-ion energy storage devices are closely related to ion migration. However, the ion migration of dual-ion energy storage devices is slow, especially the cation migration, resulting in limited discharge capacity and poor rate performance. In this study, fluorinated and nonfluorinated ambipolar conductive polymers were prepared as electrode materials. The effects of fluorination on aggregation and solvent were studied as well as its role in improving ion migration. The results show that fluorination can increase the force of fluorination on the solvent, reduce the level of binding of the solvent to the ion, and regulate the aggregation state. Compared with the unfluorinated polymer of PEPOPE, the ion migration and electrochemical kinetics of PEPFEP were significantly improved, and the PEPFPE (71 F/cm3) has a higher negative specific capacity than PEPOPE (24 F/cm3) at a current density of 5 A/cm3.
Collapse
Affiliation(s)
- Weiwei Hou
- International Science and Technology Cooperation Base on Energy Materials and Applications, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bingbing Han
- International Science and Technology Cooperation Base on Energy Materials and Applications, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chenze Wang
- International Science and Technology Cooperation Base on Energy Materials and Applications, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dianyu Tang
- International Science and Technology Cooperation Base on Energy Materials and Applications, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yusheng Chen
- International Science and Technology Cooperation Base on Energy Materials and Applications, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Mi Ouyang
- International Science and Technology Cooperation Base on Energy Materials and Applications, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Junlei Liu
- International Science and Technology Cooperation Base on Energy Materials and Applications, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Cheng Zhang
- International Science and Technology Cooperation Base on Energy Materials and Applications, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
5
|
Kohestani AA, Xu Z, Baştan FE, Boccaccini AR, Pishbin F. Electrically conductive coatings in tissue engineering. Acta Biomater 2024; 186:30-62. [PMID: 39128796 DOI: 10.1016/j.actbio.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Recent interest in tissue engineering (TE) has focused on electrically conductive biomaterials. This has been inspired by the characteristics of the cells' microenvironment where signalling is supported by electrical stimulation. Numerous studies have demonstrated the positive influence of electrical stimulation on cell excitation to proliferate, differentiate, and deposit extracellular matrix. Even without external electrical stimulation, research shows that electrically active scaffolds can improve tissue regeneration capacity. Tissues like bone, muscle, and neural contain electrically excitable cells that respond to electrical cues provided by implanted biomaterials. To introduce an electrical pathway, TE scaffolds can incorporate conductive polymers, metallic nanoparticles, and ceramic nanostructures. However, these materials often do not meet implantation criteria, such as maintaining mechanical durability and degradation characteristics, making them unsuitable as scaffold matrices. Instead, depositing conductive layers on TE scaffolds has shown promise as an efficient alternative to creating electrically conductive structures. A stratified scaffold with an electroactive surface synergistically excites the cells through active top-pathway, with/without electrical stimulation, providing an ideal matrix for cell growth, proliferation, and tissue deposition. Additionally, these conductive coatings can be enriched with bioactive or pharmaceutical components to enhance the scaffold's biomedical performance. This review covers recent developments in electrically active biomedical coatings for TE. The physicochemical and biological properties of conductive coating materials, including polymers (polypyrrole, polyaniline and PEDOT:PSS), metallic nanoparticles (gold, silver) and inorganic (ceramic) particles (carbon nanotubes, graphene-based materials and Mxenes) are examined. Each section explores the conductive coatings' deposition techniques, deposition parameters, conductivity ranges, deposit morphology, cell responses, and toxicity levels in detail. Furthermore, the applications of these conductive layers, primarily in bone, muscle, and neural TE are considered, and findings from in vitro and in vivo investigations are presented. STATEMENT OF SIGNIFICANCE: Tissue engineering (TE) scaffolds are crucial for human tissue replacement and acceleration of healing. Neural, muscle, bone, and skin tissues have electrically excitable cells, and their regeneration can be enhanced by electrically conductive scaffolds. However, standalone conductive materials often fall short for TE applications. An effective approach involves coating scaffolds with a conductive layer, finely tuning surface properties while leveraging the scaffold's innate biological and physical support. Further enhancement is achieved by modifying the conductive layer with pharmaceutical components. This review explores the under-reviewed topic of conductive coatings in tissue engineering, introducing conductive biomaterial coatings and analyzing their biological interactions. It provides insights into enhancing scaffold functionality for tissue regeneration, bridging a critical gap in current literature.
Collapse
Affiliation(s)
- Abolfazl Anvari Kohestani
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran 11155-4563 Tehran, Iran
| | - Zhiyan Xu
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Fatih Erdem Baştan
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany; Thermal Spray Research and Development Laboratory, Metallurgical and Materials Engineering Department, Sakarya University, Esentepe Campus, 54187, Turkey
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany.
| | - Fatemehsadat Pishbin
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran 11155-4563 Tehran, Iran.
| |
Collapse
|
6
|
Zahabi N, Baryshnikov G, Linares M, Zozoulenko I. Charge carrier dynamics in conducting polymer PEDOT using ab initio molecular dynamics simulations. J Chem Phys 2023; 159:154801. [PMID: 37843059 DOI: 10.1063/5.0169363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023] Open
Abstract
As conducting polymers become increasingly important in electronic devices, understanding their charge transport is essential for material and device development. Various semi-empirical approaches have been used to describe temporal charge carrier dynamics in these materials, but there have yet to be any theoretical approaches utilizing ab initio molecular dynamics. In this work, we develop a computational technique based on ab initio Car-Parrinello molecular dynamics to trace charge carrier temporal motion in archetypical conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Particularly, we analyze charge dynamics in a single PEDOT chain and in two coupled chains with different degrees of coupling and study the effect of temperature. In our model we first initiate a positively charged polaron (compensated by a negative counterion) at one end of the chain, and subsequently displace the counterion to the other end of the chain and trace polaron dynamics in the system by monitoring bond length alternation in the PEDOT backbone and charge density distribution. We find that at low temperature (T = 1 K) the polaron distortion gradually disappears from its initial location and reappears near the new position of the counterion. At the room temperature (T = 300 K), we find that the distortions induced by polaron, and atomic vibrations are of the same magnitude, which makes tracking the polaron distortion challenging because it is hidden behind the temperature-induced vibrations. The novel approach developed in this work can be used to study polaron mobility along and between the chains, investigate charge transport in highly doped polymers, and explore other flexible polymers, including n-doped ones.
Collapse
Affiliation(s)
- Najmeh Zahabi
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Glib Baryshnikov
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Mathieu Linares
- Group of Scientific Visualization, Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
- Swedish e-Science Center (SeRC), Linköping University, SE-581 83 Linköping, Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| |
Collapse
|
7
|
Landi A, Reisjalali M, Elliott JD, Matta M, Carbone P, Troisi A. Simulation of polymeric mixed ionic and electronic conductors with a combined classical and quantum mechanical model. JOURNAL OF MATERIALS CHEMISTRY. C 2023; 11:8062-8073. [PMID: 37362027 PMCID: PMC10286221 DOI: 10.1039/d2tc05103f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/31/2023] [Indexed: 06/28/2023]
Abstract
In organic polymeric materials with mixed ionic and electronic conduction (OMIEC), the excess charge in doped polymers is very mobile and the dynamics of the polymer chain cannot be accurately described with a model including only fixed point charges. Ions and polymer are comparatively slower and a methodology to capture the correlated motions of excess charge and ions is currently unavailable. Considering a prototypical interface encountered in this type of materials, we constructed a scheme based on the combination of MD and QM/MM to evaluate the classical dynamics of polymer, water and ions, while allowing the excess charge of the polymer chains to rearrange following the external electrostatic potential. We find that the location of the excess charge varies substantially between chains. The excess charge changes across multiple timescales as a result of fast structural fluctuations and slow rearrangement of the polymeric chains. Our results indicate that such effects are likely important to describe the phenomenology of OMIEC, but additional features should be added to the model to enable the study of processes such as electrochemical doping.
Collapse
Affiliation(s)
- Alessandro Landi
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
- Dipartimento di Chimica e Biologia Adolfo Zambelli, Università di Salerno Via Giovanni Paolo II, I-84084 Fisciano Salerno Italy
| | - Maryam Reisjalali
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | - Joshua D Elliott
- Department of Chemical Engineering, University of Manchester Manchester M13 9PL UK
| | - Micaela Matta
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | - Paola Carbone
- Department of Chemical Engineering, University of Manchester Manchester M13 9PL UK
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| |
Collapse
|
8
|
Volkov AI, Apraksin RV. Hofmeister Series for Conducting Polymers: The Road to Better Electrochemical Activity? Polymers (Basel) 2023; 15:polym15112468. [PMID: 37299268 DOI: 10.3390/polym15112468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Poly-3,4-ethylenedioxythiophene:polystyrene sulfonate (PEDOT:PSS) is a widely used conducting polymer with versatile applications in organic electronics. The addition of various salts during the preparation of PEDOT:PSS films can significantly influence their electrochemical properties. In this study, we systematically investigated the effects of different salt additives on the electrochemical properties, morphology, and structure of PEDOT:PSS films using a variety of experimental techniques, including cyclic voltammetry, electrochemical impedance spectroscopy, operando conductance measurements and in situ UV-VIS spectroelectrochemistry. Our results showed that the electrochemical properties of the films are closely related to the nature of the additives used and allowed us to establish a probable relationship with the Hofmeister series. The correlation coefficients obtained for the capacitance and Hofmeister series descriptors indicate a strong relationship between the salt additives and the electrochemical activity of PEDOT:PSS films. The work allows us to better understand the processes occurring within PEDOT:PSS films during modification with different salts. It also demonstrates the potential for fine-tuning the properties of PEDOT:PSS films by selecting appropriate salt additives. Our findings can contribute to the development of more efficient and tailored PEDOT:PSS-based devices for a wide range of applications, including supercapacitors, batteries, electrochemical transistors, and sensors.
Collapse
Affiliation(s)
- Alexey I Volkov
- Department of Electrochemistry, Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Embankment, St. Petersburg 199034, Russia
| | | |
Collapse
|
9
|
Saeed PA, Juraij K, Saharuba PM, Sujith A. A one-pot water mediated process for developing conductive composites with segregated network of poly(3,4-ethylenedioxythiophene) on spherical poly(methyl methacrylate) particles. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03497-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
10
|
Leprince M, Mailley P, Choisnard L, Auzély-Velty R, Texier I. Design of hyaluronan-based dopant for conductive and resorbable PEDOT ink. Carbohydr Polym 2022; 301:120345. [DOI: 10.1016/j.carbpol.2022.120345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
|
11
|
Qiao M, Tian Y, Wang J, Li X, He X, Lei X, Zhang Q, Ma M, Meng X. Magnetic-Field-Induced Vapor-Phase Polymerization to Achieve PEDOT-Decorated Porous Fe 3O 4 Particles as Excellent Microwave Absorbers. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mingtao Qiao
- College of Materials Science and Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, Shaanxi, P. R. China
| | - Yurui Tian
- School of Environmental and Municipal Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, Shaanxi, P. R. China
| | - Jiani Wang
- College of Materials Science and Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, Shaanxi, P. R. China
| | - Xiang Li
- College of Materials Science and Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, Shaanxi, P. R. China
| | - Xiaowei He
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, Shaanxi, P. R. China
| | - Xingfeng Lei
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, Shaanxi, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, Shaanxi, P. R. China
| | - Mingliang Ma
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, P. R. China
| | - Xiaorong Meng
- School of Chemistry and Chemical Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, Shaanxi, P. R. China
| |
Collapse
|
12
|
Li Y, Zhou X, Sarkar B, Gagnon-Lafrenais N, Cicoira F. Recent Progress on Self-Healable Conducting Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108932. [PMID: 35043469 DOI: 10.1002/adma.202108932] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Materials able to regenerate after damage have been the object of investigation since the ancient times. For instance, self-healing concretes, able to resist earthquakes, aging, weather, and seawater have been known since the times of ancient Rome and are still the object of research. During the last decade, there has been an increasing interest in self-healing electronic materials, for applications in electronic skin (E-skin) for health monitoring, wearable and stretchable sensors, actuators, transistors, energy harvesting, and storage devices. Self-healing materials based on conducting polymers are particularly attractive due to their tunable high conductivity, good stability, intrinsic flexibility, excellent processability and biocompatibility. Here recent developments are reviewed in the field of self-healing electronic materials based on conducting polymers, such as poly 3,4-ethylenedioxythiophene (PEDOT), polypyrrole (PPy), and polyaniline (PANI). The different types of healing, the strategies adopted to optimize electrical and mechanical properties, and the various possible healing mechanisms are introduced. Finally, the main challenges and perspectives in the field are discussed.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Xin Zhou
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Biporjoy Sarkar
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Noémy Gagnon-Lafrenais
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Fabio Cicoira
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| |
Collapse
|
13
|
Romero M, Mombrú D, Pignanelli F, Faccio R, Mombrú AW. Hybrid Organic-Inorganic Materials and Interfaces With Mixed Ionic-Electronic Transport Properties: Advances in Experimental and Theoretical Approaches. Front Chem 2022; 10:892013. [PMID: 35494643 PMCID: PMC9039017 DOI: 10.3389/fchem.2022.892013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 12/03/2022] Open
Abstract
The main goal of this mini-review is to provide an updated state-of-the-art of the hybrid organic-inorganic materials focusing mainly on interface phenomena involving ionic and electronic transport properties. First, we review the most relevant preparation techniques and the structural features of hybrid organic-inorganic materials prepared by solution-phase reaction of inorganic/organic precursor into organic/inorganic hosts and vapor-phase infiltration of the inorganic precursor into organic hosts and molecular layer deposition of organic precursor onto the inorganic surface. Particular emphasis is given to the advances in joint experimental and theoretical studies discussing diverse types of computational simulations for hybrid-organic materials and interfaces. We make a specific revision on the separately ionic, and electronic transport properties of these hybrid organic-inorganic materials focusing mostly on interface phenomena. Finally, we deepen into mixed ionic-electronic transport properties and provide our concluding remarks and give some perspectives about this growing field of research.
Collapse
Affiliation(s)
- Mariano Romero
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y Sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | | | | | - Ricardo Faccio
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y Sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Alvaro W. Mombrú
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y Sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
14
|
Gueskine V, Vagin M, Berggren M, Crispin X, Zozoulenko I. Oxygen reduction reaction at conducting polymer electrodes in a wider context: Insights from modelling concerning outer and inner sphere mechanisms. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Viktor Gueskine
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 601 74 Sweden
| | - Mikhail Vagin
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 601 74 Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 601 74 Sweden
| | - Xavier Crispin
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 601 74 Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 601 74 Sweden
| |
Collapse
|
15
|
Modarresi M, Zozoulenko IV. Why does solvent treatment increase conductivity of PEDOT:PSS? Insight from molecular dynamics simulations. Phys Chem Chem Phys 2022; 24:22073-22082. [DOI: 10.1039/d2cp02655d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) is one of the most important conducting polymers. In its pristine form its electrical conductivity is low, but it can be enhanced by several orders of magnitude by...
Collapse
|
16
|
Bustamante CM, Scherlis DA. Doping and coupling strength in molecular conductors: polyacetylene as a case study. Phys Chem Chem Phys 2021; 23:26974-26980. [PMID: 34842869 DOI: 10.1039/d1cp04728k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The doping mechanisms responsible for elevating the currents up to eleven orders of magnitude in semiconducting polymer films are today well characterized. Doping can also improve the performance of nanoscale devices or single molecule conductors, but the mechanism in this case appears to be different, with theoretical studies suggesting that the dopant affects the electronic properties of the junctions. In the present report, multiscale time-dependent DFT transport simulations help clarify the way in which n-type doping can raise the current flowing through a polymer chain connected to a pair of electrodes, with the focus on polyacetylene. In particular, our multiscale methodology offers control over the magnitude of the chemical coupling between the molecule and the electrodes, which allows us to analyze the effect of doping in low and strong coupling regimes. Interestingly, our results establish that the impact of dopants is the highest in weakly coupled devices, while their presence tends to be irrelevant in low-resistance junctions. Our calculations point out that both the equalization of the frontier orbitals with the Fermi level and a small gap between the HOMO and the LUMO must result from doping in order to observe any significant increase of the currents.
Collapse
Affiliation(s)
- Carlos M Bustamante
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (C1428EHA), Argentina.
| | - Damián A Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (C1428EHA), Argentina.
| |
Collapse
|
17
|
Poly(3,4-ethylenedioxythiophene) Electrosynthesis in the Presence of Mixtures of Flexible-Chain and Rigid-Chain Polyelectrolytes. Polymers (Basel) 2021; 13:polym13223866. [PMID: 34833165 PMCID: PMC8623408 DOI: 10.3390/polym13223866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
The electrochemical synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT) was first carried out in the presence of mixtures of flexible-chain and rigid-chain polyacids and their Na-salts. Earlier on with the example of polyaniline, we have shown the non-additive effect of the rigid-chain component of polyacid mixtures on the electrodeposition of polyaniline films, their morphology and spectroelectrochemical properties. In this study, we confirmed the non-additive effect and showed that such mixed PEDOT-polyelectrolyte films possess unique morphology, spectroelectrochemical and ammonia sensing properties. The electrosynthesis was carried out in potential cycling, galvanostatic and potentiostatic regimes and monitored by in situ UV-Vis spectroscopy. UV-Vis spectroelectrochemistry of the obtained PEDOT-polyelectrolyte films revealed the dominating influence of the rigid-chain polyacid on the electronic structure of the mixed complexes. The mixed PEDOT-polyacid films demonstrated the best ammonia sensing performance (in the range of 5 to 25 ppm) as compared to the films of individual PEDOT-polyelectrolyte films.
Collapse
|